CSE2021 Computer Organization

Chapter 2

Instructions: Language of the
Computer

Chapter 2 — Instructions: Language of the Computer — 1

Instruction Set

The repertoire of instructions of a
computer

Different computers have different
instruction sets

But with many aspects in common

Early computers had very simple
iInstruction sets

Simplified implementation

Many modern computers also have simple
instruction sets

Chapter 2 — Instructions: Language of the Computer — 2

The MIPS Instruction Set

Used as the example throughout the book

Stanford MIPS commercialized by MIPS
Technologies ()

Large share of embedded core market

Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E(on CD)

Chapter 2 — Instructions: Language of the Computer — 3

MIPS Core Instructions

add add $1,$2,%3 $1=52+%3 3 operands; exception possible

subtract sub $1,%2,%3 $1=3%2-%3 3 operands; exception possible

add immediate addi $1,$2,100 | $1=$2 + 100 + constant; exception possible

add unsigned addu $1,$2,%$3 | $1=%2+%3 3 operands; no exceptions

subtract unsigned |subu $1,$2,$3 | $1=%$2-%3 3 operands; no exceptions

add imm. unsign. |addiu $1,$2,100| $1 = $2 + 100 + constant; no exceptions

Arithmetic | Move fr. copr. reg. | mfcO $1,$epc | $1 = $epc Used to get exception PC

multiply mult $2,$3 Hi, Lo=$2¥$3 B4-bit signed product in Hi, Lo

multiply unsigned | multu $2,%$3 Hi, Lo=$%$2 ¥ $3 64-bit unsigned product in Hi, Lo

divide div $2,%3 Lo=%$2+ $3, Hi = $2 mod $3 | Lo = quotient, Hi = remainder

divide unsigned | divu $2,$3 Lo=%2+ $3, Hi = $2 mod $3 | Unsigned quotient and remainder

Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi

Move from Lo mflo $1 $1=Lo Use to get copy of Lo

and and $1,$2,%$3 $1=%24&%3 3 register operands; logical AND

or or $1,$2,%3 $1=%$21%3 3 register operands; logical OR
Logical and immediate and $1,52,100 | $1=%24& 100 Logical AND register, constant

or immediate or $1,$2,100 $1=%521100 Logical OR register, constant

shift left logical sl $1,$2,10 $1 =52 << 10 Shift left by constant

shift right logical | sd $1,$2,10 $1 =%$2>>10 Shift right by constant

toad word iw $1,100(%$2) | $1 = Memory[$2+100] Data from memory to register
tr"E::?er store word sw $1,100(%$2) | Memory[$2+100] = $1 Data from register to memory

foad upper imm.

fui $1,100

$1=100x2'

Loads constant in upper 16 bits

Chapter 2 — Instructions: Language of the Computer — 4

CSE2021 Computer Organization

Number Systems

Four Important Number Systems

System Why? Remarks
Decimal |Base 10 (10 fingers)|Most used
system
Binary Base 2. On/Off 3 times more
systems digits than
decimal
Octal Base 8.Shorthand |3 times less
notation for working |digits than binary
with binary
Hex Base 16 4 times less
digits than binary

Positional Number Systems

Have a radix r (base) associated with them.
In the decimal system, r=10:
Ten symbols: 0, 1, 2, ..., 8,and 9

More than 9 move to next position, so each
position is power of 10

Nothing special about base 10 (used
because we have 10 fingers)

What does 642.391,, mean?

6x102+4x10"+2x10° . 3x107+9x102+1x10
< A >
Increasingly +ve Radix point Increasingly -ve
powers of radix powers of radix

Positional Number Systems

What does 642.391,, mean?

