
Micriµm, Inc.Micriµm, Inc.
© Copyright 2000, Micriµm, Inc.

All Rights reserved

µC/OS-II

and
Mutual Exclusion Semaphores

Application Note
AN-1002

Jean J. Labrosse
Jean.Labrosse@Micrium.com

www.Micrium.com

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 2

Summary
Mutual Exclusion Semaphores or simply mutexes are used by tasks to gain exclusive access to a
resource. Mutexes are binary semaphores that have additional features beyond the normal semaphores
mechanism provided by µC/OS-II. This application note describes the mutex series of services which
were added to µC/OS-II V2.04.

Introduction
A mutex is used by your application code to reduce the priority inversion problem as described in the
book: MicroC/OS-II, The Real-Time kernel (ISBN 0-87930-543-6), section 2.16, page 47. A priority
inversion occurs when a low priority task owns a resource needed by a high priority task. In order to
reduce priority inversion, the kernel can increase the priority of the low priority task to the priority of the
higher priority task until the low priority task is done with the resource.

In order to implement mutexes, a real-time kernel needs to provide the ability to support multiple tasks at
the same priority. Unfortunately, µC/OS-II doesn’t allow to have multiple tasks at the same priority.
However, there is a way around this problem. What if a priority just above the high priority task was
reserved by the mutex to allow a low priority task to be raised in priority.

Let’s use an example to illustrate how µC/OS-II mutexes work. Listing 1 shows three tasks that may
need to access a common resource. To access the resource, each task must pend on the mutex
ResourceMutex. Task #1 has the highest priority (10), task #2 has a medium priority (15) and task #3,
the lowest (20). An unused priority just above the highest task priority (i.e. priority 9) will be reserved as
the Priority Inheritance Priority (PIP). As shown in main(), µC/OS-II is initialized L1(1) and a mutex is
created by calling OSMutexCreate() L1(2). You should note that OSMutexCreate() is passed the
PIP. The three tasks are then created L1(3) and µC/OS-II is started L1(4).

Suppose that this application has been running for a while and that, at some point, task #3 accesses the
common resource first and thus acquires the mutex. Task #3 runs for a while and then gets preempted
by task #1. Task #1 needs the resource and thus attempts to acquire the mutex (by calling
OSMutexPend()). In this case, OSMutexPend() notices that a higher priority task needs the resource
and thus raises the priority of task #3 to 9 which forces a context switch back to task #3. Task #3 will
proceed and hopefully release the resource quickly. When done with the resource, task #3 will call
OSMutexPost() to release the mutex. OSMutexPost() will notice that the mutex was owned by a
lower priority task that got its priority raised and thus, will return task #3 to it’s original priority.
OSMutexPost() will notice that a higher priority task (i.e. task #1) needs access to the resource and will
give the resource to task #1 and perform a context switch to task #1.

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 3

OS_EVENT *ResourceMutex;
OS_STK TaskPrio10Stk[1000];
OS_STK TaskPrio15Stk[1000];
OS_STK TaskPrio20Stk[1000];

void main (void)
{
 INT8U err;

 OSInit(); /* (1) */
 /* ---------- Application Initialization ---------- */
 OSMutexCreate(9, &err); /* (2) */
 OSTaskCreate(TaskPrio10, (void *)0, &TaskPrio10Stk[999], 10); /* (3) */
 OSTaskCreate(TaskPrio15, (void *)0, &TaskPrio15Stk[999], 15);
 OSTaskCreate(TaskPrio20, (void *)0, &TaskPrio20Stk[999], 20);
 /* ---------- Application Initialization ---------- */
 OSStart(); /* (4) */
}

void TaskPrio10 (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 /* --------- Application Code ---------- */
 OSMutexPend(ResourceMutex, 0, &err);
 /* ------- Access common resource ------ */
 OSMutexPost(ResourceMutex);
 /* --------- Application Code ---------- */
 }
}

void TaskPrio15 (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 /* --------- Application Code ---------- */
 OSMutexPend(ResourceMutex, 0, &err);
 /* ------- Access common resource ------ */
 OSMutexPost(ResourceMutex);
 /* --------- Application Code ---------- */
 }
}

void TaskPrio20 (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 /* --------- Application Code ---------- */
 OSMutexPend(ResourceMutex, 0, &err);
 /* ------- Access common resource ------ */
 OSMutexPost(ResourceMutex);
 /* --------- Application Code ---------- */
 }
}

Listing 1, Mutex utilization example

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 4

µC/OS-II's mutexes consist of three elements: a flag indicating whether the mutex is available (0 or 1), a
priority to assign the task that owns the mutex in case a higher priority task attempts to gain access to
the mutex, and a list of tasks waiting for the mutex. To enable µC/OS-II’s mutex services, you must set
the configuration constant OS_MUTEX_EN to 1 (see file OS_CFG.H).

A mutex needs to be created before it can be used. Creating a mutex is accomplished by calling
OSMutexCreate() (see next section). The initial value of a mutex is always set to 1 indicating that the
resource is available.

µC/OS-II provides six services to access mutexes: OSMutexCreate(), OSMutexDel(),
OSMutexPend(), OSMutexPost(), OSMutexAccept() and OSMutexQuery(). Figure 1 shows a
flow diagram to illustrate the relationship between tasks and a mutex. A mutex can only be accessed by
tasks. Note that the symbology used to represent a mutex is a ‘key’. The ‘key’ symbology shows that the
mutex is used to access shared resources.

