Micripm, Inc.

© Copyright 2000, Micripm, Inc.
All Rights reserved

LC/OS-I
and
Mutual Exclusion Semaphores

Application Note
AN-1002

Jean J. Labrosse
Jean.Labrosse@Micrium.com
www.Micrium.com

HC/OS-1l and Mutual Exclusion Semaphores

Summary

Mutual Exclusion Semaphores or simply mutexes are used by tasks to gain exclusive access to a
resource. Mutexes are binary semaphores that have additional features beyond the normal semaphores
mechanism provided by mC/OS-Il. This application note describes the mutex series of services which
were added to nC/OS-II V2.04.

Introduction

A mutex is used by your application code to reduce the priority inversion problem as described in the
book: MicroC/OS-Il, The Real-Time kernel (ISBN 0-87930-543-6), section 2.16, page 47. A priority
inversion occurs when a low priority task owns a resource needed by a high priority task. In order to
reduce priority inversion, the kernel can increase the priority of the low priority task to the priority of the
higher priority task until the low priority task is done with the resource.

In order to implement mutexes, a real-time kernel needs to provide the ability to support multiple tasks at
the same priority. Unfortunately, pC/OS-Il doesn’t allow to have multiple tasks at the same priority.
However, there is a way around this problem. What if a priority just above the high priority task was
reserved by the mutex to allow a low priority task to be raised in priority.

Let's use an example to illustrate how pC/OS-1l mutexes work. Listing 1 shows three tasks that may
need to access a common resource. To access the resource, each task must pend on the mutex
Resour ceMut ex. Task #1 has the highest priority (10), task #2 has a medium priority (15) and task #3,
the lowest (20). An unused priority just above the highest task priority (i.e. priority 9) will be reserved as
the Priority Inheritance Priority (PIP). As shown in mai n(), pC/OS-Il is initialized L1(1) and a mutex is
created by calling OSMut exCreat e() L1(2). You should note that OSMut exCr eat e() is passed the
PIP. The three tasks are then created L1(3) and pC/OS-ll is started L1(4).

Suppose that this application has been running for a while and that, at some point, task #3 accesses the
common resource first and thus acquires the mutex. Task #3 runs for a while and then gets preempted
by task #1. Task #1 needs the resource and thus attempts to acquire the mutex (by calling
OSMut exPend()). In this case, OSMut exPend() notices that a higher priority task needs the resource
and thus raises the priority of task #3 to 9 which forces a context switch back to task #3. Task #3 will
proceed and hopefully release the resource quickly. When done with the resource, task #3 will call
OSMut exPost () to release the mutex. OSMut exPost () will notice that the mutex was owned by a
lower priority task that got its priority raised and thus, will return task #3 to it's original priority.
OSMut exPost () will notice that a higher priority task (i.e. task #1) needs access to the resource and will
give the resource to task #1 and perform a context switch to task #1.

AN1002 - 2

HC/OS-1l and Mutual Exclusion Semaphores

OS_EVENT *Resour ceMut ex;

OS_STK TaskPri 010St k[1000] ;
OS_STK TaskPri 015St k[1000] ;
OS_STK TaskPri 020St k[1000] ;

voi d main (void)

INT8U err;

aslnit(); /1* (1) */
A Application Initialization ---------- */

OSMut exCreate(9, &err); I* (2) */
OSTaskCr eat e(TaskPri 010, (void *)0, &TaskPriolOStk[999], 10); 1* (3) */

OSTaskCr eat e(TaskPri 015, (void *)0, &TaskPriol5Stk[999], 15);

OSTaskCr eat e(TaskPri 020, (void *)0, &TaskPrio020Stk[999], 20);

A Application Initialization ---------- */

GsStart(); 1* (4) */

voi d TaskPri o010 (voi d *pdat a)

I NT8U err;

pdata = pdata;

while (1) {
A Application Code ---------- */
OSMut exPend(Resour ceMut ex, 0, &err);
[* -eeee-- Access conmon resource ------ */
OSMut exPost (Resour ceMut ex) ;
A Application Code ---------- */
}

voi d TaskPriol5 (voi d *pdata)

I NT8U err;

pdata = pdata;

while (1) {
A Application Code ---------- */
OSMut exPend(Resour ceMut ex, 0, &err);
[* -eeee-- Access conmon resource ------ */
OSMut exPost (Resour ceMut ex) ;
A Application Code ---------- */
}

voi d TaskPri o020 (voi d *pdat a)

I NT8U err;

pdata = pdata;

while (1) {
A Application Code ---------- */
OSMut exPend(Resour ceMut ex, 0, &err);
[* -eeee-- Access conmon resource ------ */
OSMut exPost (Resour ceMit ex) ;
A Application Code ---------- */
}

Listing 1, Mutex utilization example

AN1002 - 3

HC/OS-1l and Mutual Exclusion Semaphores

nC/OS-1I's mutexes consist of three elements: a flag indicating whether the mutex is available (0 or 1), a
priority to assign the task that owns the mutex in case a higher priority task attempts to gain access to
the mutex, and a list of tasks waiting for the mutex. To enable pC/OS-II's mutex services, you must set
the configuration constant OS_MJUTEX_ENto 1 (see file OS_CFG H).

A mutex needs to be created before it can be used. Creating a mutex is accomplished by calling
OSMut exCr eat e() (see next section). The initial value of a mutex is always set to 1 indicating that the
resource is available.

HC/OS-1I provides six services to access mutexes: OSMutexCreate(), OSMutexDel (),
OsMut exPend(), OsMut exPost (), OSMut exAccept () and OSMut exQuery(). Figure 1 shows a
flow diagram to illustrate the relationship between tasks and a mutex. A mutex can only be accessed by
tasks. Note that the symbology used to represent a mutex is a ‘key’. The ‘key’ symbology shows that the
mutex is used to access shared resources.

OsMut exCreat e()
oswut exDel ()

v

OsMut exPost () osMut exPend()
OsMWut exAccept ()
osMWut exQuer y()

Figure 1, Relationship between tasks and a mutex.

AN1002 - 4

HC/OS-1l and Mutual Exclusion Semaphores

Creating a Mutex, OSMutexCreate()

The code to create a mutex is shown in listing 2. OSMut exCr eat e() starts by making sure it's not
called from an ISR because that’s not allowed L2(1).

OSMut exCr eat e() then verifies that the PIP is within valid ranged L2(2) based on what you determined
the lowest priority is for your application as specified in OS_CFG. H.