Radix point
Base 10 102 101 100 ¢ 10-1 10-2 10-3
(r) (100) (10) (1) (0.1) | (0.01) | (0.001)
Coefficient 6 4 2 3 9 1
(a))
Product: a;*r 600 40 2 0.3 0.09 | 0.001
Value =600+40+2+0.3+0.09+0.001 =642.391

Multiply each digit by appropriate power of 10
and add them together

In general: Eaf o

I=—m

Positional Number Systems

Number Radix Symbols
system
Binary 2 {0,1}
Octal 8 {0,1,2,3,4,5,6,7}
Decimal 10 {0,1,2,3,4,5,6,7,8,9}

Hexadecimal 16 {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

Binary Number System

Decimal Binary Decimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Octal Number System

Decimal Octal Decimal Octal
0 8 10

1 1 9 11

2 2 10 12

3 3 11 13

4 4 12 14

5 5 13 15

6 6 14 16

7 7 15 17

Hexadecimal Number System

Decimal Hex Decimal Hex
0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

Four Number Systems

Decimal

~Noah,hWN-0

0000
0001
0010
0011
0100
0101
0110
0111

~N~Nooah~,oWDN-0

~N~Noogah,owWDN-0

Binary Octal Hex Decimal

8

9
10
11
12
13
14
15

Binary Octal
1000 10
1001 11
1010 12
1011 13
1100 14
1101 15
1110 16
1111 17

Hex

TMOO WP ©

Conversion between
number systems

Chapter 2 — Instructions: Language of the Computer — 14

Conversion: Binary to Decimal

Binary ¥ — Decimal
1101.011, — (?7?)4
r 23(8) | 22(4) | 2'(2) | 2°(1) | 2-'(0.5 | 2:2(0.25) | 2-3(0.125
))
a 1 1 0 1 0 1 1
a‘r | 8 4 0 1 0 0.25 | 0.125

(1101.011),=8 +4 + 1 + 0.25 + 0.125 = 13.375

1x22+1x22+0x2"+1x20

Binary point

0x271+1x22+1x23=13.375,,

Conversion: Decimal to Binary

A decimal number can be converted to binary by
repeated division by 2 if it is an integer

number +2 Remainder

155 ,77 1 Least Significant A
»'/ Bit (LSB) Arrange

77 38 1 remainders
38% A9 0 In reverse
19% .9 1 order

0¥, 4 1

4 » 2 0

2¥ /1 0

1¥ 0 1 Most Significant

Bit (MSB) —> 155,,= 10011011,

Conversion: Decimal to Binary

*| If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction

part, each part must be converted differently.

Decimal —— Binary
(27.375)g—> (?7),
number +2

27 13

1347 . 6

6+ -3

34 1

1 0

Arrange remainders in reverse order: 11011

= 27.375,,=11011.011,

Remainder

1
1
0
1

1

A

number X2 Integer
0.375 0,75 0
0.75<1.50 1
0.50«°71.0 0

v
Arrange in order: 011

Conversion: Octal to Binary

Octal —* Binary
345.5602, — > (?7?),

345.560 2

T T L
011100101 101110 000 010

345.5602,=11100101.101110000010,

Conversion: Binary to Octal

Binary — Octal
11001110.0101101, — > (??)q

Note trailing zeros

/

11001110 . 010110100

—) —— —_ —— ——
3 1 6 2 6 4

Group by 3’s I Group by 3’s
Add leading zeros if necessary | |Add trailing zeros if necessary

11001110.0101101, = 316.2644

Conversion: Binary to Hex

Binary — > Hex

11100101101.1111010111,—> (??)4

11100101101

—— \

7 2 D

Note trailing zeros

111101011100
F 5 C

Group by 4’s
Add leading zeros if
necessary

Group by 4’s
Add trailing zeros if
necessary

= 72D.F5C

Conversion: Hex to Binary

Hex —> Binary
BOA4.E6C,, — > (?7),

1011100110100100 . 111001101100

B 9 A 4 E 6 C

1011100110100100.111001101100,

Conversion: Hex to Decimal

Hex — Decimal
B63.4C.,— > (?7)4,
162 161 169 161 162
B (=11) 6 3 4 C (=12)
= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875

11x16° +6x16' +3x16" .4x16™ +12x167 = 2915.296875,,

Binary Numbers

How many distinct numbers can be represented by n bits?

