
25 September 2013

1

CChhaapptteerr 22:: PPaarrtt 22

CSE2021 Computer Organization

Supporting Procedures

Chapter 1 — Computer Abstractions and Technology — 37

Procedure Calling
n  Procedure (function) performs a specific

task and return results to caller.

Chapter 1 — Computer Abstractions and Technology — 37

Procedure Calling
n Calling program

n place parameters in registers $a0 - $a3
n Transfer control to procedure

n Called procedure
n Acquire storage for procedure, save values of

required register in a stack $sp
n Perform procedure’s operations, restore the values of

registers that it used
n Place result in register for caller $v0 - $v1
n Return to place of call by returning to instruction

whose address is saved in $ra

Chapter 1 — Computer Abstractions and Technology — 37

Register Usage
n  $a0 – $a3: arguments (reg’s 4 – 7)
n  $v0, $v1: result values (reg’s 2 and 3)
n  $t0 – $t9: temporaries

n  Can be overwritten by callee
n  $s0 – $s7: saved

n  Must be saved/restored by callee
n  $gp: global pointer for static data (reg 28)
n  $sp: stack pointer (reg 29)
n  $fp: frame pointer (reg 30)
n  $ra: return address (reg 31)

25 September 2013

2

Chapter 1 — Computer Abstractions and Technology — 37

Stack

n  First-in-last-out queue
n  Placing date onto the stack: push
n  Removing data from the stack: pop
n  Stack “grow” from higher addresses to lower addresses

n  Push values onto the stack by subtracting from the stack pointer
n  Pop values from the stack by adding to the stack pointer

Chapter 1 — Computer Abstractions and Technology — 37

Procedure Call Instructions
n  Procedure call: jump and link
 jal ProcedureLabel

n  Jumps to target address
n  Address of following instruction put in $ra
n  $ra is called the return address

n  Procedure return: jump register
 jr $ra

n  Copies $ra to program counter
n  Can also be used for computed jumps

n  e.g., for case/switch statements

Chapter 1 — Computer Abstractions and Technology — 37

Leaf Procedure Example
n  Procedures that do not call others are

called leaf procedure.
n  C code:
 int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}

n  Arguments g, h, i, j in $a0, $a1, $a2, $a3
n  f in $s0 (hence, need to save $s0 on stack)
n  Result in $v0

Chapter 1 — Computer Abstractions and Technology — 37

Leaf Procedure Example
n  MIPS code for procedure:
 leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

25 September 2013

3

Chapter 1 — Computer Abstractions and Technology — 37

Leaf Procedure Example
n  MIPS code for calling function:

 main:

 …

 jal leaf_example

 …

Chapter 1 — Computer Abstractions and Technology — 37

Non-Leaf Procedures
n  Procedures that call other procedures
n  For nested call, caller needs to save on the

stack:
n  Its return address
n  Any arguments and temporaries needed after

the call
n  Restore from the stack after the call

Chapter 1 — Computer Abstractions and Technology — 37

Non-Leaf Procedure Example
n  C code:
 int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n - 1);
}

n  Argument n in $a0
n  Result in $v0

Chapter 1 — Computer Abstractions and Technology — 37

Non-Leaf Procedure Example
n  MIPS code:
 fact:
 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # $t0=1 if $a0 < 1 (n<1)

 beq $t0, $zero, L1 # jump to L1 if $t0=0(n>=1)
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack*
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Note: $a0 & $ra do not change if n<1, so $a0 & $ra are not loaded before pop them

25 September 2013

4

Register Summary
n  The following registers are preserved on

call
n  $s0-$s7, $gp, $sp, $fp, and $ra

Chapter 1 — Computer Abstractions and Technology — 37

CCoommmmuunniiccaattiinngg wwiitthh PPeeooppllee

CSE2021 Computer Organization

Character Data
n  Byte-encoded character sets

n  ASCII: 128 characters
n  95 graphic, 33 control

n  Latin-1: 256 characters
n  ASCII, +96 more graphic characters

n  Unicode: 32-bit character set
n  Used in Java, C++ wide characters, …
n  Most of the world’s alphabets, plus symbols
n  UTF-8, UTF-16: variable-length encodings

Chapter 1 — Computer Abstractions and Technology — 37

ASCII Representation of Characters

Chapter 1 — Computer Abstractions and Technology — 37

25 September 2013

5

ASCII Characters
n  American Standard Code for Information

Interchange (ASCII).
n  Most computers use 8-bit to represent

each character. (Java uses Unicode, which
is 16-bit).

n  Strings are combination of characters.
n  How to load a byte?

n  lb, lbu, sb for byte (ASCII)
n  lh, lhu, sh for half-word instruction (Unicode)

Chapter 1 — Computer Abstractions and Technology — 37 Chapter 1 — Computer Abstractions and Technology — 37

Byte/Halfword Operations
n  Could use bitwise operations
n  MIPS byte/halfword load/store

n  String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

n  Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

n  Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

n  Store just rightmost byte/halfword

Chapter 1 — Computer Abstractions and Technology — 37

String Copy Example
n  C code:

n  Null-terminated string
 void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

n  Addresses of x, y in $a0, $a1
n  i in $s0

Chapter 1 — Computer Abstractions and Technology — 37

String Copy Example
n  MIPS code:
 strcpy:
 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