OSMut exCr eat e() then checks to see there isn't already a task assigned to the PIP L2(3). A non-NULL
pointer in OSTCBPr i oTbl [] indicates for the Priority Inheritance Priority (PIP) is available.

If an entry is available, OSMut exCr eat e() reserves the priority by placing a non-NULL pointer in
OSTCBPri oTbl [pri o] L2(4).

OSMut exCr eat e() then attempts to obtain an ECB (Event Control Block) from the free list of ECBs
L2(5) (see uC/OS-Il book, figure 6-3, page 144).

The linked list of free ECBs is adjusted to point to the next free ECB L2(6).

If there was an ECB available, the ECB type is set to OS_EVENT_TYPE_MJTEX L2(7). Other uC/OS-II
services will check this field to make sure that the ECB is of the proper type. This prevents you from
calling OsMut exPost () on an ECB that was created for use as a message mailbox.

OSMut exCr eat e() then set the mutex value to ‘available’ and the PIP is stored L2(8).

It is worth noting that the . OSEvent Cnt field is used differently. Specifically, the upper 8 bits of
. OSEvent Cnt are used to hold the PIP and the lower 8 bits are used to hold either the value of the
mutex when the resource is available (OxFF) or, the priority of the task that ‘owns’ the mutex (a value
between 0 and 62). This prevents having to add extra fields in an OS_EVENT structure and thus reduces
the amount of RAM.

Because the mutex is being initialized, there are no tasks waiting for it L2(9).
The wait list is then initialized by calling OSEvent Wi t Li st 1 nit () L2(10).
Finally, OSMut exCr eat e() returns a pointer to the ECB L2(11). This pointer MUST be used in
subsequent calls to manipulate mutexes (OSMut exPend(), OSMut exPost (), OSMut exAccept (),

OSMut exDel () and OSMut exQuery()). The pointer is basically used as the mutex’s handle. If there
were no more ECBs, OSMut exCr eat e() would have returned a NULL pointer.

AN1002 - 5

HC/OS-1l and Mutual Exclusion Semaphores

OS_EVENT *OSMutexCreate (I NT8U prio, INT8U *err)

{

#i f OS_CRI TI CAL_METHOD == /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;

#endi f

OS_EVENT *pevent;

if (CSIntNesting > 0) { /* (1) See if called fromISR ... */
err = OS_ERR CREATE | SR, I ... can't CREATE nutex froman ISR */
return ((OS_EVENT *)O0);

}
#if OS_ARG CHK_EN
if (prio >= O5_LONEST_PRO { /* (2) Validate PIP */
*err = OS_PRI O | NVALI D,
return ((OS_EVENT *)O0);

#endi f

OS_ENTER_CRI TI CAL() ;

if (OSTCBPrioThl[prio] !'= (OS_TCB *)0) { /* (3) Mutex priority nust not already exist */
err = OS_PRI O EXI ST; I Task already exist at priority ... */
OS_EXIT_CRITI CAL() ; I* ... inheritance priority */
return ((OS_EVENT *)O0);

}

OSTCBPri oThl [prio] = (OS_TCB *)1; /* (4) Reserve the table entry */

pevent = OSEvent Freeli st; /* (5) Get next free event control block */

if (pevent == (OS_EVENT *)0) { I* See if an ECB was avail abl e */
OSTCBPri oThl [prio] = (OS_TCB *)O0; I* No, Release the table entry */
OS_EXI T_CRI TI CAL() ;
err = OS_ERR _PEVENT_NULL; I No nore event control blocks */
return (pevent);

}

OSEvent Fr eeli st = (OS_EVENT *) CSEvent FreelLi st - >0CSEvent Ptr; /* (6) Adjust the free list */

0S_EXIT_CRITICAL() ;

pevent - >OSEvent Type = OS_EVENT_TYPE_MJTEX; /* (7) ECBis used as a MJTEX */
pevent - >0OSEventCnt = (prio << 8) | OS_MJTEX_AVAI LABLE;/* (8) Resource is available */
pevent - >OSEventPtr = (void *)O0; /* (9) No task owning the mutex */
OSEvent Wi t Li st ni t (pevent); /* (10) Initialize the ECB */
*err = O8_NO ERR

return (pevent); /* (11) */

Listing 2, Creating a mutex.

AN1002 - 6

HC/OS-1l and Mutual Exclusion Semaphores

Deleting a Mutex, OSMutexDel()

The code to delete a mutex is shown in listing 3. This is a dangerous function to use because multiple
tasks could attempt to access a deleted mutex. You should always use this function with great care.
Generally speaking, before you would delete a mutex, you would first delete all the tasks that access the
mutex.

OSMut exDel () starts by making sure that this function is not called from an ISR because that's not
allowed L3(2).

We then check the arguments passed to it L3(2) — pevent cannot be a NULL pointer and pevent needs
to point to a mutex L3(3).

OSMut exDel () then determines whether there are any tasks waiting on the mutex. The flag
t asks_wai t i ng is set accordingly L3(4).

Based on the option (i.e. opt) specified in the call, OSMut exDel () will either delete the mutex only if no
tasks are pending on the mutex (opt == OS_DEL_NO _PEND) or, delete the mutex even if tasks are
waiting (opt == OS_DEL_ALWAYS).

When opt is set to OS_DEL_NO PEND and there is no task waiting on the mutex L3(5),
OsMut exDel () marks the ECB as unused L3(6) and the ECB is returned to the free list of ECBs
L3(7). This will allow another mutex (or any other ECB based object) to be created. You will
note that OSMut exDel () returns a NULL pointer L3(8) since, at this point, the mutex should no
longer be accessed through the original pointer.

When opt is set to OS_DEL_ALWAYS L3(9) then all tasks waiting on the mutex will be readied
L3(10). Each task will think it has access to the mutex. Of course, that's a dangerous outcome
since the whole point of having a mutex is to protect against multiple access of a resource.
Once all pending tasks are readied, OSMut exDel () marks the ECB as unused L3(11) and the
ECB is returned to the free list of ECBs L3(12). The scheduler is called only if there were tasks
waiting on the mutex L3(13). You will note that OSMut exDel () returns a NULL pointer L3(14)
since, at this point, the mutex should no longer be accessed through the original pointer.