No. of Distinct nos.

bits

1 2 {0,1}

2 4 {00, 01, 10, 11}

3 8 {000, 001, 010, 011, 100, 101, 110, 111}
n 2N

Number of permutations double with every extra
bit
2" unique numbers can be represented by n bits

Number System and Computers

Some tips

Binary numbers often grouped in fours for
easy reading

1 byte=8-bit, 1 word = 4-byte

In computer programs (e.g. Verilog, C) by
default decimal is assumed

To represent other number bases use

System Representation Example for 20
Hexadecimal 0x... 0x14
Binary Ob... 0b10100
Octal 0o... (zero and 0024

‘O,)

Number System and Computers

Addresses often written in Hex
Most compact representation

Easy to understand given their hardware
structure

For a range 0x000 — OxFFF, we can
Immediately see that 12 bits are needed, 4K
locations

Tip: 10 bits = 1K

Signed Binary

Akash Kumar EE2006

Negative numbers representation

Three kinds of representations are common:
Signed Magnitude (SM)
One’s Complement
Two’'s Complement

Signhed Magnitude Representation

[0,1]{............ }
! !
Sign bit (n-1)

(left most) magnitude bits

O indicates +ve
1 Indicates -ve

8 bit representation for +13is 1 0001101

8 bit representation for -13 is 0001101

1" s Complement Notation

Let N be an n-bit number and N(1) be the 1’ s
Complement of the number. Then,

N(1)=21-1-N

The idea Is to leave positive numbers as is, but to

represent negative numbers by the 1°s Complement of
their magnitude.

Example: Let n = 4. What is the 1’ s Complement
representation for +6 and -67
+6 is represented as 0110 (as usual in binary)

-6 is represented by 1's complement of its magnitude (6)

1" s Complement Notation

1" s C representation can be computed in 2 ways:
Method 1: 1's C representation of -6 is:

2%-1-[N|=(16 —1=6);0=(9);0 = (1001),

Method 2. For -6, the magnitude =6 =
(0110),

The 1’s C representation is obtained by
complementing the bits of the magnitude:
(1001),

24-1-N| = (16)1— 1~ IN| = (15);5— [N
= (1111), - [N

2' s Complement Notation

Let N be an n bit number and N(2) be the 2’ s
Complement of the number. Then,

N(2) =27 - N

Again, the idea is to leave positive numbers as is, but to
represent negative numbers by the 2°s C of their
magnitude.

Example: Let n = 5. What is the 2" s C representation for
+11 and -137

+11 is represented as 01011 (as usual in binary)
-13 is represented by 2’s complement of its magnitude (13)

2' s Complement Notation

2" s C representation can be computed in 2 ways:

Method 1: 2’s C representation of -13 is 2°
- IN[=(32-13)4 = (19)40 =

Method 2: For -13, the magnitude = 13 =
(01101),

The 2's C representation is obtained by adding
1 to the 1’s C of the magnitude

25-IN|=(2°-=1—-|N|)+1=1sC +1
01101 —2-10010—L 10011

| Comparing all Signed Notations

0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101

1110
1111

+
o

SLhbbhbdbA~NoarwN

0
1
2
3
4
5
6
7
-8
7
6
5
4
3
2
1

In all 3 representations, a
—ve number has a 1 in
MSB location

To handle —ve numbers
using n bits,
= 21 symbols can be used
for positive numbers
= 2"1 symbols can be used
for negative umbers
In 2’ s C notation, only 1
combination used for O

Instructions

Chapter 2 — Instructions: Language of the Computer — 34

Arithmetic Operations

Add and subtract, three operands
Two sources and one destination

add a, b, ¢ # a gets b + c
All arithmetic operations have this form

Design Principle 1: Simplicity favours
regularity
Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 35

Register Operands (1)

Arithmetic instructions use register operands

MIPS has a 32 x 32-bit register file(32-bit data
called a “word”), numbered from 0 to 31

Use for frequently accessed data

Register Mnemonic Conventional Use Register Mnemonic Conventional Use
Number Name Number Name
$0 Zero Permanently O $24, $25 | $t8, $t9 Temporary
$1 $at Assembler Temporary (reserved) $26, $27 || $kO, $k1 ggnel FEBSTHRG. £
$2,83 || $w0, $w1 || Value returned by asubroutine $28 $gp Global Pointer
$4-37 || $ad-%$a3 || Arguments to asubroutine $29 $sp Stack Pointer
Temporary
$8-$15 | $tO-$t7 (not preserved across a function $30 $fp Frame Pointer
call)
B _ saved registers
$16-323 || $s0-$s7 (preserved across a function call) $31 $ra Return Address

