15 September 2013

| CSE2021 Computer Organization | Instruction Set

‘ The repertoire of instructions of a

computer
| Chapter 2 Different computers have different
instruction sets
Instructions: Language of the But with many aspects in common
Computer Early computers had very simple

instruction sets
Simplified implementation

Many modern computers also have simple
instruction sets

Chapter 2 — Instructi L of the C —1 Chapter 2 — Instructions: Language of the Computer — 1

| The MIPS Instruction Set | MIPS Core Instructions
Sluils ERCE DN
‘ Used as the example throughout the book ‘ et e T
R o imned ot ool 53, 52.000 | §1 =53 + 200 + GO Rk LRODOON. PIaLB
Stanford MIPS commercialized by MIPS el [woitiiand [Bi-tasH gty s ocatora
TeChnOIOgieS () e e |l S04 | S1 w50 Aoperandn; Ao AT
mdd i e, | mocie 3152100 31 = 57 + 100 + DLFELES Vi) BLOESLE
Aeteratc | Wow b oceomp | mic 18 | 1= fex |t et momenre
Large share of embedded core market urigty Tatizsd |W.l=s2v i Bkt signed prochat i s __
X .) . iy wsige | Muld 82,43 H, La=E20 §3 B4R uasipnad procuct in H, Lo
Applications in consumer electronics, network/storage | o 523 L= §2 2 83, W o 4200 §3 | Lo = quertnt, Wi = remainder
equipment, cameras, printers, ... e [oA e e
. L s 1] [k o8 Bi=Ls e of
Typical of many modern ISAs md ard$18247 | 81-82003 a@uﬁ‘muﬁbmm
o or 88 35 i= i I at et
See MIPS Reference Data tear-out card, and T = ;':_lf:m :..::..?m T,ﬂ"mm.@.mmm
Appendixes B and E(on CD) N e~ e e Shimo
I enfirglagios | e §152.10 ll-!it_ﬁ‘b-il] HI‘:M ol
b hemc word e 5120083 § 1 = Rlarory |33 2000 Da'a froen sy 00 P
pnater o el 'Phlrl-l.l?:ull_ill_ l-l!rr\-tll:u'_ __E?Iw:-:: [FIeT) Pl) ey
ool unoey levs. | le 40 108 ll.- i ed™ Leawti SenLae? |3 wipir 18 5%
Chapter 2 — Instructions: Language of the Computer — 1 Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 1

15 September 2013

| CSE2021 Computer Organization | Four Important Number Systems
| System Why? Remarks
Decimal |Base 10 (10 fingers)|Most used
| Number Systems system
Binary Base 2. On/Off 3 times more
{ systems digits than
decimal
Octal Base 8.Shorthand |3 times less
notation for working |digits than binary
with binary
Hex Base 16 4 times less
digits than binary
Chapter 2 — Instructions: Language of the Computer — 1

| Positional Number Systems | Positional Number Systems
| Have a radix r (base) associated with them. | What does 642.391,, mean?
In the decimal system, r=10: Radix point
Ten symbols: 0, 1, 2, ..., 8,and 9 Base 10 102 1 10" | 100 | 100 | 102 | 10°
More than 9 move to next position, so each (n (100) | (10) | (1) | (0.1) | (0.01) | (0.001)
position is power of 10 Coegiient 6 4 2 3 9 1
Nothing special about base 10 (used Produ(:t: 2 | 600 20 2 03 | 0.09 | 0.001
because we have 10 fingers) Value =600 + 40 + 2 + 0.3 + 0.09 + 0.001 = 642.391
2
What does 642.391,, mean’ Multiply each digit by appropriate power of 10
6x102+4x10"+2x10° . 3x10"+9x102+1x103 and add them together
1) > . " A
Increasingly +ve Radix point Increasingly -ve In general: E a;x r'
powers of radix powers of radix i=m
Chapter 2 — Instructions: Language of the Computer — 1 Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 2

| Positional Number Systems

15 September 2013

| Binary Number System

| Decimal Binary Decimal Binary

Number Radix Symbols
system
Binary 2 {0,1}
Octal 8 {0,1,2,3,4,5,6,7}
Decimal 10 {0,1,2,3,4,5,6,7,8,9}
Hexadecimal 16 {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,

