
8 October 2013

1

 CSE 2021 Computer Organization

AAppppeennddiixx CC

The Basics of Logic Design

Outline
n  Fundamental Boolean operations
n  Deriving logic expressions from truth

tables
n  Boolean Identities
n  Simplifying logic expressions using

Boolean identities
n  Combinational and sequential circuits
n  Verilog basics

2

Boolean Algebra

n  Boolean algebra is the basic math used
in digital circuits and computers.

n  A Boolean variable takes on only 2
values: {0,1} , {T,F}, {Yes, No}, etc.

n  There are 3 fundamental Boolean
operations:
n  AND, OR, NOT

3

Fundamental Boolean Operations
AND OR NOT

Z=A*B (AB) Z=A+B Z=Ā

Truth Table

Truth Table Truth Table

A

B
Z A

B
Z Z A

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

A B Z
0 0 0
0 1 1
1 0 1
1 1 1

A Z
0 1
1 0

4

8 October 2013

2

Boolean Algebra

n  A truth table specifies output signal logic
values for every possible combination of input
signal logic values

n  In evaluating Boolean expressions, the
Operation Hierarchy is: 1) NOT 2) AND 3)
OR. Order can be superseded using (…)

n  Example:
n  What is the value of ?)()(DBCBAZ ⋅+⋅+=

FDBCF

DBCFFDBCFTZ

=⋅+⋅=

⋅+⋅+=⋅+⋅+=

)(

)()()()(

TDTCFBTA ==== ,,,

5

Deriving Logic Expressions From Truth Tables

n  What is the Boolean expression for Z?

Light must be ON when both
switches A and B are OFF, or
when both of them are ON.

Logic Function
SW.A

SW.B
Z (light)

Truth Table:

A B Z
0 0 1
0 1 0
1 0 0
1 1 1

6

Minterms and Maxterms
n  Minterms

n  AND term of all input variables.
n  For variables with value 0, apply complements

n  Maxterms
n  OR factor with all input variables
n  For variables with value 1, apply complements

A B Z Minterms Maxterms
0 0 1
0 1 0
1 0 0
1 1 1

BA+

7

Minterms and Maxterms
n  A function with n variables has 2n minterms (and

Maxterms) – exactly equal to the number of rows in
truth table

n  Each minterm is true for exactly one combination of
inputs

n  Each Maxterm is false for exactly one combination of
inputs

A B Z Minterms Maxterms
0 0 1
0 1 0
1 0 0
1 1 1

BA+

8

8 October 2013

3

Equivalent Logic Expressions

n  Two equivalent logic expressions can
be derived from Truth Tables:

1. Sum-of-Products (SOP) expressions:
n  Several AND terms OR’d together, e.g.

2. Product-of-Sum (POS) expressions:
n  Several OR terms AND’d together, e.g.

ABCCBACBA ++

))((CBACBA ++++
9

Rules for Deriving SOP Expressions
1.  Find each row in TT for which output is 1 (rows

1 & 4)
2.  For those rows write a minterm of all input

variables.
3.  OR together all minterms found in (2):

Such an expression is called a Canonical SOP

ABBAZ +=

A B Z Minterms Maxterms
0 0 1
0 1 0
1 0 0
1 1 1

BA+

10

Rules for Deriving POS Expressions
1.  Find each row in TT for which output is 0

(rows 2 & 3)
2.  For those rows write a maxterm
3.  AND together all maxterm found in (2):

Such an expression is called a Canonical
POS.

))((BABAZ ++=

A B Z Minterms Maxterms
0 0 1
0 1 0
1 0 0
1 1 1

BA+

11

CSOP and CPOS

n  Canonical SOP:
n  Canonical POS:
n  Since they represent the same truth

table, they should be identical

n  CPOS and CSOP expressions for the
same TT are logically equivalent. Both
represent the same information.

))((BABAZ ++=

Verify that))((BABAABBAZ ++≡+=

ABBAZ +=

12

8 October 2013

4

Activity 1

Derive SOP and POS expressions for the
following TT.

A B Carry

0 0 0
0 1 0
1 0 0
1 1 1

13

Boolean Identities

1
2
3
4
5
6
7
8
9

10
11
12
13

Boolean Identities

n  Useful for simplifying logic equations.

