CSE2021 Computer Organization

Chapter 1

Computer Abstractions and Technology

Instructor: Prof. Peter Lian
Department of Electrical
Engineering & Computer Science
Lassonde School of Engineering
York University

CSE2021 Computer Organization

Instructor: Prof. Peter Lian

email: peterlian@cse.yorku.ca
tel: 416-736-2100 ext 44647

Couse Web:

https://wiki.cse.yorku.ca/course archive/2013-14/F/2021/

- Schedule:
 - Lectures: MW 17:30 1900, Room R S137
 - Labs: Lab-01 M 19:00 22:00, LAS 1006

Lab-02 T 19:00 - 22:00, LAS 1006/1002

Office hours: MW 15:00 – 17:00 @ LAS 1012C

Chapter 1 — Computer Abstractions and Technology — 3

Acknowledgement

 The slides are adapted from Computer Organization and Design, 4th Edition, by David A. Patterson and John L. Hennessy, 2008, published by MK (Elsevier)

Chapter 1 — Computer Abstractions and Technology — 2

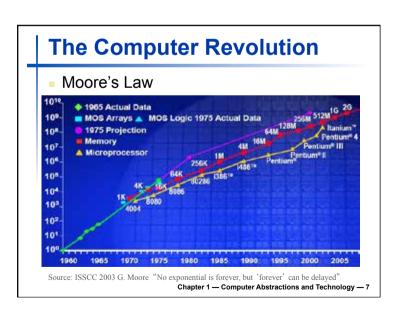
CSE2021 Computer Organization

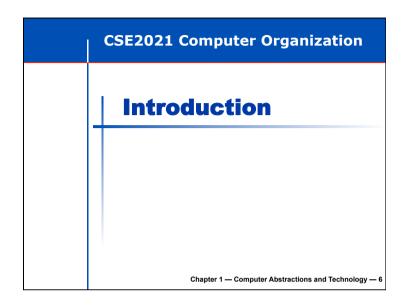
Text book:

Computer Organization and Design

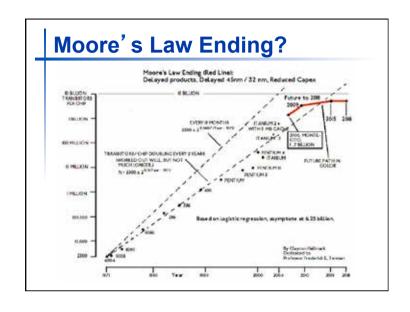
-- The Hardware/Software Interface 4th Edition

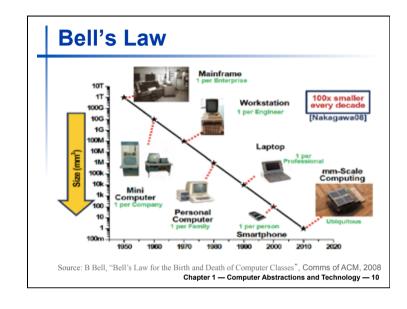
by David A. Patterson and John L. Hennessy Morgan Kaufmann Publishers (Elsevier) ISBN 978-0-12-374750-1

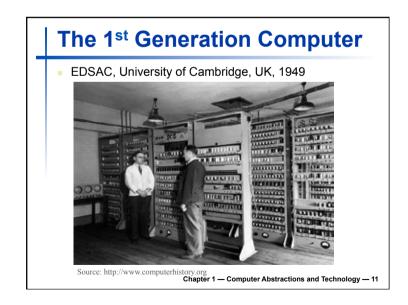

Assessment:

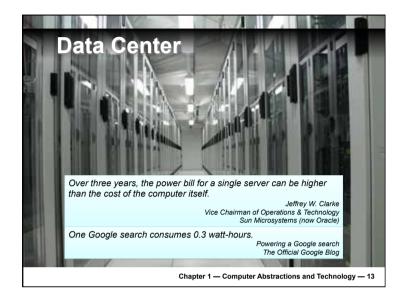

Assignments/Quizzes: 20%

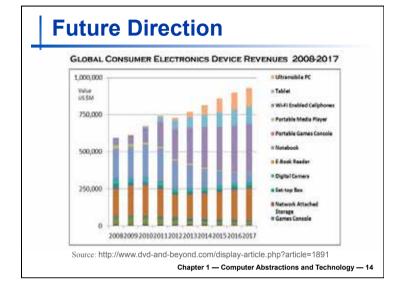
Lab projects: 25%Midterm test: 20%Final exam: 35%




