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CSE 3401: Intro to AI & LP
Knowledge Representation 

& First-Order Logic

● Required Readings: R & N Chapter 8

● Optional: If you need more background:

■ 7.1-7.3 Motivation for logic, basic introduction to 
semantics.

■ 7.4-7.5 propositional logic (good background for first-
order logic). 

■ 7.7 useful insights into applications of propositional logic.
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Why Knowledge Representation?

●Consider the task of understanding a simple 
story. 

●How do we test understanding? 

●Not easy, but understanding at least entails 
some ability to answer simple questions 
about the story.
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Example.

● Three little pigs
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Example.

● Three little pigs
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Example

●Why couldn’t the wolf blow down the house 
made of bricks?

●What background knowledge are we 
applying to come to that conclusion?
■ Brick structures are stronger than straw and stick 

structures.

■ Objects, like the wolf, have physical limitations. The wolf 
can only blow so hard.
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Why Knowledge Representation?

● Large amounts of knowledge are used to 
understand the world around us, and to 
communicate with others. 

● We also have to be able to reason with that 
knowledge.

■ Our knowledge won’t be about the blowing ability of wolfs 
in particular, it is about physical limits of objects in general.

■ We have to employ reasoning to make conclusions about 
the wolf.

■ More generally, reasoning provides an exponential or more 
compression in the knowledge we need to store. I.e., 
without reasoning we would have to store a infeasible 

amount of information: e.g., Elephants can’t fit into 
teacups. 
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Logical Representations

●AI typically employs logical representations 
of knowledge.

●Logical representations useful for a number 
of reasons:
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Logical Representations

● They are mathematically precise, thus we can 
analyze their limitations, their properties, the 
complexity of inference etc. 

● They are formal languages, thus computer 
programs can manipulate sentences in the 
language.

● They come with both a formal syntax and a formal 
semantics. 

● Typically, have well developed proof theories: 
formal procedures for reasoning (achieved by 
manipulating sentences).
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Model theoretic semantics

● Suppose our knowledge is represented in our 
program by some collection of data structures. We 
can think of these as a collection of strings 
(sentences).

● We want a clear mapping from this set of sentences 
to features of the environment. What are sentences 
asserting about environment?

■ In other words, we want to be able to provide an intuitive 
interpretation of any piece of our representation.

■ Similar in spirit to having an intuitive understanding of what 
individual statements in a program mean. It does not mean 
that it is easy to understand the whole, but it provides the 
means to understand the whole by understanding the parts.
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Model theoretic semantics

●Model theoretic semantics facilitates both 
goals.

■ It is a formal characterization (in terms of sets), 
and it can be used to prove a wide range of 
properties of the representation.

■ It maps arbitrarily complex sentences of the logic 
down into intuitive assertions about the real 
world.

■ It is based on notions that are very close to how 
we think about the real world. Thus it provides 
the bridge from the syntax to an intuitive 
understanding of what is being asserted.
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Model theoretic semantics

Representation
Model Theoretic

Semantics

The Agent’s
Environment
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Semantics Formal Details

● A set of objects. These are objects in the 
environment that are important for your 
application. 

● Distinguished subsets of objects. Properties. 

● Distinguished sets of tuples of objects. Relations.

● Distinguished functions mapping tuples of objects 
to objects. Functions.
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Example

● Teaching CSE 3401, want to represent knowledge 
that would be useful for making the course a 
successful learning experience.

● Objects: 

■ students, subjects, assignments, numbers.

● Predicates: 

■ difficult(subject), CSMajor(student). 

● Relations: 

■ handedIn(student, assignment)

● Functions: 

■ Grade(student, assignment) → number
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First Order Logic 

1. Syntax: A grammar specifying what are 
legal syntactic constructs of the 
representation.

2. Semantics: A formal mapping from 
syntactic constructs to set theoretic 
assertions.
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First Order Syntax

Start with a set of primitive symbols.

1. constant symbols.

2. function symbols.

3. predicate symbols (for predicates and 
relations).

4. variables.

• Each function and predicate symbol has a specific arity 
(determines the number of arguments it takes).
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First Order Syntax—Building up.

●A term is either:
■ a variable

■ a constant

■ an expression of the form f(t1, … tk) where 

● (a) f is a function symbol; 

● (b) k is its arity; 

● (c) each ti is a term
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First Order Syntax—Building up.

●An atom is an 

■ expression of the form    p(t1, … tk) where 

■ (a) p is a predicate symbol; 

■ (b) k is its arity; 

■ (c) each ti is a term

●Note: 

■ constants are the same as functions taking zero 
arguments.