Figure 1, Relationship between tasks and a mutex.

Task Task
OSMutexPend()
OSMutexAccept()
OSMutexQuery()

OSMutexDel()
OSMutexCreate()

OSMutexPost()

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 5

Creating a Mutex, OSMutexCreate()
The code to create a mutex is shown in listing 2. OSMutexCreate() starts by making sure it’s not
called from an ISR because that’s not allowed L2(1).

OSMutexCreate() then verifies that the PIP is within valid ranged L2(2) based on what you determined
the lowest priority is for your application as specified in OS_CFG.H.

OSMutexCreate() then checks to see there isn’t already a task assigned to the PIP L2(3). A non-NULL
pointer in OSTCBPrioTbl[] indicates for the Priority Inheritance Priority (PIP) is available.

If an entry is available, OSMutexCreate() reserves the priority by placing a non-NULL pointer in
OSTCBPrioTbl[prio] L2(4).

OSMutexCreate() then attempts to obtain an ECB (Event Control Block) from the free list of ECBs
L2(5) (see µC/OS-II book, figure 6-3, page 144).

The linked list of free ECBs is adjusted to point to the next free ECB L2(6).

If there was an ECB available, the ECB type is set to OS_EVENT_TYPE_MUTEX L2(7). Other µC/OS-II
services will check this field to make sure that the ECB is of the proper type. This prevents you from
calling OSMutexPost() on an ECB that was created for use as a message mailbox.

OSMutexCreate() then set the mutex value to ‘available’ and the PIP is stored L2(8).

It is worth noting that the .OSEventCnt field is used differently. Specifically, the upper 8 bits of
.OSEventCnt are used to hold the PIP and the lower 8 bits are used to hold either the value of the
mutex when the resource is available (0xFF) or, the priority of the task that ‘owns’ the mutex (a value
between 0 and 62). This prevents having to add extra fields in an OS_EVENT structure and thus reduces
the amount of RAM.

Because the mutex is being initialized, there are no tasks waiting for it L2(9).

The wait list is then initialized by calling OSEventWaitListInit() L2(10).

Finally, OSMutexCreate() returns a pointer to the ECB L2(11). This pointer MUST be used in
subsequent calls to manipulate mutexes (OSMutexPend(), OSMutexPost(), OSMutexAccept(),
OSMutexDel() and OSMutexQuery()). The pointer is basically used as the mutex’s handle. If there
were no more ECBs, OSMutexCreate() would have returned a NULL pointer.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 6

OS_EVENT *OSMutexCreate (INT8U prio, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 OS_EVENT *pevent;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 err = OS_ERR_CREATE_ISR; / ... can't CREATE mutex from an ISR */
 return ((OS_EVENT *)0);
 }
#if OS_ARG_CHK_EN
 if (prio >= OS_LOWEST_PRIO) { /* (2) Validate PIP */
 *err = OS_PRIO_INVALID;
 return ((OS_EVENT *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 if (OSTCBPrioTbl[prio] != (OS_TCB *)0) { /* (3) Mutex priority must not already exist */
 err = OS_PRIO_EXIST; / Task already exist at priority ... */
 OS_EXIT_CRITICAL(); /* ... inheritance priority */
 return ((OS_EVENT *)0);
 }
 OSTCBPrioTbl[prio] = (OS_TCB *)1; /* (4) Reserve the table entry */
 pevent = OSEventFreeList; /* (5) Get next free event control block */
 if (pevent == (OS_EVENT *)0) { /* See if an ECB was available */
 OSTCBPrioTbl[prio] = (OS_TCB *)0; /* No, Release the table entry */
 OS_EXIT_CRITICAL();
 err = OS_ERR_PEVENT_NULL; / No more event control blocks */
 return (pevent);
 }
 OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr; /* (6) Adjust the free list */
 OS_EXIT_CRITICAL();
 pevent->OSEventType = OS_EVENT_TYPE_MUTEX; /* (7) ECB is used as a MUTEX */
 pevent->OSEventCnt = (prio << 8) | OS_MUTEX_AVAILABLE;/* (8) Resource is available */
 pevent->OSEventPtr = (void *)0; /* (9) No task owning the mutex */
 OSEventWaitListInit(pevent); /* (10) Initialize the ECB */
 *err = OS_NO_ERR;
 return (pevent); /* (11) */

 }
}

Listing 2, Creating a mutex.

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 7

Deleting a Mutex, OSMutexDel()
The code to delete a mutex is shown in listing 3. This is a dangerous function to use because multiple
tasks could attempt to access a deleted mutex. You should always use this function with great care.
Generally speaking, before you would delete a mutex, you would first delete all the tasks that access the
mutex.

OSMutexDel() starts by making sure that this function is not called from an ISR because that’s not
allowed L3(1).

We then check the arguments passed to it L3(2) – pevent cannot be a NULL pointer and pevent needs
to point to a mutex L3(3).

OSMutexDel() then determines whether there are any tasks waiting on the mutex. The flag
tasks_waiting is set accordingly L3(4).

Based on the option (i.e. opt) specified in the call, OSMutexDel() will either delete the mutex only if no
tasks are pending on the mutex (opt == OS_DEL_NO_PEND) or, delete the mutex even if tasks are
waiting (opt == OS_DEL_ALWAYS).

