More On Paths

Supplement to Chapter 4, Graph Theory

Path definition

- A path is a sequence of nodes $\langle \ n_1 \ , \ n_2 \ , \ \ldots \ , \ n_p \ \rangle$
 - where each adjacent pair of nodes is in the set of edges

$$\forall : 1 \dots - 1 \bullet (\dots, \dots) \in I$$

- Length
 - Is the number of edges it contains
 - #path = #sequence 1
- We say a path **visits** the nodes in the sequence

Simple path definition

- A path from node n_i to node n_k is simple if
 - No node appears more than once
 - There is no internal loop
 - Exception the end points may be the same
 - The entire path may form a loop
 - Useful property
 - Any path is a composition of simple paths

• What is a test path?

Test path definition – 2

- A path
 - Possibly of length zero
 - Starts at a starting node of a control flow graph
 - Terminates at an exit node of a control flow graph

Prime path definition

- A path from node n_i to node n_k is **prime** if
 - It is a simple path
 - It is not a proper sub-path of any other simple path
 - It is a maximal length simple path
- Usefulness
 - Reduces the number of test cases for path coverage
- Problem
 - A prime path may be infeasible but contain feasible simple paths
 - In such cases, the prime path is factored into the simple paths in order that they may be covered by testing

Prime path – Example 1

Prime paths

 $\bullet \ \left \langle \ n_1 \ , \ n_2 \ , \ n_4 \ \right \rangle \ \left \langle \ n_1 \ , \ n_3 \ , \ n_4 \ \right \rangle \\$

Prime path – Example 2

Prime paths

- $\ \ \, \left< \, n_1 \, , \, n_2 \, , \, n_3 \, \right> \left< \, n_1 \, , \, n_2 \, , \, n_4 \, , \, n_5 \, \right> \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_2 \, , \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_4 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_4 \, , \, n_5 \, , \, n_5 \, , \, n_2 \, \right> \ \ \, \left< \, n_4 \, , \, n_5 \, , \, n_$
- $\ \ \, \bullet \ \, \left< \, n_4 \, , \, n_5 \, , \, n_2 \, , \, n_4 \, \right> \, \left< \, n_5 \, , \, n_2 \, , \, n_4 \, , \, n_5 \, \right> \, \left< \, n_4 \, , \, n_5 \, , \, n_2 \, , \, n_3 \, \right>$

• What is a round trip path?

Round trip path definition – 2

- A path P is a round trip path if
 - P is prime
 - #P > 0
 - head P = last P

What is a tour?

- A test path is said to **tour** a graph path if
 - graph-path ⊆ test-path
 - \subseteq in this context means sub-path not subset
 - The test-path must visit the graph-path nodes in exactly the specified sequence with no intervening nodes

• What is a tour with side trips?

Tour with side trips definition – 2

- A tour as specified is restrictive in that many test paths would be infeasible
 - This occurs when loops are in the path
 - The path (n₂, n₃, n₄) would be impossible to tour if the condition in n₃ is such that n₆ must be visited at least once

Tour definition augmented

- We relax the definition of a tour to include side trips
 - Leave the sub-path
 - But come back to the same node before continuing the sub-path e.g. $\langle n_2, n_3, n_6, n_3, n_6, n_3, n_4 \rangle$

 Test path tours the graph-path with side trips iff every edge of the graph-path is followed in the same order

Tour with detours definition

• What is a tour with detours?

Tour with detours definition – 2

- We relax the definition of a tour to include detours
 - Leave the sub-path
 - But come back to the node that follows the node where the sub-path was left

-e.g. $\langle n_2, n_3, n_6, n_3, n_6, n_4 \rangle$

 Test path tours the graph-path with detours iff every node of the graph-path is followed in the same order

- TR_{tour} is a set of test requirements such that
 - Paths in a graph that must be covered
 Can be directly toured
- TR_{sidetrips} is a set of test requirements
 - Paths in a graph that must be covered
 - Can be directly toured
 - Or toured with sidetrips

Best effort touring – 2

- A test set T is best effort touring if
 - For every path p in TR_{tour}
 - Some path in T tours p directly
 - For every path p in TR_{sidetrips}
 - Some path in T tours p either directly or with a side trips
- Each test requirement is met in the strictest possible way

- Trips with detours are rarely considered
 - They are less practical than sidetrips in dealing with infeasible paths

Finding prime paths

• Consider the following graph, what are its prime paths?

Finding prime paths – length 0 paths

- Start with a list of the nodes
 - The ! Indicates that the path cannot be extended

Finding prime paths – length 1 paths

- Extend length 0 paths by one edge
 - Path 7 cannot be extended
 - The * indicates a loop cannot be extended

Finding prime paths – length 2 paths

- Extend length 1 paths by one edge
 - Paths 14, 15 and 16 cannot be extended

Finding prime paths – length 3 paths

- Extend length 2 paths by one edge
 - Paths 19 and 21 cannot be extended

Finding prime paths – length 4 paths

- Extend length 3 paths by one edge
 - Only path 29 be extended and no further extensions are possible

Finding prime paths – Collect paths

- No more paths can be extended.
- Collect all the paths that terminate with ! or *
- Eliminate any path that is a subset of another path in the list

 14
 [4, 4] *

 19
 [0, 4, 6] !

 25
 [0, 1, 2, 3] !

 26
 [0, 1, 5, 6] !

 27
 [1, 2, 3, 1] *

 28
 [2, 3, 1, 2] *

 30
 [3, 1, 2, 3] *

 32
 [2, 3, 1, 5, 6] !

These are the 8 prime paths In the example graph

- A coverage criterion is a rule or collection of rules that impose test requirements on a test set.
 - A recipe for generating test requirements in a systematic way

Consider the following graph, what test coverage criteria can we have?

Coverage criteria – 3

- Coverage can be the following
 - All nodes
 - All edges
 - All edge pairs
 - More edges not useful
 - All simple paths
 - All prime paths
 - All simple round trips
 - All complete round trips
 - All paths
 - All specified paths

Test requirement

- Is a specific element of a software artifact that a test case must satisfy or cover.
- Usually come in sets
 - Use the abbreviation *TR* to denote a set of test requirements.
- Can be described with respect to a variety of software artifacts, including
 - Program text
 - Design components
 - Specification modeling elements
 - Even descriptions of the input space.

Test requirements

- Given the pictured graph and the coverage criterion "All nodes"
- The test requirements is a listing of all the nodes in the graph
 - **{ 0**, **1**, **2**, **3**, **4**, **5**, **6 }**

Test set

- A test set satisfies test requirements by visiting every artifact in the test requirements
- Given the test requirements to visit all nodes in the following set for the pictured graph
 - **{ 0**, **1**, **2**, **3**, **4**, **5**, **6 }**
- The following test set satisfies the test requirements
 - { [0, 4, 4, 4, 6]
 , [0, 1, 2, 3, 1, 5, 6] }

When looking at paths we distinguish three types of path behaviours, what are they?

Path behaviours-2

- Distinctions are made with the following types of paths
 - Feasible
 - Specified
 - Topologically possible

Re-examine the Venn diagram in the context of path testing

Topologically possible paths

Guidelines

- Functional testing
 - Too far from the program text
- Path testing
 - Too close to the program text
 - Obscures feasible and infeasible paths
 - Use dataflow testing to move out a bit

Guidelines – 2

- Path testing
 - does not give good help in finding test cases
 - does give good measures of quality of testing through coverage analysis
 - Provides set of metrics that cross-check functional testing
 - Use to resolve gap and redundancy questions
 - Missing DD-paths have gaps
 - Repeated DD-paths have redundancy