Register Operand (2)

Design Principle 2: Smaller is faster
Example:

Ccode: f=(g+h)-(i+));

MIPS code

agg %I?a gsga %Si $SO SSl $SZ $S3 $S4 SSS SSG $S7
a , VSO, PS) .
sub $t2. $t0, $t1 [$s0-$57 g/ hj]

St0 | St1 | St2 | St3 | St4 | St5 | St6 | St7 | St8 | $t9

s10-$1

Chapter 2 — Instructions: Language of the Computer — 37

Memory Operands (1)

Main memory used for
composite data

Arrays, structures, dynamic data

Memory is byte addressed
Each address identifies an 8-bit

Address DATA 32-b
4*N 10101010

8 10101010

Wbyctje g 01001110
ords are aligned in memory 110...0100

Address must be a multiple of 4
Length of an address is 32-bit

Min value of address = 0
Max value of address = (232-1)

MIPS is Big Endian

Most-significant byte at least
address of a word

Chapter 2 — Instructions: Language of the Computer — 38

Memory Operands (2)

Data is transferred between memory and register
using data transfer instructions: lw and sw

Data loadword 1w $s1,100(5s2) $sl — memory[$s2+100] Memory to Register

transfer storeword =sw $s1,100($32) memory[$s2+100]< $sl Register to memory
$s1 is receiving register

$s2 is base address of memory, 100 is called the offset,
so ($s2+100) is the address of memory location

Chapter 2 — Instructions: Language of the Computer — 39

Memory Operand Example 1

C code:
g =h + A[8];
g in $s1, hin $s2, base address of A in $s3

Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

Tw $t0, 32($s3) # load word
add $s1,/%$s2, |%$t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 40

Memory Operand Example 2

C code:
A[12] = h + A[8];
hin $s2, base address of A in $s3

Compiled MIPS code:
Index 8 requires offset of 32

Tw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 41

Registers vs. Memory

Registers are faster to access than
memory

Operating on memory data requires loads
and stores
More instructions to be executed

Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 42

Immediate Operands

Constant data specified in an instruction
addi $s3, $s3, 4
No subtract immediate instruction

Just use a negative constant
addi $s2, $s1, -1

Design Principle 3: Make the common
case fast

Small constants are common
Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 43

The Constant Zero

MIPS register 0 ($zero) is the constant 0
Cannot be overwritten

Useful for common operations

E.g., move between registers
add $t2, $sl, $zero

Chapter 2 — Instructions: Language of the Computer — 44

Sign Extension

Representing a number using more bits
Preserve the numeric value

In MIPS instruction set

addi: extend immediate value
1b, Th: extend loaded byte/halfword
beq, bne: extend the displacement

Replicate the sign bit to the left
c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit
+2: 0000 0010 => 000 0010
-2: 1111 1110 => 111 1110

Chapter 2 — Instructions: Language of the Computer — 45

Presenting MIPS
Instructions in
Binary

Chapter 2 — Instructions: Language of the Computer — 46

Representing Instructions

Instructions are encoded in binary
Called machine code

MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 arereg’' s 8 — 15
$t8 — $t9 are reg’ s 24 — 25
$s0 — $s7 arereg’ s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 47

MIPS R-format Instructions

op rs rt rd shamt funct
6 bits S bits 5 bits 5 bits S bits 6 bits

Instruction fields
op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)
funct: function code (extends opcode)

Chapter 2 — Instructions: Language of the Computer — 48

R-format Example

op rs rt rd shamt funct
6 bits S bits 5 bits 5 bits S bits 6 bits
add $t0, $s1, $s2
special $s1 $s2 $t0 0 add
0 17 18 8 0 32
000000 | 10001 [10010 | 01000 | 00000 | 100000

Chapter 2 — Instructions: Language of the Computer — 49

00000010001100100100000000100000, = 023240204

MIPS I-format Instructions

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Immediate arithmetic and load/store instructions

rt: destination or source register number
Constant: —21° to +21° — 1
Address: offset added to base address in rs

