
KR & R © Brachman & Levesque 2005 79

5.

Reasoning with Horn
Clauses

KR & R © Brachman & Levesque 2005 80

Horn clauses

Clauses are used two ways:
• as disjunctions: (rain ! sleet)
• as implications: (¬child ! ¬male ! boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause
• positive / definite clause = exactly one +ve literal

e.g. [¬p1, ¬p2, ..., ¬pn, q]

• negative clause = no +ve literals
e.g. [¬p1, ¬p2, ..., ¬pn] and also []

Note: [¬p1, ¬p2, ..., ¬pn, q] is a representation for
(¬p1 ! ¬p2 ! ... ! ¬pn ! q) or [(p1 " p2 " ... " pn) # q]

so can read as: If p1 and p2 and ... and pn then q

and write as: p1 " p2 " ... " pn $ q or q % p1 " p2 " ... " pn

KR & R © Brachman & Levesque 2005 81

Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations of negative clauses so that
all new derived clauses are negative

Neg Pos

Neg

Pos Pos

Pos

[¬a, ¬q, p] [¬b, q]

[p, ¬a, ¬b][¬c, ¬p]

[¬a, ¬b, ¬c]

[¬a, ¬q, p]

[¬b, q][¬a,¬c, ¬q]

[¬c, ¬p]

[¬a, ¬b, ¬c]
derived positive
clause to eliminate

KR & R © Brachman & Levesque 2005 82

Further restricting resolution

Can also change derivations such that each derived clause is a
resolvent of the previous derived one (negative) and some
positive clause in the original set of clauses

• Since each derived clause is negative, one parent must be positive (and so
from original set) and one parent must be negative.

• Chain backwards from the final negative clause until both parents are from
the original set of clauses

• Eliminate all other clauses not on this direct path

This is a recurring pattern in derivations
• See previously:

– example 1, example 3, arithmetic example

• But not:
– example 2, the 3 block example

c1

c2

c3

cn

cn-1

new
old

KR & R © Brachman & Levesque 2005 83

SLD Resolution

An SLD-derivation of a clause c from a set of clauses S is a
sequence of clause c1, c2, ... cn such that cn = c, and

1. c1 & S
2. ci+1 is a resolvent of ci and a clause in S

Write: S ' c

Note: SLD derivation is just a special form of derivation
and where we leave out the elements of S (except c1)

In general, cannot restrict ourselves to just using SLD-Resolution
Proof: S = {[p, q], [p, ¬q], [¬p, q] [¬p, ¬q]}. Then S ' [].

Need to resolve some [(] and [(] to get [].
But S does not contain any unit clauses.
So will need to derive both [(] and [(] and then resolve them together.

SLD
SLD meansS(elected) literals

L(inear) form
D(efinite) clauses

KR & R © Brachman & Levesque 2005 84

Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLD-
Resolution

Theorem: SLD-Resolution is refutation complete for Horn
clauses: H ' [] iff H ' []

So: H is unsatisfiable iff H ' []

This will considerably simplify the search for derivations

Note: in Horn version of SLD-Resolution, each clause in the
c1, c2, ..., cn, will be negative

So clauses H must contain at least one negative clause, c1
and this will be the only negative clause of H used.
Typical case:

– KB is a collection of positive Horn clauses
– Negation of query is the negative clause

SLD

 SLD

KR & R © Brachman & Levesque 2005 85

Example 1 (again)

[¬Girl]

[¬Child, ¬Female]

[¬Child]

[¬FirstGrade]

[]

Girl

Child Female

FirstGrade

goal

solved

solved

FirstGrade

FirstGrade # Child

Child " Male # Boy
Kindergarten # Child

Child " Female # Girl
Female

KB

Show KB) {¬Girl} unsatisfiable

SLD derivation alternate representation

A goal tree whose nodes are atoms,
whose root is the atom to prove, and
whose leaves are in the KB

KR & R © Brachman & Levesque 2005 86

Prolog

Append(cons(a,cons(b,nil)), cons(c,nil), u)

Append(cons(b,nil), cons(c,nil), u*)

Append(nil, cons(c,nil), u**)

solved:

u / cons(a,u*)

u* / cons(b,u**)

u** / cons(c,nil)

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is: Append([a b],[c],[a b c])

goal

What is the result of appending [c] to the list [a,b] ?

Horn clauses form the basis of Prolog
Append(nil,y,y)
Append(x,y,z) $ Append(cons(w,x),y,cons(w,z))

With SLD derivation, can
always extract answer from proof

H |= +x ,(x)

iff
for some term t, H |= ,(t)

Different answers can be found
by finding other derivations

KR & R © Brachman & Levesque 2005 87

Back-chaining procedure

Solve[q1, q2, ..., qn] = /* to establish conjunction of qi */

If n=0 then return YES; /* empty clause detected */
For each d & KB do

If d = [q1, ¬p1, ¬p2, ..., ¬pm] /* match first q */
and /* replace q by -ve lits */

 Solve[p1, p2, ..., pm, q2, ..., qn] /* recursively */
then return YES

end for; /* can't find a clause to eliminate q */
Return NO

Depth-first, left-right, back-chaining
• depth-first because attempt pi before trying qi

• left-right because try qi in order, 1,2, 3, ...
• back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog
First-order case requires unification etc.

