
Test automation / JUnit!

Building automatically repeatable test suites!

!

JU–2

Test automation!

  Test automation is software that automates any aspect of
testing!
  Generating test inputs and expected results!
  Running test suites without manual intervention!
  Evaluating pass/no pass!

  Testing must be automated to be effective and repeatable!

JU–3

Automated testing steps!

  Exercise the implementation with the automated test suite!

  Repair faults revealed by failures!

  Rerun the test suite on the revised implementation!

  Evaluate test suite coverage!

  Enhance the test suite to achieve coverage goals!

  Rerun the automated test suite to support regression testing!

JU–4

Automated testing advantages!

  Permits quick and efficient verification of bug fixes!

  Speeds debugging and reduces “bad fixes”!

  Allows consistent capture and analysis of test results!

  Its cost is recovered through increased productivity and better
system quality!

  More time to design better tests, rather than entering and
reentering tests!

JU–5

Automated testing advantages!

  Unlike manual testing, it is not error-prone and tedious!

  Only feasible way to do regression testing!

  Necessary to run long and complex tests!

  Easily evaluates large quantities of output!

JU–6

Limitations and caveats!

  A skilled tester can use his experience to react to manual
testing results by improvising effective tests!

  Automated tests are expensive to create and maintain!

  If the implementation is changing frequently, maintaining the
test suite might be difficult!

JU–7

XP approach to testing!

  In the Extreme Programming approach!
  Tests are written before the code itself!
  If the code has no automated test cases, it is assumed not

to work!
  A testing framework is used so that automated testing can

be done after every small change to the code!
  This may be as often as every 5 or 10 minutes!

  If a bug is found after development, a test is created to keep
the bug from coming back!

JU–8

XP consequences!

  Fewer bugs!

  More maintainable code!

  The code can be refactored without fear!

  Continuous integration!
  During development, the program always works!
  It may not do everything required, but what it does, it does

right!

JU–9

JUnit!

  JUnit is a framework for writing tests!
  Written by Erich Gamma (of Design Patterns fame) and Kent

Beck (creator of XP methodology)!
  Uses Java 5 features such as annotations and static

imports!

  JUnit helps the programmer:!
  define and execute tests and test suites!
  formalize requirements!
  write and debug code!
  integrate code and always be ready to release a working

version!

JU–10

Terminology!

  A test fixture sets up the data (both objects and primitives)
that are needed for every test!
  Example: If you are testing code that updates an employee

record, you need an employee record to test it on!

  A unit test is a test of a single class!

  A test case tests the response of a single method to a
particular set of inputs!

  A test suite is a collection of unit tests!

  A test runner is software that runs tests and reports results!

JU–11

Structure of a JUnit test class!

  The next sequence of slides deal with JUnit when compiling
and running Java at the operating system level!
  A later sequence of slides describes how to use JUnit within

Eclipse!

  To test a class named Fraction!

  Create a test class FractionTest!

import org.junit.*; !
import static org.junit.Assert.*;!
public class FractionTest!
{!

! !…!
}!

JU–12

Test fixtures!

  Methods annotated with @Before will execute before every
test case!

  Methods annotated with @After will execute after every test
case!

@Before!
public void setUp() {…}!
!
@After!
public void tearDown() {…}!

JU–13

Class Test fixtures!

  Methods annotated with @BeforeClass will execute once
before all test cases!

  Methods annotated with @AfterClass will execute once  
after all test cases!

  These are useful if you need to allocate and release
expensive resources once!

JU–14

Test cases!

  Methods annotated with @Test are considered to be test
cases!

@Test!
public void testadd() {…}!
!
@Test!
public void testToString() {…}!

JU–15

What JUnit does!

  For each test case aTestCase!
  JUnit executes all @Before methods !

  Their order of execution is not specified!
  JUnit executes aTestCase!

  Any exceptions during its execution are logged!
  JUnit executes all @After methods !

  Their order of execution is not specified!

  A report for all test cases is presented!

JU–16

Within a test case!

  Call the methods of the class being tested!

  Assert what the correct result should be with one of the
provided assert methods!

  These steps can be repeated as many times as necessary!

  An assert method is a JUnit method that performs a test, and
throws an AssertionError if the test fails!
  JUnit catches these exceptions and shows you the results!

