| CSE2021 Computer Organization

| Chapter 2: Part 2

{ Supporting Procedures

25 September 2013

| Procedure Calling

| Procedure Calling

| Calling program
place parameters in registers $a0 - $a3
Transfer control to procedure
Called procedure

Acquire storage for procedure, save values of
required register in a stack $sp

Perform procedure’ s operations, restore the values of
registers that it used

Place result in register for caller $v0 - $v1

Return to place of call by returning to instruction
whose address is saved in $ra

Chapter 1 — Comyg Ab i and Technology — 37

| Procedure (function) performs a specific

task and return results to caller.

Input Paramaters
-l Se0- Sa3 J-
Calling Pr -
Program . >
Output Parameters
C— $10- vt
Chapter 1 — Comyg Ab i and Technology — 37
| Register Usage

| $a0 — $a3: arguments (reg’s 4 — 7)
$v0, $v1: result values (reg’ s 2 and 3)
$t0 — $t9: temporaries
Can be overwritten by callee
$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Chapter 1 — Comyg Abstracti and Technol

gy — 37

| Stack

| g ncdenes

o g
g Coametn o g 3o

First-in-last-out queue
Placing date onto the stack: push
Removing data from the stack: pop

Stack “grow” from higher addresses to lower addresses
Push values onto the stack by subtracting from the stack pointer
Pop values from the stack by adding to the stack pointer

Chapter 1 — Comyg Ab i and Technology — 37

25 September 2013

| Procedure Call Instructions

| Procedure call: jump and link
jal ProcedureLabel
Jumps to target address
Address of following instruction put in $ra
$ra is called the return address
Procedure return: jump register
jr S$ra
Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 1 — Computer Abstractions and Technology — 37

| Leaf Procedure Example

| Procedures that do not call others are
called leaf procedure.

C code:
int leaf_example (int g, h, i, j)
{ int f;
f=0@+h -G+ 3);
return f;
ks
Arguments g, h, i, jin $a0, $a1, $a2, $a3
fin $s0 (hence, need to save $s0 on stack)
Result in $v0

Chapter 1 — Comyg Ab i and Technology — 37

| Leaf Procedure Example

| MIPS code for procedure:

leaf_example:
addi $sp, $sp, -4
Sw $SO, 0($sp) Save $s0 on stack
add $t0, %$a0, $al
add $tl, $a2, %$a3 Procedure body
sub $s0, $t0, $t1
add $v0, $s0, $zero | Resut
Tw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra Return

Restore $s0

Chapter 1 — Computer Abstractions and Technology — 37

| Leaf Procedure Example

| MIPS code for calling function:

main:

jal leaf_example

Chapter 1 — Comyg Ab i and Technology — 37

25 September 2013

| Non-Leaf Procedures

| Procedures that call other procedures
For nested call, caller needs to save on the
stack:
Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Chapter 1 — Computer Abstractions and Technology — 37

| Non-Leaf Procedure Example

| C code:

int fact (int n)
{

if (n < 1) return f;

else return n * fact(n - 1);
}

Argument n in $a0
Result in $v0

Chapter 1 — Comyg Ab i and Technology — 37

| Non-Leaf Procedure Example

| MIPS code:

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw_ $a0, 0($sp) # save argument
s1ti $t0, $a0, 1 # $t0=1 if $a0 < 1 (n<1)
beq $t0, $zero, L1 # jump to L1 if $t0=0(n>=1)
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack*
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
Tw $a0, 0($sp) # restore original n
Tw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $vO # multiply to get result
jr $ra # and return

Note: $a0 & $ra do not change if n<1, so $a0 & $ra are not loaded before pop them
Chapter 1 — Computer Abstractions and Technology — 37