When opt is set to OS_DEL_NO_PEND and there is no task waiting on the mutex L3(5),
OSMutexDel() marks the ECB as unused L3(6) and the ECB is returned to the free list of ECBs
L3(7). This will allow another mutex (or any other ECB based object) to be created. You will
note that OSMutexDel() returns a NULL pointer L3(8) since, at this point, the mutex should no
longer be accessed through the original pointer.

When opt is set to OS_DEL_ALWAYS L3(9) then all tasks waiting on the mutex will be readied
L3(10). Each task will think it has access to the mutex. Of course, that’s a dangerous outcome
since the whole point of having a mutex is to protect against multiple access of a resource.
Once all pending tasks are readied, OSMutexDel() marks the ECB as unused L3(11) and the
ECB is returned to the free list of ECBs L3(12). The scheduler is called only if there were tasks
waiting on the mutex L3(13). You will note that OSMutexDel() returns a NULL pointer L3(14)
since, at this point, the mutex should no longer be accessed through the original pointer.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 8

OS_EVENT *OSMutexDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN tasks_waiting;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 err = OS_ERR_DEL_ISR; / ... can't DELETE from an ISR */
 return (pevent);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
 *err = OS_ERR_PEVENT_NULL;
 return (pevent);
 }
#endif
 OS_ENTER_CRITICAL();
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { /* (3) Validate event block type */
 OS_EXIT_CRITICAL();
 *err = OS_ERR_EVENT_TYPE;
 return (pevent);
 }
#endif
 if (pevent->OSEventGrp != 0x00) { /* (4) See if any tasks waiting on mutex */
 tasks_waiting = TRUE; /* Yes */
 } else {
 tasks_waiting = FALSE; /* No */
 }
 switch (opt) {
 case OS_DEL_NO_PEND:
 if (tasks_waiting == FALSE) { /* (5) Delete mutex only if no task waiting */
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED;/* (6) Mark the ECB as unused */
 pevent->OSEventPtr = OSEventFreeList; /* (7) Return Event Control Block to free list */
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); /* (8) Mutex has been deleted */
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_TASK_WAITING;
 return (pevent);
 }

 case OS_DEL_ALWAYS: /* (9) Always delete the mutex */
 while (pevent->OSEventGrp != 0x00) { /* (10) Ready ALL tasks waiting for mutex */
 OSEventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);
 }
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; /* (11) Mark the ECB as unused */
 pevent->OSEventPtr = OSEventFreeList; /* (12) Return Event Control Block to free list */
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 if (tasks_waiting == TRUE) { /* (13) Reschedule only if task(s) were waiting */
 OSSched(); /* Find highest priority task ready to run */
 }
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); /* (14) Mutex has been deleted */

 default:
 OS_EXIT_CRITICAL();
 *err = OS_ERR_INVALID_OPT;
 return (pevent);
 }
}

Listing 3, Deleting a mutex.

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 9

Waiting on a Mutex, OSMutexPend()
The code to wait on a mutex is shown in listing 4.

Like all µC/OS-II pend calls, OSMutexPend() cannot be called from an ISR and thus, OSMutexPend()
checks for this condition first L4(1).

Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSMutexPend() makes sure that
the ‘handle’ pevent is not a NULL pointer L4(2) and that the ECB being pointed to has been created by
OSMutexCreate() L4(3).

If the mutex is available, the lower 8 bits of .OSEventCnt is set to 0xFF (i.e. OS_MUTEX_AVAILABLE)
L4(4). If this is the case, OSMutexPend() will grant the mutex to the calling task and, OSMutexPend()
will set the lower 8 bits of .OSEventCnt to the calling’s task priority L4(5) and L4(6). OSMutexPend()
then sets .OSEventPtr to point to the TCB of the calling task L4(7) and returns. At this point the caller
can proceed with accessing the resource since the return error code is set to OS_NO_ERR. Obviously, if
you want the mutex, this is the outcome you are looking for. This also happens to be the fastest (normal)
path through OSMutexPend().

If the mutex is owned by another task, the calling task needs to be put to sleep until another task
relinquishes the mutex (see OSMutexPost()). OSMutexPend() allows you to specify a timeout value
as one of its arguments (i.e. timeout). This feature is useful to avoid waiting indefinitely for the mutex.
If the value passed is non-zero, then OSMutexPend() will suspend the task until the mutex is signaled
or the specified timeout period expires. Note that a timeout value of 0 indicates that the task is willing
to wait forever for the mutex to be signaled. Before the calling task is put to sleep, OSMutexPend()
extracts the PIP of the mutex L4(8), the priority of the task that owns the mutex L4(9) and a pointer to the
TCB of the task that owns the mutex L4(10). If the owner’s priority is lower (a higher number) than the
task that calls OSMutexPend() L4(11) then, the priority of the task that owns the mutex will be raised to
the mutex’s priority inheritance priority (PIP) L4(8). This will allow the owner to relinquish the mutex
sooner.

OSMutexPend() then determines if the task that owns the mutex is ready-to-run L4(12). If it is, that task
will be made no longer ready-to-run at the the owner’s priority L4(13) and the flag rdy will be set
indicating that the mutex owner was ready-to-run L4(14). If the task was not ready-to-run, rdy is set
accordingly L4(15). The reason the flag is set is to determine whether we need make the task ready-to-
run at the new, higher priority (i.e. at the PIP).

