CSE2021 Computer Organization

Chapter 2: Part 2

Supporting Procedures

Chapter 2 — Instructions: Language of the Computer — 1

Procedure Calling

Procedure (function) performs a specific
task and return results to caller.

Calling
Program

Procedure

Input Parameters
— —
$a0 - $a3
< P —

Output Parameters
$v0 - $v1

Chapter 2 — Instructions: Language of the Computer — 2

Procedure Calling

Calling program
place parameters in registers $a0 - $a3
Transfer control to procedure

Called procedure

Acquire storage for procedure, save values of
required register in a stack $sp

Perform procedure’ s operations, restore the values of
registers that it used

Place result in register for caller $v0 - $v1

Return to place of call by returning to instruction
whose address is saved in $ra

Chapter 2 — Instructions: Language of the Computer — 3

Register Usage

$a0 — $a3: arguments (reg’s 4 — 7)
$v0, $v1: result values (reg’ s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 4

Stack

High address
$sp ——» $sp
Contents of register $t1
Contents of register $t0
Ssp »| Contents of register $s0
Low address
a. b. C.

First-in-last-out queue
Placing date onto the stack: push
Removing data from the stack: pop

Stack “grow” from higher addresses to lower addresses
Push values onto the stack by subtracting from the stack pointer
Pop values from the stack by adding to the stack pointer

Chapter 2 — Instructions: Language of the Computer — 5

Procedure Call Instructions

Procedure call: jump and link

jal ProcedureLabel
Jumps to target address
Address of following instruction put in $ra
$ra is called the return address

Procedure return: jump register
jr $ra
Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 6

Leaf Procedure Example

Procedures that do not call others are
called leaf procedure.

C code:
int leaf_example (int g, h, 1, J)
{ 1nt T;
f=0@+h -0+ 73);
return T;
¥
Arguments g, h, i, j in $a0, $a1, $a2, $a3
fin $s0 (hence, need to save $s0 on stack)

Result in $v0

Chapter 2 — Instructions: Language of the Computer — 7

Leaf Procedure Example

MIPS code for procedure:

leaf_example:
addi $sp, $sp, -4
SW $SO, O($Sp) Save $s0 on stack
add $t0, $a0, $al
add $tl1l, %$a2, $a3 Procedure body
sub $s0, $t0, $tl
add $vO0, $s0, $zero | Resut
Tw $s0, 0($sp)
addi $sp, $sp, 4
j I $ra Return

Restore $s0

Chapter 2 — Instructions: Language of the Computer — 8

Leaf Procedure Example

MIPS code for calling function:

main:

jal leaf_example

Chapter 2 — Instructions: Language of the Computer — 9

Non-Leaf Procedures

Procedures that call other procedures

For nested call, caller needs to save on the
stack:
Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 10

Non-Leaf Procedure Example

C code:

int fact (int n)

{
1f (n < 1) return f;
else return n * fact(n - 1);

¥

Argument n in $a0
Result in $vO

Chapter 2 — Instructions: Language of the Computer — 11

Non-Leaf Procedure Example

MIPS code:

fact:

Tw $a0, 0($sp)
Tw $ra, 4($sp)
addi $sp, $sp, 8
mul $vO, $a0, $vO
jr $ra

restore original n

and return address

pop 2 items from stack
multiply to get result
and return

addi $sp, $sp, -8 # adjust stack for 2 items
SW $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # $t0=1 if %$a0 < 1 (n<1)
beq $t0, $zero, L1 # jump to L1 if $t0=0(n>=1)
addi $vO0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack*
jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n

jal fact # recursive call

#

#

#

#

#

Note: $a0 & $ra do not change if n<1, so $a0 & $ra are not loaded before pop them
Chapter 2 — Instructions: Language of the Computer — 12

Register Summary

The following registers are preserved on

call

$s0-$s7, Sgp, $sp, $fp, and $ra

Register | Mnemonic Conventional Use Register | Mnemonic Conventional Use
Number Name Number Name
$0 Zero Permanently O $24, $25 | $t8, $t9 Temporary
$1 $at Assembler Temporary (reserved) | |$26, $27 | $k0, $ki ggl)'nel kpeseried ot
$2,83 || $w0, $w1 || Value returned by asubroutine $28 $gp Global Pointer
$4-37 || $ad-%$a3 || Arguments to asubroutine $29 $sp Stack Pointer
Temporary
$8-$15 || $t0-$t7 (not preserved across a function $30 $fp Frame Pointer
call)
$16-323 || $s0-$s7 maed [eg (sters $31 $ra Return Address

(preserved across a function call)

CSE2021 Computer Organization

Communicating with People

Chapter 2 — Instructions: Language of the Computer — 14

Character Data

Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’ s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 15