KR & R © Brachman & Levesque 2005 88

Problems with back-chaining

Can go into infinite loop
tautologous clause: [p , ¬p] (corresponds to Prolog program with p :- p).

Previous back-chaining algorithm is inefficient
Example: Consider 2n atoms, p0, ..., pn-1, q0, ..., qn-1 and 4n-4 clauses

(pi-1 $ pi), (qi-1 $ pi), (pi-1 $ qi), (qi-1 $ qi).
With goal pk the execution tree is like this

Is this problem inherent in Horn clauses?

pk

pk-1 qk-1

pk-2 qk-2 pk-2 qk-2

...

Solve[pk] eventually
fails after 2k steps!

KR & R © Brachman & Levesque 2005 89

Forward-chaining

Simple procedure to determine if Horn KB |= q.
main idea: mark atoms as solved

FirstGrade example:
Marks: FirstGrade, Child, Female, Girl then done!

Observe:
• only letters in KB can be marked, so at most a linear number of iterations
• not goal-directed, so not always desirable
• a similar procedure with better data structures will run in linear time overall

1. If q is marked as solved, then return YES
2. Is there a {p1,¬p2, ...,¬pn} & KB such that

p2, ..., pn are marked as solved, but the
positive lit p1 is not marked as solved?

no: return NO
yes: mark p1 as solved, and go to 1.

Note: FirstGrade gets marked since
all the negative atoms in the
clause (none) are marked

KR & R © Brachman & Levesque 2005 90

First-order undecidability

Even with just Horn clauses, in the first-order case we still have
the possibility of generating an infinite branch of resolvents.

As with non-Horn clauses, the best that we can do is to give
control of the deduction to the user

to some extent this is what is done in Prolog,
but we will see more in “Procedural Control”

KB:
LessThan(succ(x),y) $ LessThan(x,y)

Query:
LessThan(zero,zero)

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

As with full Resolution,
there is no way to detect
when this will happen

There is no procedure that will test for the
satisfiability of first-order Horn clauses

the question is undecidable

KR & R © Brachman & Levesque 2005 91

6.

Procedural Control of
Reasoning

KR & R © Brachman & Levesque 2005 92

Declarative / procedural

Theorem proving (like resolution) is a general domain-
independent method of reasoning

Does not require the user to know how knowledge will be used
will try all logically permissible uses

Sometimes we have ideas about how to use knowledge, how to
search for derivations

do not want to use arbitrary or stupid order

Want to communicate to theorem-proving procedure some
guidance based on properties of the domain

• perhaps specific method to use
• perhaps merely method to avoid

Example: directional connectives
In general: control of reasoning

KR & R © Brachman & Levesque 2005 93

DB + rules

Can often separate (Horn) clauses into two components:

Both retrieved by unification matching

Control issue: how to use the rules

Example:
MotherOf(jane,billy)
FatherOf(john,billy)
FatherOf(sam, john)
...
ParentOf(x,y) % MotherOf(x,y)
ParentOf(x,y) % FatherOf(x,y)
ChildOf(x,y) % ParentOf(y,x)
AncestorOf(x,y) % ...
...

a database of facts
• basic facts of the domain
• usually ground atomic wffs

collection of rules
• extends the predicate vocabulary
• usually universally quantified

conditionals

KR & R © Brachman & Levesque 2005 94

Rule formulation

Consider AncestorOf in terms of ParentOf

Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of
ParentOf(–,–) goals

1. get ParentOf(sam,z): find child of Sam searching downwards
2. get ParentOf(z,sue): find parent of Sue searching upwards
3. get ParentOf(–,–): find parent relations searching in both directions

Search strategies are not equivalent
if more than 2 children per parent, (2) is best

3. AncestorOf(x,y) % ParentOf(x,y)
AncestorOf(x,y) % AncestorOf(x,z) " AncestorOf(z,y)

2. AncestorOf(x,y) % ParentOf(x,y)
AncestorOf(x,y) % ParentOf(z,y) " AncestorOf(x,z)

1. AncestorOf(x,y) % ParentOf(x,y)
AncestorOf(x,y) % ParentOf(x,z) " AncestorOf(z,y)

Three logically equivalent versions:

KR & R © Brachman & Levesque 2005 95

Algorithm design

Example: Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, ...