■ Use UPPER CASE for variables, lower case for 
function/constant/predicate symbols.
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Semantic Intuition (formalized later)

●Terms denote individuals: 

■ constants denote specific individuals; 

■ functions map tuples of individuals to other individuals

● bill,  jane,  father(jane),  father(father(jane))

● X,  father(X),  hotel7,  rating(hotel7), cost(hotel7)

●Atoms denote facts that can be true or false about 
the world

■ father_of(jane, bill), female(jane), system_down()

■ satisfied(client15),   satisfied(C)

■ desires(client15,rome,week29),  desires(X,Y,Z)

■ rating(hotel7, 4),  cost(hotel7, 125)
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First Order Syntax—Building up.

●Atoms are formulas. (Atomic formulas).

●The negation (NOT) of a formula is a new 
formula
■ ¬f (-f)

Asserts that f is false.

●The conjunction (AND) of a set of formulas 
is a formula. 

■ f1 Λ f2 Λ … Λ fn where each  fi is formula

Asserts that each formula fi is true. 
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First Order Syntax—Building up.

●The disjunction (OR) of a set of formulas is a 
formula. 

■ f1 ν f2 ν … ν fn where each  fi is formula

Asserts that at least one formula fi is true. 

●Existential Quantification . 
■ X. f where X is a variable and f is a formula. 

Asserts there is some individual such that f under 
than binding will be true.

●Universal Quantification . 
■ X.f where X is a variable and f is a formula.

Assets that f is true for every individual. 
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First Order Syntax—abbreviations.

●Implication “if … then …” :

■ f1→ f2

Take this to mean

■ ¬f1 ν f2. 

●Double implication “if and only if”:

■ F1↔ f2

Take this to mean

■ (f1→ f2) Λ (f2 → f1). 

●See text for connective precedence; use ( ) 
to override.
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Semantics.

●Formulas (syntax) can be built up recursively, and 
can become arbitrarily complex.

● Intuitively, there are various distinct formulas 
(viewed as strings) that really are asserting the 
same thing

■ X,Y. elephant(X) Λ teacup(Y) → largerThan(X,Y)

■ X,Y. teacup(Y) Λ elephant(X) → largerThan(X,Y)

●To capture this equivalence and to make sense of 
complex formulas we utilize the semantics.
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Semantics.

●A formal mapping from formulas to 
semantic entities (individuals, sets and 
relations over individuals, functions over 
individuals).

●The mapping mirrors the recursive structure 
of the syntax, so we can give any formula, 
no matter how complex a mapping to 
semantic entities. 
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Semantics—Formal Details

● First, we must fix the particular first-order language 
we are going to provide semantics for. The primitive 
symbols included in the syntax defines the particular 
language.
L(F,P,V)

●F = set of function (and constant symbols)
■ Each symbol f in F has a particular arity.

●P = set of predicate and relation symbols.
■ Each symbol p in P has a particular arity.

●V = an infinite set of variables.



13

25CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Semantics—Formal Details

●An interpretation (model) is a tuple
D, Φ, Ψ,v

■ D is a non-empty set (domain of individuals)

■ Φ is a mapping: Φ(f) → (Dk→ D)

● maps k-ary function symbol f, to a function from k-ary 
tuples of individuals to individuals.

■ Ψ is a mapping: Ψ(p) → (Dk → True/False)

● maps k-ary predicate symbol p, to an indicator function 
over k-ary tuples of individuals (a subset of Dk)

■ v is a variable assignment function. v(X) = d  D (it maps 
every variable to some individual)
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Intuitions: Domain

●Domain D:  dD  is an individual

●E.g., { craig, jane, grandhotel, le-fleabag,

rome, portofino, 100, 110, 120 …}

●Underlined symbols denote domain individuals 
(as opposed to symbols of the first-order 
language)

●Domains often infinite, but we’ll use finite 
models to prime our intuitions
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Intuitions: Φ

● Φ(f) → (Dk→ D)

Given k-ary function f, k individuals, what individual 
does f(d1, …, dk) denote

■ 0-ary functions (constants) are mapped to specific individuals 
in D.
● Φ(client17) = craig, Φ(hotel5) = le-fleabag, Φ (rome) = rome

■ 1-ary functions are mapped to functions in D → D

● Φ(minquality)=f_minquality: 
f_minquality(craig) = 3stars

● Φ(rating)=f_rating: 
f_rating(grandhotel) = 5stars

■ 2-ary functions are mapped to functions from D2 → D

● Φ(distance)=f_distance: 
f_distance(toronto, sienna) = 3256

■ n-ary functions are mapped similarly.
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Intuitions: Ψ
● Ψ(p) → (Dk → True/False)

■ given k-ary predicate, k individuals, does the relation denoted by p hold of 
these? Ψ(p)(<d1, … dk>) = true?

