State-Based Testing
Part B — Error Identification

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

Flattening the statechart

= Statecharts are great for communication, reducing
clutter etc.

= They might hide subtle bugs

= e.g. entering a sub-state rather than a super-state

SEI-2

Flattening the statechart — 2

= For testing we need to expand them to full transition
diagrams

= Expansion makes implicit transitions explicit, so they
are not lost

= Expansion is a flat view

» Includes everything from inheritance in OO and
sub-states in statecharts

= An automatable process

SEI-3

Concurrent statechart

—

Moving

RN

/ Antilock Brake Control

FreeWheeling

!
!

BrakeRelease/
DisableSensor

BrakeApplied/
EnableSensor

Braking

[AvgSpeed >AxleSpeed/
Enable Modulator

Modulating

[AvgSpeed <=AxleSpeed/
Disable Modulator

Cruise Control

[speed < setPoint/

[speed > setPoint/
CloseThrottle

OpenThrottle
Active

BrakeApplied/
CloseThrottle

Suspended

SetPoint Select

[speed = 0]

[speed == 0]

FIGURE7.14 Automotive control statechart with orthogonal states.

\

Concurrency Hides Problems

= Concurrency hides implicit state combinations
= Hides potential serious defects

= Arise from implicit state combinations

= Explicit violations of implicit prohibitions should be tested

SEI-5

Expanding the Example

FreeWheellng

_ Active

/ \4

H(

FreeWheellng
Suspended

WTB

);»(

Braklng
Suspended

pc

Modulating 13 —»
Suspended

FreeWheellng 525 4:(Braklng): 4>‘< Modulatlng >

Stopped

|

-

SEI-6

Expanding the Example — 2

Events, guards and output
for the automotive control FSM

1 speed =0 16 speed=0
2 [speed = setPoint] / CloseThrottle 17 [AvgSpeed < AxleSpeed] / DisableModulator
3 [speed < setPoint] / OpenThrottle 18 Engage
4 BrakeApplied / CloseThrottle / EnableSensor
19 speed=0
5 speed=0 20 BrakeRelease / DisableSensor
6 SetPoint Select 21 Engage
7 BrakeApplied / EnableSensor 22 [AvgSpeed > AxleSpeed] / EnableModulator
8 Disengage
23 speed =0
9 speed=0 24 Engage

10 [AvgSpeed > AxleSpeed] / EnableModulator 25 BrakeApplied / EnableSensor
11 Disengage
12 BrakeRelese / DisableSensor 26 speed 20

13 speed =0

14 Disengage
15 [AvgSpeed = AxleSpeed] / DisableModulator

SEI-7

Unspecified Event/State Pairs

s State machine models will not include all events for all
states

= Implicit transitions may be
= lllegal
= Ignored

= Or a specification omission

SEI-8

Unspecified Event/State Pairs — 2

= Accepted illegal events lead to bugs called sneak paths

= For testing purposes, we cannot ignore implicit
behaviour

= Develop a Response Matrix

SEI-9

Example statechart

~ dtor
J
] A 2 [x 1==0] 2 [x =0]
Td, [(i 1= x) && (k < max)] l
(N dtor
B
) 1 l
2
T 3[i>1000] L
5[> 10) || (k == max) || isReset()] c dtor
I
3 [i <=1000]

SEI-10

Response
matrix

Key: T = true, F = false, DC = don't care; for Action codes, see Table 7.3
Not applicable < Excluded [¥] Explicitly specified transition

ctor
Event 1
Event 2
Event3 | i<=1000
DC 2
Off 2 v/
On 2 v
Event 4 il=x
DC 2
F 1
F 2
T 2
T ’ v
Event 5 i>10 k == max isReset()
DC DC DC 5
F F F 5
F F T v
F T F v
F T T v
T F F v
T F T v
T T F v
T T T v
dtor v v

TABLE7.3 Response Codes for lllegal Events

N

(o) BN & 1 IR~ ¥

Possible responses to illegal events

Accept
Queue

Ignore

Flag
Reject
Mute
Abend

Perform the explicitly specified transition

Place the illegal event in a queue for subsequent evaluation
and ignore

No action or state change is to be produced, no error is re-
turned, no exception raised

Return a nonzero error code

Raise an I11egalEventException
Disable the source of the event and ignore

Invoke abnormal termination services (e.g., core dump) and
halt the process

SEI-12

Designing responses to illegal events

= Abstract state should not change
= Concrete state may change due to exception handling

= lllegal event design question

= Handle with defensive programming
= Uncooperative (defensive) systems

= Handle with precondition contracts
« Cooperative systems

SEI-13

Designing responses to illegal events — 2

= Possible responses
= Raise exception
= Treat message as a noop
= Attempt error recovery

= Invoke abnormal termination

= [ester needs to decide expected responses so actual
responses can be evaluated

SEI-14

State model validation

= Before it is used to generate test cases a state
model must be

= Complete
= Consistent

= Correct
= Passes checklists

SEI-15

iChecklist questions

= What is a checklist?