Duals

15

Boolean Identities

Identities Property

1-5 Single variable, foundations of Boolean
manipulation

6 Commutative

7 Associative

8 Distributive

9 De Morgan’s

10 Combining

11 Absorption

13 Consensus

16

8 October 2013

5

Boolean Identities

n  The right side is the dual of the left side
1.  Duals formed by replacing

2.  The dual of any true statement in Boolean
algebra is also a true statement.

AND OR
OR AND
0 1
1 0

17

Boolean Identities

NOR gate Alt gate rep.

Alt gate rep.
NAND gate

  DeMorgan’s laws very useful: 9a and 9b

BABA .=+

BAAB +=

18

Activity 2

12b:

13a:

A + AB = A +B

AB+ AC + BC = AB+ AC

Proofs of some Identities:

19

Simplifying Logic Expressions
Using Boolean Identities

8 October 2013

6

(b) Minimal-cost realization

F B
A

F

(a) Canonical sum-of-products
A
B

Simplifying Logic Equations – Why?

BABABAF ... ++=

BAF +=

21

Simplifying Logic Equations
n  Simplifying logic expressions can lead to using smaller

number of gates (parts) to implement the logic expression
n  Can be done using

n  Boolean Identities (algebraic)
n  Karnaugh Maps (graphical)

n  A minimum SOP (MSOP) expression is one that has no
more AND terms or variables than any other equivalent
SOP expression.

n  A minimum POS (MPOS) expression is one that has no
more OR factors or variables than any other equivalent
POS expression.

n  There may be several MSOPs of an expression

22

Example of Using Boolean Identities

n  Find an MSOP for

)(WXYZYWXF +++=

YWX

ZYZWX

WXZYZYWX

+=

+++=

+++=

)1()1(

23

Activity 3
n  Find an MSOP for

F =VWXY +VWYZ +VXYZ

24

8 October 2013

7

 CSE 2021 Computer Organization

Combinational and
Sequential Circuits

Digital Circuit Classification

n  Combinational circuits
n  Output depends only solely on the current

combination of circuit inputs
n  Same set of input will always produce the same

outputs
n  Consists of AND, OR, NOR, NAND, and NOT gates

n  Sequential circuits
n  Output depends on the current inputs and state of the

circuit (or past sequence of inputs)
n  Memory elements such as flip-flops and registers are

required to store the “state”
n  Same set of input can produce completely different

outputs
26

 CSE 2021 Computer Organization

Combinational Circuits

Multiplexer
n  A multiplexer (MUX) selects data from one of

N inputs and directs it to a single output, just
like a railyard switch
n  4-input Mux needs 2 select lines to indicate which

input to route through
n  N-input Mux needs log2(N) selection lines

28

8 October 2013

8

Multiplexer (2)
n  An example of 4-input Mux

I0
I1

In-1

Selection
control

Z

4-input MUX
I0
I1

I3
I2

S1 S0

Z

Functional block diagram

S1 S0 Z

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Condensed truth table

Actual truth table would
have 26 rows
corresponding to I0, I1,
I2, I3, S0 and S1

29

Decoder
n  A decoder is a circuit element that will decode an

N-bit code.
n  It activates an appropriate output line as a

function of the applied N-bit input code

A2

A0

A1

Z2

Z6

Z5

Z4

Z3

Z1

Z0

Z7

3-to-8 decoder A2 A1 A0 Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1
Functional block diagram

Truth Table

30

 CSE 2021 Computer Organization

Sequential Circuits

Why Bit Storage ?
n  Flight attendant call button

n  Press call: light turns on
n  Stays on after button

released
n  Press cancel: light turns off
n  Logic gate circuit to implement

this?
Q Call

Cancel

Doesn’t work. Q=1 when Call=1, but
doesn’t stay 1 when Call returns to 0

Need some form of “memory” in the circuit

a

a

3.2

Bit
Storage

Blue light Call
button

Cancel
button

1. Call button pressed – light turns on

Bit
Storage

Blue light Call
button

Cancel
button

2. Call button released – light stays on

Bit
Storage

Blue light Call
button

Cancel
button

3. Cancel button pressed – light turns off

32

8 October 2013

9

Bit Storage Using SR Latch
n  Simplest memory elements are Latch and

Flip-Flops
n  SR (set-reset) latch is an un-clocked latch

n  Output Q=1 when S=1, R=0 (set condition)
n  Output Q=0 when S=0, R=1 (reset condition)
n  Problem - Q is undefined if S=1 and R=1

R

S

Q

C all
but t on

Blue lig h t
C an c el
but t on

33

Clocks
n  Clock period: time interval between

pulses
n  example: period = 20 ns

n  Clock frequency: 1/period
n  example: frequency = 1 / 20 ns = 50

MHz
n  Edge-triggered clocking: all state

changes occur on a clock edge.