Chapter 2 — Instructions: Language of the Computer — 1

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 1" 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Chapter 2 — Instructions: Language of the Computer — 1

| Octal Number System

| Decimal Octal Decimal Octal

0 0 8 10
1 1 9 1"
2 2 10 12
3 3 1" 13
4 4 12 14
5 5 13 15
6 6 14 16
7 7 15 17

Chapter 2 — Instructions: Language of the Computer — 1

| Hexadecimal Number System

Chapter 2 — Instructions: Language of the Computer

| Decimal Hex Decimal Hex

0 0 8 8
1 1 9 9
2 2 10 A
3 3 1" B
4 4 12 Cc
5 5 13 D
6 6 14 E
7 7 15 F

Chapter 2 — Instructions: Language of the Computer — 1

15 September 2013

| Four Number Systems
| Decimal Binary Octal Hex Decimal Binary Octal Hex
0 0000 0 0 8 1000 10 8
1 0001 1 1 9 1001 1" 9 l
2 0010 2 2 10 1010 12 A
3 0011 3 3 11 1011 13 B l]
4 0100 4 4 12 1100 14 C Conversion between
5 0101 5 5 13 1101 15 D
6 0110 6 6 14 1110 16 E number sy5tems
7 0111 7 7 15 1111 17 F
Chapter 2 — Instructions: Language of the Computer — 1 Chapter 2 — Instructi L of the C —1
| Conversion: Binary to Decimal | Conversion: Decimal to Binary
| Binary —— Decimal | A decimal number can be converted to binary by
1101.011, (7?)10 repeated division by 2 if it is an integer
23(8) | 22(4) | 2'(2) | 2°(1) | 27(0.5 | 2:%(0.25) | 23(0.125 e ———
r ® “ @ M () ’ (025) ()' 155 77 1 Least Significant 4
:’/ Bit (LSB) Arrange
a 1 1 0 1 0 1 1 77 //38 1 remainders
38 A9 0 in reverse
aj'r 8 4 0 1 0 0.25 0.125 19 .9 1 order
0¥, 4 1
(1101.011),= 8 + 4 + 1 + 0.25 + 0.125 = 13.375 4% 2 (i}
2¥ .1 0
1x23+1x22+0x21+1x2°T. 0x2"+1x22+1x23%=13.375,, 1,’ 0 1 Most Significant

. . Bit (MSB) ~ —> 155,,= 10011011,
Binary point

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 4

| Conversion: Decimal to Binary

If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction
part, each part must be converted differently.

Decimal — Binary
(27.375),—> (?7?),

number +2 Remainder number X2 Integer
27 A3 1 0.375 075 0
13« .6 1 0.75<"1.50 1
6~ -3 0 0.50«"71.0 0
34 1 1
1 o 0 1 Arrange in order: 011

Arrange remainders in reverse order: 11011
= 27.375,,=11011.011,

Chapter 2 — Instructions: Language of the Computer — 1

15 September 2013

| Conversion: Octal to Binary

| Octal — Binary
345.5602,— (?7),

345.560 2

L T I
011100 101 101110 000 010

345.56024=11100101.101110000010,

Chapter 2 — Instructions: Language of the Computer — 1

Conversion: Binary to Octal

| Binary —— Qctal

11001110.0101101, — (??)g Note trailing zeros

11001110 . 010110100

| Conversion: Binary to Hex

= — —— ——
3 1 6 ‘ 2 6 4
Group by 3's Group by 3’s

Add leading zeros if necessary| |Add trailing zeros if necessary

11001110.0101101, = 316.264,

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

| Binary — Hex
11100101101.1111010111,—> (??)46
Note trailing zeros

/

11100101101 . 111101011100
e

—_— i ——
7 2 D F 5 C

Group by 4’s |’ | Group by 4’s
Add leading zeros if| | Add trailing zeros if
necessary| |necessary

= 72D.F5Cq

Chapter 2 — Instructions: Language of the Computer — 1

15 September 2013

| Conversion: Hex to Binary

| Hex — Binary
BO9A4.E6C,, — (?77),

1011100110100100 . 111001101100
55 a % | F % ¢

1011100110100100.111001101100,

Chapter 2 — Instructions: Language of the Computer — 1

| Conversion: Hex to Decimal

| Hex — Decimal
B63.4C.s— (??)10
162 16" 160 161 162
B (=11) 6 3 4 C (=12)
=2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875

11x16% +6x16' +3x16° . 4x16™ +12x167 = 2915.296875,,

Chapter 2 — Instructions: Language of the Computer — 1

| Binary Numbers

| How many distinct numbers can be represented by n bits?

