
1CSE 3401 F 2012

flow of control, negation,
cut, 2nd order programming,
tail recursion

Yves Lespérance

Adapted from Peter Roosen-Runge

2CSE 3401 F 2012

simplicity hides complexity

 simple and/or composition of goals
hides complex control patterns

 not easily represented by traditional
flowcharts

 may not be a bad thing

 want important aspects of logic and
algorithm to be clearly represented and
irrelevant details to be left out

3CSE 3401 F 2012

procedural and declarative
semantics

 Prolog programs have both a
declarative/logical semantics and a
procedural semantics

 declarative semantics: query holds if it
is a logical consequence of the program

 procedural semantics: query succeeds if
a matching fact or rule succeeds, etc.

 defines order in which goals are attempted,
what happens when they fail, etc.

4CSE 3401 F 2012

and & or

 Prolog’s and (,) & or (; and alternative
facts and rules that match a goal) are
not purely logical operations

 often important to consider the order in
which goals are attempted

 left to right for “,” and “;”

 top to bottom for alternative facts/rules

5CSE 3401 F 2012

and is not always
commutative, e.g.

 sublistV1(S, L):- append(_, L1, L),

append(S, _, L1).

i.e. S is a sublist of L if L1 is any suffix of L
and S is a prefix of L1

 sublistV2(S, L):- append(S, _, L1),

append(_, L1 ,L).

i.e. S is a sublist of L if S is a prefix of some
list L1 and L1 is any suffix of L

6CSE 3401 F 2012

and is not always
commutative, e.g.

 ?- sublistV1([c,b], [a, b, c, d]).

false.

 sublistV2([c,b], [a, b, c, d]).

ERROR: Out of global stack

why?

7CSE 3401 F 2012

uses of or (;)

 or “;” can be used to regroup several
rules with the same head

 e.g.

parent(X,Y):- mother(X,Y); father(X,Y).

 can improve efficiency by avoiding
redoing unification

 “;” has lower precedence than “,”

8CSE 3401 F 2012

Prolog negation

 Prolog uses “\+”, “not provable” or
negation as failure

 different from logical negation

 ?- \+ goal. succeeds if ?- goal. fails

 interpreting \+ as negation amounts to
making the closed-world assumption

9CSE 3401 F 2012

example

 Given program:

human(ulysses). human(penelope).

mortal(X):- human(X).

 ?- \+ human(jason).

Yes

 In logic, the axioms corresponding to
the program don’t entail

¬Human(Jason).

10CSE 3401 F 2012

semantics of free variables in
\+ is “funny”

 normally, variables in a query are
existentially quantified from outside

e.g. ?- p(X), q(X). represents “there
exists x such that P(x) & Q(x)”

 but ?- \+ (p(X), q(X)). represents “it is
not the case that there exists x such
that P(x) & Q(x)”

11CSE 3401 F 2012

To avoid this problem

 \+ works correctly if its argument is
instantiated

 so for example in

intersect([X|L], Y, I):-

\+ member(X,Y), intersect(L,Y,I).

X and Y should be instantiated

12CSE 3401 F 2012

example

 Given program:

animal(cat). vegetable(turnip).

 ?- \+ animal(X), vegetable(X).

No why?

 ?- vegetable(X),\+ animal(X).

X = turnip why?

13CSE 3401 F 2012

guarding the “else”

 can’t rely on implicit negation in
predicates that can be redone

 in predicates with alternative rules,
each rule should be logically valid (if
backtracking can occur)

 safest thing is repeating the condition
with negation

14CSE 3401 F 2012

e.g. intersect

 intersect([], _, []).

intersect([X|L], Y, [X|I]):-

member(X,Y), intersect(L, Y, I).

intersect([X|L], Y, I):-

\+ member(X,Y), intersect(L, Y, I).

is OK.

15CSE 3401 F 2012

e.g. intersect

 intersect([], _, []).

intersect([X|L], Y, [X|I]):-

member(X,Y), intersect(L, Y, I).

intersect([_|L], Y, I):-intersect(L, Y, I).

is buggy.

?- intersect([a], [b, a], []). succeeds.

why?

16CSE 3401 F 2012

inhibiting backtracking

 the cut operator “!” is used to control
backtracking

 If the goal G unifies with H in program

H :- ….

H :- G1,…,Gi, !, Gj,…, Gk.

H :- … .

and gets past the !, and Gj,…, Gk fails,

then the parent goal G immediately fails.
G1,…, Gi won’t be retried and the subsequent
matching rules won’t be attempted.

