
1CSE 3401 F 2012

Prolog Core Concepts and
Notation

Yves Lespérance

Adapted from Peter Roosen-Runge

Readings: C & M Ch 1, 2, 3.1-3.3, 8

2CSE 3401 F 2012

declarative/logic
programming

 idea: write a program that is a logical
theory about some domain and then
query it

 most well known instance is Prolog

 core constructs, terms and statements,
are inherited from first order logic

3CSE 3401 F 2012

terms

 Prolog statements express relationships
among terms

 terms are (a generalization) of the same
notion in first order logic, i.e. a constant, a
variable, or a function applied to some
argument terms

 E.g. john, john_smith, X, Node, _person,
fatherOf(paul), date(25,10,2005)

 fatherOf and date are functors; date has arity
3; it takes 3 arguments

4CSE 3401 F 2012

terms

 variables begin with upper-case letter or _

 constants and functors (symbols) begin with
lower-case

 terms denote objects

 compound terms are called structures

 E.g.
course(complexity,time(Monday,9,11),lecturer
(patrick,dymond),location(CSE,3311))

 used to represent complex data

 terms (usually) have a tree structure

5CSE 3401 F 2012

facts

 facts are like atomic formulas in first order
logic.

 syntax is same as terms, but ending with a
period.

 e.g. fatherOf(paul,henry).

mortal(ulyssus).

likes(X,iceCream).

likes(mary,brotherOf(helen)).

 variables are implicitly universally quantified.

6CSE 3401 F 2012

rules

 rules are conditional statements.

 e.g. mortal(X) :- human(X).

i.e. ∀x Human(x) → Mortal(x),

all humans are mortal.

 daughter(X,Y) :- father(Y,X), female(X).

 , represents conjunction.

 likes(mary,X) :- isSweet(X).

7CSE 3401 F 2012

rules

 ancestor(X,Y) :- father(X,Z),
ancestor(Z,Y).

 variables are universally quantified from
outside; can think of variables that
appear only in rule body as existentially
quantified.

8CSE 3401 F 2012

queries

 A query asks whether a given
statement is true, i.e. whether it follows
from the program.

 e.g. ?- mortal(ulyssus). given

mortal(X) :- human(X).

human(ulyssus). human(penelope).

god(zeus).

Prolog answers Yes

9CSE 3401 F 2012

queries

 ?- mortal(X).

X = ulyssus ;

X = penelope

Yes

 variables in queries are existentially
quantified; can be used to retrieve
information.

 can have conjunctive queries, e.g.

?- mortal(X), mortal(Y), not(X = Y).

10CSE 3401 F 2012

lists

 lists are a special kind of term that allows
arbitrary number of components

 [] is the empty list

 .(a,b) is a dotted pair

 [a, b, c] = .(a,.(b,.(c,[]))) is a list of 3
components.

 the functor . builds binary trees

 can use display(X) to print internal
representation of X

11CSE 3401 F 2012

lists

 can refer to the first and rest of a list using
the notation: [First | Rest]

 e.g. ?- X = [a,b,c], X = [F|R].

X = [a,b,c]

F = a

R = [b,c]

 E.g. X = [b], Y = a, Z = [Y|X].

X = [b]

Y = a

Z = [a,b]

12CSE 3401 F 2012

unification

 this was an instance of the kind of
pattern matching called unification that
Prolog performs

 Prolog tries to find a way to instantiate
the variables (substitute terms for
them) that satisfies the query

 more on this later

13CSE 3401 F 2012

terms can represent graphs

 ?- X = [a|X].

X = [a, a, a, a, a, a, a, a, a|…]

Yes

 here X denotes an infinite or circular list

 this is not allowed in first-order logic; a
variable cannot denote a term and one
of its subterms; but Prolog omits the
“occurs check”

14CSE 3401 F 2012

building a knowledge base

 to be used in a computation, facts and
rules must be stored in the (dynamic)
database

 facts and rules get into the database
through assertion and consultation

 consultation loads facts and rules from
a file

15CSE 3401 F 2012

assertion

 ?- assert(human(ulyssus)).

 ?- human(X).