No. of Distinct nos.

bits

1 2{0,1}

2 4 {00, 01, 10, 11}

3 8 {000, 001, 010, 011, 100, 101, 110, 111}
n 2n

Number of permutations double with every extra
bit
2" unique numbers can be represented by n bits

Chapter 2 — Instructions: Language of the Computer — 1

| Number System and Computers

| Some tips

Binary numbers often grouped in fours for
easy reading

1 byte=8-bit, 1 word = 4-byte

In computer programs (e.g. Verilog, C) by
default decimal is assumed

To represent other number bases use

System Representation = Example for 20
Hexadecimal Ox... 0x14
Binary Ob... 0b10100
Octal 0o... (zero and 0024
‘0')

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

| Number System and Computers

| Addresses often written in Hex
Most compact representation

Easy to understand given their hardware
structure

For a range 0x000 — OxFFF, we can
immediately see that 12 bits are needed, 4K
locations

Tip: 10 bits = 1K

Chapter 2 — Instructions: Language of the Computer — 1

| Negative numbers representation

| Three kinds of representations are common:
Signed Magnitude (SM)
One’s Complement
Two’s Complement

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

15 September 2013

|
l Signed Binary

Chapter 2 — Instructions:
Language of the Computer — 1

| Signed Magnitude Representation

[(015 K P }
! f
Sign bit (n-1)

(left most) magnitude bits

0 indicates +ve
1 indicates -ve

8 bit representation for +13 is 0 0001101

8 bit representation for -13 is 0001101

Chapter 2 — Instructions: Language of the Computer — 1

| 1’ s Complement Notation

| Let N be an n-bit number and N(1) be the 1’ s
Complement of the number. Then,

N(1)=27-1-N

The idea is to leave positive numbers as is, but to
represent negative numbers by the 1’s Complement of
their magnitude.

Example: Let n = 4. What is the 1’ s Complement
representation for +6 and -67?

+6 is represented as 0110 (as usual in binary)
-6 is represented by 1’s complement of its magnitude (6)

Chapter 2 — Instructions: Language of the Computer — 1

15 September 2013

| 1’ s Complement Notation

| 1’ s C representation can be computed in 2 ways:
Method 1: 1’s C representation of -6 is:
2¢-1-|N| = (16— 1-6)15 = (9);0 = (1001),

Method 2: For -6, the magnitude = 6 =
(0110),

The 1’s C representation is obtained by
complementing the bits of the magnitude:

(1001),
29-1-N| = (16)19— 1= [N| = (15)30— [N
= (1111), — |N|

Chapter 2 — Instructions: Language of the Computer — 1

| 2’ s Complement Notation

| Let N be an n bit number and N(2) be the 2’ s
Complement of the number. Then,

N@2)=27-N

Again, the idea is to leave positive numbers as is, but to
represent negative numbers by the 2’s C of their
magnitude.

Example: Let n = 5. What is the 2’ s C representation for
+11 and -13?

+11 is represented as 01011 (as usual in binary)
-13 is represented by 2’s complement of its magnitude (13)

Chapter 2 — Instructions: Language of the Computer — 1

| 2’ s Complement Notation

Chapter 2 — Instructions: Language of the Computer

| 2’ s C representation can be computed in 2 ways:

Method 1: 2's C representation of -13 is 2°
-IN| = (382 =13)10 = (19)40 =

Method 2: For -13, the magnitude = 13 =
(01101),

The 2’s C representation is obtained by adding
1 to the 1’s C of the magnitude

25-IN|=(25—1—-IN)+1=1sC +1
01101 —=<-10010—“L 10011

Chapter 2 — Instructions: Language of the Computer — 1

15 September 2013

Comparing all Signed Notations

In all 3 representations, a
0000 +0 +0 0 .
S Ta T % 7 —ve number has a 1in -
G0 I 2 2 MSB location | Instructions
0011 3 3 3 To hand b
TR 7 0 handle —ve numbers
0101 5 5 5 using n bits,
gm 3 3 3 = 2" symbols can be used
1000 0 7 8 for positive numbers
1000 1 6 -7 = 27" symbols can be used
1010 -2 5 -6 for negative umbers
1011 3 4 -5 , .
100 -4 -3 4 In 2" s C notation, only 1
o1 5 -2 -3 combination used for 0
110 6 A -2
1M 7 -0 -

Chapter 2 — Instructions: Language of the Computer — 1 Chapter 2 — Instructi L of the C —1

| Arithmetic Operations | Register Operands (1)

| Add and subtract, three operands | Arithmetic instructions use register operands