17CSE 3401 F 2012

Using ! e.g. intersect

 cut can be used to improve efficiency,
e.g.

intersect([], _, []).

intersect([X|L], Y, [X|I]):-

member(X,Y), intersect(L, Y, I).

intersect(([X|L], Y, I):-

\+ member(X,Y), intersect(L, Y, I).

retests member(X,Y) twice

18CSE 3401 F 2012

e.g. intersect

 using cut, we can avoid this

intersect([], _, []).

intersect([X|L], Y, [X|I]):-

member(X,Y), !, intersect(L, Y, I).

intersect([_|L], Y, I):-intersect(L, Y, I).

 means that the last 2 rules are a
conditional branch

19CSE 3401 F 2012

cut can be used to define
useful features

 If goal G should be false when C1,…, Cn

holds, can write

G :- C1,…, Cn, !, fail.

 not provable can be defined using cut

\+ G :- G, !, fail.

\+ G.

20CSE 3401 F 2012

control predicates

 true (really success), e.g.

G :- Cond1; Cond2; true.

 fail (opposite of true)

 repeat (always succeeds, infinite
number of choice points)

loopUntilNoMore:- repeat, doStuff,
checkNoMore.

but tail recursion is cleaner, e.g.

loop :- doStuff, (checkNoMore; loop).

21CSE 3401 F 2012

forcing all solutions

test :- member(X, [1, 2, 3]),

nl, print(X),

fail.

% no alternative sols for print(X) and nl

% but member has alternative sols

?- test.

1

2

3

No

22CSE 3401 F 2012

2nd order features: bagof &
setof

 ?- bagof(T,G,L). instantiates L to the list
of all instances of T such for which G
succeeds, e.g.

?- bagof(X,(member(X,[2,5,7,3,5]),X >= 3),L).

X = _G172

L = [5, 7, 3, 5]

Yes

23CSE 3401 F 2012

2nd order features: bagof &
setof

 setof is similar to bagof except that it removes
duplicates from the list, e.g.

?- setof(X,(member(X,[2,5,7,3,5]),X >= 3),L).

X = _G172

L = [3, 5, 7]

Yes

 can collect values of several variables, e.g.

?- bagof(pair(X,Y),(member(X,[a,b]),member(Y,[c,d])),

L).

X = _G157

Y = _G158

L = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)]

Yes

24CSE 3401 F 2012

2nd order features

 setof and bagof are called 2nd order
features because they are queries about
the value of a set or relation

 in logic, this is quantification over a set
or relation

 not allowed in first order logic, but can
be done in 2nd order logic

25CSE 3401 F 2012

entering and leaving

 Trace steps are labelled:

Call: enter the procedure

Exit: exit successfully with bindings for
variable

Fail: exit unsuccessfully

Redo: look for an alternative solution

 4 ports model

26CSE 3401 F 2012

e.g. factorial

 simple implementation:

fact(0,1).

fact(N,F):- N > 0, N1 is N – 1,

fact(N1,F1), F is N * F1.

 close to mathematical definition

 but not tail-recursive

 requires O(N) in stack space

27CSE 3401 F 2012

e.g. factorial

 better implementation:

fact(N,F):- fact1(N,1,F).

fact1(0,F,F).

fact1(N,T,F):- N > 0, T1 is T * N,

N1 is N – 1, fact1(N1,T1,F).

 uses accumulator

 is tail-recursive and each call can
replace the previous call

 can prove correctness

28CSE 3401 F 2012

Tail recursion optimization in
Prolog

 suppose have goal A and rule A’ :- B1,
B2, …, Bn-1, Bn. and A unifies with A’
and B2, …, Bn-1 succeed

 if there are no alternatives left for A
and for B2, …, Bn-1 then can simply
replace A by Bn on execution stack

 in such cases the predicate A is tail
recursive

 nothing left to do in A when Bn succeeds
or fails/backtracks, so we can replace
call stack frame for A by Bn’s; recursion
can be as space efficient as iteration

29CSE 3401 F 2012

e.g. append

 append([],L,L).

append([X|R],L,[X|RL]):-

append(R,L,RL).

 append is tail recursive if first argument is
fully instantiated

 Prolog must detect the fact that there are no
alternatives left; may depend on clause
indexing mechanism used

 use of unification means more relations are
tail recursive in Prolog than in other languages

30CSE 3401 F 2012

split

split([],[],[]).

split([X],[X],[]).

split([X1,X2|R],[X1|R1],[X2|R2]):-

split(R,R1,R2).

Tail recursive!

31CSE 3401 F 2012

merge

merge([],L,L).

merge(L,[],L).

merge([X1|R1],[X2|R2],[X1|R]):-

order(X1,X2), merge(R1,[X2|R2],R).

merge([X1|R1],[X2|R2],[X2|R]):-

not order(X1,X2), merge([X1|R1],R2,R).

Tail recursive, but lack of alternatives may be
hard to detect (can use cut to simplify).

32CSE 3401 F 2012

merge sort

mergesort([],[]).

mergesort([X],[X]).

mergesort(L,S):- split(L,L1,L2),

mergesort(L1,S1),

mergesort(L2,S2),

merge(S1,S2,S).

33CSE 3401 F 2012

for more on tail recursion

 see Sterling & Shapiro The Art of Prolog
Sec. 11.2