25 September 2013

| Register Summary | CSE2021 Computer Organization
‘ The following registers are preserved on
call
$50-$s7, $gp. $sp, $7p, and $ra |
Regter Moemosie L | ———— l ‘ Communicating with People
$0 2ero Permanentiy O $24. 825 | 82, 9 Temporuy !
’ < |
51 s Assembler Temporiey (reverved) ||| 826,527 |se0, 501 | Somet (reverved foe. |
$2.83 0. i Value returnsd by a sbecutine 23 Sgp Glctal Poirger ;
457 $a0-83 Arguments to 8 abeczine 29 $sp Stack Pointer |
Temporary l
$8-815 | 0-817 (ot preserved acroa a functicn $30 $ip Frame Pointer
call) ;
$16-823 | $20-357 :%:'c:;irfrfiu::ant'n‘h'-n"u- il $re B Ad |
| Character Data | ASCII Representation of Characters
‘ Byte-encoded character sets ‘
ASCII: 128 characters

95 graphic, 33 control
Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’ s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 1 — Computer Abstractions and Technology — 37 ~Chapter 1 — C Abstractions and Technology — 37

25 September 2013

| ASCII Characters

| American Standard Code for Information
Interchange (ASCII).

Most computers use 8-bit to represent
each character. (Java uses Unicode, which
is 16-bit).

Strings are combination of characters.

How to load a byte?
Ib, Ibu, sb for byte (ASCII)
Ih, Ihu, sh for half-word instruction (Unicode)

Chapter 1 — Comyg Ab i and Technology — 37

| Byte/Halfword Operations

| Could use bitwise operations
MIPS byte/halfword load/store

String processing is a common case

Tb rt, offset(rs) Th rt, offset(rs)
Sign extend to 32 bits in rt

Tbu rt, offset(rs) Thu rt, offset(rs)
Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)
Store just rightmost byte/halfword

Chapter 1 — Computer Abstractions and Technology — 37

| String Copy Example

| C code:

Null-terminated string
void strcpy (char x[], char y[])
{ int 1;

i=0;

while ((x[i]=y[i])!="\0")

i += 1;

ks

Addresses of x, y in $a0, $a1
iin $s0

Chapter 1 — Comyg Ab i and Technology — 37

| String Copy Example

| MIPS code:

strcpy:
addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i =0

L1: add $t1, $s0, $al # addr of y[i] in $t1
Tbu $t2, 0($tl) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] ==
addi $s0, $s0, 1 #1i=1+1
j L1 # next iteration of loop

L2: Tw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr S$ra # and return

Chapter 1 — Computer Abstractions and Technology — 37

25 September 2013

| 32-bit Constants | CSE2021 Computer Organization

| Most constants are small
16-bit immediate is sufficient
For the occasional 32-bit constant ’
Use lui (load upper immediate)
Jui rt, constant
Copies 16-bit constant to left 16 bits of rt

Clears right 16 bits of rt to 0
1hi $s0, 61 [0000 0000 0111 1101]0000 0000 0000 0000 |

l Translating and Starting a
Program

ori $s0, $s0O, 2304 00000000 0111 1101/0000 1001 0000 0000 |

Chapter 1 — Comyg Ab i and Technology — 37

| Translation Hierarchy for C | Translation

| Assembler (or compiler) translates program into
machine instructions

Many compilers produce Linker produces an executable image
object modules directly . . . 3
Loader load from image file on disk into memory

C program

Camoume

Assembly language program

Asserrtiaer

Object: Machine language module] Object: Library routine (machine language)

e Static linking

| Executable: Machine language program ‘

Lot

o=

Chapter 1 — Comyg Ab i and Technology — 37 Chapter 1 — Comyg Abstracti and Technology — 37

| CSE2021 Computer Organization

{ SPIM Simulator

| System Calls in SPIM

| SPIM provides a small set of system-like
services through the system call (syscall)
instruction.

