MOSFETs as Amplifiers

 In saturation, the MOSFET acts as a voltage controlled current source

$$i_D = \frac{1}{2} k_n \left(\frac{W}{L}\right) V_{ov}^2 (1 + \lambda v_{DS})$$

- Non-linear V_{ov}^2
- If the current (i_D) flows in a resistive load, output voltage is proportional to i_D .

VTC by Graphical Analysis

- From elementary circuit theory we have
- $\bullet \ \ V_{DD} = i_D \, R_D + v_{DS}$
- That represents a line with a slope of -1/RD
- The transistor operates on a point along that line.

Small Signal Operations

- ullet The signal v_{gs} is superimposed on V_{GS}
- $v_{GS} = V_{GS} + v_{gs}$
- $I_D = \frac{1}{2} k_n V_{OV}$
- $i_D = \frac{1}{2}k_n(V_{OV} + v_{gs})^2$

Small Signal Operation

• To minimize the nonlinear part

$$\frac{1}{2}k_n v_{gs}^2 << k_n V_{OV} v_{gs}$$

$$v_{gs} << 2V_{OV}$$

• $i_D \approx I_D + i_d$

$$\begin{split} v_{DS} &= V_{DD} - i_D R_D \\ v_{DS} &= V_{DD} - (I_D + i_D) R_D \\ v_{DS} &= V_{DS} - i_d R_D \end{split}$$

Small Signal Operation

Assuming small

$$i_{D} = \frac{1}{2}k_{n}V_{OV}^{2} + k_{n}V_{OV}v_{gs} + \frac{1}{2}k_{n}v_{gs}^{2}$$

$$i_{d} = k_{n}V_{OV}v_{gs}$$

$$g_{m} = \frac{i_{d}}{v_{gs}} = k_{n}V_{OV}$$

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}}$$

$$i_d = k_n V_{OV} v_{gs}$$

$$g_m = \frac{i_d}{v_{gs}} = k_n V_{OV}$$

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \bigg|_{v_{GS} = V_{GS}}$$

• Transconductance: relates i_d and v_{ds}

Transconductance

- The slope of the i_{DS} - v_{DS} characteristics at the Q point (DC bias point)
- As shown, almost linear.

$$g_m = \frac{i_D}{v_{GS}} = k_n \left(\frac{W}{L}\right) (V_{GS} - V_t)$$

Microelectronic Circuits, Sixth Edition

Sedra/Smith

Copyright @ 2010 by Oxford University Press, Inc.

Separating DC Analysis and Signal Analysis

- Signal quantities are superimposed on DC quantities.
- We can separate DC and AC Analysis.
- The DC Analysis determine the Q Point
- (Bypass) Capacitors are added to prevent disturbing the DC bias (Q point). WHY?
- Draw the circuit from the signal point of view
 - DC voltages (current) are short (open)
 - Capacitors are short
 - MOSFET replaced by small signal equivalent Circuit

Why Capacotors

Adding the load

Small Signal Equivalent Circuit

- Represents only time varying component (DC only determine the bias point)
- What is the difference between (a) and (b).

Example

 Find the small signal voltage gain, input resistance, and the largest allowable input signal. V_t=1.5V, k'_n=0.25mA/V², VA=50 V.

Example cont.

Example

MOSFET Amplifier Configuration

- Single stage
- The signal is fed to the amplifier represented as v_{sig} with an internal resistance R_{sig} .
- MOSFET is represented by its small signal model.
- Generally interested of gain, input and output resistance (overall amplifier circuit not only the small signal model).

MOSFET Amplifier Configuration

• Considering only the small signal not the bias

Characterizing Amplifiers

• Find gain, input and output resistance

Amplifer Configuration

- Common Source
- Common Source with a source resistance
- Common gate
- Common drain or voltage follower

Amplifiers

$$v_o = A_{vo}v_i \frac{R_L}{R_L + R_o}$$
$$v_i = v_{sig} \frac{R_{in}}{R_c + R_o}$$

$$A_{v} = A_{vo} \frac{R_L}{R_L + R_o}$$

$$v_{o} = A_{vo}v_{i} \frac{R_{L}}{R_{L} + R_{o}}$$

$$v_{i} = v_{sig} \frac{R_{in}}{R_{in} + R_{sig}}$$

$$A_{v} = A_{vo} \frac{R_{L}}{R_{L} + R_{o}}$$

$$G_{v} = \frac{v_{o}}{v_{sig}} = \frac{R_{in}}{R_{in} + R_{sig}} A_{vo} \frac{R_{L}}{R_{L} + R_{o}}$$

Common Source

- Most widely used configuration
- In multistage amplifiers, the bulk of the gain is from common source.
- The source is grounded, making it common between input and output.
- We can use hybrid π model.

Common Source with Source R

- For simplicity, r_0 is not included.
- No effect on discrete implementation, not so for IC's
- R_s provides a negative feedback to control the magnitude of the signal to prevent nonlinear distortion.
- Also reduces the voltage gain and extends the useful bandwidth.

Common Source with Source R

Common Gate Amplifier

Common Drain Amplifier – Source Follower

Since there is a resistance RL connected to the source, it is easier to use the T-model

Common Source – Voltage Follower

Comparison

	cs	CS+RS	CG	CD
Rin	∞	∞	$\frac{1}{g_m}$	∞
Rout	RD ro	R_D	R_D	$1/g_m$
G	-g _m (R _D R _L r _o)	$A_v = \frac{g_m(R_D R_L)}{1 + g_m R_S}$	$G_{v} = \frac{(R_{D} R_{L})}{1/g_{m} + R_{sis}}$	$G_v = A_v$ $= \frac{R_L}{1/g_m + R_L}$

Discrete CMOS Amplifiers

- MOS are mostly used in IC's
- However, we present practical circuits for discrete implementation.
- Good if you are building a circuit on a breadboard (in the lab).

Common Source

- DC Analysis
- Can use any biasing technique we studied
- Calculate the bias (Q) point