X = ulyssus

Yes

 assertion can be done dynamically

 also retract to remove facts and rules
from the DB

 like assignment, change state; avoid
when possible

16CSE 3401 F 2012

consultation

 ?- consult(’family.pl’).

loads facts and rules from file family.pl

 ?- [family].

does the same thing

 ?- [user].

lets you enter facts and rules from the
keyboard

17CSE 3401 F 2012

denotation/meaning of
Prolog programs

 a Prolog program defines a set of
relations, i.e. specifies which tuples of
objects/terms belong to a particular
relation

 in logic, this is called a model

 declarative programming is very
different from usual procedural
programming where programs perform
many state changing operations

18CSE 3401 F 2012

denotation of Prolog
program e.g.

 fatherOf(john,paul).

fatherOf(mary,paul).

motherOf(john,lisa).

parentOf(X,Y) :- fatherOf(X,Y).

parentOf(X,Y) :- motherOf(X,Y).

 fatherOf is the relation {<john,paul>,
<mary,paul>}

 what is the relation associated with
motherOf and parentOf?

19CSE 3401 F 2012

rules as procedures

 rule has form goal :- body

 goal or head is like name of procedure

 terms on the RHS are like the body of
the procedure, the sub-goals that have
to be achieved to show that the goal
holds

 the sub-goals will be attempted left-to-
right

 rule succeeds if all sub-goals succeed

20CSE 3401 F 2012

passing values

 calling/querying a goal can instantiate
its variables

 a sub-goal’s success can bind a
variable within it, also binding the same
variable in the goal

 binding or instantiating a variable is
giving it a value

 compare to passing values into or out of
a procedure

21CSE 3401 F 2012

passing values e.g.

 Assume program:

motherOf(john,lisa).

parentOf(X,Y) :- motherOf(X,Y).

 Queries:

?- parentOf(john,X).

X = lisa Yes

?- parentOf(X,lisa).

X = john Yes

?- parentOf(X,Y).

X = john, Y = lisa Yes

 No fixed input and output parameters

22CSE 3401 F 2012

almost everything is
syntactically a term

 lists are terms; what is the functor?

 rules are terms:

grandfather(X,Y):- father(X,Z),
father(Z,Y).

What are the functors?

 queries are terms

23CSE 3401 F 2012

operators

 some functors are represented by infix
or prefix or postfix operators

 Some infix operators: is, =, +, *, /,
mod, >, >=, “:-”, “,”, etc.

 + and - are both prefix and infix

 :- as prefix is a command, used for
declarations

 operators have precedence

 can define our own operators

24CSE 3401 F 2012

arithmetic functions

 Prolog retains arithmetic functions as functions
(more intuitive):

?- X is exp(1). % exp(1) = e1

X = 2.71828

Yes

?- X is (4 + 2) * 5.

X = 30

Yes

 How does is compare with =, assignment?

25CSE 3401 F 2012

relational thinking

 in Prolog, formulate statements about
function values as relational facts, e.g.

factorial(0,1).

factorial(N,M):- K is N -1, factorial(K,L),
M is N * L.

 to compose functions, e.g. Y = f(g(X)),
you must name intermediate results

fg(X,Y):- g(X,Z), f(Z,Y).

26CSE 3401 F 2012

help is sometimes helpful

?- help(reverse).

reverse(+List1, -List2)

Reverse the order of the elements in List1 and unify the
result with the elements of List2.

+arg: arg is input and should be instantiated.

-arg: arg is output and can be initially uninstantiated; if the
query succeeds, the arg is instantiated with the "output" of
the query.

?arg: arg can be either input or output

27CSE 3401 F 2012

online help

?- help(lists).

No help available for lists

Yes

?- apropos(lists).

merge/3 Merge two sorted lists

append/3 Concatenate lists

Section 11-1 "lists: List Manipulation"

Section 15-2-1 "lists”

Yes

?- help(append/3).

append(?List1, ?List2, ?List3)

Succeeds when List3 unifies with the concatenation of List1 and

List2. The predicate can be used with any instantiation pattern

(even three variables).

28CSE 3401 F 2012

examples

?- append([a,b],[c],X).

X = [a, b, c]

Yes

?- append(X,[c],[a,b,c]).

X = [a, b]

Yes

?- append([a,b],[c],[a,b,d]).

No

29CSE 3401 F 2012

more examples

?- append([a,b],X,Y).

X = _G187

Y = [a, b|_G187]

Yes

?- append(X,Y,Z).

X = []

Y = _G181

Z = _G181 ;

X = [_G262]

Y = _G181

Z = [_G262|_G181] ;

X = [_G262, _G268]

Y = _G181

Z = [_G262, _G268|_G181]

append is an example of a reversible or steadfast predicate (Richard O’Keefe)

30CSE 3401 F 2012

reversible programming

 good predicates are steadfast

 they gives correct answers even if
unusual values are supplied

e. g. variables for inputs, constants for
outputs

 non-steadfast predicates require
specific arguments to be instantiated
(input) or variables (output)

31CSE 3401 F 2012

unification

 Prolog matches terms by unifying them, i.e.
applying a most general unifier to them

 it instantiates variables as little as possible to
make them match, e.g.