Two sources and one destination MIPS has a 32 x 32-bit register file(32-bit data
called a “word”), numbered from 0 to 31
add a ’ b y C # a gets b + c Use for frequently accessed data

All arithmetic operations have this form N ——— T (s
. Namber Name lee Namber |~ Name. || Convvational Use
Design Principle 1: Simplicity favours - s eoesseory e 180,65 [Teomorey
reQUIarity st S Assembler Temporiey (repirved) $26. 527 || $10. 3k ”Tn‘l frimenved e
Regularity makes implementation simpler $2.53 D05V | Valusretunsd by asbecctine || $28 Sgp Glckal Poirer
Simplicity enables higher performance at -7 [$0-52 | Angum 2 % Stack Pointer
IoWer cost $2-515 [80-57 Tr:v'n;::romx acroe a function $30 $p Frame Pointer
call)
$16-823 | $50-3¢ 21 e Fetan Address

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 9

| Register Operand (2)

| Design Principle 2: Smaller is faster
Example:
Ccode: f=(g+h)-(i+j);
MIPS code

add $t0, $s1, $s2

[$50 ' $s1 $s2|$s3 $sa $s5

$56 | $s7

add $t1, $s3, $s4 I
sub $t2, $t0, $t1

$s0 - $s7 g h i I j

S0 - $t7 | g+h | i+j | final

|$t0 St1 | $t2 | St3 | Sta | StS5 | St6 | 57 | St8 $t9|

Chapter 2 — Instructions: Language of the Computer — 1

| Memory Operands (2)

Data loadword 1w $=1,100(522) 52l « me

transfer storeword v Sol,1

$s1 is receiving register

using data transfer instructions: Iw and sw

Memory to Register

| Data is transferred between memory and register

Register to memory

$s2 is base address of memory, 100 is called the offset,
so ($s2+100) is the address of memory location

Chapter 2 — Instructions: Language of the Computer — 1

15 September 2013

| Memory Operands (1)

Main memory used for

Composite data Address DATA 32-b

Arrays, structures, dynamic data oN 10701010
Memory is byte addressed

Each address identifies an 8-bit 8 10101010
Wbyctje oned 4 01001110

oras are alignead in memory 0 110...0100

Address must be a multiple of 4
Length of an address is 32-bit

Min value of address = 0
Max value of address = (232-1)

MIPS is Big Endian

Most-significant byte at least
address of a wor

Chapter 2 — Instructions: Language of the Computer — 1

| Memory Operand Example 1

C code:
g =nh+ A[8];

gin $s1, hiin $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

Tw $t0, 32($s3) # load word
add $s1,/$s2, |$t0

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

10

15 September 2013

| Memory Operand Example 2

| C code:
A[12] = h + A[8];
h in $s2, base address of A in $s3
Compiled MIPS code:
Index 8 requires offset of 32

Tw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 1

| Registers vs. Memory

| Registers are faster to access than
memory
Operating on memory data requires loads
and stores
More instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 1

| Inmediate Operands

| Constant data specified in an instruction
addi $s3, $s3, 4
No subtract immediate instruction

Just use a negative constant
addi $s2, $s1, -1

Design Principle 3: Make the common
case fast

Small constants are common

Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 1

| The Constant Zero

| MIPS register 0 ($zero) is the constant 0
Cannot be overwritten
Useful for common operations
E.g., move between registers
add $t2, $sl1, $zero

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

11

| Sign Extension

| Representing a number using more bits
Preserve the numeric value
In MIPS instruction set
add1i: extend immediate value
Tb, Th: extend loaded byte/halfword
beq, bne: extend the displacement
Replicate the sign bit to the left
c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit
+2: 0000 0010 => 000 0010
-2: 1111 1110 => 111 1110

Chapter 2 — Instructions: Language of the Computer — 1

| Representing Instructions

| Instructions are encoded in binary
Called machine code
MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 arereg’s 8 - 15
$t8 — $t9 are reg’s 24 — 25
$s0 —$s7 arereg’s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

15 September 2013

l Presenting MIPS
Instructions in
Binary

Chapter 2 — Instructi L of the C —1

| MIPS R-format Instructions

| | op | rs | rt | rd |shamt| funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction fields
op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)
funct: function code (extends opcode)

