CSE 2021 Computer Organization

Appendix C Part 2

Basic Arithmetic Logic Unit -- Adder

Half Adders

Need to add bits $\{0,1\}$ of A_{i} and B :
Associate

$$
\begin{gathered}
C_{i+1} \\
A: A_{n} \ldots A_{i+1} A_{1} \ldots A_{0} \\
B: B_{n} \ldots B_{i+1} B_{i} \ldots B_{0} \\
\quad S_{i}
\end{gathered}
$$

binary bit $0 \leftrightarrow$ logic value $F(0) \quad A: A_{n} \ldots A_{i+1} A_{1} \ldots A_{0}$
binary bit $1 \leftrightarrow$ logic value T (1) $B: B_{n} \ldots B_{i+1} B_{i} \ldots B_{0}$

- binary bit $1 \leftrightarrow$ logic value T (1)

This leads to the following truth table
$A_{i} \quad B_{i} \quad$ Sum $_{i} \quad$ Carry $_{i+1}$

0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$
\begin{aligned}
& \operatorname{SUM}_{i}=\bar{A}_{i} B_{i}+A_{i} \bar{B}_{i}=A_{i} \oplus B_{i} \\
& \operatorname{CARRY}_{i+1}=A_{i} B_{i}
\end{aligned}
$$

Half Adder Circuit

$\operatorname{SUM} M_{i}=\bar{A}_{i} B_{i}+A_{i} \bar{B}_{i}=A_{i} \oplus B_{i}$
$\operatorname{CARRY}_{i+1}=A_{i} B_{i}$

Half Adder Limitations

Half adder circuits do not suffice for general addition because they do not include the carry bit from the previous stage of addition, e.g.

Carry
A
B
SUM
:---
0
0

Full Adders (1-Bit ALU)

Full adders can use the carry bit from the previous stage of addition

A_{i}	B_{i}	C_{i}	S_{i}	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder Logic Expressions

Sum
SUM $=\bar{A} \bar{B}_{i} \bar{B}_{i}+\bar{A}_{i} B_{i} \bar{C}_{i}+A_{i} \bar{B}_{i} \bar{C}_{i}+A_{i} B_{i} C_{i}$
$=\bar{A}_{i}\left(\overline{\mathrm{~B}}_{i} \mathrm{C}_{i}+\mathrm{B}_{i} \overline{\mathrm{C}}_{i}\right)+\mathrm{A}_{i}\left(\overline{\bar{B}}_{\mathrm{i}} \overline{\mathrm{C}}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{C}_{i}\right)$
$=\bar{A}_{i}\left(B_{i} \oplus C_{i}\right)+A_{i}\left(\overline{B_{i} \oplus C_{i}}\right)$
$=A_{i} \oplus B_{i} \oplus C_{i}$

Carry

$$
\begin{aligned}
C_{i+1} & =A_{i} B_{i}+A_{i} \bar{B}_{i} C_{i}+\bar{A}_{i} B_{i} C_{i} \\
& =A_{i} B_{i}+C_{i}\left(A_{i} \bar{B}_{i}+\bar{A}_{i} B_{i}\right) \\
& =A_{i} B_{i}+C_{i}\left(A_{i} \oplus B_{i}\right)
\end{aligned}
$$

Full Adder Circuit

$S U M=\left(A_{i} \oplus B_{i}\right) \oplus C_{i}$

$$
C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i} \oplus B_{i}\right)
$$

Full adder

Note: A full adder adds 3 bits. Can also consider as first adding first two and then the result with the carry

Enhancement to 1-bit Adder(1)

1-bit ALU with AND, OR, and addition

- Supplemented with AND and OR gates
- A multiplexer controls which gate is connected to the output

Operation	Result
00	AND
01	OR
10	Addition

Operation

Enhancement to 1-bit Adder(2)

1-bit ALU for subtraction

- Subtraction is performed using 2's complement, i.e.

$$
a-b=a+\bar{b}+1
$$

Binvert	Carryln	Operation	Result
0	0	00	AND
0	0	01	OR
0	0	10	Addition
1	1	10	Subtraction

Enhancement to 1-bit Adder(3)

1-bit ALU for NOR operation
A MIPS ALU also needs a NOR function

$$
\overline{(a+b)}=\bar{a} \bullet \bar{b}
$$

Ainvert	Binvert	Carryln	Operation	Result
0	0	0	00	AND
1	1	0	00	NOR
0	0	0	01	OR
0	0	0	10	Addition
1	1	1	10	Subtraction

Enhancement to 1-bit Adder(4)

1-bit ALU for SLT operations
slt \$s1, \$s2, \$s3

- If (\$s2<\$s3), \$s1=1, else \$s1=0
adding one input less
- if (a<b), set less to 1 or if $(a-b)<0$, set less to 1

- If the result of subtraction is negative, set less to 1

How to determine if the result is negative?

Enhancement to 1-bit Adder(5)

How to determine if the result is negative?

- Negative \rightarrow Sign bit value=1
Create a new output "Set" and used only for slt

An overflow detection is included

N-Bit Adders (Ripple Carry)

Ripple Carry Adders

4 FA's cascaded to form a 4-bit adder In general, N FA' s can be used to form a N -bit adder

Carry bits have to propagate from one stage to the next. Inherent propagation delays associated with this
Output of each FA is therefore not stable until the carry-in from the previous stage is calculated

32-Bit ALU

OR and INV gates are added to support conditional branch instruction, i.e. test the result of $a-b$ if the result is 0.

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