100 GHz
10 GHz
1 GHz

100 MHz
10 MHz

0.01 ns
0.1 ns

1 ns
10 ns

100 ns

Period Freq

34

Clock and Change of State
n  Clock controls when the state of a memory

element changes
n  Edge-triggered clocking: all state

changes occur on a clock edge.

35

Clock Edge Triggered Bit Storage
n  Flip-flop - Bit storage that stores on clock edge, not level
n  D Flip-flop

n  Two latches, master and slave latches.
n  Output of the first goes to input of second, slave latch has inverted

clock signal (falling-edge trigger)

36

8 October 2013

10

Setup and Hold Time
n  Setup time

n  The minimum amount of time the data signal should
be held steady before the clock edge arrives.

n  Hold time
n  The minimum amount of time the data signal should

be held steady after the clock edge.

37

N-Bit Register
n  Cascade N number of D flip-flops to form a

N-bit register
n  An example of 8-bit register formed by 8

edge-triggered D flip-flops

38

 CSE 2021 Computer Organization

Verilog Basics

What is an HDL?

n  A Hardware Description Language (HDL) is
a software programming language used to
model the intended operation of a piece of
hardware.

n  The difference between an HDL and “C”
n  Concurrency
n  Timing

n  A powerful feature of the Verilog HDL is
that we can use the same language for
describing, testing and debugging the
system. 40

8 October 2013

11

An Example
module pound_one;
reg [7:0] a,a$b,b,c; // register declarations
reg clk;

initial
 begin
 clk=0; // initialize the clock
 c = 1;
 forever #25 clk = !clk;
 end
/* This section of code implements
 a pipeline */
always @ (posedge clk)
 begin
 a = b;
 b = c;
 end
endmodule

41

Identifiers
n  Identifiers are names assigned by the user

to Verilog objects such as modules,
variables, tasks etc.

n  An identifier may contain any sequence of
letters, digits, a dollar sign '$' , and the
underscore '_' symbol.

n  The first character of an identifier must be
a letter or underscore; it cannot be a dollar
sign '$' , for example. We cannot use
characters such as '-' (hyphen), brackets,
or '#' in Verilog names (escaped identifiers
are an exception).

42

Escaped Identifiers
n  The use of escaped identifiers allow any character

to be used in an identifier.
n  Escaped identifiers start with a backslash (\) and end with

white space (White space characters are space, tabs,
carriage returns).

n  Gate level netlists generated by EDA tools (like DC) often
have escaped identifiers

n  Examples:
n  \/clock = 0;
n  \a*b = 0;
n  \5-6
n  \bus_a[0]
n  \bus_a[1]

43

 module identifiers; /* Multiline comments in Verilog look like C comments
 and // is OK in here. */
 // Single-line comment in Verilog.
 reg legal_identifier, two__underscores;
 reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;
 reg \/clock ,\a*b ; // Add white_space after escaped identifier.
 //reg $_BAD,123_BAD; // Bad names even if we declare them!
 initial begin
 legal_identifier = 0; // Embedded underscores are OK,
 two__underscores = 0; // even two underscores in a row.
 _OK = 0; // Identifiers can start with underscore
 OK_ = 0; // and end with underscore.
 OK$ = 0; // $ sign is OK.
 OK_123 =0; // Embedded digits are OK.
 CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).
 case_sensitive = 1;
 \/clock = 0; // An escaped identifier with \ breaks rules
 \a*b = 0; // but be careful to watch the spaces!
 $display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE);
 $display("Variable case_sensitive= %d",case_sensitive);
 $display("Variable \/clock = %d",\/clock);
 $display("Variable \\a*b = %d",\a*b);
 end
 endmodule

An Example 44

8 October 2013

12

Simulation Result of the Example

Variable CASE_SENSITIVE= 0
Variable case_sensitive= 1
Variable /clock = 0
Variable \a*b = 0

45

Logic values
n  Verilog has 4 logic Values:

n  ‘0’ represents zero, low, false, not asserted.
n  ‘1’ represents one, high, true, asserted.
n  ‘z’ or ‘Z’ represent a high-impedance value,

which is usually treated as an 'x' value.
n  ‘x’ or ‘X’ represent an uninitialized or an

unknown logic value--an unknown value is
either '1' , '0' , 'z' , or a value that is in a state of
change.