OSMutexPend() then computes TCB elements at the PIP L4(16). You should note that I could have
saved this information in the OS_EVENT data structure when the mutex was created in order to save
processing time. However, this would have meant additional RAM for each OS_EVENT instantiation.
From this information and the sate of the rdy flag, we determine whether the mutex owner needs to be
made ready-to-run at the PIP L4(17).

To put the calling task to sleep, OSMutexPend() sets the status flag in the task’s TCB (Task Control
Block) to indicate that the task is suspended waiting for a mutex L4(18). The timeout is also stored in the
TCB L4(19) so that it can be decremented by OSTimeTick(). You should recall (see section 3.10,
Clock Tick) that OSTimeTick() decrements each of the created task’s .OSTCBDly field if it’s non-zero.
The actual work of putting the task to sleep is done by OSEventTaskWait() (see section 6.03, Making
a task wait for an event, OSEventTaskWait()) L4(20).

Because the calling task is no longer ready-to-run, the scheduler is called to run the next highest priority
task that is ready-to-run L4(21).

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 10

When the mutex is signaled (or the timeout period expires) and the task that called OSMutexPend() is
again the highest priority task, OSSched() returns. OSMutexPend() then checks to see if the TCB’s
status flag is still set to indicate that the task is waiting for the mutex L4(22). If the task is still waiting for
the mutex then it must not have been signaled by an OSMutexPost() call. Indeed, the task must have
be readied by OSTimeTick() indicating that the timeout period has expired. In this case, the task is
removed from the wait list for the mutex by calling OSEventTO() L4(23), and an error code is returned
L4(24) to the task that called OSMutexPend() to indicate that a timeout occurred.

If the status flag in the task’s TCB doesn’t have the OS_STAT_MUTEX bit set then the mutex must have
been signaled and the task that called OSMutexPend() can now conclude that it has the mutex. Note
that the link to the ECB is removed L4(25).

void OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 INT8U pip; /* Priority Inheritance Priority (PIP) */
 INT8U mprio; /* Mutex owner priority */
 BOOLEAN rdy; /* Flag indicating task was ready */
 OS_TCB *ptcb;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 err = OS_ERR_PEND_ISR; / ... can't PEND from an ISR */
 return;
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
 *err = OS_ERR_PEVENT_NULL;
 return;
 }
#endif
 OS_ENTER_CRITICAL();
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { /* (3) Validate event block type */
 OS_EXIT_CRITICAL();
 *err = OS_ERR_EVENT_TYPE;
 return;
 }
#endif
 /* (4) Is Mutex available? */
 if ((INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {
 pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8; /* (5) Yes, Acquire the resource */
 pevent->OSEventCnt |= OSTCBCur->OSTCBPrio; /* (6) Save priority of owning task */
 pevent->OSEventPtr = (void *)OSTCBCur; /* (7) Point to owning task's OS_TCB */
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return;
 }

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 11

 pip = (INT8U)(pevent->OSEventCnt >> 8); /* (8) No, Get PIP from mutex */
 mprio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8); /* (9) Get priority of mutex owner */
 ptcb = (OS_TCB *)(pevent->OSEventPtr); /* (10) Point to TCB of mutex owner */

 if (ptcb->OSTCBPrio != pip && mprio > OSTCBCur->OSTCBPrio) { /* (11) Need to promote prio of owner?*/
 if ((OSRdyTbl[ptcb->OSTCBY] & ptcb->OSTCBBitX) != 0x00) { /* (12) See if mutex owner is ready */
 /* (13) Yes, Remove owner from Rdy ...*/
 /* ... list at current prio */
 if ((OSRdyTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0x00) {
 OSRdyGrp &= ~ptcb->OSTCBBitY;
 }
 rdy = TRUE; /* (14) */
 } else {
 rdy = FALSE; /* (15) No */
 }
 ptcb->OSTCBPrio = pip; /* (16) Change owner task prio to PIP */
 ptcb->OSTCBY = ptcb->OSTCBPrio >> 3;
 ptcb->OSTCBBitY = OSMapTbl[ptcb->OSTCBY];
 ptcb->OSTCBX = ptcb->OSTCBPrio & 0x07;
 ptcb->OSTCBBitX = OSMapTbl[ptcb->OSTCBX];
 if (rdy == TRUE) { /* (17) If task was ready at owner's priority ...*/
 OSRdyGrp |= ptcb->OSTCBBitY; /* ... make it ready at new priority. */
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 }
 OSTCBPrioTbl[pip] = (OS_TCB *)ptcb;
 }
 OSTCBCur->OSTCBStat |= OS_STAT_MUTEX; /* (18) Mutex not available, pend current task */
 OSTCBCur->OSTCBDly = timeout; /* (19) Store timeout in current task's TCB */
 OSEventTaskWait(pevent); /* (20) Suspend task until event or timeout occurs */
 OS_EXIT_CRITICAL();
 OSSched(); /* (21) Find next highest priority task ready */
 OS_ENTER_CRITICAL();
 if (OSTCBCur->OSTCBStat & OS_STAT_MUTEX) { /* (22) Must have timed out if still waiting for event*/
 OSEventTO(pevent); /* (23) */
 OS_EXIT_CRITICAL();
 err = OS_TIMEOUT; / (24) Indicate that we didn't get mutex within TO */
 return;
 }
 OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0; /* (25) */
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
}

Listing 4, Waiting for a mutex.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 12

Signaling a Mutex, OSMutexPost()
The code to signal a mutex is shown in listing 5.