Chapter 2 — Instructions: Language of the Computer — 1

12

15 September 2013

| R-format Example

| | op | rs | rt | rd | shamt | funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2

|special| $s1 | $s2 | $t0 | 0 | add |

[o [17] 18] 8 [o | 32 |

| 000000 | 10001 | 10010 | 01000 | 00000 | 100000 |

00000010001100100100000000100000, = 023240204

Chapter 2 — Instructions: Language of the Computer — 1

| MIPS I-format Instructions

| | op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

Immediate arithmetic and load/store instructions
rt: destination or source register number
Constant: =215 to +215 — 1
Address: offset added to base address inrs

Example: Load array A[8] to register $t0, base
address of A in $s3

Iw $t0, 32($s3)
op rs rt Constant or address
35 9 20 32

100011 01001 10100 0000,0000,0010,0000

Chapter 2 — Instructions: Language of the Computer — 1

| MIPS I-format Instructions

| Design Principle 4: Good design demands good
compromises

Different formats complicate decoding, but allow 32-bit
instructions uniformly

Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 1

| Stored Program Computers

| Instructions represented in
binary, just like data
Instructions and data stored
in memory
Programs can operate on
programs
e.g., compilers, linkers, ...
Binary compatibility allows
compiled programs to work
on different computers
Standardized ISAs

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

13

| Logical Operations

| Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sT1

Shift right >> >>> srl
Bitwise AND & & and, andi
Bitwise OR | [or, ori
Bitwise NOT ~ ~ nor

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 1

15 September 2013

| Shift Operations

| op | rs | rt | rd |shamt| funct |
6 bits 5 bits 5 bits 5 bits

5 bits 6 bits
shamt: how many positions to shift
Shift left logical

Shift left and fill with 0 bits
s11 by i bits multiplies by 2/
Shift right logical
Shift right and fill with 0 bits
sr1 by i bits divides by 2/ (unsigned only)

Chapter 2 — Instructions: Language of the Computer — 1

| AND Operations

| Useful to mask bits in a word
Select some bits, clear others to 0

and $t0, $t1, $t2

$t2 ‘ 0000 0000 0000 0000 0000 1101 1100 0000 ‘

$t1 ‘ 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$to ‘ 0000 0000 0000 0000 0000 1100 0000 0000 ‘

| OR Operations

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

Useful to include bits in a word
Set some bits to 1, leave others unchanged
or $t0, $tl1, $t2

$t2 ‘ 0000 0000 0000 0000 0000 1101 1100 0000 ‘

$t1 ‘ 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$to ‘ 0000 0000 0000 0000 0011 1101 1100 0000 ‘

Chapter 2 — Instructions: Language of the Computer — 1

14

| NOT Operations

| Useful to invert bits in a word
ChangeOto1,and 1t0 0
MIPS has NOR 3-operand instruction
aNORO==NOT (aOR0)=NOTa
Example:
a=0000 0000 0000 0000 0000 0000 1100 1010

15 September 2013

| Conditional Operations

a is placed in $tl — |Register0:always

read as zero
nor $t0, $tl, $zero
$t1 ‘ 0000 0000 0000 0000 0000 0000 1100 1010 ‘

$t0 ‘1111 1111 1111 1111 1111 1111 0011 0101 ‘

Chapter 2 — Instructions: Language of the Computer — 1

| Branch to a labeled instruction if a
condition is true

Otherwise, continue sequentially
beq rs, rt, L1

if (rs == rt) branch to instruction labeled L1;
bne rs, rt, L1

if (rs = rt) branch to instruction labeled L1;
j oLl

unconditional jump to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 1

| Example: If Statements

| C code:

if (i==j) f = g+h; @
else f = g-h; e

f, g,h,i,j in $s0 ~ $s4
Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j EXit
Else: sub $s0, $sl1l, $s2
Exit: ..

Chapter 2 — Instructions: Language of the Computer — 1

| Example: Loop Statements

Chapter 2 — Instructions: Language of the Computer

| C code:
while (savel[i] == k) i += 1;

iin $s3, k in $s5, address of save in $s6
Compiled MIPS code:

Loop: s11 $t1,%$s3,2 # ix4 get offset
add $tl1,$tl,$s6 #get address
Tw $t0, 0($tl) #$tO=saveli]
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop
Exit: ..

Chapter 2 — Instructions: Language of the Computer — 1

15

15 September 2013

| Branch Instruction Design | Acknowledgement

| Why not b1t, bge, etc? |
Hardware for <, 2, ... slower than =, #

The slides are adapted from Computer
Organization and Design, 4t Edition, by
Combining with branch involves more work David A. Patterson and John L. Hennessy,
per instruction, requiring a slower clock 2008, published by MK (Elsevier)
All instructions penalized!
beq and bne are the common case

This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 16