AN1002 - 7

HC/OS-1l and Mutual Exclusion Semaphores

OS_EVENT *(OSMiut exDel (OS_EVENT *pevent, |NT8U opt, |NT8U *err)

{

#i f OS_CRI TI CAL_METHOD == /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;

#endi f

BOOLEAN tasks_wai ting;

if (CSIntNesting > 0) { /* (1) See if called fromISR ... */
err = OS_ERR DEL_I SR, I ... can't DELETE froman ISR */
return (pevent);

}
#if OS_ARG CHK_EN
if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
*err = OS_ERR _PEVENT_NULL;
return (pevent);

}
#endi f
OS_ENTER_CRI TI CAL() ;
#if OS_ARG CHK_EN
if (pevent->0SEvent Type != OS_EVENT_TYPE _MJTEX) { /* (3) Validate event block type */
OS_EXI T_CRITI CAL() ;
*err = OS_ERR _EVENT_TYPE;
return (pevent);

}
#endi f
if (pevent->CSEventGp != 0x00) { /* (4) See if any tasks waiting on nutex */
tasks_wai ting = TRUE I* Yes */
} else {
tasks_wai ting = FALSE; I* No */

}
switch (opt) {
case OS_DEL_NO PEND:

if (tasks_waiting == FALSE) { /* (5) Delete mutex only if no task waiting */
pevent - >OSEvent Type = OS_EVENT_TYPE UNUSED;/* (6) Mark the ECB as unused */
pevent - >OSEvent Ptr = OSEvent Freeli st ; /* (7) Return Event Control Block to free list */
OSEvent Fr eelLi st = pevent;
OS_EXI T_CRITI CAL() ;
*err = OS_NO ERR,
return ((OS_EVENT *)O0); /* (8) Mutex has been del eted */

} else {
OS_EXI T_CRITI CAL() ;
*err = OS_ERR _TASK_WAI TI NG
return (pevent);

}
case OS_DEL_ALWAYS: /* (9) Always del ete the mutex */

whil e (pevent->CSEventGp != 0x00) { /* (10) Ready ALL tasks waiting for nutex */
OSEvent TaskRdy(pevent, (void *)0, OS_STAT_MJTEX);

}

pevent - >OSEvent Type = OS_EVENT_TYPE_UNUSED; /* (11) Mark the ECB as unused */

pevent - >OSEvent Ptr = OSEvent Freeli st ; /* (12) Return Event Control Block to free list */

OSEvent Fr eelLi st = pevent;

OS_EXI T_CRITI CAL() ;

if (tasks_waiting == TRUE) { /* (13) Reschedule only if task(s) were waiting */
OSSched() ; I* Find highest priority task ready to run */

}

*err = OS_NO ERR

return ((OS_EVENT *)O0); /* (14) Mutex has been del eted */

defaul t:
OS_EXI T_CRITI CAL() ;
*err = OS_ERR_| NVALI D_OPT;
return (pevent);

Listing 3, Deleting a mutex.

AN1002 - 8

HC/OS-1l and Mutual Exclusion Semaphores

Waiting on a Mutex, OSMutexPend()

The code to wait on a mutex is shown in listing 4.

Like all pC/OS-II pend calls, OSMut exPend() cannot be called from an ISR and thus, OSMut exPend()
checks for this condition first L4(1).

Assuming that the configuration constant OS_ARG CHK _ENis set to 1, OSMut exPend() makes sure that
the ‘handle’ pevent is not a NULL pointer L4(2) and that the ECB being pointed to has been created by
OSMut exCr eat e() L4(3).

If the mutex is available, the lower 8 bits of . OSEvent Cnt is set to OxFF (i.e. OS_MJTEX_AVAI LABLE)
L4(4). If this is the case, OSMut exPend() will grant the mutex to the calling task and, OSMut exPend()
will set the lower 8 bits of . OSEvent Cnt to the calling’s task priority L4(5) and L4(6). OSMut exPend()
then sets . OSEvent Pt r to point to the TCB of the calling task L4(7) and returns. At this point the caller
can proceed with accessing the resource since the return error code is set to OS_NO_ERR. Obviously, if
you want the mutex, this is the outcome you are looking for. This also happens to be the fastest (normal)
path through OGSMut exPend() .

If the mutex is owned by another task, the calling task needs to be put to sleep until another task
relinquishes the mutex (see OSMut exPost ()). OSMut exPend() allows you to specify a timeout value
as one of its arguments (i.e. ti meout). This feature is useful to avoid waiting indefinitely for the mutex.
If the value passed is non-zero, then OSMut exPend() will suspend the task until the mutex is signaled
or the specified timeout period expires. Note that a ti meout value of O indicates that the task is willing
to wait forever for the mutex to be signaled. Before the calling task is put to sleep, OSMut exPend()
extracts the PIP of the mutex L4(8), the priority of the task that owns the mutex L4(9) and a pointer to the
TCB of the task that owns the mutex L4(10). If the owner’s priority is lower (a higher number) than the
task that calls OSMut exPend() L4(11) then, the priority of the task that owns the mutex will be raised to
the mutex’s priority inheritance priority (PIP) L4(8). This will allow the owner to relinquish the mutex
sooner.

OSMut exPend() then determines if the task that owns the mutex is ready-to-run L4(12). If it is, that task
will be made no longer ready-to-run at the the owner’s priority L4(13) and the flag rdy will be set
indicating that the mutex owner was ready-to-run L4(14). If the task was not ready-to-run, r dy is set
accordingly L4(15). The reason the flag is set is to determine whether we need make the task ready-to-
run at the new, higher priority (i.e. at the PIP).

OSMut exPend() then computes TCB elements at the PIP L4(16). You should note that | could have
saved this information in the OS_EVENT data structure when the mutex was created in order to save
processing time. However, this would have meant additional RAM for each OS_EVENT instantiation.
From this information and the sate of the r dy flag, we determine whether the mutex owner needs to be
made ready-to-run at the PIP L4(17).

To put the calling task to sleep, OSMut exPend() sets the status flag in the task’'s TCB (Task Control
Block) to indicate that the task is suspended waiting for a mutex L4(18). The timeout is also stored in the
TCB L4(19) so that it can be decremented by OSTi nmeTi ck(). You should recall (see section 3.10,
Clock Tick) that OSTi meTi ck() decrements each of the created task’s . OSTCBDI y field if it’s non-zero.
The actual work of putting the task to sleep is done by OSEvent TaskWai t () (see section 6.03, Making
a task wait for an event, OSEventTaskWait()) L4(20).

Because the calling task is no longer ready-to-run, the scheduler is called to run the next highest priority
task that is ready-to-run L4(21).

