Structural Testing Review

Chapter 11

The big question

= When should testing stop?

STR-2

Possible stopping criteria

Run out of time

Continued testing causes no new failures
Continued testing reveals no new faults
Cannot think of any new test cases
Reach a point of diminishing returns
Mandated coverage has been attained

All faults have been removed

STR-3

Functional testing problems

= What are the problems with functional testing?

STR—4

Functional testing problems — 2

= Functional testing methods may produce test suites with
= Serious gaps

= Lots of redundancy

STR-5

Measuring gaps and redundancy

= How do know how big are the problems of gaps and
redundancy?

STR-6

Measuring gaps and redundancy — 2

= Structural testing analysis makes it possible to measure the
extent of these problems

— graph paths
Triangle program — nominal boundary value analysis
— worst case boundary value analysis

Paths|p1 [(p2 [(p3 |(p4 |p5 |p6 |[p7 |[p8 |[p9 |pl10|plt

Nominal 3 3 1 3 1 3 1 0 0 0 0

Worst case 5 12 6| 11 6| 12 7| 17| 18| 19| 12

STR-7

Measurement

x What do we need to be able to measure?

STR-8

Measurement — 2

= Need a standard of measurement

= A metric

STR-9

Structural metric

= What is a program structural metric?

STR-10

Structural metric — 2

= A program structural metric is a standard of measurement for
the structure of a program

STR-11

Structural metric — 3

= What are the components of a structural metric?

STR-12

Structural metric — 2

A structural metric S identifies s coverage elements in the
unit under test

A testing method M produces m test cases
When the m test cases run, they visit ¢ coverage elements

By comparing ¢ and s we have a measurement of how good
IS our set of test cases

STR-13

Metric definitions

s What definitions are used for structural metrics for a
method M with respect to a metric S?

STR-14

Metric definitions — 2

= Coverage
= Redundancy

= Net redundancy

STR-15

Coverage definition

= What the definition of coverage?

STR-16

Coverage definition — 2

= Coverage of method M with respect to metric S is

C(M,S)=c/s

= Deals with gaps

= What does the ratio tell us?

STR-17

Coverage definition — 3

= Coverage of method M with respect to metric S is

C(M,S)=c/s

= Deals with gaps
« a ratio <1 means there are gaps

STR-18

Redundancy definition

= What the definition of redundancy?

STR-19

Redundancy definition — 2

= Redundancy of method M with respect to metric S is

R(M,S)=m/s

= Deals with absolute redundancy

= What does the ratio tell us?

STR-20

Redundancy definition — 3

= Redundancy of method M with respect to metric S is

R(M,S)=m/s

= Deals with absolute redundancy
« Ratio of 1 is best
« Larger values imply more redundancy
« Smaller values imply gaps
« Not so useful
WHY?

STR-21

Redundancy definition — 3

= Redundancy of method M with respect to metric S is

R(M,S)=m/s

= Deals with absolute redundancy
« Ratio of 1 is best
« Larger values imply more redundancy
« Smaller values imply gaps
« Not so useful

Could have massive redundancy with massive gaps
giving a small ratio

STR-22

Net redundancy definition

= What the definition of net redundancy?

STR-23

Net redundancy definition — 2

= Net redundancy of method M with respect to metric S is

NR (M, S)=m/c

= Deals with relative redundancy

= What does the ratio tell us?

STR-24

Net redundancy definition — 3

= Net redundancy of method M with respect to metric S is

NR (M, S)=m/c

= Deals with relative redundancy
« bestis 1

« Very useful, shows the redundancy of what is
tested

STR-25

Metric values for triangle program

Method m | c| s | CMS) | RMS) | NR(M,S)
Boundary 15 | 7 | 11 0.64 1.36 2.14
Value
Worst Cgse 195 | 11 | 11 1.00 11.36 11.36
Analysis
WN ECT 4 | 4 | 11 0.36 0.36 1.00
Decision 3 3 | 11 0.72 0.72 1.00
Table

STR-26

Metric values for commission program

Method m c | s | CIMS) | R(M,S)
Output BVA | 25 | 11 | 11 1 207
ngtij;o” o (11| 11 1 0.27
DD-path | 25 | 11 | 11 1 207
DU-path | 25 |33 | 33 1 0.76
Slice o5 | 40 | 40 1 0.63

STR-27

Coverage example

= TEX (Donald Knuth) and AWK (Aho, Weinberger, Kernigan)

are widely used programs with comprehensive functional test
suites

= Coverage analysis shows the following percentage of items

covered

System Segment Branch P-use C-use
TEX 85% 72% 53% 48%
AWK 70% 59% 48% 55%

STR-28

Coverage usefulness

= 100% coverage is never a guarantee of bug-free software

= What can coverage reports give us?

STR-29

Coverage usefulness — 2

= Coverage reports can
= Point out inadequate test suites

= Suggest the presence of surprises, such as blind
spots in the test design

= Help identify parts of the implementation that
require structural testing

STR-30

Coverage usefulness — 3

= All possible coverage elements s is very big

= On what basis do we select appropriate subsets?

STR-31

Coverage usefulness — 3

= Can try by selecting appropriate paths
« By fault type
=« By risk/fear

STR-32

Is 100% coverage possible?

= Can you suggest cases that prevent 100% coverage?

STR-33

Is 100% coverage possible? — 2

Lazy (short-circuit) evaluation

m a && b && c

Mutually exclusive conditions

s (x> 2) || (x < 10)

Redundant predicates

m 1f (x == 0) dol; else do2;
if (x '= 0) do3; else do4;

Dead code

“This should never happen”

STR-34

How to measure coverage?

= Can you suggest ways to measure coverage; i.e. how do
you determine ¢?

STR-35

How to measure coverage? — 2

The source code is instrumented

Depending on the code coverage model, code that writes to a
trace file is inserted in every branch, statement etc.

Most commercial tools measure segment and branch
coverage

STR-36

Questions about Coverage

Is 100% coverage the same as exhaustive testing?
Are branch and path coverage the same?

Can path coverage be achieved?

Is every path in a control flow graph testable?

Is less than 100% coverage acceptable?

Can | trust a test suite without measuring coverage?

STR-37

Coverage counter-example vending machine

void give change(int price, deposit) ({
int n 100, n 25, n 10, n 5, change due;
if (deposit <=
else {

}

change due
n 100
change due
n 25
change due
n 10
change due
n 5

price) { change due =

0; }

deposit - price;

change due
change due
change due
change due
change due
change due
change due

/

/
/
/

100;

n 100*100;

25;

n 25*25;

10;

n 10*10;

10; // Cut-and-paste bug

Cannot guarantee path testing will use revealing
test values for deposit and price

STR-38

Coverage counter-example aircraft control

void flight control event handler (event e) {
switch (e)
{ ...
case RAISE LANDING GEAR:
landing gear motor (turn on until raised);
break;

Can you find the bug?
Will any path test find the bug?
What can correct the bug?

STR-39

Trend line test coverage of items

Number of test coverage items

high

low

A

A

DD path

Basis
path

DU-path

Slice

> Sophistication

STR—40

Trend line test method effort

Effort to find test coverage items

high

low

A

A

DD path

Basis
path

DU-path

Slice

> Sophistication

STR—41