CSE2021 Computer Organization Topics covered: Introduction Computer abstractions and technology Language of the computer: high lever language versus assembly language versus machine language Arithmetic for computers The processor Memory, storage, and input/output Chapter 1 — Computer Abstractions and Technology — 5




	Year of introduction	Transistors
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
386™	1985	275,000
486™ DX	1989	1,180,000
Pentium®	1993	3,100,000
Pentium II	1997	7,500,000
Pentium II	l 1999	24,000,000
Pentium 4	2000	42,000,000



The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive

Chapter 1 — Computer Abstractions and Technology — 15

Classes of Computers

- Desktop computers
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance
- What is parallel processing

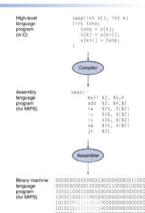
Chapter 1 — Computer Abstractions and Technology — 17

Understanding Performance

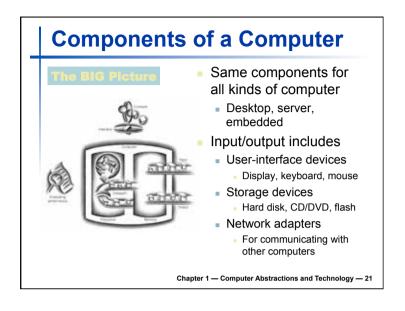
- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

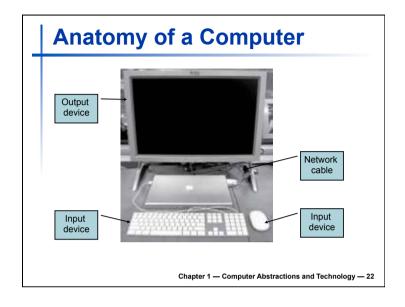
Chapter 1 — Computer Abstractions and Technology — 18

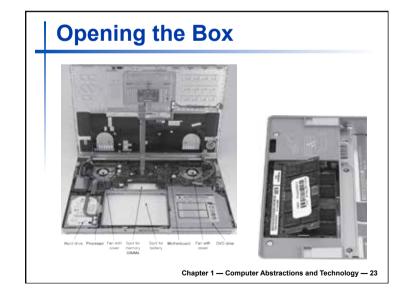
Below Your Program

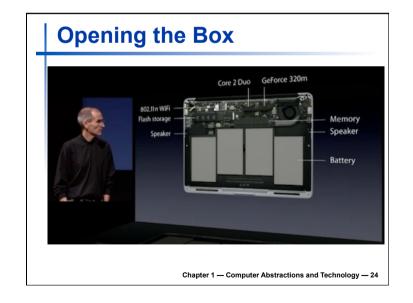


- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

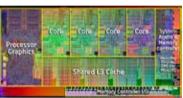

Chapter 1 — Computer Abstractions and Technology — 19

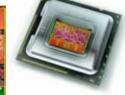

Levels of Program Code


- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data



Morgan Kaufmann Publishers





Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Chapter 1 — Computer Abstractions and Technology — 25

Abstractions

The BIG Picture

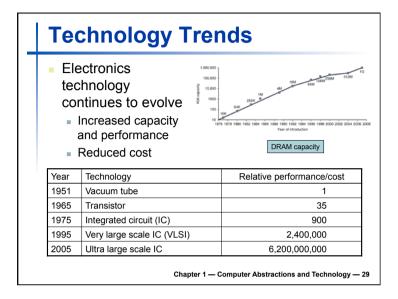
- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface

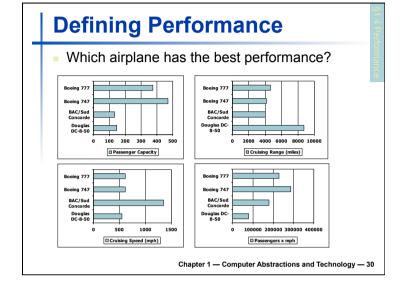
Chapter 1 — Computer Abstractions and Technology — 26

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
- Flash memory
- Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 27


Networks


- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN: the Internet
- Wireless network: WiFi, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 28

Response Time and Throughput

- Response time (execution time)
 - How long it takes to do a task
 - Important to computer users
- Throughput (bandwidth)
 - Total amount of work done per unit time
 - Important to server, data center
- Different performance metrics are needed to benchmark different systems.
- Single application is not sufficient to measure the performance of computers

Chapter 1 — Computer Abstractions and Technology — 31

Response Time vs. Throughput

- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?
- We will focus on response time by now.