= Why do we use checklists?

= What checklists would be useful for statecharts?

SEI-16

Validation checklists

= We will look at five validation checklists
= Structure checklist
=« State name checklist
= Guarded transition checklist
= Robustness checklist

= Well-formed subclass behaviour checklist

SEI-17

Structure checklist question

= What would you look for to verify the structure of a
statechart is correct?

SEI-18

Structure checklist

= There is an initial state with only outbound transitions

= There is a final state with only inbound transitions

= If not, explicit reason is needed

= Except for the initial and final states, every state has at
least one incoming and one outgoing transition

SEI-19

Structure checklist — 2

= Every state is reachable from the initial state

s | he final state is reachable from all states

= No equivalent states

SEI-20

Structure checklist — 3

= Every defined event and every defined action appears in
at least one transition

= The events accepted in a particular state are
= Unique

=« Or differentiated by mutually exclusive guards
= Complete specification

= For every state, every event is accepted or rejected
« Either explicitly or implicitly

SEI-21

State name checklist

s Poor names are indications of
= Incomplete design

= Orincorrect design

= Names must be meaningful in the context of the
application

= Adjectives are best

= Past participles are OK

SEI-22

State name checklist — 2

= State names should be passive

= If a state is not necessary, leave it out

= “Wait states” are often superfluous

SEI-23

Guarded transition checklist question

= What would you look for to ensure the guards on
transitions are correct in a statechart?

SEI-24

Guarded transition checklist

s Guard variables are visible

= The entire range of truth values for a particular event is
covered

= Each guard is mutually exclusive of all other guards

SEI-25

Guarded transition checklist — 2

s Guards with three or more variables are modeled with a
decision table

= The evaluation of a guard does not cause side effects

SEI-26

Robustness checklist

= There is an explicit spec for an error-handling or
exception-handling mechanism for implicitly rejected
events

= lllegal events do not corrupt the machine
= Preserve the last good state
= Reset to a valid state
= Or self-destruct safely

SEI-27

Robustness checklist — 2

s Actions have no side effects on the resultant state

= For contract violations specify mechanism for
= EXxplicit exception
= Error logging

= Recovery

SEI-28

Well-Formed Subclass Behaviour Checklist

= Does not remove any superclass states

= All transitions accepted in the superclass are
accepted in the subclass

= All guards on superclass transitions are
= The same for subclass transitions

= Or weaker for subclass transitions

SEI-29

Well-Formed Subclass Behaviour Checklist — 2

s Subclass does not weaken the state invariant of the
superclass

= Subclass may add an orthogonal state defined with
respect to its locally introduced instance variables

SEI-30

Well-Formed Subclass Behaviour Checklist — 3

s All inherited actions are consistent with the subclass's
responsibilities

= Verify name-scope sensitive or dynamic binding of
intraclass messages is correct

= All inherited accessor events are appropriate in the
context of the subclass

= Messages sent to objects that are variables in a guard
expression do not have side effects on the class under
test

SEI-31

Control faults for state machines

= An incorrect sequence of events is accepted

= An incorrect sequence of outputs is produced

SEI-32

State control faults question

= What types of state control faults can occur in a
statechart?

SEI-33

Types of state control faults

Missing transition Incorrect transition
Missing action Incorrect action

Trap door Sneak path

Corrupt state lllegal message failure

Occur individually or
any nightmare combination

Are all combinations possible?

SEI-34

State control faults

Eveni s Acitan e ﬁesvii‘ca? State E#férééscripﬁgéjf.af/f: AL
OK OK OK Normal transition
Wrong Incorrect state
Corrupt Corrupted state
Wrong/ OK Incorrect action
undefined Wrong Incorrect action, wrong state
Corrupt - Incorrect action, corrupt state
Missing OK Missing action
Wrong Missing action, incorrect state
- - Corrupt - Mrssmg aotron corrupt state -
Reject Legal DC Same Mrssrng transrtlon no srde effect
Defined Missing transition, side effect
_ o / ”Corrupt - Mrssmg transmon corrupt state
Accept lllegal Defined for this Same Sheak path no side effect
machine Defined Sneak path with side effect
Corrupt Sneak path to corrupt state
Undefined Same Sneak path, no side effect, incorrect
output
Defined Sneak path with side effect, incorrect
output
Corrupt Sneak path to corrupt state, incorrect
R output
Accept Defined for this Same Trap door to aotlon
Undefined machine - Defined Trap door to action, side effect
Corrupt Trap door to action, corrupt state
Undefined Same Trap door with incorrect output
Defined Trap door with incorrect output and side
effect
Corrupt Trap door with incorrect output to corrupt
state

SEI-35

Missing transition question

= How can you tell from the behaviour of a statechart
that there is a missing transition?