?- X = f(Y,b,Z), X = f(a,V,W).

X = f(a, b, _G182)

Y = a

Z = _G182

V = b

W = _G182

32CSE 3401 F 2012

family relations example

33CSE 3401 F 2012

family relations

 the database:
rules

parent(Parent, Child) :- mother(Parent, Child).

parent(Parent, Child) :- father(Parent, Child).

facts

father('George', 'Elizabeth'). father('George', 'Margaret').

mother('Mary', 'Elizabeth'). mother('Mary', 'Margaret').

 Note encoding of disjunction

34CSE 3401 F 2012

finding all solutions

| ?- parent(Parent, Child).

Parent = 'Mary',

Child = 'Elizabeth' ;

Parent = 'Mary',

Child = 'Margaret' ;

Parent = 'George',

Child = 'Elizabeth' ;

Parent = 'George',

Child = 'Margaret' ;

no

35CSE 3401 F 2012

how prolog finds solutions

trace] ?-

parent(Parent, Child1),
parent(Parent, Child2),
not(Child1 = Child2).

Call: (8) parent(_G313,
_G314) ? creep

Call: (9) mother(_G313,
_G314) ? creep

Exit: (9) mother('Mary',
'Elizabeth') ? creep

Exit: (8) parent('Mary',
'Elizabeth') ? creep

Call: (8) parent('Mary', _G317)
? creep

Call: (9) mother('Mary',
_G317) ? creep

Exit: (9) mother('Mary',
'Elizabeth') ? creep

Exit: (8) parent('Mary',
'Elizabeth') ? creep

Redo: (9) mother('Mary',
_G317) ? creep

Exit: (9) mother('Mary',
'Margaret') ? creep

Exit: (8) parent('Mary',
'Margaret') ? creep

Parent = 'Mary'

Child1 = 'Elizabeth'

Child2 = 'Margaret'

36CSE 3401 F 2012

Prolog’s query answering
process

 a query is a conjunction of terms

 answer to the query is yes if all terms succeed

 A term in a query succeeds if

 it matches a fact in the database or

 it matches the head of a rule whose body succeeds

 the substitution used to unify the term and the
fact/head is applied to the rest of the query

 works on query terms in left to right order;
databases facts/rules that match are tried in
top to bottom order

37CSE 3401 F 2012

recursion examples

38CSE 3401 F 2012

generating permutations

 A permutation P of a list L is a list
whose first is some element E of L and
whose rest is a permutation of L with E
removed.

 [] is a permutation of []

 In Prolog:

permutation([],[]).

permutation(L,[E|PR]) :- select(E,L,R),
permutation(R,PR).

39CSE 3401 F 2012

selecting an element from a
list

 To select an element from a list, can
either select the first leaving the rest,
or select some element from the rest
and leaving the first plus the unselected
elements from the rest.

 In Prolog:

select(X,[X|R],R).

select(X,[Y|R],[Y|RS]):- select(X,R,RS).

40CSE 3401 F 2012

sorting by the definition

 Find a permutation that is ordered

sort(L,P):- permutation(L,P),

ordered(P).

ordered([]).

ordered([E]).

ordered([E1,E2|R]) :- E1 <= E2,

ordered([E2|R]).

 an example of “generate and test”

41CSE 3401 F 2012

reverse

 reverse(L,RL) holds if RL is a list with the
components of L reversed

 ordinary recursive definition

reverse([],[]).

reverse([F|R],RL):- reverse(R,RR),

append(RR, [F], RL).

append([],L,L).

append([F|R],L,[F|RL]):-

append(R,L,RL).

42CSE 3401 F 2012

reverse

 Tail recursive definition:

reverse(L,RL):- reverse(L,[],RL).

reverse([],Acc,Acc).

reverse([F|R],Acc,RL):-

reverse(R,[F|Acc],RL).

 recursive call is last thing done

 can avoid saving calls on stack

43CSE 3401 F 2012

solving a logic puzzle with Prolog

44CSE 3401 F 2012

the zebra puzzle

1. There are 5 houses, occupied by politically-incorrect
gentlemen of 5 different nationalities, who all have different
coloured houses, keep different pets, drink different drinks,
and smoke different (now-extinct) brands of cigarettes.

2. The Englishman lives in a red house.

3. The Spaniard keeps a dog.

4. The owner of the green house drinks coffee.

…

6. The ivory house is just to the left of the green house.

…

11. The Chesterfields smoker lives next to a house with a fox.

Who owns the zebra and who drinks water?