Mutual exclusion semaphores must only be used by tasks and thus, a check is performed to see if
OSMutexPost() is called from an ISR L5(1).

Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSMutexPost() checks that the
‘handle’ pevent is not a NULL pointer L5(2) and that the ECB being pointed to has been created by
OSMutexCreate() L5(3). Finally, OSMutexPost() makes sure that the task that is signaling the
mutex actually owns the mutex. The owner’s priority must either be set to the pip (OSMutexPend()
could have raised the owner’s priority) or the priority stored in the mutex itself L5(4).

OSMutexPost() then checks to see if the priority of the mutex owner had to be raised to the PIP L5(5)
because a higher priority task attempted to access the mutex. In this case, the priority of the owner is
reduced back to its original value. The original task priority was extracted from the lower 8 bits of
.OSEventCnt. The calling task is removed from the ready list at the PIP and placed in the ready list at
the task’s original priority L5(6). Note that the TCB fields are recomputed for the original task priority.

Next, we check to see if any tasks are waiting on the mutex L5(7). There are tasks waiting when the
.OSEventGrp field in the ECB contains a non-zero value. The highest priority task waiting for the
mutex will be removed from the wait list by OSEventTaskRdy() (see section 6.02, Making a task ready,
OSEventTaskRdy()) L5(8) and this task will be made ready-to-run. The priority of the new owner is
saved in the mutex’s ECB L5(9). OSSched() is then called to see if the task made ready is now the
highest priority task ready-to-run L5(10). If it is, a context switch will result and the readied task will be
executed. If the readied task is not the highest priority task then OSSched() will return and the task that
called OSMutexPost() will continue execution. If there were no tasks waiting on the mutex, the lower 8
bits of .OSEventCnt would be set to 0xFF L5(11) indicating that the mutex is immediately available.

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 13

INT8U OSMutexPost (OS_EVENT *pevent)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 INT8U pip; /* Priority inheritance priority */
 INT8U prio;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 return (OS_ERR_POST_ISR);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
 return (OS_ERR_PEVENT_NULL);
 }
#endif
 OS_ENTER_CRITICAL();
 pip = (INT8U)(pevent->OSEventCnt >> 8); /* Get priority inheritance priority of mutex */
 prio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8); /* Get owner's original priority */
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { /* (3) Validate event block type */
 OS_EXIT_CRITICAL();
 return (OS_ERR_EVENT_TYPE);
 }
 if (OSTCBCur->OSTCBPrio != pip ||
 OSTCBCur->OSTCBPrio != prio) { /* (4) See if posting task owns the MUTEX */
 OS_EXIT_CRITICAL();
 return (OS_ERR_NOT_MUTEX_OWNER);
 }
#endif
 if (OSTCBCur->OSTCBPrio == pip) { /* (5) Did we have to raise current task's priority? */
 /* Yes, Return to original priority */
 /* (6) Remove owner from ready list at 'pip' */
 if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0) {
 OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
 }
 OSTCBCur->OSTCBPrio = prio;
 OSTCBCur->OSTCBY = prio >> 3;
 OSTCBCur->OSTCBBitY = OSMapTbl[OSTCBCur->OSTCBY];
 OSTCBCur->OSTCBX = prio & 0x07;
 OSTCBCur->OSTCBBitX = OSMapTbl[OSTCBCur->OSTCBX];
 OSRdyGrp |= OSTCBCur->OSTCBBitY;
 OSRdyTbl[OSTCBCur->OSTCBY] |= OSTCBCur->OSTCBBitX;
 OSTCBPrioTbl[prio] = (OS_TCB *)OSTCBCur;
 }
 OSTCBPrioTbl[pip] = (OS_TCB *)1; /* Reserve table entry */
 if (pevent->OSEventGrp) { /* (7) Any task waiting for the mutex? */
 /* (8) Yes, Make HPT waiting for mutex ready */
 prio = OSEventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);
 pevent->OSEventCnt &= 0xFF00; /* (9) Save priority of mutex's new owner */
 pevent->OSEventCnt |= prio;
 pevent->OSEventPtr = OSTCBPrioTbl[prio]; /* Link to mutex owner's OS_TCB */
 OS_EXIT_CRITICAL();
 OSSched(); /* (10) Find highest priority task ready to run */
 return (OS_NO_ERR);
 }
 pevent->OSEventCnt |= 0x00FF; /* (11) No, Mutex is now available */
 pevent->OSEventPtr = (void *)0;
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing 5, Signaling a mutex.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 14

Getting a Mutex without waiting, OSMutexAccept()
It is possible to obtain a mutex without putting a task to sleep if the mutex is not available. This is
accomplished by calling OSMutexAccept() and the code for this function is shown in listing 6. As with
the other calls, OSMutexAccept() start by ensuring that it’s not called from and ISR and performs
boundary checks L6(1).