AN1002 - 9

HC/OS-1l and Mutual Exclusion Semaphores

When the mutex is signaled (or the timeout period expires) and the task that called OSMut exPend() is
again the highest priority task, OSSched() returns. OSMut exPend() then checks to see if the TCB’s
status flag is still set to indicate that the task is waiting for the mutex L4(22). If the task is still waiting for
the mutex then it must not have been signaled by an OSMut exPost () call. Indeed, the task must have
be readied by OSTi meTi ck() indicating that the timeout period has expired. In this case, the task is
removed from the wait list for the mutex by calling OSEvent TQ() L4(23), and an error code is returned
L4(24) to the task that called OSMut exPend() to indicate that a timeout occurred.

If the status flag in the task’s TCB doesn’'t have the OS_STAT_MJTEX bit set then the mutex must have

been signaled and the task that called OSMut exPend() can now conclude that it has the mutex. Note
that the link to the ECB is removed L4(25).

voi d OSsMut exPend (OS_EVENT *pevent, | NT16U timeout, |INT8U *err)

{

#i f OS_CRI TI CAL_METHOD == 3 /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;

#endi f
| NT8U pi p; /* Priority Inheritance Priority (PIP) */
| NT8U npri o; /* Mitex owner priority */
BOOLEAN rdy; /* Flag indicating task was ready */

OS_TCB *pt cb;

if (CSIntNesting > 0) { /* (1) See if called fromISR ... */
err = OS_ERR PEND | SR, I ... can't PEND froman ISR */
return;

}
#if OS_ARG CHK_EN

if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
*err = OS_ERR PEVENT_NULL;
return;
}
#endi f

OS_ENTER_CRI TI CAL() ;
#if OS_ARG CHK_EN
if (pevent->0SEvent Type != OS_EVENT_TYPE _MJTEX) { /* (3) Validate event block type */
OS_EXI T_CRI TI CAL() ;
*err = OS_ERR _EVENT_TYPE;

return;
}
#endi f
/* (4) |s Mutex avail abl e? */
if ((INT8U)(pevent->CSEventCnt & OS_MJUTEX KEEP_LOWER 8) == OS_MJTEX_AVAI LABLE) {
pevent - >OSEvent Cnt & OS_MJTEX_KEEP_UPPER 8; /* (5) Yes, Acquire the resource */
pevent - >OSEvent Cnt | = OSTCBCur - >CSTCBPr i o; /* (6) Save priority of owning task */
pevent - >OSEvent Ptr = (void *)OSTCBCur; 1* (7) Point to owning task's OS_TCB */

OS_EXIT_CRITI CAL() ;
*err = OS5_NO ERR
return;

AN1002 - 10

HC/OS-1l and Mutual Exclusion Semaphores

pip = (INT8U) (pevent->CSEventCnt >> 8); /* (8) No, Get PIP from nutex */
nprio = (I NT8U) (pevent->0SEventCnt & OS_MJTEX KEEP_LOWMER 8); /* (9) Cet priority of nutex owner */
ptcb = (OS_TCB *) (pevent->CSEventPtr); /* (10) Point to TCB of nutex owner */
if (ptcb->0STCBPrio != pip & nprio > OSTCBCur->0OSTCBPrio) { /* (11) Need to pronote prio of owner?*/
if ((CSRdyTbl [ptch->0STCBY] & ptch->0STCBBitX) != 0x00) { /* (12) See if mutex owner is ready */
/* (13) Yes, Renove owner fromRdy ...*/
I* ... list at current prio */
if ((CSRdyTbl [ptcb->0STCBY] &= ~ptcb->0STCBBitX) == 0x00) {
OSRdyG p & ~ptch->0OSTCBBi t Y;
}
rdy = TRUE /1* (14) */
} else {
rdy = FALSE; /* (15) No */

}

pt cb- >OSTCBPri o
pt cb- >OSTCBY

pt cb->0OSTCBBi t Y
pt cb- >OSTCBX

pt cb- >OSTCBBI t X

pi p; /* (16) Change owner task prio to PIP */
pt cb->0CSTCBPri o >> 3;

OSMapTbl [pt ch- >OSTCBY] ;

pt cb->0STCBPri o & 0x07;

OSMapTbl [pt ch- >OSTCBX] ;

if (rdy == TRUE) { /* (17) 1f task was ready at owner's priority ...*/
CSRdy G p | = ptcb->OSTCBBI tY; /* ... make it ready at new priority. */
COSRdyThbl [pt cb- >CSTCBY] | = pt cb->OSTCBBI t X;
}
GOSTCBPri oTbl [pi p] = (Cs_TCB *)ptchb;
}
OSTCBCur - >OSTCBSt at | = OS_STAT_MJTEX; /* (18) Mutex not available, pend current task */
OSTCBCur - >OSTCBDI y = tineout; /* (19) Store tineout in current task's TCB */
OSEvent TaskWai t (pevent) ; /* (20) Suspend task until event or timeout occurs */
Os_ EXIT_CRITICAL();
OSSched() ; /* (21) Find next highest priority task ready */
OS_ENTER CRI TI CAL() ;
if (OSTCBCur->0OSTCBStat & OS_STAT_MJTEX) { /* (22) Must have timed out if still waiting for event*/
OSEvent TQ(pevent) ; /* (23) */
Os_ EXIT_CRITICAL();
err = OS_TI MEQUT; / (24) Indicate that we didn't get nutex within TO */
return;
}
OSTCBCur - >OSTCBEvent Ptr = (OS_EVENT *)0; /* (25) */

0S_EXIT_CRITICAL() ;
*err = O5_NO ERR

Listing 4, Waiting for a mutex.

AN1002 - 11

HC/OS-1l and Mutual Exclusion Semaphores

Signaling a Mutex, OSMutexPost()

The code to signal a mutex is shown in listing 5.

Mutual exclusion semaphores must only be used by tasks and thus, a check is performed to see if
OSMut exPost () is called from an ISR L5(1).

Assuming that the configuration constant OS_ARG CHK _ENis set to 1, OSMut exPost () checks that the
‘handle’ pevent is not a NULL pointer L5(2) and that the ECB being pointed to has been created by
OSMut exCreat e() L5(3). Finally, OSMut exPost () makes sure that the task that is signaling the
mutex actually owns the mutex. The owner’s priority must either be set to the pi p (OSMut exPend()
could have raised the owner’s priority) or the priority stored in the mutex itself L5(4).