ASCII Representation of Characters

Dec Hex Name Char Ctrl-char |[Dec Hex Char |[Dec Hex Char|Dec Hex Char
0 0 Null NUL CTRL-@ |32 20 Space |64 40 @ 9% 60 ’
1 1 Start of heading SOH CTRL-A |33 21 65 41 A 97 61 a3
2 2 Start of text STX CTRL-B 34 22 " 66 42 B8 98 62 b
3 3 End of text ETX CTRL-C 35 23 # 67 43 C 99 63 C
4 + Erd of xmit EOT CTRL-D 3B 24 ¢ 68 4 D 100 64 d
S S Erquiry ENQ CTRL-E 37 25 % 69 45 E 101 65 e
6 6 Acknowledga ACK CTRL-F 38 26 & 7J0 46 F 102 66 f
7 7 Bell BEL CTRL-G |39 27 ' 71 47 G 103 67 g
8 8 B ackspace BS CTRL-H |40 28 (72 48 H 104 68 h
9 9 Horizontd tab HT CTRL-I 41 29) 73 49 1 105 69 |
10 0A Linefeed LF CTRL-) 42 2A * 74 4a) 106 64)
11 0B Vertical tab VT CTRL-K 43 2B + 79 4B K 107 6B kK
12 0C Form feed FF CTRL-L 4 2C 76 4C L 108 6C |
13 0D Carriage fead CR CTRL-M |45 20 - 77 4D M 109 6D m
14 (€ Shift out SO CTRL-N |46 2 . 78 4 N 110 6E n
15 OF Shiftin S CTRL-O 47 2F / 79 4F O 111 6F o
16 10 Dataline escape OLE CTRL-P 48 30 O 80 S0 P 112 70 p
17 11 Devicecontrol 1 DC1 CTRL-Q |49 31 1 81 S1 Q 113 71 q
18 12 Device contral 2 DC2 CTRL-R S0 32 2 82 52 R 114 72 r
19 13 Devicecontrol 3 DC3 CTRL-S 51 33 3 83 S3 S 115 73 s
20 14 Device control 4 DC4 CTRL-T 52 34 4 84 5S4 T 116 74 t
21 15 Negacknowledge NAK CTRL-U 53 35 S 85 55 U 117 7S u
22 16 Synchronouside SYN CTRL-V |S4 36 6 86 S6 V 118 76 v
23 17 End of ¥mit block ETE CTRL-W S5 37 7 87 S7 W 119 77 W
24 18 Cancel CAN CTRL-X 56 38 8 88 S8 X 120 78 »
25 19 Erd of medium EM CTRL-Y S7 39 9 89 59 Y 121 79 y
26 1A Substitute S8 CTRL-Z S8 3A ¢ 90 S5a Z 122 74 2
27 1B Escape ESC CTRL-[59 38 ; 91 SB [123 78 {
28 1C File separator FS CTRL-\ 60 3C < 92 SC \ 124 7C |
29 1D Group separator GS CTRL-) 61 30 = 93 SD] 125 70 }
30 1E Recordseparator RS CTRL-~ |62 3E > 94 SE ~ 126 7E ~
31 IF Unit separator Us CTRL-___ |63 3F 2 95 SF 127 7F DEL

Chapter 2 — Instructions: Language of the Computer — 16

ASCII Characters

American Standard Code for Information
Interchange (ASCII).

Most computers use 8-bit to represent
each character. (Java uses Unicode, which

IS 16-Dbit).
Strings are combination of characters.

How to load a byte?

Ib, Ibu, sb for byte (ASCII)
Ih, Ihu, sh for half-word instruction (Unicode)

Chapter 2 — Instructions: Language of the Computer — 17

Byte/Halfword Operations

Could use bitwise operations

MIPS byte/halfword load/store

String processing is a common case
Ib rt, offset(rs) Th rt, offset(rs)

Sign extend to 32 bits in rt
Tbu rt, offset(rs) Thu rt, offset(rs)

Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 18

String Copy Example
C code:

Null-terminated string

void strcpy (char x[], char y[])
{ 1nt 1;
1 = 0;
while ((x[1]=y[1])!="\0")
1 += 1,
}

Addresses of x, y in $a0, $a1
i in $s0

Chapter 2 — Instructions: Language of the Computer — 19

String Copy Example

MIPS code:
strcpy:
addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i =0
L1: add $tl, $s0, $al # addr of y[i] in $tl
Tbu $t2, 0($tl) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0(%$t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == O
addi $s0, $s0, 1 #1 =1+ 1
j L1l # next iteration of Tloop
L2: 1w $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 20

32-bit Constants

Most constants are small
16-bit immediate is sufficient

For the occasional 32-bit constant
Use lui (load upper immediate)
Tuil rt, constant
Copies 16-bit constant to left 16 bits of rt

Clears right 16 bits of rt to 0
1Thi $s0, 61 0000 0000 0111 1101|0000 0000 0000 0000

ori $s0, $s0, 2304 | 0000 0000 0111 11010000 1001 0000 0000

Chapter 2 — Instructions: Language of the Computer — 21

CSE2021 Computer Organization

Translating and Starting a
Program

Chapter 2 — Instructions: Language of the Computer — 22

Translation Hierarchy for C

C program
S Many compilers produce
object modules directly

Assembly language program

Assembler

Object: Machine language module | | Object: Library routine (machine language)

(Linker > > Static linking

Executable: Machine language program

Memory

Chapter 2 — Instructions: Language of the Computer — 23

Translation

Assembler (or compiler) translates program into
machine instructions

Linker produces an executable image
Loader load from image file on disk into memory