OSMutexAccept() then checks to see if the mutex is available (the lower 8 bits of .OSEventCnt
would be set to 0xFF) L6(2). If the mutex is available, OSMutexAccept() would acquire the mutex by
writing the priority of the mutex owner in the lower 8 bits of .OSEventCnt L6(3) and by linking the the
owner’s TCB L6(4).

The code that called OSMutexAccept() will need to examine the returned value. A returned value of 0
indicates that the mutex was not available while a return value of 1 indicates that the mutex was
available and the caller can access the resource.

INT8U OSMutexAccept (OS_EVENT *pevent, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif

 if (OSIntNesting > 0) { /* (1) Make sure it's not called from an ISR */
 *err = OS_ERR_PEND_ISR;
 return (0);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { /* Validate 'pevent' */
 *err = OS_ERR_PEVENT_NULL;
 return (0);
 }
#endif
 OS_ENTER_CRITICAL();
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { /* Validate event block type */
 OS_EXIT_CRITICAL();
 *err = OS_ERR_EVENT_TYPE;
 return (0);
 }
#endif
 OS_ENTER_CRITICAL();
 /* (2) Get value (0 or 1) of Mutex */
 if ((pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {
 pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8; /* (3) Mask off LSByte (Acquire Mutex) */
 pevent->OSEventCnt |= OSTCBCur->OSTCBPrio; /* Save current task priority in LSByte */
 pevent->OSEventPtr = (void *)OSTCBCur; /* (4) Link TCB of task owning Mutex */
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (1);
 }
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (0);
}

Listing 6, Getting a mutex without waiting.

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 15

Obtaining the status of a mutex, OSMutexQuery()
OSMutexQuery() allows your application to take a ‘snapshot’ of an ECB that is used as a mutex. The
code for this function is shown in listing 7.

OSMutexQuery() is passed two arguments: pevent contains a pointer to the mutex which is returned
by OSMutexCreate() when the mutex is created and, pdata which is a pointer to a data structure
(OS_MUTEX_DATA, see uCOS_II.H) that will hold information about the mutex. Your application will
thus need to allocate a variable of type OS_MUTEX_DATA that will be used to receive the information
about the desired mutex. I decided to use a new data structure because the caller should only be
concerned with mutex specific data as opposed to the more generic OS_EVENT data structure.
OS_MUTEX_DATA contains the mutex PIP (Priority Inheritance Priority) (.OSMutexPIP), the priority of
the task owning the mutex (.OSMutexPrio) and the value of the mutex (.OSMutexValue) which is set
to 1 when the mutex is available and 0 if it’s not. Note that .OSMutexPrio contains 0xFF if no task
owns the mutex. Finally, OS_MUTEX_DATA contains the list of tasks waiting on the mutex
(.OSEventTbl[] and .OSEventGrp).

As with all mutex calls, OSMutexQuery() determines whether the call is made from an ISR L7(1). If the
configuration constant OS_ARG_CHK_EN is set to 1, OSMutexQuery() checks that the ‘handle’ pevent
is not a NULL pointer L7(2) and that the ECB being pointed to has been created by OSMutexCreate()
L7(3). OSMutexQuery() then loads the OS_MUTEX_DATA structure with the appropriate fields. First,
we extract the Priority Inheritance Priority (PIP) from the upper 8 bits of the .OSEventCnt field of the
mutex L7(4). Next, we obtain the mutex value from the lower 8 bits of the .OSEventCnt field of the
mutex. If the mutex is available (i.e. lower 8 bits set to 0xFF) then the mutex value is assumed to be 1
L7(5). Otherwise, the mutex value is 0 (i.e. unavailable because it’s owned by a task) L7(6). Finally, the
mutex wait list is copied into the appropriate fields in OS_MUTEX_DATA L7(7).

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 16

INT8U OSMutexQuery (OS_EVENT *pevent, OS_MUTEX_DATA *pdata)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 INT8U *psrc;
 INT8U *pdest;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 return (OS_ERR_QUERY_ISR);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
 return (OS_ERR_PEVENT_NULL);
 }
#endif
 OS_ENTER_CRITICAL();
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { /* (3) Validate event block type */
 OS_EXIT_CRITICAL();
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 pdata->OSMutexPIP = (INT8U)(pevent->OSEventCnt >> 8); /* (4) */
 pdata->OSOwnerPrio = (INT8U)(pevent->OSEventCnt & 0x00FF);
 if (pdata->OSOwnerPrio == 0xFF) {
 pdata->OSValue = 1; /* (5) */
 } else {
 pdata->OSValue = 0; /* (6) */
 }
 pdata->OSEventGrp = pevent->OSEventGrp; /* (7) Copy wait list */
 psrc = &pevent->OSEventTbl[0];
 pdest = &pdata->OSEventTbl[0];
#if OS_EVENT_TBL_SIZE > 0
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 1
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 2
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 3
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 4
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 5
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 6
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 7
 *pdest = *psrc;
#endif
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing 7, Obtaining the status of a mutex.

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 17

OSMutexAccept()OSMutexAccept()
INT8U OSMutexAccept(OS_EVENT *pevent, INT8U *err);

File Called from Code enabled by

OS_MUTEX.C Task OS_MUTEX_EN

OSMutexAccept() allows you to check to see if a resource is available. Unlike OSMutexPend(),
OSMutexAccept() does not suspend the calling task if the resource is not available.