●0-ary predicates are mapped to true or false.
Ψ(rainy) = True   Ψ(sunny) = False

●1-ary predicates are mapped indicator functions of subsets of D. 
■ Ψ(satisfied) = p_satisfied: 

p_satisfied(craig) = True   
■ Ψ(privatebeach) = p_privatebeach:

p_privatebeach(le-fleabag) = False 

●2-ary predicates are mapped to indicator functions over D2

■ Ψ(location) = p_location: p_location(grandhotel, rome) = True
p_location(grandhotel, sienna) = False

■ Ψ(available) = p_available: 
p_available(grandhotel, week29) = True

●n-ary predicates..
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Intuitions: v

● v  exists to take care of quantification. As we 
will see the exact mapping it specifies will not 
matter. 

●Notation: v[X/d] is a new variable assignment 
function. 

■ Exactly like v, except that it maps the variable X to 
the individual d. 

■ Maps every other variable exactly like v: 
v(Y) = v[X/d](Y)
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Semantics—Building up 

Given language L(F,P,V), and an interpretation 
I = D, Φ, Ψ,v

a) Constant c (0-ary function) denotes an individual 
I(c) = Φ(c)  D

b) Variable X denotes an individual 
I(X) = v(X)  D (variable assignment function).

c) Ground term t  = f(t1,…, tk) denotes an individual 
I(t) = Φ(f)(I(t1),… I(tk))  D

We recursively find the denotation of each term, 
then we apply the function denoted by f to get a 
new individual.

Hence terms always denote individuals under 
an interpretation I
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Semantics—Building up 

Formulas

a) Ground atom a = p(t1,… tk) has truth 

value

I(a) = Ψ(p)(I(t1), …, I(tk))  { True, False }

We recursively find the individuals denoted by 

the ti, then we check to see if this tuple of 

individuals is in the relation denoted by p.
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Semantics—Building up 

Formulas

b) Negated formulas ¬f has truth value

I(¬f) = True if I(f) = False
I(¬f) = False if I(f) = True

c) And formulas f1 Λ f2 Λ … Λ fn have truth value

I(f1 Λ f2 Λ … Λ fn) = True if every I(fi) = True.
I(f1 Λ f2 Λ … Λ fn) = False otherwise.

d) Or formulas f1 ν f2 ν … ν fn have truth value

I(f1 ν f2 ν … ν fn) = True if any I(fi) = True.
I(f1 ν f2 ν … ν fn) = False otherwise.
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Semantics—Building up 

Formulas

e) Existential formulas X. f have truth value

I(X. f) = True if there exists a d  D such that

I’(f) = True

where I’ = D, Φ, Ψ,v[X/d]

False otherwise.

I’ is just like I except that its variable assignment 
function now maps X to d. “d” is the individual of 
which “f” is true.
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Semantics—Building up 

Formulas

f) Universal formulas X.f have truth value

I(X.f ) = True if for all d  D

I’(f) = True

where I’ = D, Φ, Ψ,v[X/d]

False otherwise.

Now “f” must be true of every individual “d”.

Hence formulas are always either True or False 
under an interpretation I
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Example

D = {bob, jack, fred}

I(X.happy(X))

1. Ψ(happy)(v[X/bob](X)) = Ψ(happy)(bob) = True

2. Ψ(happy)(v[X/jack](X)) = Ψ(happy)(jack) = True

3. Ψ(happy)(v[X/fred](X)) = Ψ(happy)(fred) = True

Therefore I(X.happy(X)) = True.
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Models—Examples.

Language (Syntax)

A

B

C E

Environment

 Constants: a,b,c,e

 Functions:

No function 

 Predicates: 

on: binary

above: binary

clear: unary

ontable: unary
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Models—Examples.

A possible Model I1 (semantics)

D = {A, B, C, E} 

Φ(a) = A, Φ(b) = B, 
Φ(c) = C, Φ(e) = E.

Ψ(on) = {(A,B),(B,C)}

Ψ(above)=

{(A,B),(B,C),(A,C)}

Ψ(clear)={A,E}

Ψ(ontable)={C,E}

 Constants: a,b,c,e 

 Predicates: 

on (binary)

above (binary)

clear (unary)

 ontable(unary)

Language (syntax)
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Models—Examples.

Model I1

D = {A, B, C, E} 

Φ(a) = A, Φ(b) = B, 
Φ(c) = C, Φ(e) = E.

Ψ(on) = {(A,B),(B,C)}

Ψ(above) = 
{(A,B),(B,C),(A,C)}

Ψ(clear)={A,E}

Ψ(ontable)={C,E}

A

B

C E

Environment
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Models—Formulas true or false?