OSMut exPost () then checks to see if the priority of the mutex owner had to be raised to the PIP L5(5)
because a higher priority task attempted to access the mutex. In this case, the priority of the owner is
reduced back to its original value. The original task priority was extracted from the lower 8 bits of
. OSEvent Cnt . The calling task is removed from the ready list at the PIP and placed in the ready list at
the task’s original priority L5(6). Note that the TCB fields are recomputed for the original task priority.

Next, we check to see if any tasks are waiting on the mutex L5(7). There are tasks waiting when the
. OSEvent G p field in the ECB contains a non-zero value. The highest priority task waiting for the
mutex will be removed from the wait list by OSEvent TaskRdy() (see section 6.02, Making a task ready,
OSEventTaskRdy()) L5(8) and this task will be made ready-to-run. The priority of the new owner is
saved in the mutex’s ECB L5(9). OSSched() is then called to see if the task made ready is now the
highest priority task ready-to-run L5(10). If it is, a context switch will result and the readied task will be
executed. If the readied task is not the highest priority task then OSSched() will return and the task that
called OSMut exPost () will continue execution. If there were no tasks waiting on the mutex, the lower 8
bits of . OSEvent Cnt would be set to OxFF L5(11) indicating that the mutex is immediately available.

AN1002 - 12

I NT8U OSMut exPost (OS_EVENT *pevent)

{
#if OS_CRI TI CAL_METHOD ==

HC/OS-1l and Mutual Exclusion Semaphores

I* Al'l ocate storage for CPU status register */
OS_CPU_SR cpu_sr;
#endi f
I NT8U pi p; I* Priority inheritance priority */
| NT8U prio;
if (CSIntNesting > 0) { /* (1) See if called fromISR ... */
return (OS_ERR PCST_I SR);
}
f OS_ARG CHK _EN
if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
return (OS_ERR PEVENT_NULL);
}
#endi f
OS_ENTER CRI TI CAL() ;
pip = (INT8U)(pevent->CSEventCnt >> 8); I* Cet priority inheritance priority of mutex */
prio = (I NT8U) (pevent->0CSEventnt & OS_MJTEX_KEEP_LOAER 8); /* Get owner's original priority */
f OS_ARG CHK _EN
if (pevent->0SEvent Type != OS EVENT_TYPE MJTEX) { /* (3) Validate event block type */
OSs EXIT_CRITICAL();
return (OS_ERR EVENT_TYPE);
}
if (OSTCBCur->0OSTCBPrio != pip ||
OSTCBCur - >OSTCBPrio !'= prio) { /* (4) See if posting task owns the MJTEX */
Os_ EXIT_CRITICAL();
return (OS_ERR NOT_MJTEX OARER) ;
}
#endi f
if (OSTCBCur->0OSTCBPrio == pip) { /* (5) Dd we have to raise current task's priority? */
I* Yes, Return to original priority */
/* (6) Renove owner fromready list at 'pip' */
if ((OSRdyTbl [OSTCBCur - >OSTCBY] &= ~OSTCBCur->OSTCBBit X) == 0) {
OSRdyG p & ~OSTCBCur - >OSTCBBI t Y;
}
OSTCBCur - >OSTCBPri o = prio;
OSTCBCur - >CSTCBY = prio >> 3;
OSTCBCur - >OSTCBBi t Y = OSMapTbl [OSTCBCur - >CSTCBY] ;
GOSTCBCur - >0STCBX = prio & 0x07;
OSTCBCur - >OSTCBBI t X = OSMapTbl [OSTCBCur - >CSTCBX] ;
OSRdy G p | = OSTCBCur - >CSTCBBi t Y;
OSRdyThl [OSTCBCur - >OSTCBY] | = OSTCBCur - >OSTCBBi t X;
OSTCBPri oThbl [pri o] = (OS_TCB *) OSTCBCur ;
}
OSTCBPri oThl [pi p] = (OS_TCB *)1; I* Reserve table entry */
if (pevent->CSEventGp) { /* (7) Any task waiting for the mutex? */
/* (8) Yes, Make HPT waiting for nutex ready */
prio = OSEvent TaskRdy(pevent, (void *)0, OS_STAT_MJTEX);
pevent - >OSEvent Cnt &= O0xFFOO; /* (9) Save priority of mutex's new owner */
pevent - >OSEvent Cnt | = pri o;
pevent - >OSEvent Ptr = OSTCBPri oThl [prio]; I* Link to nutex owner's OS TCB */
Os EXIT_CRITICAL();
OSSched() ; /* (10) Find highest priority task ready to run */
return (OS_NO ERR);
}
pevent - >OSEvent Cnt | = Ox0OFF; /* (11) No, Mutex is now avail able */
pevent - >OSEvent Ptr = (void *)O0;
Os_ EXIT_CRITICAL();
return (OS_NO ERR);
}

Listing 5, Signaling a mutex.

AN1002 - 13

HC/OS-1l and Mutual Exclusion Semaphores

Getting a Mutex without waiting, OSM utexAccept()

It is possible to obtain a mutex without putting a task to sleep if the mutex is not available. This is
accomplished by calling OSMut exAccept () and the code for this function is shown in listing 6. As with
the other calls, OSMut exAccept () start by ensuring that it's not called from and ISR and performs
boundary checks L6(1).

OSMut exAccept () then checks to see if the mutex is available (the lower 8 bits of . OSEvent Cnt
would be set to OxFF) L6(2). If the mutex is available, OSMut exAccept () would acquire the mutex by
writing the priority of the mutex owner in the lower 8 bits of . OSEvent Cnt L6(3) and by linking the the
owner’'s TCB L6(4).

The code that called OSMut exAccept () will need to examine the returned value. A returned value of O

indicates that the mutex was not available while a return value of 1 indicates that the mutex was
available and the caller can access the resource.

