
More On Paths

Supplement to Chapter 4, Graph Theory

MOP–2

 A path is a sequence of nodes 〈 n1 , n2 , … , np 〉
 where each adjacent pair of nodes is in the set of edges

 Length
 Is the number of edges it contains

 #path = #sequence – 1

 We say a path visits the nodes in the sequence

Path definition

!

" :1 .. # 1 • (,
+1)$

MOP–3

Simple path definition

 A path from node nj to node nk is simple if
 No node appears more than once

 There is no internal loop

 Exception the end points may be the same
 The entire path may form a loop

 Useful property
 Any path is a composition of simple paths

MOP–4

Test path definition

 What is a test path?

MOP–5

Test path definition – 2

 A path
 Possibly of length zero

 Starts at a starting node of a control flow graph

 Terminates at an exit node of a control flow graph

MOP–6

Prime path definition

 A path from node nj to node nk is prime if
 It is a simple path
 It is not a proper sub-path of any other simple path

 It is a maximal length simple path

 Usefulness
 Reduces the number of test cases for path coverage

 Problem
 A prime path may be infeasible but contain feasible simple

paths
 In such cases, the prime path is factored into the simple

paths in order that they may be covered by testing

MOP–7

Prime path – Example 1

 Prime paths
 〈 n1 , n2 , n4 〉 〈 n1 , n3 , n4 〉

MOP–8

Prime path – Example 2

 Prime paths
 〈 n1 , n2 , n3 〉 〈 n1 , n2 , n4 , n5 〉 〈 n2 , n4 , n5 , n2 〉
 〈 n4 , n5 , n2 , n4 〉 〈 n5 , n2 , n4 , n5 〉 〈 n4 , n5 , n2 , n3 〉

MOP–9

Round trip path definition

 What is a round trip path?

MOP–10

Round trip path definition – 2

 A path P is a round trip path if
 P is prime

 #P > 0

 head P = last P

MOP–11

Tour definition

 What is a tour?

MOP–12

Tour definition – 2

 A test path is said to tour a graph path if

 graph-path ⊆ test-path

 ⊆ in this context means sub-path – not subset

 The test-path must visit the graph-path nodes in exactly
the specified sequence with no intervening nodes

MOP–13

Tour with side trips definition

 What is a tour with side trips?

MOP–14

Tour with side trips definition – 2

 A tour as specified is restrictive in that many test paths would
be infeasible

 This occurs when loops are in the path

 The path 〈 n2 , n3 , n4 〉 would be impossible to tour if
the condition in n3 is such that n6 must be visited at
least once

MOP–15

Tour definition augmented

 We relax the definition of a tour to include side trips
 Leave the sub-path

 But come back to the same node before continuing
the sub-path – e.g. 〈 n2 , n3 , n6 , n3 , n6 , n3 , n4 〉

 Test path tours the graph-path with side trips iff every edge of
the graph-path is followed in the same order

MOP–16

Tour with detours definition

 What is a tour with detours?

MOP–17

Tour with detours definition – 2

 We relax the definition of a tour to include detours
 Leave the sub-path

 But come back to the node that follows the node
where the sub-path was left

– e.g. 〈 n2 , n3 , n6 , n3 , n6 , n4 〉

 Test path tours the graph-path with detours iff every node of
the graph-path is followed in the same order

MOP–18

Best effort touring

 TRtour is a set of test requirements such that

 Paths in a graph that must be covered
 Can be directly toured

 TRsidetrips is a set of test requirements

 Paths in a graph that must be covered
 Can be directly toured
 Or toured with sidetrips

MOP–19

Best effort touring – 2

 A test set T is best effort touring if
 For every path p in TRtour

 Some path in T tours p directly

 For every path p in TRsidetrips
 Some path in T tours p either directly or with a side

trips

 Each test requirement is met in the strictest possible
way

MOP–20

Best effort touring – 3

 Trips with detours are rarely considered

 They are less practical than sidetrips in dealing with
infeasible paths

MOP–21

Finding prime paths

 Consider the following graph, what are its prime paths?

MOP–22

Finding prime paths – length 0 paths

 Start with a list of the nodes
 The ! Indicates that the path cannot be extended

1 [0]
2 [1]
3 [2]
4 [3]
5 [4]
6 [5]
7 [6] !

MOP–23

Finding prime paths – length 1 paths

 Extend length 0 paths by one edge
 Path 7 cannot be extended
 The * indicates a loop – cannot be extended

8 [0, 1]
9 [0, 4]
10 [1, 2]
11 [1, 5]
12 [2, 3]
13 [3, 1]
14 [4, 4] *
15 [4, 6] !
16 [5, 6] !