Relative Performance

- Define Performance = 1/(Execution Time)
- "X is n time faster than Y"

Performance_x/Performance_y
= Execution time_y / Execution time_x = n

- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A
 = 15s / 10s = 1.5
 - So A is 1.5 times faster than B

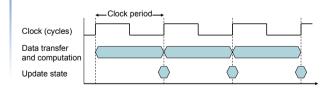
Chapter 1 — Computer Abstractions and Technology — 33

Chapter 1 — Computer Abstractions and Technology — 35

Measuring Execution Time

 Unix command "time" can be used to determine the elapsed time and CPU time

```
Peters-MacBook-Pro: - peterlians help time
time: time (-p) PIPELINE
    Execute PIPELINE and print a summary of the real time, user CPU time,
     and system CPU time spent executing PIPELING when it terminates.
    The return status is the return status of PIPELINE. The '-p' option prints the timing summary in a slightly different format. This was the value of the TIMEROMNAY variable as the output format.
    Print the accumulated user and system times for processes run from
     the shell.
Peters-MacBook-Pro:~ peterlians time is
Zendobi Z
                    Deskton
                                                            Moste
Pendobj712
                   Documents
                                        Library
                                                            Pictures
                   Downloads
7endob1713
         0:0.0035
sys 0=0.002s
Peters-MacBook-Pro:~ peterlians
```


Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 34

CPU Clocking

 Operation of digital hardware governed by a constant-rate clock

- Clock period: duration of a clock cycle
 - \bullet e.g., 250ps = 0.25ns = 250×10⁻¹²s
- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10^9 Hz

CPU Time

CPU Time = CPU Clock Cycles × Clock Cycle Time

= CPU Clock Cycles
Clock Rate

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

Chapter 1 — Computer Abstractions and Technology — 37

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles of A
- How fast must Computer B clock be?

$$\begin{aligned} \text{Clock Rate}_{\text{B}} &= \frac{\text{Clock Cycles}_{\text{B}}}{\text{CPU Time}_{\text{B}}} = \frac{1.2 \times \text{Clock Cycles}_{\text{A}}}{6\text{s}} \\ \text{Clock Cycles}_{\text{A}} &= \text{CPU Time}_{\text{A}} \times \text{Clock Rate}_{\text{A}} \\ &= 10\text{s} \times 2\text{GHz} = 20 \times 10^9 \\ \text{Clock Rate}_{\text{B}} &= \frac{1.2 \times 20 \times 10^9}{6\text{s}} = \frac{24 \times 10^9}{6\text{s}} = 4\text{GHz} \end{aligned}$$

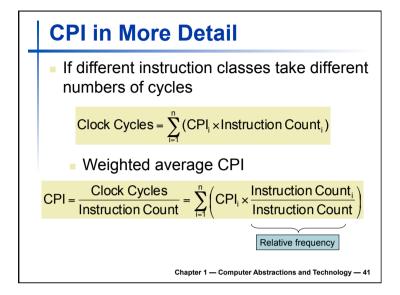
Chapter 1 — Computer Abstractions and Technology — 38

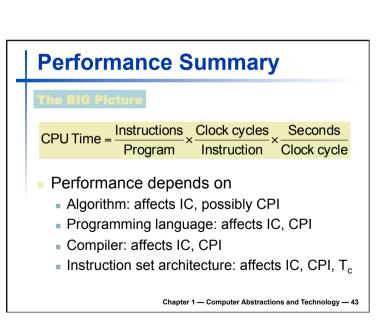
Instruction Performance

Clock Cycles = Instruction Count × Ave Cycles per Instruction CPU Time = Instruction Count × CPI × Clock Cycle Time $= \frac{Instruction Count × CPI}{Clock Rate}$

- Instruction Count: no of instruction for a program
 - Determined by program, Instruction Set Architecture (ISA) and compiler
- Average cycles per instruction (CPI)
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

Chapter 1 — Computer Abstractions and Technology — 39


CPI Example


- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

$$\begin{aligned} \text{CPU Time}_{A} &= \text{Instruction Count} \times \text{CPI}_{A} \times \text{Cycle Time}_{A} \\ &= \text{I} \times 2.0 \times 250 \text{ps} = \text{I} \times 500 \text{ps} & & & & \text{A is faster...} \end{aligned}$$

$$\text{CPU Time}_{B} &= \text{Instruction Count} \times \text{CPI}_{B} \times \text{Cycle Time}_{B} \\ &= \text{I} \times 1.2 \times 500 \text{ps} = \text{I} \times 600 \text{ps} \end{aligned}$$

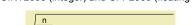
By how much?