I NT8U OSMut exAccept (OS_EVENT *pevent, |NT8U *err)

{
#i f OS_CRI TI CAL_METHOD == 3 I* Al'l ocate storage for CPU status register */
OS_CPU_SR cpu_sr;
#endi f
if (CSIntNesting > 0) { /* (1) Make sure it's not called froman ISR */
*err = OS_ERR PEND_I SR,
return (0);
}
f OS_ARG CHK _EN
if (pevent == (OS_EVENT *)0) { I* Val i dat e ' pevent' */
*err = OS_ERR PEVENT_NULL;
return (0);
}
#endi f

OS_ENTER_CRI TI CAL() ;
#if OS_ARG CHK_EN
if (pevent->CSEvent Type != OS_EVENT_TYPE MJTEX) { /* Val i date event bl ock type */
OS_EXI T_CRI TI CAL() ;
*err = OS_ERR _EVENT_TYPE;

return (0);
}
#endi f
OS_ENTER_CRI TI CAL() ;
/* (2) Get value (0 or 1) of Mitex */
if ((pevent->0OSEventOnt & OS_MJTEX_KEEP_LOWER 8) == OS_MJTEX_AVAI LABLE) {
pevent - >OSEvent Cnt & OS_MJTEX_KEEP_UPPER 8; 1* (3) Mask of f LSByte (Acquire Mitex) */
pevent - >OSEvent Cnt | = OSTCBCur - >CSTCBPr i o; I* Save current task priority in LSByte */
pevent - >OSEvent Ptr = (void *)OSTCBCur; 1* (4) Li nk TCB of task owning Mitex */

OS5 EXIT_CRITICAL();
*err = OS_NO ERR
return (1);
}
OS5 EXIT_CRITICAL();
*err = OS_NO ERR
return (0);

}
Listing 6, Getting a mutex without waiting.

AN1002 - 14

HC/OS-1l and Mutual Exclusion Semaphores

Obtaining the status of a mutex, OSMutexQuery()
OSMut exQuer y() allows your application to take a ‘snapshot’ of an ECB that is used as a mutex. The
code for this function is shown in listing 7.

OSMut exQuer y() is passed two arguments: pevent contains a pointer to the mutex which is returned
by OSMut exCr eat e() when the mutex is created and, pdat a which is a pointer to a data structure
(OS_MUTEX_DATA, see uCOS_I1 1. H) that will hold information about the mutex. Your application will
thus need to allocate a variable of type OS_MJTEX_DATA that will be used to receive the information
about the desired mutex. | decided to use a new data structure because the caller should only be
concerned with mutex specific data as opposed to the more generic OS_EVENT data structure.
OS_MUTEX_DATA contains the mutex PIP (Priority Inheritance Priority) (. OSMut exPl P), the priority of
the task owning the mutex (. OSMut exPr i 0) and the value of the mutex (. OSMut exVal ue) which is set
to 1 when the mutex is available and O if it's not. Note that . OSMut exPri o contains OXFF if no task
owns the mutex. Finally, OS MJTEX DATA contains the list of tasks waiting on the mutex
(. CSEvent Tbl [] and . OSEvent G p).

As with all mutex calls, OSMut exQuer y() determines whether the call is made from an ISR L7(1). If the
configuration constant OS_ARG CHK ENis set to 1, OSMut exQuer y() checks that the *handle’ pevent
is not a NULL pointer L7(2) and that the ECB being pointed to has been created by OSMut exCr eat e()
L7(3). OSMut exQuery() then loads the OS_MJTEX_ DATA structure with the appropriate fields. First,
we extract the Priority Inheritance Priority (PIP) from the upper 8 bits of the . OSEvent Cnt field of the
mutex L7(4). Next, we obtain the mutex value from the lower 8 bits of the . OSEvent Cnt field of the
mutex. If the mutex is available (i.e. lower 8 bits set to OxFF) then the mutex value is assumed to be 1
L7(5). Otherwise, the mutex value is O (i.e. unavailable because it's owned by a task) L7(6). Finally, the
mutex wait list is copied into the appropriate fields in O5_MJTEX_DATA L7(7).

AN1002 - 15

HC/OS-1l and Mutual Exclusion Semaphores

I NT8U OSMut exQuery (OS_EVENT *pevent, OS_MJTEX DATA *pdat a)

{
#i f OS_CRI TI CAL_METHOD == /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;
#endi f
I NT8U *psrc;
| NT8U *pdest ;
if (CSIntNesting > 0) { /* (1) See if called fromISR ... */

return (OS_ERR QUERY_I SR);

}
#if OS_ARG CHK_EN
if (pevent == (OS_EVENT *)0) { /* (2) Validate 'pevent' */
return (OS_ERR PEVENT_NULL);

}
#endi f
OS_ENTER_CRI TI CAL() ;
#if OS_ARG CHK_EN
if (pevent->CSEvent Type != OS_EVENT_TYPE _MJTEX) { /* (3) Validate event block type */
OS_EXI T_CRITI CAL() ;
return (OS_ERR EVENT_TYPE);

}
#endi f

pdat a- >OSMut exPI P = (I NT8U) (pevent - >OSEvent Cnt >> 8); /* (4) */

pdat a- >OSOmner Pri o = (I NT8U) (pevent - >OSEvent Cnt & Ox00FF) ;

if (pdata->0SOmerPrio == OxFF) {

pdat a- >OSVal ue = 1; /* (5) */
} else {

pdat a- >OSVal ue = 0; /1* (6) */
}
pdat a- >OSEvent G p pevent - >OSEvent G p; /* (7) Copy wait list */

psrc
pdest
#if OS_EVENT_TBL_SIZE > 0
*pdest ++ = *psrc++
#endi f

&pevent - >OSEvent Tbl [0] ;
&pdat a- >CSEvent Thl [0] ;

#if OS_EVENT_TBL_SIZE > 1
*pdest ++ = *psrc++;
#endi f

#if OS_EVENT_TBL_SIZE > 2
*pdest ++ = *psrc++;
#endi f

#if OS_EVENT_TBL_SI ZE > 3
*pdest ++ = *psrc++;
#endi f

#if OS_EVENT_TBL_SIZE > 4
*pdest ++ = *psrc++;
#endi f

#if OS_EVENT_TBL_SIZE > 5
*pdest ++ = *psrc++;
#endi f

#if OS_EVENT_TBL_SIZE > 6
*pdest ++ = *psrc++;
#endi f

#if OS_EVENT_TBL_SIZE > 7
*pdest = *psrc;
#endi f
OS_EXI T_CRITI CAL() ;
return (OS_NO ERR);

Listing 7, Obtaining the status of a mutex.

AN1002 - 16

HC/OS-1l and Mutual Exclusion Semaphores

OSMutexAccept()

I NT8BU OSMut exAccept (OS_EVENT *pevent, |NT8U *err);

File Called from Code enabled by
0OS_MUTEX.C Task OS_MUTEX_EN

OSMut exAccept () alows you to check to see if a resource is available. Unlike OSMut exPend(),
OSMut exAccept () does not suspend the calling task if the resource is not available.