Arguments

pevent is a pointer to the mutex that guards the resource. This pointer is returned to your application when the
mutex is created (see OSMutexCreate()).

err is a pointer to a variable used to hold an error code. OSMutexAccept() sets *err to one of the following:

OS_NO_ERR if the call was successful.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.
OS_ERR_PEND_ISR if you called OSMutexAccept() from an ISR.

Returned Value

If the mutex was available, OSMutexAccept() returns 1. If the mutex was owned by another task,
OSMutexAccept() returns 0.

Notes/Warnings

1) Mutexes must be created before they are used.
2) This function MUST NOT be called by an ISR.
3) If you acquire the mutex through OSMutexAccept(), you MUST call OSMutexPost() to release the

mutex when you are done with the resource.

Example

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 INT8U err;
 INT8U value;

 pdata = pdata;
 for (;;) {
 value = OSMutexAccept(DispMutex, &err);
 if (value == 1) {
 . /* Resource available, process */
 .
 } else {
 . /* Resource NOT available */
 .
 }
 .
 .
 }
}

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 18

OSMutexCreate()OSMutexCreate()
OS_EVENT *OSMutexCreate(INT8U prio, INT8U *err);

File Called from Code enabled by

OS_MUTEX.C Task or startup code OS_MUTEX_EN

OSMutexCreate() is used to create and initialize a mutex. A mutex is used to gain exclusive access to a
resource.

Arguments

prio is the Priority Inheritance Priority (PIP) that will be used when a high priority task attempts to acquire the
mutex that is owned by a low priority task. In this case, the priority of the low priority task will be raised to the
PIP until the resource is released.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the mutex was created.
OS_PRIO_EXIST if a task at the specified priority inheritance priority already exist.
OS_PRIO_INVALID if you specified a priority with a higher number than

OS_LOWEST_PRIO.
OS_ERR_PEVENT_NULL if there are no more OS_EVENT structures available.
OS_ERR_CREATE_ISR if you attempted to create a mutex from an ISR.

Returned Value

A pointer to the event control block allocated to the mutex. If no event control block is available,
OSMutexCreate() will return a NULL pointer.

Notes/Warnings

1) Mutexes must be created before they are used.
2) You MUST make sure that prio has a higher priority than ANY of the tasks that WILL be using the mutex
to access the resource. For example, if 3 tasks of priority 20, 25 and 30 are going to use the mutex then, prio
must be a number LOWER than 20. In addition, there MUST NOT already be a task created at the specified
priority.

Example

OS_EVENT *DispMutex;

void main (void)
{
 INT8U err;

 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 DispMutex = OSMutexCreate(20, &err); /* Create Display Mutex */
 .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 19

OSMutexDel()OSMutexDel()
OS_EVENT *OSMutexDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

File Called from Code enabled by

OS_MUTEX.C Task OS_MUTEX_EN and
OS_MUTEX_DEL_EN

OSMutexDel() is used to delete a mutex. This is a dangerous function to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generally speaking,
before you would delete a mutex, you would first delete all the tasks that access the mutex.

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

opt specifies whether you want to delete the mutex only if there are no pending tasks (OS_DEL_NO_PEND) or
whether you always want to delete the mutex regardless of whether tasks are pending or not (OS_DEL_ALWAYS).
In this case, all pending task will be readied.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the mutex was deleted.
OS_ERR_DEL_ISR if you attempted to delete a mutex from an ISR.
OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.
OS_ERR_INVALID_OPT if you didn’t specify one of the two options mentioned above.
OS_ERR_TASK_WAITING if one or more task were waiting on the mutex and and you specified

OS_DEL_NO_PEND.
OS_ERR_PEVENT_NULL if there are no more OS_EVENT structures available.

Returned Value

A NULL pointer if the mutex is deleted or pevent if the mutex was not deleted. In the latter case, you would need
to examine the error code to determine the reason.

Notes/Warnings

1) You should use this call with care because other tasks may expect the presence of the mutex.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 20

Example

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 .
 .
 DispMutex = OSMutexDel(DispMutex, OS_DEL_ALWAYS, &err);
 .
 .
 }
}

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 21

OSMutexPend()OSMutexPend()
void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

File Called from Code enabled by

OS_MUTEX.C Task only OS_MUTEX_EN

OSMutexPend() is used when a task desires to get exclusive access to a resource. If a task calls
OSMutexPend() and the mutex is available, then OSMutexPend() will give the mutex to the caller and return
to its caller. Note that nothing is actually given to the caller except for the fact that if the err is set to
OS_NO_ERR, the caller can assume that it owns the mutex. However, if the mutex is already owned by another
task, OSMutexPend() will place the calling task in the wait list for the mutex. The task will thus wait until the
task that owns the mutex releases the mutex and thus the resource or, the specified timeout expires. If the mutex is
signaled before the timeout expires, µC/OS-II will resume the highest priority task that is waiting for the mutex.
Note that if the mutex is owned by a lower priority task then OSMutexPend() will raise the priority of the task
that owns the mutext to the Priority Inheritance Priority (PIP) as specified when you created the mutex (see
OSMutexCreate()).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

timeout is used to allow the task to resume execution if the mutex is not signaled (i.e. posted to) within the
specified number of clock ticks. A timeout value of 0 indicates that the task desires to wait forever for the
mutex. The maximum timeout is 65535 clock ticks. The timeout value is not synchronized with the clock tick.
The timeout count starts being decremented on the next clock tick which could potentially occur immediately.

err is a pointer to a variable which will be used to hold an error code. OSMutexPend() sets *err to either:

OS_NO_ERR if the call was successful and the mutex was available.
OS_TIMEOUT if the mutex was not available within the specified timeout.
OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMutexPend().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_PEND_ISR if you attempted to acquire the mutex from an ISR.