45CSE 3401 F 2012

Prolog implementation

 represent the 5 houses by a structure of
5 terms

house(Colour, Nationality, Pet, Drink,
Cigarettes)

 create a partial structure using
variables, to be filled by the solution
process

 specify constraints to instantiate
variables

46CSE 3401 F 2012

house building

makehouses(0,[]).

makehouses(N,[house(Col, Nat, Pet, Drk, Cig)|List])

:- N>0, N1 is N - 1, makehouses(N1,List).

or more cleanly with anonymous variables:

makehouses(N,[house(_, _, _, _, _)|List])

:- N>0, N1 is N - 1, makehouses(N1,List).

Why is this equivalent? (See p. 159.)

47CSE 3401 F 2012

the empty houses

?- makehouses(5, List).

List = [house(_G233, _G234, _G235, _G236, _G237),
house(_G245, _G246, _G247, _G248, _G249),
house(_G257, _G258, _G259, _G260, _G261),
house(_G269, _G270, _G271, _G272, _G273),

house(_G281, _G282, _G283, _G284, _G285)]

48CSE 3401 F 2012

constraints

 The Englishman lives in a red house.

house(red, englishman, _, _, _) on List,

 The Spaniard keeps a dog.

house(_, spaniard, dog, _, _) on List,

 The owner of the green house drinks coffee.

house(green, _, _, coffee, _) on List

 The ivory house is just to the left of the green house
sublist2([house(ivory, _, _, _, _)

,house(green, _, _, _, _)], List),

 The Chesterfields smoker lives next to a house with a fox.

nextto(house(_, _, _, _, chesterfields),

house(_, _, fox, _, _), List),

49CSE 3401 F 2012

defining the on operator

 on is a user-defined infix operator that
is a version of member/2

 :- op(100,xfy,on).

X on List :- member(X,List).

amounts to

X on [X|_].

X on [_|R]:- X on R.

50CSE 3401 F 2012

predicates for defining
constraints

 “just to the left of”? “lives next to”?

 define sublist(S,L)

sublist2([S1, S2], [S1, S2 | _]) .

sublist2(S, [_ | T]) :- sublist2(S, T).

 define nextto predicate

nextto(H1, H2, L) :- sublist2([H1, H2], L).

nextto(H1, H2 ,L) :- sublist2([H2, H1], L).

51CSE 3401 F 2012

translating the constraints

 The ivory house is just to the left of the green house
sublist2([house(ivory, _, _, _, _),

house(green, _, _, _, _)], List),

 The Chesterfields smoker lives next to a house with a
fox.

nextto(house(_, _, _, _, chesterfields),

house(_, _, fox, _, _), List),

52CSE 3401 F 2012

looking for the zebra

 Who owns the zebra and who drinks water?

find(ZebraOwner, WaterDrinker) :-

makehouses(5, List),

house(red, englishman, _, _, _) on List,

… % all other constraints

house(_, WaterDrinker, _, water, _) on List,

house(_, ZebraOwner, zebra, _, _) on List.

 solution is generated and queried in the same
clause

 neither water or zebra are mentioned in the
constraints

53CSE 3401 F 2012

solving the puzzle

?- [zebra].

% zebra compiled 0.00 sec, 5,360 bytes

Yes

?- find(ZebraOwner, WaterDrinker).

ZebraOwner = japanese

WaterDrinker = norwegian ;

No

54CSE 3401 F 2012

how Prolog finds solution

After first 8 constraints:

List = [

house(red, englishman, snail, _G251, old_gold),

house(green, spaniard, dog, coffee, _G264),

house(ivory, ukrainian, _G274, tea, _G276),

house(green, _G285, _G286, _G287, _G288),

house(yellow, _G297, _G298, _G299, kools)]

55CSE 3401 F 2012

how Prolog solves the puzzle

Then need to satisfy “the owner of the
third house drinks milk”, i.e.

List = [_, _, house(_, _, _, milk, _),_, _],

Can’t be done with current instantiation
of List. So Prolog will backtrack and
find another.

56CSE 3401 F 2012

how Prolog solves the puzzle

The unique complete solution is

L = [

house(yellow, norwegian, fox, water, kools),

house(blue, ukrainian, horse, tea, chesterfields),

house(red, englishman, snail, milk, old_gold),

house(ivory, spaniard, dog, orange,
lucky_strike),

house(green, japanese, zebra, coffee,
parliaments)]

See course web page for code of the example.