JU–17

List of assert methods 1!

  assertTrue(boolean b)  
assertTrue(String s, boolean b)!
  Throws an AssertionError if b is False!
  The optional message s is included in the Error  
!

  assertFalse(boolean b)  
assertFalse(String s, boolean b)!
  Throws an AssertionError if b is True!
  All assert methods have an optional message!

JU–18

Example: Counter class!

  Consider a trivial “counter” class!
  The constructor creates a counter and sets it to zero!

  The increment method adds one to the counter and
returns the new value!

  The decrement method subtracts one from the counter
and returns the new value!

  The corresponding JUnit test class is on the next slide!

JU–19

Example JUnit test class for counter program!

public class CounterTest {
Counter counter1;

  

@Before

   public void setUp() { // create a test fixture
 counter1 = new Counter();

}

   @Test

   public void testIncrement() {
 assertTrue(counter1.increment() == 1);
 assertTrue(counter1.increment() == 2);
}

  

@Test

   public void testDecrement() {
 assertTrue(counter1.decrement() == -1);
}

}

Each test begins with a brand new
counter. No need consider the order
in which the tests are run.	

JU–20

List of assert methods 2!

  assertEquals(Object expected,  
 Object actual)

  Uses the equals method to compare the two objects!
  Casting may be required when passing primitives, although

autoboxing may be done!
  There is also a version to compare arrays!

JU–21

List of assert methods 3!

  assertSame(Object expected,  
 Object actual)!
  Asserts that two references are attached to the same

object (using ==) 
!

  assertNotSame(Object expected,  
 Object actual)!
  Asserts that two references are not attached to the same

object !

JU–22

List of assert methods 4!

  assertNull(Object object)!
  Asserts that a reference is null!

  assertNotNull(Object object)!
  Asserts that a reference is not null!

  fail()!
  Causes the test to fail and throw an AssertionError
  Useful as a result of a complex test, or when testing for

exceptions!

JU–23

Testing for exceptions!

  If a test case is expected to raise an exception, it can be
noted as follows and on the next slide!

@Test(expected = Exception.class)!
public void testException() {!
 //Code that should raise an exception!
 fail("Should raise an exception");!
}!

JU–24

Testing for exceptions – example!

public void testAnIOExceptionIsThrown {!
 try!
 {!
 // Code that should raise an IO exception!
 fail("Expected an IO exception");!
 } !
 catch (IOException e) !
 {!
 // This is the expected result, so!
 // leave it empty so that the test!
 // will pass. If you care about !
 // particulars of the exception, you!
 // can test various assertions about!
 // the exception object!
 }!
}!

JU–25

The assert statement!

  A statement such as 
!assert boolean_condition;  

 will also throw an AssertionError if the boolean_condition
is false!

  Can be used instead of the JUnit assertTrue method!

JU–26

Ignoring test cases!

  Test cases that are not finished yet can be annotated with
@Ignore!

  JUnit will not execute the test case but will report how many
test cases are being ignored!

JU–27

Automated testing issues!

  It isn’t easy to see how to unit test GUI code!

  JUnit is designed to call methods and compare the
results they return against expected results!
  This works great for methods that just return results,

but many methods have side effects!

JU–28

Automated testing issues!

  To test methods that do output, you have to capture the
output!
  It’s possible to capture output, but it’s an unpleasant

coding chore  
!

  To test methods that change the state of the object, you have
to have code that checks the state!
  It’s a good idea to have methods that test state invariants!

JU–29

First steps toward solutions!

  You can redefine System.out to use a different
PrintStream with System.setOut(PrintStream)!

  You can “automate” GUI use by “faking” events!
  We will see this in more detail later!

JU–30

JUnit in Eclipse!

  JUnit can be downloaded from www.junit.org!

  For this course, we will use it as part of Eclipse!

  Eclipse contains wizards to help with the development of test
suites with JUnit!

  JUnit results are presented in an Eclipse window!

JU–31

Hello World demo!

  Run Eclipse!

  File -> New -> Project, choose Java Project, and click Next!

  Type in a project name, e.g. ProjectWithJUnit, click Finish!

  Project -> Properties, select Java Build Path, Libraries, click Add
External JARs.!

  Browse to directory where JUnit is stored!

  Pick junit.jar and click Open!

  JUnit will appear in the list of libraries. Click OK!

JU–32

Create a class!

  Right-click on ProjectWithJUnit 
Select New -> Package  
Enter package name, e.g. code 
Click Finish!