Returned Value

NONE

Notes/Warnings

1) Mutexes must be created before they are used.
2) You shoud NOT suspend the task that owns the mutex, have the mutex owner wait on any other µC/OS-II

objects (i.e. semaphore, mailbox or queue) and, you should NOT delay the task that owns the mutex. In other
words, your code should hurry up and release the resource as soon as possible.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 22

Example

OS_EVENT *DispMutex;

void DispTask (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 OSMutexPend(DispMutex, 0, &err);
 . /* The only way this task continues is if … */
 . /* … the mutex is available or signaled! */
 }
}

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 23

OSMutexPost()OSMutexPost()
INT8U OSMutexPost(OS_EVENT *pevent);

File Called from Code enabled by

OS_MUTEX.C Task OS_MUTEX_EN

A mutex is signaled (i.e. released) by calling OSMutexPost(). You would call this function only if you acquired
the mutex either by first calling OSMutexAccept() or OSMutexPend(). If the priority of the task that owns
the mutex has been raised when a higher priority task attempted to acquire the mutex then the original task priority
of the task will be restored. If one or more tasks are waiting for the mutex, the mutex is given to the highest
priority task waiting on the mutex. The scheduler is then called to determine if the awakened task is now the
highest priority task ready to run and if so, a context switch will be done to run the readied task. If no task is
waiting for the mutex, the mutex value is simply set to available (0xFF).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

Returned Value

OSMutexPost() returns one of these error codes:

OS_NO_ERR if the call was successful and the mutex released.
OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMutexPost().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_POST_ISR if you attempted to call OSMutexPost() from an ISR.
OS_ERR_NOT_MUTEX_OWNER if the task posting (i.e. signaling the mutex) doesn’t actually owns the

mutex.

Notes/Warnings

1) Mutexes must be created before they are used.
2) You cannot call this function from an ISR.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 24

Example

OS_EVENT *DispMutex;

void TaskX (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMutexPost(DispMutex);
 switch (err) {
 case OS_NO_ERR: /* Mutex signaled */
 .
 .
 break;

 case OS_ERR_EVENT_TYPE:
 .
 .
 break;

 case OS_ERR_PEVENT_NULL:
 .
 .
 break;

 case OS_ERR_POST_ISR:
 .
 .
 break;

 }
 .
 .
 }
}

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 25

OSMuOSMutexQuery()texQuery()
INT8U OSMutexQuery(OS_EVENT *pevent, OS_MUTEX_DATA *pdata);

File Called from Code enabled by

OS_MUTEX.C Task OS_MUTEX_EN

OSMutexQuery() is used to obtain run-time information about a mutex. Your application must allocate an
OS_MUTEX_DATA data structure which will be used to receive data from the event control block of the mutex.
OSMutexQuery() allows you to determine whether any task is waiting on the mutex, how many tasks are
waiting (by counting the number of 1s in the .OSEventTbl[] field, obtain the Priority Inheritance Priority (PIP)
and determine whether the mutex is available (1) or not (0). Note that the size of .OSEventTbl[] is
established by the #define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

pdata is a pointer to a data structure of type OS_MUTEX_DATA, which contains the following fields:

INT8U OSMutexPIP; /* The PIP of the mutex */
INT8U OSOwnerPrio; /* The priority of the mutex owner */
INT8U OSValue; /* The current mutex value, 1 means available, 0 means unavailable */
INT8U OSEventGrp; /* Copy of the mutex wait list */
INT8U OSEventTbl[OS_EVENT_TBL_SIZE];

Returned Value

OSMutexQuery() returns one of these error codes:

OS_NO_ERR if the call was successful.
OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMutexQuery().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_QUERY_ISR if you attempted to call OSMutexQuery() from an ISR.

Notes/Warnings

1) Mutexes must be created before they are used.
2) You cannot call this function from an ISR.

 µC/OS-II and Mutual Exclusion Semaphores

AN1002 - 26

Example

In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 OS_MUTEX_DATA mutex_data;
 INT8U err;
 INT8U highest; /* Highest priority task waiting on mutex */
 INT8U x;
 INT8U y;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMutexQuery(DispMutex, &mutex_data);
 if (err == OS_NO_ERR) {
 if (mutex_data.OSEventGrp != 0x00) {
 y = OSUnMapTbl[mutex_data.OSEventGrp];
 x = OSUnMapTbl[mutex_data.OSEventTbl[y]];
 highest = (y << 3) + x;
 .
 .
 }
 }
 .
 .
 }
}

µC/OS-II and Mutual Exclusion Semaphores

 AN1002 - 27

References

µC/OS-II, The Real-Time Kernel
Jean J. Labrosse
R&D Technical Books, 1998
ISBN 0-87930-543-6

Contacts

Micriµm, Inc.
949 Crestview Circle
Weston, FL 33327
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

R&D Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631
(785) 841-2624 (FAX)
WEB: http://www.rdbooks.com
e-mail: rdorders@rdbooks.com