CPI Example

Alternative compiled program using instructions in classes A, B, C

Class	Α	В	С
CPI for class	1	2	3
IC in program 1	2	1	2
IC in program 2	4	1	1

- Program 1: IC = 5
- Program 2: IC = 6 Clock Cycles Clock Cycles
 - $= 2 \times 1 + 1 \times 2 + 2 \times 3$
- $= 4 \times 1 + 1 \times 2 + 1 \times 3$ = 9


= 10

- Avg. CPI = 10/5 = 2.0
- Avg. CPI = 9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 42

SPEC CPU Benchmark

- Programs used to measure performance
 - Supposedly typical of actual workload
- Standard Performance Evaluation Corp (SPEC)
 - Develops benchmarks for CPU, I/O, Web, ...
- SPEC CPU2006
 - Elapsed time to execute a selection of programs
 - Negligible I/O, so focuses on CPU performance
 - Normalize relative to reference machine
 - Summarize as geometric mean of performance ratios CINT2006 (integer) and CFP2006 (floating-point)

Execution time ratio

SPEC CPU Benchmark

- Standard Performance Evaluation Corp (SPEC)
 - Develops benchmarks for CPU, I/O, Web, ...
- SPEC CPU2006
 - Elapsed time to execute a selection of programs
 Negligible I/O, so focuses on CPU performance
 - Normalize relative to reference machine
 - Summarize as geometric mean of performance ratios
 - Two benchmark suites: CINT2006 (integer) and CFP2006 (floating-point)

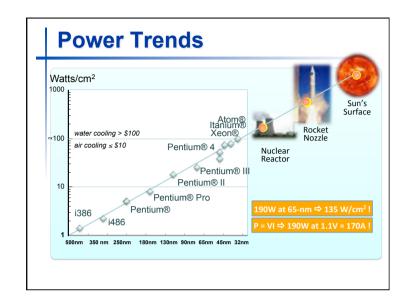
Chapter 1 — Computer Abstractions and Technology — 45

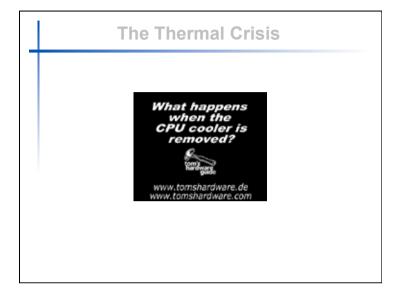
SPEC Power Benchmark

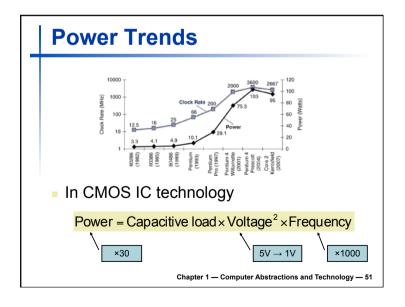
- Power consumption of server at different workload levels
 - Performance: ssj_ops/sec
 - Power: Watts (Joules/sec)

Overall ssj_ops per Watt = $\left(\sum_{i=0}^{10} ssj_ops_i\right) / \left(\sum_{i=0}^{10} power_i\right)$

