ENG2210 Electronic Circuits

Mokhtar A. Aboelaze York University

Chapter 2 Operational Amplifiers

- Objectives
- Learn the terminal characteristics of the op amp
- Learn how to analyze circuits containing op amps
- Learn how to design amplifiers having precise characteristics
- How to design circuits (summing, integrator, differentiator, ..)
- Nonideal characteristics of the op amps and how these limits affect performance

Introduction

- Very cheap
- Versatile, could be used to design many circuits
- Actual op amps have characteristics that are very close to the ideal one.
- Consists of many transistors, but we will not into the details of how it is made.
- Direct Coupled Amplifiers ?

Introduction

- 2 inputs one output
- Amplify difference of inputs
- VCC and VEE are typically 12 V

The inverting Configuration

- Input signal is connected to the inverted input
- Feedback resistor from output to inverted input
- Non-inverted input grounded

The Effect of Finite Open-Loop Gain

- What if A is finite
- Redo the last example assuming that A is finite

Input Resistance

- The input resistance of the iverting configuration is R₁
- R₁ must be very large (the input signals divided by R₁ and output resistance of the source)
- If R₁ is high, and we want a high gain, then R₂ may be impractically high

Input and Output Resistance

- No current flows into the +ve input of the op amp, input resistance is infinite
- Output resistance is zero

Voltage Follower

- Unity gain Buffer Amplifier
- Infinite input R, and zero output R

Difference Amplifiers

- Amplify the difference between the 2 signals and rejects signals that are common to both inputs. Ideally,
- $v_o = A_d v_{Id} + A_{cm} v_{Icm}$
- A_d is the differential gain, A_{cm} is the common gain
- Because of the very high gain, we can not use the opamp as a difference amplifier
- Common mode rejection ration CMRR

$$CMRR = 20\log \frac{|A_d|}{|A_{cm}|}$$

Difference Amplifiers

- The gain for the inverting mode is -R₂/R₁
- For the noninverting 1+R₂/R₁
- We can combine these together, but we have to attenuate the noninverting input for the to make it equal in magnitude to the inverting input.

Difference Amplifiers

• Using Superposition

Input Resistance

- $R_{id} = 2R_1$
- For large gain (R₂/R₁) R₁ is small (relatively
- Instrumentation Amplifier solves this

Instrumentation Amplifier

- The problem with the difference amplifier is low input resistance.
- We can use a voltage follower to buffer the 2 inputs thus solving this problem.
- We can also get some voltage gain from these 2 extra op amps.

Problems

- The input common mode is amplified by the first stage, and need to be dealt with in the second (higher CMRR).
- The two amplifiers channels in the first stage have to be perfectly matched.
- To vary the differential gain, 2 resistors must be varied simultaneously.

Integrator

• Consider the following Ct.

$$v_0 = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau - V_0$$

$$\frac{V_0}{V_i} = -\frac{1}{sCR}$$

$$\frac{V_0(j\omega)}{V_i(j\omega)} = -\frac{1}{i\omega CR}$$

Differentiator

• An ideal differentiator

$$i(t) = C \frac{dv_I(t)}{dt}$$

$$v_O(t) = -CR \frac{dv_I(t)}{dt}$$

$$\frac{V_O}{V_i} = -sCR$$

DC Imperfections

- Thus far, we considered the opamp to be ideal (except for finite A).
- In reality, we have to consider the effect of these *non-ideal* behavior of the opamp
- We will discuss FEW of these inperfections

Offset Voltage

- If the 2 terminals are connected to ground, the output should be 0.
- Can be represented as the shown circuit.
- Due to mismatches in the input differential stage
- Data sheet specify V_{OS} but not its polarity
- Also, changes with temperature (μV/°C)

Offset Voltage

- V_o is not zero.
- The actual signal is superimposed in V₀.
- Limits the voltage swing.
- If amplifying DC even worse.
- Some opamps have 2 terminals for compensation.
- Still the problem of temp variation

op amp

Offset Voltage

- We can use capacitive coupling.
- O.K. if we are not dealing with DC of low frequency.
- At DC gain is 1 (not 1+R₂/R₁).
- At high frequency (high pass filter)

Input Bias and Offset Currents

- We can reduce the output DC voltage due to input bias current.
- R3 has a negligible effect from the signal point of view.

Input Bias and Offset Currents

 Always provide a dc path from each of the inputs to the ground

Effect of V_{os} and I_{os}

- The effect of V_{os} and I_{os} result in charging the capacitor and saturating the output
- Consider a shunt R with the C
- Although R is used to keep I_B from flowing into C, but not I_{os}

Finite Open Loop gain and B.W.

- The differential open loop gain is finite and decreases with frequency.
- If internally compensated, it behaves like a single time constant LPF

$$A(S) = \frac{A_0}{1 + \frac{s}{w_b}}$$

Finite Open Loop Gain

$$A(S) = \frac{A_0}{1 + s/\omega_b}$$

$$A(j\omega) = \frac{A_0}{1 + j\omega/\omega_b}$$

$$A(j\omega) = \frac{A_0\omega_b}{j\omega} \qquad \omega >> \omega_b$$

 $\omega_t = A_0 \omega_b$

Unity-gain BW or Gain BW product

Closed Loop Gain

$$\frac{V_0(s)}{V_i(s)} = \frac{-R_2/R_1}{1 + (1 + R_2/R_1)/A}$$

$$\frac{V_0(s)}{V_i(s)} = \frac{-R_2/R_1}{1 + (1 + R_2/R_1)/(A_0/(1 + s/w_b))}$$

$$A >> R_2/R_1$$

$$\frac{V_0(s)}{V_i(s)} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_t/(1 + R_2/R_1)}}$$

STC LPF with gain R2/R1 $\omega_{3dB} = \omega_t/(1 + R_2/R_1)$

Closed Loop Gain non-inverting

This is equivalent to an STC LPF with a DC gain of $(1+R_2/R_1)$ and a 3dB frequency of

$$\frac{V_0(s)}{V_i(s)} = \frac{1 + R_2 / R_1}{1 + \frac{s}{\omega_t / (1 + R_2 / R_1)}}$$

|A| (dB)

Large Signal Operation

- The output of the opamp saturates at rated output voltage (+- 13)
- Also, three is a limit on the output current (datasheet). The opamp can not supply more than the output current limit. If this is the case, the voltage saturates at the limit.

Slew Rate

- The output can not change with a rate greater than the slew rate.
- The slew rate is specified in the datasheet in $V/\mu s$