Version 1:
Fibo(0, 1)
Fibo(1, 1)
Fibo(s(s(n)), x) % Fibo(n, y) " Fibo(s(n), z) " Plus(y, z, x)

Requires exponential number of Plus subgoals

Version 2:
Fibo(n, x) % F(n, 1, 0, x)
F(0, c, p, c)
F(s(n), c, p, x) % Plus(p, c, s) " F(n, s, c, x)

Requires only linear number of Plus subgoals

KR & R © Brachman & Levesque 2005 96

Ordering goals

Example:
AmericanCousinOf(x,y) % American(x) " CousinOf(x,y)

In back-chaining, can try to solve either subgoal first

Not much difference for AmericanCousinOf(fred, sally), but big
difference for AmericanCousinOf(x, sally)

1. find an American and then check to see if she is a cousin of Sally
2. find a cousin of Sally and then check to see if she is an American

So want to be able to order goals
better to generate cousins and test for American

In Prolog: order clauses, and literals in them
Notation: G :- G1, G2, ..., Gn stands for
 G % G1 " G2 " ... " Gn
but goals are attempted in presented order

KR & R © Brachman & Levesque 2005 97

Commit

Need to allow for backtracking in goals
AmericanCousinOf(x,y) :- CousinOf(x,y), American(x)
for goal AmericanCousinOf(x,sally), may need to try to solve
the goal American(x) for many values of x

But sometimes, given clause of the form
G :- T, S

goal T is needed only as a test for the applicability of subgoal S
• if T succeeds, commit to S as the only way of achieving goal G.
• if S fails, then G is considered to have failed

– do not look for other ways of solving T
– do not look for other clauses with G as head

In Prolog: use of cut symbol
Notation: G :- T1, T2, ..., Tm, !, G1, G2, ..., Gn

attempt goals in order, but if all Ti succeed, then commit to Gi

KR & R © Brachman & Levesque 2005 98

If-then-else

Sometimes inconvenient to separate clauses in terms of unification:
G(zero, –) :- method 1
G(succ(n), –) :- method 2

For example, may split based on computed property:
Expt(a, n, x) :- Even(n), ... (what to do when n is even)
Expt(a, n, x) :- Even(s(n)), ... (what to do when n is odd)

want: check for even numbers only once

Solution: use ! to do if-then-else
G :- P, !, Q.
G :- R.

To achieve G: if P then use Q else use R

Example:
Expt(a, n, x) :- n = 0, !, x = 1.
Expt(a, n, x) :- Even(n), !, (for even n)
Expt(a, n, x) :- (for odd n)

Note: it would be correct to write
Expt(a, 0, x) :- !, x = 1.

but not
Expt(a, 0, 1) :- !.

KR & R © Brachman & Levesque 2005 99

Controlling backtracking

AncestorOf(jane,billy), Male(jane)

ParentOf(jane,billy), Male(jane)

Male(jane)

FAILS

ParentOf(z, billy), AncestorOf(jane, z), Male(jane)

Eventually FAILS

1

2

3 4

Consider solving a goal like

So goal should really be: AncestorOf(jane,billy), !, Male(jane)

Similarly:
Member(x,l) % FirstElement(x,l)
Member(x,l) % Rest(l,l*) " Member(x,l*)

If only to be used for testing, want
Member(x,l) :- FirstElement(x,l), !, .

On failure, do not try
to find another x later
in the rest of the list

KR & R © Brachman & Levesque 2005 100

Negation as failure

Procedurally: we can distinguish between the following:
can solve goal ¬G vs. cannot solve goal G

Use not(G) to mean the goal that succeeds if G fails, and fails if G
succeeds

Roughly: not(G) :- G, !, fail. /* fail if G succeeds */
not(G). /* otherwise succeed */

Only terminates when failure is finite (no more resolvents)

Useful when DB + rules is complete
NoChildren(x) :- not(ParentOf(x,y))

or when method already exists for complement
Composite(n) :- n > 1, not(PrimeNum(n))

Declaratively: same reading as ¬¬¬¬, but not when new variables in G
[not(ParentOf(x,y)) # NoChildren(x)] !

vs. [¬ParentOf(x,y) # NoChildren(x)] "

KR & R © Brachman & Levesque 2005 101

Dynamic DB

Sometimes useful to think of DB as a snapshot of the world that
can be changed dynamically

assertions and deletions to the DB

then useful to consider 3 procedural interpretations for rules like
ParentOf(x,y) % MotherOf(x,y)

1. If-needed: Whenever have a goal matching ParentOf(x,y), can solve it by
solving MotherOf(x,y)

ordinary back-chaining, as in Prolog

2. If-added: Whenever something matching MotherOf(x,y) is added to the DB,
also add ParentOf(x,y)

forward-chaining

3. If-removed: Whenever something matching ParentOf(x,y) is removed from
the DB, also remove MotherOf(x,y), if this was the reason

keeping track of dependencies in DB

Interpretations (2) and (3) suggest demons
procedures that monitor DB and fire when certain conditions are met

KR & R © Brachman & Levesque 2005 102

The Planner language

Main ideas:
1. DB of facts

(Mother susan john) (Person john)

2. If-needed, if-added, if-removed procedures consisting of
– body: program to execute
– pattern for invocation (Mother x y)

3. Each program statement can succeed or fail
– (goal p), (assert p), (erase p),
– (and s ... s), statements with backtracking
– (not s), negation as failure
– (for p s), do s for every way p succeeds
– (finalize s), like cut
– a lot more, including all of Lisp

examples: (proc if-needed (cleartable)
(for (on x table)

(and (erase (on x table)) (goal (putaway x)))))
(proc if-removed (on x y) (print x " is no longer on " y))

Shift from proving conditions
to making conditions hold!