1 [0]
2 [1]
3 [2]
4 [3]
5 [4]
6 [5]
7 [6] !

MOP–24

Finding prime paths – length 2 paths

 Extend length 1 paths by one edge
 Paths 14, 15 and 16 cannot be extended

17 [0, 1, 2]
18 [0, 1, 5]
19 [0, 4, 6] !
20 [1, 2, 3]
21 [1, 5, 6] !
22 [2, 3, 1]
23 [3, 1, 2]
24 [3, 1, 5]

8 [0, 1]
9 [0, 4]
10 [1, 2]
11 [1, 5]
12 [2, 3]
13 [3, 1]
14 [4, 4] *
15 [4, 6] !
16 [5, 6] !

MOP–25

Finding prime paths – length 3 paths

 Extend length 2 paths by one edge
 Paths 19 and 21 cannot be extended

25 [0, 1, 2, 3] !
26 [0, 1, 5, 6] !
27 [1, 2, 3, 1] *
28 [2, 3, 1, 2] *
29 [2, 3, 1, 5]
30 [3, 1, 2, 3] *
31 [3, 1, 5, 6] !

17 [0, 1, 2]
18 [0, 1, 5]
19 [0, 4, 6] !
20 [1, 2, 3]
21 [1, 5, 6] !
22 [2, 3, 1]
23 [3, 1, 2]
24 [3, 1, 5]

MOP–26

Finding prime paths – length 4 paths

 Extend length 3 paths by one edge
 Only path 29 be extended and no further extensions

are possible

32 [2, 3, 1, 5, 6] !

25 [0, 1, 2, 3] !
26 [0, 1, 5, 6] !
27 [1, 2, 3, 1] *
28 [2, 3, 1, 2] *
29 [2, 3, 1, 5]
30 [3, 1, 2, 3] *
31 [3, 1, 5, 6] !

MOP–27

Finding prime paths – Collect paths

 No more paths can be extended.

 Collect all the paths that terminate with ! or *

 Eliminate any path that is a subset of another path in the list

14 [4, 4] *
19 [0, 4, 6] !
25 [0, 1, 2, 3] !
26 [0, 1, 5, 6] !
27 [1, 2, 3, 1] *
28 [2, 3, 1, 2] *
30 [3, 1, 2, 3] *
32 [2, 3, 1, 5, 6] !

These are the
8 prime paths
In the example
graph

MOP–28

Coverage criteria

 A coverage criterion is a rule or collection of rules that impose
test requirements on a test set.

 A recipe for generating test requirements in a systematic
way

MOP–29

Coverage criteria – 2

 Consider the following graph, what test coverage criteria can
we have?

MOP–30

Coverage criteria – 3

 Coverage can be the following
 All nodes
 All edges
 All edge pairs

 More edges not useful
 All simple paths
 All prime paths
 All simple round trips
 All complete round trips
 All paths
 All specified paths

MOP–31

Test requirement

 Is a specific element of a software artifact that a test case
must satisfy or cover.

 Usually come in sets
 Use the abbreviation TR to denote a set of test

requirements.

 Can be described with respect to a variety of software
artifacts, including
 Program text
 Design components
 Specification modeling elements
 Even descriptions of the input space.

MOP–32

Test requirements

 Given the pictured graph and the coverage criterion "All
nodes"

 The test requirements is a listing of all the nodes in the graph
 { 0, 1, 2, 3, 4, 5, 6 }

MOP–33

Test set

 A test set satisfies test requirements by visiting every artifact
in the test requirements

 Given the test requirements to visit all nodes in the following
set for the pictured graph
 { 0, 1, 2, 3, 4, 5, 6 }

 The following test set satisfies the
test requirements
 { [0, 4, 4, 4, 6]

, [0, 1, 2, 3, 1, 5, 6] }

MOP–34

Path behaviours

 When looking at paths we distinguish three types of path
behaviours , what are they?

MOP–35

Path behaviours– 2

 Distinctions are made with the following types of paths
 Feasible
 Specified
 Topologically possible

MOP–36

Path behaviours – 3

 Re-examine the Venn diagram in the context of path testing

Specified
behaviour

Topologically possible paths

Programmed behaviour
– feasible paths

MOP–37

Guidelines

 Functional testing
 Too far from the program text

 Path testing
 Too close to the program text
 Obscures feasible and infeasible paths

 Use dataflow testing to move out a bit

MOP–38

Guidelines – 2

 Path testing
 does not give good help in finding test cases
 does give good measures of quality of testing through

coverage analysis
 Provides set of metrics that cross-check functional

testing
 Use to resolve gap and redundancy questions

 Missing DD-paths – have gaps
 Repeated DD-paths – have redundancy