Example: Load array A[8] to register $t0, base
address of A in $s3

w $t0, 32($s3)

op rs rt Constant or address

35 9 20 32

100011 01001 10100 0000,0000,0010,0000

Chapter 2 — Instructions: Language of the Computer — 50

MIPS I-format Instructions

Design Principle 4: Good design demands good
compromises

Different formats complicate decoding, but allow 32-bit
instructions uniformly

Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 51

Stored Program Computers

Instructions represented in
binary, just like data

 Memory Instructions and data stored
Aecomimsporn | in memory
(Edthpgdm) Programs can operate on
ootioiacieted| PrOgrams

Processor| || (machne code) | e.g., compilers, linkers, ...
- eywss || Binary compatibility allows
:“—'—'—'—'—'—'—‘—'—‘—‘—‘—‘—:: compiled programs to work
™ | on different computers
| Soucecodenc | Standardized ISAs

Chapter 2 — Instructions: Language of the Computer — 52

Logical Operations

Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << S11

Shift right >> >>> sri
Bitwise AND & & and, andi
Bitwise OR | | or, ori
Bitwise NOT ~ ~ nor

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 53

Shift Operations

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

shamt: how many positions to shift

Shift left logical
Shift left and fill with O bits
s 11 by i bits multiplies by 2/
Shift right logical
Shift right and fill with O bits
sr1 by i bits divides by 2/ (unsigned only)

Chapter 2 — Instructions: Language of the Computer — 54

AND Operations

Useful to mask bits in a word
Select some bits, clear others to 0

and $t0, $tl1, $t2

$t2 | 0000 0000 0000 0000 0000 1101 1100 0000

$t1 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 0000 0000 0000 0000 0000 1100 0000 0000

Chapter 2 — Instructions: Language of the Computer — 55

OR Operations

Useful to include bits in a word
Set some bits to 1, leave others unchanged

or $t0, $tl1, $t2

$t2 | 0000 0000 0000 0000 0000 1101 1100 0000

$t1 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 0000 0000 0000 0000 0011 1101 1100 0000

Chapter 2 — Instructions: Language of the Computer — 56

NOT Operations

Useful to invert bits in a word
Change Oto1,and 110 0

MIPS has NOR 3-operand instruction
aNORO==NOT (aORO0)=NO0OT a

Example:
a=0000 0000 0000 0000 0000 0000 1100 1010
a 1s placed in $tl1 - Register 0: always
nor $t0, $tl1l, $zero
$t1 | 0000 0000 0000 0000 0000 0000 1100 1010
$t0 1111 1111 1111 1111 1111 1111 0011 0101

Chapter 2 — Instructions: Language of the Computer — 57

Conditional Operations

Branch to a labeled instruction if a
condition Is true

Otherwise, continue sequentially
beq rs, rt, L1
if (rs == rt) branch to instruction labeled L1;

bne rs, rt, L1
If (rs !=rt) branch to instruction labeled L1;

i L1

unconditional jump to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 58

Example: If Statements

C code: L
1f (1==3) T = g+h; L
else ¥ = g-h; o o
f, g,h,i,j in $s0 ~ $s4 -
Compiled MIPS code: |

bne $s3, $s4, Else
add $s0, $s1, $s2
J EX1t
Else: sub $s0, $s1, $s2
Ex1t: ..

Chapter 2 — Instructions: Language of the Computer — 59

Example: Loop Statements

C code:
while (save[i] == k) 1 += 1;

i in $s3, k in $s5, address of save in $s6
Compiled MIPS code:

Loop: sl11 $t1,%$s3,2 # 1X4 get offset
add $t1,%$tl,$s6 #get address
Tw $t0 O($t1) #$t0=save[1i]
bne $t0, $s5, Exit
addi $s3, $s3, 1
] Loop
ExX1t: ..

Chapter 2 — Instructions: Language of the Computer — 60

Branch Instruction Design

Why not b1t, bge, etc?
Hardware for <, 2, ... slower than =, #

Combining with branch involves more work
per instruction, requiring a slower clock

All instructions penalized!
beq and bne are the common case
This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 61

Acknowledgement

The slides are adapted from Computer
Organization and Design, 4t Edition, by
David A. Patterson and John L. Hennessy,
2008, published by MK (Elsevier)

Chapter 1 — Computer Abstractions and Technology — 62