46

Data Types
n  Three data type classes:

n  Nets
n  Physical connections between devices
n  Example: wire a, b;

n  Registers
n  Storage devices, variables.
n  Example: reg a; reg [7:0] bus;

n  Parameters
n  Constants
n  Example: parameter width=32;

 parameter A_string =“hello”;
47

 CSE 2021 Computer Organization

CCooddee SSttrruuccttuurree

Design Entities
Verilog Module Basics

8 October 2013

13

Design Entities
n  The module is the basic unit of code in the

Verilog language.
n  Example
 module holiday_1(sat, sun,weekend);
 input sat, sun;
 output weekend;
 assign weekend = sat | sun;
 endmodule

49

Verilog Module
 Modules contain

 declarations
  functionality
  timing

syntax:
module module_name (signal, signal,... signal) ;
. ; //content of module
.
..
.
endmodule

module name (port_names);

module port declarations

data type declarations

procedural blocks

continuous assignments

user defined tasks & functions

primitive instances

module instances

specify blocks

endmodule

50

Module Port Declarations

n  Scalar (1bit) port declarations:
n  port_direction port_name, port_name ... ;

n  Vector (Multiple bit) port declarations:
n  port_direction [port_size] port_name, port_name ... ;

n  port_direction : input, inout (bi-directional) or output
n  port_name : legal identifier
n  port_size : is a range from [msb:lsb]

input a, into_here, george; // scalar ports
input [7:0] in_bus, data; //vectored ports
output [31:0] out_bus; //vectored port
inout [maxsize-1:0] a_bus; //parameterized port

51

Module Instances

syntax for instantiation:
module_name instance_name (signal, signal,...);

  A module may be instantiated within another module.
  There may be multiple instances of the same module.

module example (a,b,c,d);
input a,b;
output c,d;
. . . .
endmodule

example ex_inst_1(in_1, in_2, w, z);
example ex_inst_2(in_1, in_2, , z); // skip a port

52

8 October 2013

14

Gate-level Primitives
n  Verilog has pre-defined primitives that implement

basic logic functions.
n  Structural modeling with the primitives is similar

to schematic level design.
 and nand or nor xor xnor

buf not bufif0 bufif1 notif0 notif1

module
gate_level_ex(in_1,in_2,c);
output c;
input in_1,in_2;

nand (a, in_1, in_2);
not (b, a);
or or_1(c, in_2, b);

endmodule

in_1
in_2 c

b a

or_1

53

Activity 4
Given the circuit below, develop a Verilog
module for the circuit

n1

n2

q

qBar

set

clear

54

User-Defined Primitives
n  We can define primitive gates (a user-defined

primitive or UDP) using a truth-table specification.
The first port of a UDP must be an output port, and
this must be the only output port (we may not use
vector or inout ports).

n  An example
 primitive Adder(Sum, InA, InB);
 output Sum;
 input InA, InB;
 table // inputs : output
 00 : 0;
 01 : 1;
 10 : 1;
 11 : 0;
 endtable
 endprimitive

55

Operators
n  Verilog operators (in increasing order of precedence)

n  ?: (conditional)
n  || (logical or)
n  && (logical and)
n  | (bitwise or)
n  ~| (bitwise nor)
n  ^ (bitwise xor)
n  ^~ ~^ (bitwise xnor, equivalence)
n  & (bitwise and)
n  ~& (bitwise nand)
n  == (logical) != (logical) === (case) !== (case)
n  < (lt)
n  <= (lt or equal)
n  > (gt)
n  >= (gt or equal)
n  << (shift left)
n  >> (shift right)
n  + (addition)
n  - (subtraction)
n  * (multiply)
n  / (divide)
n  % (modulus) 56

8 October 2013

15

 CSE 2021 Computer Organization

Procedural Assignment
Continuous Assignment
Control Statement

Procedures
n  A Verilog procedure is an always or

initial statement, a task , or a function .
n  The statements within a sequential block

(statements that appear between a begin
and an end) that is part of a procedure
execute sequentially in the order in which
they appear, but the procedure executes
concurrently with other procedures.