SEI-36

Missing transition

= Implementation does not respond to a valid event-state
pair

= Resultant state is incorrect but not corrupt

SEI-37

Missing transition — 2

p1_Start()/ l p2_Start()/
simulateVolley() simulateVolley()
h[Game Started }—
p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() < 20)/ [this.p2_Score() < 20)/
this.p1AddPoint() this.p2AddPoint()
simulateVolley() p1_WinsVolley()/ simulateVolley()
] Y simulateVolley() \ 4 |

Player 1 paweroooeososnncoacs Player 2
Served ! Served

p2_WinsVolley()/
simulateVolley()
p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() == 20}/ [this.p2_Score(} == 20}/
this.p1AddPoint() this.p1AddPoint()
\ 4 A 4
Player 1 Player 2
p1_lsWinner()/ Won Won p2_lsWinner()/
return TRUE; | [| return TRUE;

SEI-38

Incorrect transition question

= How can you tell from the behaviour of a statechart
that there is an incorrect transition?

SEI-39

Incorrect transition

= Implementation behaves as if an incorrect resultant state
has been reached

= Resultant state is incorrect but not corrupt

SEI-40

p1_Start()/

simulateVolley()
A[Game Started

p1_WinsVoliey()/

p1_WinsVolley()
[this.p1_Score() < 20}/
this.p1AddPoint()
simulateVolley()

[4

Player 1
Served

Incorrect transition — 2

l p2_Start()/

simulateVolley()

simulateVolley()

§ ‘ p2_WinsVoliey()

[this.p2_Score() < 20)/

this.p2AddPoint()
simulateVolley()

4 I

p1_WinsVolley()

[this.p1_Score() == 20)/

this.p1AddPoint()

]‘ _____________________ ’[
’ 02_WinsVolley()/

Player 2
Served

simulateVolley()

p2_WinsVolley(

p1_lsWinner()/ . ‘

)
[this.p2_Score() == 20}/
this.p1AddPoint()
v v
Player 1 Player 2
Won Won p2_lsWinner()/

return TRUE; A

| return TRUE;

SEI-41

Missing action question

= How can you tell from the behaviour of a statechart
that there is a missing action?

SEI-42

Missing action

= Implementation does not have an action for a transition
= Can have incorrect output
= Later be in an incorrect state
= Wait forever for the missing action to occur

SEI-43

Missing action — 2

If simulateVolley() is missing, system hangs

p1_Start()/ l p2_Start()/
simulateVolley() (simulateVolley()
L Game Started]—‘
p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() < 20)/ [this.p2_Score() < 20)/
this.p1AddPoint() this.p2AddPoint()
simulateVolley() 01_WinsVolley()/ simulateVolley()
I Y simulateVolley() S A |
» Player 1]4 Player 2
[Served) »{ Served
p2_WinsVolley()/
simulateVolley()
p1_WinsVolley() p2_WinsVolley()
{this.p1_Score() == 20}/ [this.p2_Score() == 20}/
this.p1AddPoint() this.p1AddPoint()
4) 4
Player 1 Player 2
p1_IsWinner()/ Won Won p2_lsWinner()/
return TRUE; | return TRUE;

SEI-44

Incorrect action question

= How can you tell from the behaviour of a statechart
that there is an incorrect action?

SEI-45

Incorrect action

= Implementation produces the wrong action for a
transition

« Different case from incorrect output for an action
= Have incorrect output
= Later be in an incorrect state

SEI-46

Incorrect action — 2

p1_Start()/ l p2_Start()/
simulateVolley() simulateVolley()
Game Started |
p1_WinsVoiley() Instead of p2_WinsVolley()
[this.p1_Score() < 20)/ - [this.p2_Score() < 20)/
this.p1AddPoint() simulateVolley() this.p2AddPoint()
simulateVolley() 11 WinaVolle simulateVolley()

I this.p1AddPoint \ A

Player 1 1 Player 2
Served J)L Served
p2_WinsVolley()/

simulateVolley()
p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() == 20)/ [this.p2_Score() == 20)/
this.p1AddPoint() this.p1AddPoint()
A 4 Y
Player 1 Player 2
p1_lsWinner()/ Won Won p2_IsWinner()/
reurn TRUE; |] [return TRUE;

SEI-47

Trap door question

= How can you tell from the behaviour of a statechart
that there is a trap door?