Arguments

pevent isa pointer to the mutex that guards the resource. This pointer is returned to your application when the
mutex is created (see OSMut exCr eat e()).

err isapointer to avariable used to hold an error code. OSMut exAccept () sets*err to one of the following:

OS_NO ERR if the call was successful.

OS_ERR PEVENT_NULL if pevent isaNULL pointer.

OS_ERR_EVENT_TYPE if pevent isnot pointing to a mutex.

OS_ERR _PEND | SR if you called OSMut exAccept () froman ISR.
Returned Value

If the mutex was available, OSMut exAccept () returns 1. If the mutex was owned by another task,
OSMut exAccept () returnsO.

Notes/War nings

1) Mutexes must be created before they are used.

2) Thisfunction MUST NOT be called by an ISR.

3) If you acquire the mutex through OSMut exAccept (), you MUST call OSMut exPost () to release the
mutex when you are done with the resource.

Example

OS_EVENT *Di spMit ex;

voi d Task (void *pdat a)

INT8U err;
I NT8U val ue;

pdata = pdat a;
for (;;) {
val ue = OSMut exAccept (D spMutex, &err);
if (value == 1) {
. /* Resource avail able, process */

} else {
. /* Resource NOT avail abl e */

}

AN1002 - 17

HC/OS-1l and Mutual Exclusion Semaphores

OSMutexCreate()

OS_EVENT *(OsSMut exCreat e(I NT8U prio, INT8U *err);

File Called from Code enabled by
0OS_MUTEX.C Task or startup code OS _MUTEX_EN

OSMut exCr eat e() is used to create and initialize a mutex. A mutex is used to gain exclusive access to a
resource.

Arguments
pri o isthe Priority Inheritance Priority (PIP) that will be used when a high priority task attempts to acquire the
mutex that is owned by alow priority task. In this case, the priority of the low priority task will be raised to the
PIP until the resource is released.

err isapointer to avariable which will be used to hold an error code. The error code can be one of the following:

OS_NO ERR if the call was successful and the mutex was created.
OS_PRI O EXI ST if atask at the specified priority inheritance priority already exist.
OS_PRI O I NVALI D if you specified a priority with a higher number than
OS_LOWEST_PRI O
OS_ERR PEVENT_NULL if there are no more OS_EVENT structures available.
OS_ERR CREATE I SR if you attempted to create a mutex from an ISR.
Returned Value

A pointer to the event control block allocated to the mutex. If no event control block is available,
OSMut exCr eat e() will return aNULL pointer.

Notes/Warnings

1) Mutexes must be created before they are used.

2) You MUST make sure that pri o has ahigher priority than ANY of the tasks that WILL be using the mutex
to access the resource. For example, if 3 tasks of priority 20, 25 and 30 are going to use the mutex then, pri o
must be a nhumber LOWER than 20. In addition, there MUST NOT already be a task created at the specified
priority.

Example
OS_EVENT *Di spMit ex;
voi d main (void)
INT8U err;
osinit(); /* Initialize pC/ Cs-11 *y
bispNUtex = OSMutexCreate(20, &err); [/* Create Display Mitex */
&BStart(); /* Start Miltitasking */

AN1002 - 18

HC/OS-1l and Mutual Exclusion Semaphores

OSMutexDel()

OS_EVENT *(OsMut exDel (OS_EVENT *pevent, | NT8U opt, INT8U *err);

File

Called from Code enabled by

OS_MUTEX.C

Task OS_MUTEX_EN and
OS_MUTEX_DEL_EN

OSMut exDel () is used to delete a mutex. This is a dangerous function to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generaly speaking,
before you would delete a mutex, you would first delete all the tasks that access the mutex.

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see

OSMut exCreat e()).

opt specifies whether you want to delete the mutex only if there are no pending tasks (OS_DEL_NO_PEND) or
whether you always want to delete the mutex regardless of whether tasks are pending or not (OS_DEL_ ALWAYS).
In this case, al pending task will be readied.

err isapointer to avariable which will be used to hold an error code. The error code can be one of the following:

0S_NO_ERR
OS_ERR DEL_I SR
OS_ERR_EVENT_TYPE
OS_ERR_| NVALI D_CPT
OS_ERR_TASK_WAI TI NG

0OS_ERR_PEVENT_NULL

if the call was successful and the mutex was del eted.

if you attempted to delete a mutex from an ISR.

if pevent isnot pointing to a mutex.

if you didn’t specify one of the two options mentioned above.

if one or more task were waiting on the mutex and and you specified
OS_DEL_NO_PEND.

if there are no more OS_EVENT structures available.

Returned Value

A NULL pointer if the mutex is deleted or pevent if the mutex was not deleted. In the latter case, you would need
to examine the error code to determine the reason.

Notes/Warnings

1) You should use this call with care because other tasks may expect the presence of the mutex.

AN1002 - 19

HC/OS-1l and Mutual Exclusion Semaphores

Example

OS_EVENT *Di spMit ex;

voi d Task (void *pdat a)

INT8U err;

pdata = pdata;
while (1) {

bi spMit ex = OSMut exDel (Di spMit ex, OS_DEL_ALWAYS, &err);

AN1002 - 20

HC/OS-1l and Mutual Exclusion Semaphores

OSMutexPend()

voi d OSMut exPend(OS_EVENT *pevent, |NT16U tineout, |INT8U *err);

File Called from Code enabled by
0OS_MUTEX.C Task only OS_MUTEX_EN

OSMut exPend() is used when a task desires to get exclusive access to a resource. If a task calls
OSMut exPend() and the mutex is available, then OSMut exPend() will give the mutex to the caller and return
to its caller. Note that nothing is actually given to the caller except for the fact that if the err is set to
OS_NO _ERR, the caller can assume that it owns the mutex. However, if the mutex is already owned by another
task, OSMut exPend() will place the calling task in the wait list for the mutex. The task will thus wait until the
task that owns the mutex releases the mutex and thus the resource or, the specified timeout expires. If the mutex is
signaled before the timeout expires, pC/OS-11 will resume the highest priority task that is waiting for the mutex.
Note that if the mutex is owned by a lower priority task then OSMut exPend() will raise the priority of the task
that owns the mutext to the Priority Inheritance Priority (PIP) as specified when you created the mutex (see
OSMut exCreat e()).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMut exCreat e()).

ti meout isused to alow the task to resume execution if the mutex is not signaled (i.e. posted to) within the
specified number of clock ticks. A ti meout vaue of O indicates that the task desires to wait forever for the
mutex. Themaximum t i meout is65535 clock ticks. The timeout value is not synchronized with the clock tick.
The timeout count starts being decremented on the next clock tick which could potentially occur immediately.

err isapointer to avariable which will be used to hold an error code. OSMut exPend() sets*er r to either:

OS_NO ERR if the call was successful and the mutex was available.