Model I1

D = {A, B, C, E} 

Φ(a) = A, Φ(b) = B, 
Φ(c) = C, Φ(e) = E.

Ψ(on) = 
{(A,B),(B,C)}

Ψ(above) = 
{(A,B),(B,C),(A,C)}

Ψ(clear)={A,E}

Ψ(ontable)={C,E}

X,Y. on(X,Y)→above(X,Y) 

X=A, Y=B

X=C, Y=A 
 …

X,Y. above(X,Y)→on(X,Y) 

X=A, Y=B

× X=A, Y=C
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Models—Examples.
Model I1

D = {A, B, C, E} 

Φ(a) = A, Φ(b) = B, 
Φ(c) = C, Φ(e) = E.

Ψ(on) = 
{(A,B),(B,C)}

Ψ(above) = 
{(A,B),(B,C),(A,C)}

Ψ(clear)={A,E}

Ψ(ontable)={C,E}

XY. (clear(X) ∨ on(Y,X))
 X=A
 X=C, Y=B
 …

YX.(clear(X) ∨ on(Y,X)) 
× Y=A ? No!  (X=C)
× Y=C?  No!  (X=B)

× Y=E?  No!  (X=B)

× Y=B ? No!  (X=B)
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KB—many models

KB

1.on(b,c)

2.clear(e)

A

B

C E

B

C E

B

C E

A
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Models

●Let our Knowledge base KB, consist of a set of 
formulas.

●We say that I is a model of KB or that I satisfies
KB

■ If, every formula f  KB is true under I

●We write  I ⊨ KB if I satisfies KB, and I⊨f if  f is 
true under I.
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What’s Special About Models?
● When we write KB, we intend that the real 

world (i.e. our set theoretic abstraction of 
it) is one of its models.

● This means that every statement in KB is 
true in the real world.

● Note however, that not every thing true in 
the real world need be contained in KB. We 
might have only incomplete knowledge.
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Models support reasoning.

● Suppose formula f is not mentioned in KB, but is 
true in every model of KB; i.e., 

I ⊨ KB → I ⊨ f.

● Then we say that f is a logical consequence of KB 
or that KB entails f .

● Since the real world is a model of KB, f must be 
true in the real world.

● This means that entailment is a way of finding new 
true facts that were not explicitly mentioned in KB.

??? If KB doesn’t entail f, is f false in the real world?
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Logical Consequence Example

● elephant(clyde)
■ the individual denoted by the symbol clyde in the set 

denoted by elephant (has the property that it is an 
elephant).

● teacup(cup)
■ cup is a teacup. 

● Note that in both cases a unary predicate specifies 
a set of individuals. Asserting a unary predicate to 
be true of a term means that the individual 
denoted by that term is in the specified set.

■ Formally, we map individuals to TRUE/FALSE (this is an 
indicator function for the set).
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Logical Consequence Example

●X,Y.elephant(X) Λ teacup(Y) →largerThan(X,Y)

■ For all pairs of individuals if the first is an elephant 
and the second is a teacup, then the pair of objects 
are related to each other by the largerThan
relation. 

■ For pairs of individuals who are not elephants and 
teacups, the formula is immediately true. 
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Logical Consequence Example

● X,Y.largerThan(X,Y) → ¬fitsIn(X,Y)

■ For all pairs of individuals if X is larger than Y (the 
pair is in the largerThan relation) then we cannot 
have that X fits in Y (the pair cannot be in the 
fitsIn relation). 

■ (The relation largerThan has a empty intersection 
with the fitsIn relation).
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Logical Consequences

● ¬fitsIn(clyde,cup)

● We know largerThan(clyde,teacup) from the first 
implication. Thus we know this from the second 
implication.
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Logical Consequences

Elephants × teacups

largerThan

(clyde    ,      cup)

¬fitsIn

fitsIn
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Logical Consequence Example

● If an interpretation satisfies KB, then the set of pairs 
elephant Xteacup must be a subset of largerThan, which is 
disjoint from fitsIn.

● Therefore, the pair (clyde,cup) must be in the complement 
of the set fitsIn.

● Hence, ¬fitsIn(clyde,cup) must be true in every 
interpretation that satisfies KB.

● ¬fitsIn(clyde,cup) is a logical consequence of KB. 
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Models Graphically

a b ¬c ¬d

a b c ¬d

a ¬b ¬c ¬d

Set of All  Interpretations

Models of KB

Consequences? a, c → b, b → c, d → b, ¬b → ¬c
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Models and Interpretations

● the more sentences in KB, the fewer models 
(satisfying interpretations) there are. 

●The more you write down (as long as it’s all 
true!), the “closer” you get to the “real world”! 
Because Each sentence in KB rules out certain 
unintended interpretations.

●This is called axiomatizing the domain