  Right-click on code  
Select New -> Class 
Enter class name, e.g. HelloWorld 
Click Finish!

JU–33

Create a class - 2!

  Add a dummy method such as 
public String say() { return null; }!

  Right-click in the editor window and select Save!

JU–34

Create a test class!

  Right-click on ProjectWithJUnit 
Select New -> Package  
Enter package name, e.g. test 
Click Finish!

  Right-click on test 
Select New -> Junit Test Case  
Enter test class name, e.g. HelloWorldTest 
Enter class under test: code.HelloWorld!

JU–35

Create a test class!

  Check to create a setup method!

  Click Next!

  Check the checkbox for the say method!
  This will create a stub for a test case for this method!

  Click Finish!

  The HelloWorldTest class is created!

  The first version of the test suite is ready!

JU–36

Run the test class - 1st try!

  Run -> Run as -> JUnit Test!

  The results appear in the left window (you may have to click
the JUnit tab)!

  The automatically created test case fails!

JU–37

Create a better test case!

  Import the class under test 
import code.HelloWorld;!

  Declare an attribute of type HelloWorld 
HelloWorld hi; !

  The setup method should create a HelloWorld object 
hi = new HelloWorld();!

  Modify the testSay method body to  
assertEquals("Hello World!",  
 hi.say());!

JU–38

Run the test class - 2nd try!

  Save the new version of the test class and re-run!

  This time the test fails due to expected and actual not being
equal!

  The body of the method say has to be modified to  
return(“Hello World!”);  
for the test to pass!

JU–39

Create a test suite!

  Right-click on the test package, select New -> Class. Name
the class AllTests.!

  Modify the class text so it looks like the next slide!

  Run with Run -> Run As -> JUnit Test!

  You can easily add more test classes!

JU–40

Example Currency program!

package currency;!
public class Currency {!
!

protected int amount;!
protected String type;!
 !

Currency(int amount, String type) {!
 this.amount = amount; this.type = type; }!
 !

public boolean equals(Object obj) {!
 return amount == ((Currency) obj).amount!
 && type == ((Currency) obj).type; }!
 !

protected Currency times(int multiplier) {!
 return new Currency(amount * multiplier, type); }!
 !

static Currency dollar(int amount) {!
 return new Currency(amount, "Dollar"); }!
 !

static Currency franc(int amount){!
 return new Currency(amount, "Franc"); }!
}!

JU–41

Example Currency test program – 1 of 2!

package currency;!
import junit.framework.*;!
!

public class TestMoney extends TestCase{!
!

public static void main (String[] args) {!
 junit.textui.TestRunner.run(suite());!
}!
!

public static Test suite() {!
 return new TestSuite(TestMoney.class);!
}!
!

public void testEquality(){!
 assertTrue(new Currency(5, "Currency").equals(new Currency(5, "Currency")));!
 assertFalse(new Currency(5, "Currency").equals(new Currency(6, "Currency")));!
 assertTrue(new Currency(5, "Franc").equals(new Currency(5, "Franc")));!
 assertFalse(new Currency(5, "Franc").equals(new Currency(6, "Franc")));!
 assertFalse(new Currency(5, "Franc").equals(new Currency(5, "Currency")));!
}!
!

…!

JU–42

Example Currency test program – 2 of 2!

…!
!

public void testMultiplication() {!
 Currency five = new Currency(5, "Dollar");!
 assertEquals(new Currency(15, "Dollar"), five.times
(3)); }!
!

public void testCurrencyType()!
 assertEquals("Dollar", Currency.dollar(1).type);!
 assertEquals("Franc", Currency.franc(1).type);!
}!
!
}!

No tool?!

  What do you do if there is no equivalent to JUnit for the
language or system in which you have to write test cases?!

JU–43

JU–44

Minimal output testing – 1!

  What to do if no tool exists?!
  Use minimal output testing!

  Works for any programming language!
  Works for any system  
!

  Successful test outputs only the briefest of messages!
  test started 

test ended!

JU–45

Minimal output testing – 2!

  Basic structure!
  Test program is a sequence of if-statements with the

following structure!
  Note use of msg_id to identify which test failed!

  Rest of test program consists of set up and support
routines to simplify programming the condition and then-
phrase!

if expected_output ≠ actual output!
then print_message(msg_id, …)!
fi!