OS_TI MEQUT if the mutex was not available within the specified timeout.

OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMut exPend() .

OS_ERR PEVENT_NULL if pevent isaNULL pointer.

OS_ERR _PEND | SR if you attempted to acquire the mutex from an ISR.
Returned Value

NONE
Notes/Warnings
1) Mutexes must be created before they are used.
2) You shoud NOT suspend the task that owns the mutex, have the mutex owner wait on any other pC/OS-11

objects (i.e. semaphore, mailbox or queue) and, you should NOT delay the task that owns the mutex. In other
words, your code should hurry up and rel ease the resource as soon as possible.

AN1002 - 21

HC/OS-1l and Mutual Exclusion Semaphores

Example

OS_EVENT *Di spMit ex;

void DispTask (void *pdata)

INT8U err;

pdata = pdata;
for (535) {

&BNUt exPend(Di spMutex, 0, &err);
. /* The only way this task continues is if ..*/
/* ..the mutex is available or signaled! */

AN1002 - 22

HC/OS-1l and Mutual Exclusion Semaphores

OSMutexPost()

I NT8BU OSMut exPost (OS_EVENT *pevent);

File Called from Code enabled by
0OS_MUTEX.C Task OS_MUTEX_EN

A mutex is signaled (i.e. released) by calling OSMut exPost () . You would call this function only if you acquired
the mutex either by first calling OSMut exAccept () or OSMut exPend() . If the priority of the task that owns
the mutex has been raised when a higher priority task attempted to acquire the mutex then the original task priority
of the task will be restored. If one or more tasks are waiting for the mutex, the mutex is given to the highest
priority task waiting on the mutex. The scheduler is then called to determine if the awakened task is now the
highest priority task ready to run and if so, a context switch will be done to run the readied task. If no task is
waiting for the mutex, the mutex value is simply set to available (Ox FF).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMut exCreat e()).

Returned Value

OSMut exPost () returns one of these error codes:

OS_NO ERR if the call was successful and the mutex released.

OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMut exPost () .

OS_ERR PEVENT_NULL if pevent isaNULL pointer.

OS_ERR _PCST_I SR if you attempted to call OSMut exPost () from an ISR.

OS_ERR _NOT_MJTEX _OMNER if the task posting (i.e. signaling the mutex) doesn’t actually owns the
mutex.

Notes/Warnings

1) Mutexes must be created before they are used.
2) You cannot call this function from an ISR.

AN1002 - 23

Example
CS_EVENT *Di spMut ex;

void TaskX (void *pdata)

INT8U err;

pdata = pdata;
for (535) {

érr = OSMut exPost (D spMut ex) ;
switch (err) {
case OS5 NO ERR /* Mitex signal ed

br eak;

case OS5 _ERR EVENT_TYPE:

br eak;

case OS_ERR PEVENT_NULL:

br eak;

case OS5 _ERR POST_| SR

br eak;

HC/OS-1l and Mutual Exclusion Semaphores

AN1002 - 24

HC/OS-1l and Mutual Exclusion Semaphores

OSMutexQuery()

I NT8BU OSMut exQuery(OS_EVENT *pevent, OS_MJTEX DATA *pdata);

File Called from Code enabled by
0OS_MUTEX.C Task OS_MUTEX_EN

OSMut exQuer y() is used to obtain run-time information about a mutex. Your application must allocate an
OS_MUTEX DATA data structure which will be used to receive data from the event control block of the mutex.
OSMut exQuer y() alows you to determine whether any task is waiting on the mutex, how many tasks are
waiting (by counting the number of 1sinthe. OSEvent Tbl [] field, obtain the Priority Inheritance Priority (PIP)
and determine whether the mutex is available (1) or not (0). Note that the size of . OSEvent Tbl [] is
established by the #def i ne constant OS_EVENT_TBL_SI ZE (seeuCOS_I | . H).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMut exCreat e()).

pdat a is apointer to a data structure of type OS MUTEX_DATA, which contains the following fields:

I NTBU OSMut exPl P; /* The PIP of the nutex */
I NTBU COSOaner Pri o; /* The priority of the nutex owner */
I NTBU (SVval ue; /* The current nutex value, 1 neans available, 0 neans unavail able */
I NT8U CSEvent G p; /* Copy of the mutex wait |ist */

INT8U OSEvent Thl [OS_EVENT_TBL_SI ZE] ;
Returned Value

OSMut exQuer y() returns one of these error codes:

OS_NO ERR if the call was successful.

OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMut exQuer y() .
OS_ERR PEVENT_NULL if pevent isaNULL pointer.

OS_ERR_QUERY_I SR if you attempted to call OSMut exQuer y() froman ISR.

Notes/War nings

1) Mutexes must be created before they are used.
2) You cannot call thisfunction from an ISR.

AN1002 - 25

HC/OS-1l and Mutual Exclusion Semaphores

Example

In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.
OS_EVENT *Di spMit ex;

voi d Task (void *pdat a)

{
OS_MJTEX_DATA nut ex_dat a;
I NT8U err;
| NT8U hi ghest ; /* Hi ghest priority task waiting on nutex */
| NT8U X;
| NT8U y;
pdata = pdata;
for (55) {
érr = OsMut exQuer y(Di spMit ex, &nutex_data);
if (err == O5_NO ERR) {
if (mutex_data. OSEventGrp ! = 0x00) {
y = OSUnMapTbhl [mut ex_dat a. CSEvent G p] ;
X = OSUnMapTbl [mut ex_dat a. OSEvent Tbl [y]];
hi ghest = (y << 3) + x;
}
}
}
}

AN1002 - 26

HC/OS-1l and Mutual Exclusion Semaphores

References

HC/OS-11, The Real-Time Kernel
Jean J. Labrosse

R&D Technical Books, 1998
ISBN 0-87930-543-6

Contacts

Micripm, Inc.

949 Crestview Circle

Weston, FL 33327

954-217-2036

954-217-2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com

WEB: www.Micrium.com

R&D Books, Inc.

1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631

(785) 841-2624 (FAX)

WEB: http://www.rdbooks.com
e-mail: rdorders@rdbooks.com

AN1002 - 27