Chapter 1 — Computer Abstractions and Technology — 47

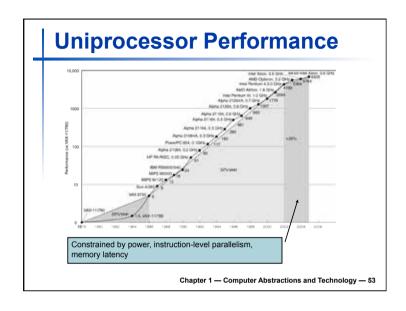

CINT2006 for Opteron X4 2356


Name	Description	IC×10 ⁹	CPI	Tc (ns)	Exec time	Ref time	SPECratio
perl	Interpreted string processing	2,118	0.75	0.40	637	9,777	15.3
bzip2	Block-sorting compression	2,389	0.85	0.40	817	9,650	11.8
gcc	GNU C Compiler	1,050	1.72	0.47	24	8,050	11.1
mcf	Combinatorial optimization	336	10.00	0.40	1,345	9,120	6.8
go	Go game (AI)	1,658	1.09	0.40	721	10,490	14.6
hmmer	Search gene sequence	2,783	0.80	0.40	890	9,330	10.5
sjeng	Chess game (AI)	2,176	0.96	0.48	37	12,100	14.5
libquantum	Quantum computer simulation	1,623	1.61	0.40	1,047	20,720	19.8
h264avc	Video compression	3,102	0.80	0.40	993	22,130	22.3
omnetpp	Discrete event simulation	587	2.94	0.40	690	6,250	9.1
astar	Games/path finding	1,082	1.79	0.40	773	7,020	9.1
xalancbmk	XML parsing	1,058	2.70	0.40	1,143	6,900	6.0
Geometric m	ean						11.7


Chapter 1 — Computer Abstractions and Technology — 46

SPECpower_ssj2008 for X4

Target Load %	Performance (ssj_ops/sec)	Average Power (Watts)
100%	231,867	295
90%	211,282	286
80%	185,803	275
70%	163,427	265
60%	140,160	256
50%	118,324	246
40%	920,35	233
30%	70,500	222
20%	47,126	206
10%	23,066	180
0%	0	141
Overall sum	1,283,590	2,605
Σssj_ops/ Σpower		493



Reducing Power

- Suppose a new CPU has
 - 85% of capacitive load of old CPU
 - 15% voltage and 15% frequency reduction

$$\frac{P_{\text{new}}}{P_{\text{old}}} = \frac{C_{\text{old}} \times 0.85 \times (V_{\text{old}} \times 0.85)^2 \times F_{\text{old}} \times 0.85}{{C_{\text{old}} \times V_{\text{old}}}^2 \times F_{\text{old}}} = 0.85^4 = 0.52$$

- The power wall
 - We can't reduce voltage further
 - We can't remove more heat
- How else can we improve performance?

Pitfall: Amdahl's Law

 Improving an aspect of a computer and expecting a proportional improvement in overall performance

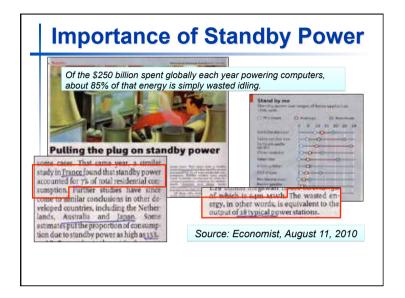
$$T_{improved} = \frac{T_{affected}}{improvement factor} + T_{unaffected}$$

- Example: multiply accounts for 80s/100s
 - How much improvement in multiply performance to get 5× overall?

$$20 = \frac{80}{n} + 20$$
 • Can't be done!

Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 55


Multiprocessors

- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
 - Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 54

Fallacy: Low Power at Idle

- Look back at X4 power benchmark
 - At 100% load: 295W
 - At 50% load: 246W (83%)
 - At 10% load: 180W (61%)
- Google data center
 - Mostly operates at 10% 50% load
 - At 100% load less than 1% of the time
- Consider designing processors to make power proportional to load

Concluding Remarks

- Cost/performance is improving
 - Due to underlying technology development
- Hierarchical layers of abstraction
 - In both hardware and software
- Instruction set architecture
 - The hardware/software interface
- Execution time: the best performance measure
- Power is a limiting factor
 - Use parallelism to improve performance

Chapter 1 — Computer Abstractions and Technology — 59

Pitfall: MIPS as a Performance Metric

- MIPS: Millions of Instructions Per Second
 - Doesn't account for
 - Differences in ISAs between computers
 - Differences in complexity between instructions

$$\begin{aligned} \text{MIPS} &= \frac{\text{Instruction count}}{\text{Execution time} \times 10^6} \\ &= \frac{\text{Instruction count}}{\frac{\text{Instruction count} \times \text{CPI}}{\text{Clock rate}}} \times 10^6} = \frac{\text{Clock rate}}{\text{CPI} \times 10^6} \end{aligned}$$

CPI varies between programs on a given CPU