25 September 2013

6

Chapter 1 — Computer Abstractions and Technology — 37

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
n  Most constants are small

n  16-bit immediate is sufficient
n  For the occasional 32-bit constant

n  Use lui (load upper immediate)
 lui rt, constant

n  Copies 16-bit constant to left 16 bits of rt
n  Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304

TTrraannssllaattiinngg aanndd SSttaarrttiinngg aa
PPrrooggrraamm

CSE2021 Computer Organization

Chapter 1 — Computer Abstractions and Technology — 37

Translation Hierarchy for C

Many compilers produce
object modules directly

Static linking

Chapter 1 — Computer Abstractions and Technology — 37

Translation
n  Assembler (or compiler) translates program into

machine instructions
n  Linker produces an executable image
n  Loader load from image file on disk into memory

25 September 2013

7

SSPPIIMM SSiimmuullaattoorr

CSE2021 Computer Organization SPIM Simulator
n  SPIM is a software simulator that runs assembly

language programs
n  SPIM is just MIPS spelled backwards
n  SPIM can read and immediately execute

assembly language files
n  Two versions for different machines

n  Unix: xspim(used in lab), spim
n  PC/Mac: QtSpim

n  Resources and Download
n  http://spimsimulator.sourceforge.net

Chapter 1 — Computer Abstractions and Technology — 37

System Calls in SPIM
n  SPIM provides a small set of system-like

services through the system call (syscall)
instruction.

n  Format for system calls
n  Place value of input argument in $a0
n  Place value of system-call-code in $v0
n  syscall

Chapter 1 — Computer Abstractions and Technology — 37

System Calls

Chapter 1 — Computer Abstractions and Technology — 37

Example: print a string

.data
 str:
 .asciiz “answer is:”
.text
 addi $v0,$zero,4
 la $a0, str
 #pseudoinstruction
 syscall

25 September 2013

8

Reading
n  Read Appendix B.9 for SPIM
n  List of Pseudoinstruction can be found on

page 281

Chapter 1 — Computer Abstractions and Technology — 37

OOtthheerr IInnssttrruuccttiioonn SSeettss

CSE2021 Computer Organization

Chapter 1 — Computer Abstractions and Technology — 37

ARM & MIPS Similarities
n  ARM: the most popular embedded core
n  Similar basic set of instructions to MIPS

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Integer Registers 15 × 32-bit 31 × 32-bit
Input/output Memory

mapped
Memory
mapped

Chapter 1 — Computer Abstractions and Technology — 37

The Intel x86 ISA
n  Evolution with backward compatibility

n  8080 (1974): 8-bit microprocessor
n  Accumulator, plus 3 index-register pairs

n  8086 (1978): 16-bit extension to 8080
n  Complex instruction set (CISC)

n  8087 (1980): floating-point coprocessor
n  Adds FP instructions and register stack

n  80286 (1982): 24-bit addresses, MMU
n  Segmented memory mapping and protection

n  80386 (1985): 32-bit extension (now IA-32)
n  Additional addressing modes and operations
n  Paged memory mapping as well as segments

25 September 2013

9

Chapter 1 — Computer Abstractions and Technology — 37

The Intel x86 ISA
n  Further evolution…

n  i486 (1989): pipelined, on-chip caches and FPU
n  Compatible competitors: AMD, Cyrix, …

n  Pentium (1993): superscalar, 64-bit datapath
n  Later versions added MMX (Multi-Media eXtension)

instructions
n  The infamous FDIV bug

n  Pentium Pro (1995), Pentium II (1997)
n  New microarchitecture (see Colwell, The Pentium Chronicles)

n  Pentium III (1999)
n  Added SSE (Streaming SIMD Extensions) and associated

registers
n  Pentium 4 (2001)

n  New microarchitecture
n  Added SSE2 instructions

Chapter 1 — Computer Abstractions and Technology — 37

The Intel x86 ISA
n  And further…

n  AMD64 (2003): extended architecture to 64 bits
n  EM64T – Extended Memory 64 Technology (2004)

n  AMD64 adopted by Intel (with refinements)
n  Added SSE3 instructions

n  Intel Core (2006)
n  Added SSE4 instructions, virtual machine support

n  AMD64 (announced 2007): SSE5 instructions
n  Intel declined to follow, instead…

n  Advanced Vector Extension (announced 2008)
n  Longer SSE registers, more instructions

n  If Intel didn’t extend with compatibility, its
competitors would!
n  Technical elegance ≠ market success

Chapter 1 — Computer Abstractions and Technology — 37

Concluding Remarks
n  Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

n  Layers of software/hardware
n  Compiler, assembler, hardware

n  MIPS: typical of RISC ISAs
n  c.f. x86

Chapter 1 — Computer Abstractions and Technology — 37

Concluding Remarks
n  Measure MIPS instruction executions in

benchmark programs
n  Consider making the common case fast
n  Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

25 September 2013

10

Acknowledgement
n  The slides are adapted from Computer

Organization and Design, 4th Edition, by
David A. Patterson and John L. Hennessy,
2008, published by MK (Elsevier)

Chapter 1 — Computer Abstractions and Technology — 37