Format for system calls
Place value of input argument in $a0
Place value of system-call-code in $v0
syscall

Chapter 1 — Comyg Ab i and Technology — 37

25 September 2013

| SPIM Simulator

| SPIM is a software simulator that runs assembly
language programs
SPIM is just MIPS spelled backwards

SPIM can read and immediately execute
assembly language files

Two versions for different machines
Unix: xspim(used in lab), spim
PC/Mac: QtSpim

Resources and Download
http://spimsimulator.sourceforge.net

Chapter 1 — Comyg Ab i and Technology — 37

| System Calls

| Example: print a string

.data

str: pets T
.asciiz “answer is:” =y : :
text svad sty | ' ot = el tas = bongth
addi $v0,$zero,4 - T
la $a0, str v | -
#pseudoinstruction e
syscall

Chapter 1 — Comyg Abstracti and Technology — 37

| Reading

Read Appendix B.9 for SPIM

List of Pseudoinstruction can be found on

page 281

25 September 2013

| CSE2021 Computer Organization

l Other Instruction Sets

Chapter 1 — Comyg Ab and Technology — 37
| ARM & MIPS Similarities
| ARM: the most popular embedded core
Similar basic set of instructions to MIPS
ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Integer Registers 15 x 32-bit 31 x 32-bit
Input/output Memory Memory
mapped mapped
Chapter 1 — Comyg Ab and Technology — 37

| The Intel x86 ISA

| Evolution with backward compatibility

8080 (1974): 8-bit microprocessor
Accumulator, plus 3 index-register pairs

8086 (1978): 16-bit extension to 8080
Complex instruction set (CISC)

8087 (1980): floating-point coprocessor
Adds FP instructions and register stack

80286 (1982): 24-bit addresses, MMU
Segmented memory mapping and protection

80386 (1985): 32-bit extension (now 1A-32)
Additional addressing modes and operations
Paged memory mapping as well as segments

Chapter 1 — Comyg Abstracti and Tech

logy — 37

| The Intel x86 ISA

| Further evolution...
i486 (1989): pipelined, on-chip caches and FPU
Compatible competitors: AMD, Cyrix, ...
Pentium (1993): superscalar, 64-bit datapath

Later versions added MMX (Multi-Media eXtension)
instructions

The infamous FDIV bug
Pentium Pro (1995), Pentium Il (1997)
New microarchitecture (see Colwell, The Pentium Chronicles)
Pentium Ill (1999)
Added SSE (Streaming SIMD Extensions) and associated
registers
Pentium 4 (2001)
New microarchitecture
Added SSE2 instructions

Chapter 1 — Comyg Ab i and Technology — 37

25 September 2013

| The Intel x86 ISA

| And further...

EM64T — Extended Memory 64 Technology (2004)
AMDG64 adopted by Intel (with refinements)
Added SSE3 instructions

Intel Core (2006)
Added SSE4 instructions, virtual machine support

Advanced Vector Extension (announced 2008)
Longer SSE registers, more instructions

If Intel didn’ t extend with compatibility, its
competitors would!
Technical elegance # market success

Chapter 1 — Computer Abstractions and Technology — 37

| Concluding Remarks

| Design principles
Simplicity favors regularity
Smaller is faster
Make the common case fast
Good design demands good compromises
Layers of software/hardware
Compiler, assembler, hardware
MIPS: typical of RISC ISAs
c.f. x86

Chapter 1 — Comyg Ab i and Technology — 37

| Concluding Remarks

| Measure MIPS instruction executions in
benchmark programs
Consider making the common case fast
Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer Tw, sw, 1b, 1bu, 35% 36%

Th, Thu, sb, 1ui
Logical and, or, nor, andi, 12% 4%
ori, s11, srl

Cond. Branch beq, bne, sTt, 34% 8%

s1ti, sltiu
Jump j, jr, jal 2% 0%

Chapter 1 — Computer Abstractions and Technology — 37

25 September 2013

| Acknowledgement

| The slides are adapted from Computer
Organization and Design, 4t Edition, by
David A. Patterson and John L. Hennessy,
2008, published by MK (Elsevier)

Chapter 1 — Comyg Ab i and Tect

logy — 37

10