Chapter 2 — Instructions: Language of the Computer — 24

CSE2021 Computer Organization

SPIM Simulator

Chapter 2 — Instructions: Language of the Computer — 25

SPIM Simulator

SPIM is a software simulator that runs assembly
language programs
SPIM is just MIPS spelled backwards

SPIM can read and immediately execute
assembly language files

Two versions for different machines
Unix: xspim(used in lab), spim
PC/Mac: QtSpim

Resources and Download
http://spimsimulator.sourceforge.net

Chapter 2 — Instructions: Language of the Computer — 26

System Calls in SPIM

SPIM provides a small set of system-like
services through the system call (syscall)

instruction.
Format for system calls
Place value of input argument in $a0

Place value of system-call-code in $v0
syscall

Chapter 2 — Instructions: Language of the Computer — 27

System Calls

Example: print a string

.data
str:
.asciiz “answer is:”
text
addi $v0,5zero .4
la $a0, str
#pseudoinstruction
syscall

Service System Call Code Arguments Result

print_int 1 $a0 = integer

print_float 2 s£12 = float

print_double 3 s£12 = double

print_string - $a0 = string

read_int 5 integer (in s$v0)

read_float 6 float (in s£0)

read_double 7 double (in s£0)

read_string 8 $a0 = buffer, sa1 = length

sbrk 9 sa0 = amount address (in sv0)

exit 10

print_character 11 $a0 = character

read_character 12 character (in sv0)

open 13 $a0 = filename, file descriptor (in sv0)
sal = flags, sa2 = mode

read 14 sa0 = file descriptor, bytes read (in sv0)
sal = buffer, sa2 = count

write 15 sa0 = file descriptor, bytes written (in sv0)
sal = buffer, sa2 = count

close 16 sa0 = file descriptor 0 (in sv0)

exit2 17 $a0 =value

Chapter 2 — Instructions: Language of the Computer — 28

Reading

Read Appendix B.9 for SPIM

List of Pseudoinstruction can be found on
page 281

Chapter 2 — Instructions: Language of the Computer — 29

CSE2021 Computer Organization

Other Instruction Sets

Chapter 2 — Instructions: Language of the Computer — 30

ARM & MIPS Similarities

ARM: the most popular embedded core
Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Integer Registers 15 x 32-bit 31 x 32-bit
Input/output Memory Memory

mapped mapped

Chapter 2 — Instructions: Language of the Computer — 31

The Intel x86 ISA

Evolution with backward compatibility
8080 (1974): 8-bit microprocessor

Accumulator, plus 3 index-register pairs

8086 (1978): 16-bit extension to 8080

Complex instruction set (CISC)

8087 (1980): floating-point coprocessor

Adds FP instructions and register stack

80286 (1982): 24-bit addresses, MMU

Segmented memory mapping and protection

80386 (1985): 32-bit extension (now |A-32)

Additional addressing modes and operations
Paged memory mapping as well as segments

Chapter 2 — Instructions: Language of the Computer — 32

The Intel x86 ISA

Further evolution...

1486 (1989): pipelined, on-chip caches and FPU
Compatible competitors: AMD, Cyrix, ...

Pentium (1993): superscalar, 64-bit datapath

Later versions added MMX (Multi-Media eXtension)
instructions

The infamous FDIV bug
Pentium Pro (1995), Pentium Il (1997)
New microarchitecture (see Colwell, The Pentium Chronicles)

Pentium Il (1999)

Added SSE (Streaming SIMD Extensions) and associated
registers

Pentium 4 (2001)

New microarchitecture
Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 33

The Intel x86 ISA

And further...

EM64T — Extended Memory 64 Technology (2004)
AMDG64 adopted by Intel (with refinements)
Added SSE3 instructions

Intel Core (2006)

Added SSE4 instructions, virtual machine support

Advanced Vector Extension (announced 2008)
Longer SSE registers, more instructions

If Intel didn’ t extend with compatibility, its
competitors would!

Technical elegance # market success

Chapter 2 — Instructions: Language of the Computer — 34

Concluding Remarks

Design principles
Simplicity favors regularity
Smaller is faster
Make the common case fast
Good design demands good compromises

Layers of software/hardware
Compiler, assembler, hardware

MIPS: typical of RISC ISAs
c.f. x86

Chapter 2 — Instructions: Language of the Computer — 35

Concluding Remarks

Measure MIPS instruction executions in
benchmark programs

Consider making the common case fast
Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer Tw, sw, 1b, Tbu, 35% 36%
Th, Thu, sb, Tlui
Logical and, or, nor, andi, 12% 4%
ori, sll, sri
Cond. Branch beq, bne, slt, 34% 8%
slti, sltiu
Jump j, jr, jal 2% 0%

Chapter 2 — Instructions: Language of the Computer — 36

Acknowledgement

The slides are adapted from Computer
Organization and Design, 4t Edition, by
David A. Patterson and John L. Hennessy,
2008, published by MK (Elsevier)

Chapter 1 — Computer Abstractions and Technology — 37