58

Procedural Blocks
n  There are two types of procedural blocks:

n  initial blocks - executes only once
n  always blocks - executes in a loop

n  Multiple Procedural blocks may be used, if so the
multiple blocks are concurrent.

n  Procedural blocks may have:
n  Timing controls - which delays when a statement may be

executed
n  Procedural assignments
n  Programming statements

59

Procedural Statement Groups
n  When there is more than one statement within a

procedural block the statements must be grouped.
n  Sequential grouping: statements are enclosed within

the keywords begin and end.
n  An example
 always

begin
a = 5; // executed 1st
c = 4; // executed 2nd
wake_up = 1; // executed 3rd

end

60

8 October 2013

16

Timing Controls (procedural delays)

n  #delay - simple delay
n Delays execution for a specific number of time steps.

 #5 reg_a = reg_b;

n  @ (edge signal) - edge-triggered timing control
n Delays execution until a transition on signal occurs.
n  edge is optional and can be specified as either posedge or
negedge.
n Several signal arguments can be specified using the
keyword or.
n An example : always @ (posedge clk) reg_a = reg_b;

n  wait (expression) - level-sensitive timing control
n Delays execution until expression evaluates true.
n wait (cond_is_true) reg_a = reg_b;

61

Procedural assignments
n  Assignments made within procedural

blocks are called procedural assignments.
n  Value of the RHS of the equal sign is

transferred to the LHS
n  LHS must be a register data type (reg,

integer, real). NO NETS!
n  RHS may be any valid expression or signal

always @ (posedge clk)
begin

a = 5; // procedural assignment
c = 4*32/6; // procedural assignment
wake_up =$time; // procedural assignment

end
62

Continuous Assignment
n  Continuous assignment assigns a value to a

wire in a similar way that a real logic gate
drives a real wire.

n  The main use for continuous assignments is to
model combinatorial logic.

 module continuous (Ain, Aout);
 input Ain;
 output Aout;
 assign Aout = ~Ain //continuous assignment.
 endmodule AoutAin

syntax: Explicit continuous assignment:
assign net_name = expression;

where net_name is a net that has been previously declared

63

Illustration of Assignment Statements
module assignments

 //... Continuous assignments go here.
 always // beginning of a procedure
 begin // beginning of sequential block
 //... Procedural assignments go here.
 end

endmodule

64

8 October 2013

17

Control Statements
n  Two types of programming statements:

n  Conditional
n  Looping

n  Programming statements only used in
procedural blocks

65

syntax:
if(expression) statement

If the expression evaluates to true then execute the statement

if(expression) statement1
else statement2

If the expression evaluates to true then execute statement1,
if false, then execute statement2.

module if_ex(clk);
 input clk;
 reg red,blue,pink,yellow,orange,color,green;
 always @ (posedge clk)
 if (red || (blue && pink))
 begin
 $display ("color is mixed up");
 color <= 0; // reset the color
 end
 else if (blue && yellow)
 $display ("color is greenish");
 else if (yellow && (green || orange))
 $display ("not sure what color is");
 else $display ("color is black");
endmodule

if and if-else

66

for
syntax:
for (assignment_init; expression; assignment)

statement or statement_group
  The assignment_init is executed once at the start of
the loop.
  Loop executes as long as expression is true.
  The assignment is executed at the completion of
each loop.

module for_ex1 (clk);
input clk;
reg [31:0] mem [0:9]; // 10x32 memory
integer i;
always @ (posedge clk)
 for (i = 9; i >= 0; i = i-1)

 mem[i] = 0; // init the memory to zeros
endmodule

67

Simulating the Verilog Code

n  Verilog code of NAND Latch
Module simple_latch (q, qBar, set, clear);

 input set, clear;
 output q, qBar;
 nand #2 n1(q,qBar,set);
 nand #2 n2(qBar,q,clear);

endmodule
n1

n2

q

qBar

set

clear

68

8 October 2013

18

Testbench
n  A testbench generates a sequence of input

values (we call these input vectors) that
test or exercise the verilog code.

n  It provides stimulus to the statement that
will monitor the changes in their outputs.

n  Testbenchs do not have a port declaration
but must have an instantiation of the circuit
to be tested.

69

A testbench for NAND Latch
Module test_simple_latch;

 wire q, qBar;
 reg set, clear;
 simple_latch SL1(q,qBar,set,clear);
 initial
 begin
 #10 set = 0; clear = 1;

 #10 set = 1;
 #10 clear = 0;

 #10 clear = 1;
 #10 $stop;
 #10 $finish;
 end
 initial
 begin
 $monitor (“%d set= %b clear= %b q=%b qBar=%b”,$time,

 set,clear,q,qBar);
 end

endmodule

70