SEI-48

Trap door

= Implementation accepts an entry event that is not
defined in the specification

= Canresultin
= Incorrect output
= Corrupt state
= Enter wrong state
= Or combination

SEI-49

Trap door — 2

Transition enters
the system.

p1_Start() l p2_Start()/

SImuIateVolley simulateVolley()
—[Game Started]—

p1_WinsVolley() p2._WinsVOIIey()
[this.p1_Score() < 20}/ [this.p2_Score() < 20
this.p1AddPoint() this.p2AddPoint()
simulateVolley() p1_WinsVolley()/ simulateVolley()

l simulateVolley() \ A

Player 1]4 [Player 2
1 Served | :)[Served

p2_WinsVolley()/

simulateVolley()

p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() == 20}/ [this.p2_Score() == 20}/
this.p1AddPoint() this.p1AddPoint()

v v
. Player 1 Player 2
p1_lsWinner()/ Won won p2_lsWinner()/

return TRUE; /v| [return TRUE;
Scroll Lock Key Press I

SEI-50

i Trap door — 3

s Can result from
= Obsolete features that were not removed

= Inherited features that are inconsistent with the
requirements of the subclass

= "Undocumented" features added by the developer
for debugging purposes

Sabotage for criminal or malicious purposes

SEI-51

Sneak path question

= How can you tell from the behaviour of a statechart
that there is a sneak path?

SEI-52

Sneak path

= Implementation for a state accepts an event that is
= lllegal
= Or unspecified

= Canresultin
= Incorrect output
= Corrupt state
= Enter wrong state
= Or combination

SEI-53

Sneak path

Transition is within
the system.
p1_Start()/ p2_Start()/

simulateVoliey() simulateVolley()
Game Started

p1T_WinsVoIIey() p2_WinsVolley()
[this.p1_Score() < 20)/ [this.p2_Score() < 20)/
this.p1AddPoint() this.p2AddPoint()

p1_WinsVolley()/ simulateVolley()
- \ 4 [

I \ 4 simulateVolley()
>[Player 1]4 Player 2

simulateVolley()

Y

Served) _ > Served oo :
p2_WinsVolley()/ | p2_Start()| :
simulateVolley() :

p1_WinsVolley() p2_WinsVolley()
[this.p1_Score(} == 20)/ [this.p2_Score() == 20}/
this.p1AddPoint() this.p1AddPoint()

4

L
Player 1 Player 2
p1_IsWinner()/ Won Won p2_lsWinner()/
|

return TRUE; [| return TRUE:

SEI-54

* Sneak path - 3

s Can result from
= Obsolete features that were not removed

= Inherited features that are inconsistent with the
requirements of the subclass

= "Undocumented" features added by the developer
for debugging purposes

Sabotage for criminal or malicious purposes

SEI-55

Corrupt state question

= How can you tell from the behaviour of a statechart
that there is a corrupt state?

SEI-56

Corrupt state

= Implementation computes a state that is not valid

s Either the class invariant or state invariant is violated

» Due to coding and / or design errors

SEI-57

Corrupt state — 2

Incorrect transition
to corrupt state

p1_Start()/ p2_Start()/
simulateVolley simulateVoliey()
A—[Game Staned}—
p1_Wins\blley() p2_Wins\blley()
[this.p1_Score() < 20] [this.p2_Score() < 20],
this.p1AddPoint() this.p2AddPoint()
simulateVolley() p1_Wins\blley()/ simulateVolley()
l simulateVolley() - v |
Player 1 14 Player 2
jronereannerens e { Served) PL Served
: _ ; p2_W|ns\b|Iey()
. p1_Wins\Wlley() - simulateVolley()
 [this.p1_Score() ==20) - p2_Wins\blley()
_thisn1AddFhint() | [this.p2_Score() == 20)/
_______ \ A i this.p1AddPoint()
. 18-(@1*B+®{ | \ 4 \ 4
R -' Player 1 :l [Player 2
p1_IsWinner()/ . ‘ Won Won ' - p2_lsWinner()/
retumTRUE; L | L1 retum TRUE:;

SEI-58

Incorrect Composite Behaviour

= Misuse of inheritance with modal classes can lead to
state control bugs

= Subclasses can conflict with sequential requirements
of a superclass

= Need to test beyond the scope of one class

SEI-59

Incorrect Composite Behaviour — 2

= Bugs occur for the following reasons
= Missing or incorrect redefinition of a method

= Subclass extension of the local state conflicts with a
superclass state

= Subclass fails to retarget a superclass transition

= Switches to an incorrect or undefined superclass
state

SEI-60

Incorrect Composite Behaviour — 3

= Bugs occur for the following reasons — cont’d

= Order of evaluation of guards and preconditions is
incorrect or sensitive to the order of evaluation

= Guards behave as if an extra state exists

= Order of guard evaluation produces a side effect in the
subclass that is not present in the superclass

= Default name scope resolution results in guard
parameters being bound to the wrong subclass or

superclass methods

SEI-61

