ENG2210 Electronic Circuits

Mokhtar A. Aboelaze York University

Disclaimer: Most of the slides are skeletons that will be filled/modified in the lecture. Please do not assume that you can know the material just by reading the slides.

Chapter Objectives

- Learn the physical structure of the MOSFET and how it works.
- How to analyze circuits that contains MOSFET.
- How to obtain linear amplification from a nonlinear MOSFET.
- The three basic ways for connecting a MOSFET to construct amplifiers.
- Practical circuits for MOSFET.

MOSFET- Metal Oxide Semiconductor Field Effect Transistor

- Transistors (3 terminal devices) diodes are 2 terminal devices more complicated.
- One terminal usually control the current between the other two terminals.
- Used in digital and analog circuits
- Mainly MOSFET and BJT (vast majority of IC's are MOSFET)
 - Smaller
 - Loss power than BJT very important -

MOSFET

 This is not a course on semiconductor (nor this is a physics course). However, understanding how the device work is very important.

$$Small \ v_{DS}$$

$$i_D = \left[(\mu_n C_{ox}) \left(\frac{W}{L} \right) V_{ov} \right] v_{DS}$$

$$Conductance$$

$$g_{DS} = (\mu_n C_{ox}) \left(\frac{W}{L} \right) V_{ov}$$

$$Inear resistance$$

$$r_{DS} = \frac{1}{(\mu_n C_{ox}) \left(\frac{W}{L} \right) V_{ov}}$$

Not Small v_{DS}

- As v_{DS} increases we can not assume a constant voltage between the gate and any point along the channel.
- The voltage at one end of the channel is 0, while at the other end is v_{DS}

$$\begin{split} i_D &= \left[(\mu_n C_{ox}) \left(\frac{W}{L} \right) V_{ov} \right] v_{DS} \\ i_D &= \left[(\mu_n C_{ox}) \left(\frac{W}{L} \right) \left(V_{ov} - \frac{1}{2} v_{DS} \right) \right] v_{DS} \\ i_D &= \left[k_n' \left(\frac{W}{L} \right) \left(V_{ov} - \frac{1}{2} v_{DS} \right) \right] v_{DS} \end{split}$$

As v_{DS} increases the resistance increases and the current does not continue to grow with the same rate

$$v_{DS} > = V_{ov}$$

- $\bullet\,$ As V_{DS} grows, the channel pinches off.
- ullet When $v_{DS}=V_{ov}$ the channel depth is zero
- Increasing v_{DS} beyond that has no effect.
- The drain current saturates (saturation region)
- Electrons can still go through the depletion region

$$i_D = \frac{1}{2} k_n \left(\frac{W}{L}\right) V_{ov}^2$$

