| CSE 2021 Computer Organization

Appendix C Part 2

Basic Arithmetic Logic Unit

-- Adder

Half Adders

- Need to add bits {0,1} of A_i and B_i
- Associate

$$A: A_{j} \dots A_{j+1} A_{j} \dots A_{j}$$

$$B: B_n \dots B_{i+1} B_i \dots B_0$$

This leads to the following truth table

A _i	B _i	Sum _i	Carry _{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$SUM_{i} = \overline{A_{i}}B_{i} + A_{i}\overline{B_{i}} = A_{i} \oplus B_{i}$$

$$CARRY_{i+1} = A_i B_i$$

Half Adder Circuit

$$SUM_{i} = \overline{A_{i}}B_{i} + A_{i}\overline{B_{i}} = A_{i} \oplus B_{i}$$

$$CARRY_{i+1} = A_{i}B_{i}$$

Half Adder Limitations

 Half adder circuits do not suffice for general addition because they do not include the carry bit from the previous stage of addition, e.g.

Full Adders (1-Bit ALU)

 Full adders can use the carry bit from the previous stage of addition

A _i	B_i	C_i	S _i	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder Logic Expressions

Sum

$$\begin{aligned} SUM &= \overline{A}_i \overline{B}_i C_i + \overline{A}_i B_i \overline{C}_i + A_i \overline{B}_i \overline{C}_i + A_i B_i C_i \\ &= \overline{A}_i (\overline{B}_i C_i + B_i \overline{C}_i) + A_i (\overline{B}_i \overline{C}_i + B_i C_i) \\ &= \overline{A}_i (B_i \oplus C_i) + A_i (\overline{B}_i \oplus \overline{C}_i) \\ &= A_i \oplus B_i \oplus C_i \end{aligned}$$

Carry

$$C_{i+1} = A_i B_i + A_i \overline{B}_i C_i + \overline{A}_i B_i C_i$$
$$= A_i B_i + C_i (A_i \overline{B}_i + \overline{A}_i B_i)$$
$$= A_i B_i + C_i (A_i \oplus B_i)$$

Full Adder Circuit

$$SUM = (A_i \oplus B_i) \oplus C_i$$

$$C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$

Note: A full adder adds 3 bits. Can also consider as first adding first two and then the result with the carry

Enhancement to 1-bit Adder(1)

- 1-bit ALU with AND, OR, and addition
 - Supplemented with AND and OR gates
 - A multiplexer controls which gate is connected to the output

Operation	Result
00	AND
01	OR
10	Addition

Enhancement to 1-bit Adder(2)

- 1-bit ALU for subtraction
 - Subtraction is performed using 2's complement, i.e.

$$a - b = a + \overline{b} + 1$$

Binvert	CarryIn	Operation	Result
0	0	00	AND
0	0	01	OR
0	0	10	Addition
1	1	10	Subtraction

Enhancement to 1-bit Adder(3)

- 1-bit ALU for NOR operation
- A MIPS ALU also needs a NOR function

$$\overline{(a+b)} = \overline{a} \cdot \overline{b}$$

Ainvert	Binvert	CarryIn	Operation	Result
0	0	0	00	AND
1	1	0	00	NOR
0	0	0	01	OR
0	0	0	10	Addition
1	1	1	10	Subtraction

Enhancement to 1-bit Adder(4)

- 1-bit ALU for SLT operations
- slt \$s1, \$s2, \$s3
 - If (\$s2<\$s3), \$s1=1, else \$s1=0</p>
- adding one input less
 - if (a<b), set *less* to 1or if (a-b)<0, set *less* to 1
 - If the result of subtraction is negative, set *less* to 1
- How to determine if the result is negative?

Enhancement to 1-bit Adder(5)

- How to determine if the result is negative?
 - Negative → Sign bit value=1
- Create a new output "Set" and used only for slt
- An overflow detection is included

N-Bit Adders (Ripple Carry)

Ripple Carry Adders

- 4 FA's cascaded to form a 4-bit adder
- In general, N FA's can be used to form a N-bit adder
- Carry bits have to propagate from one stage to the next. Inherent propagation delays associated with this
- Output of each FA is therefore not stable until the carry-in from the previous stage is calculated

32-Bit ALU

OR and INV gates are added to support conditional branch instruction, i.e. test the result of a-b if the result is 0.

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

