















## **Pipeline Performance**

- Assume time for stages is
  - 100ps for register read or write
  - 200ps for other stages
- Time for different types of single-cycle datapath

| Instr    | Instr fetch | Register<br>read | ALU op | Memory<br>access | Register<br>write | Total time |
|----------|-------------|------------------|--------|------------------|-------------------|------------|
| lw       | 200ps       | 100 ps           | 200ps  | 200ps            | 100 ps            | 800ps      |
| sw       | 200ps       | 100 ps           | 200ps  | 200ps            |                   | 700ps      |
| R-format | 200ps       | 100 ps           | 200ps  |                  | 100 ps            | 600ps      |
| beq      | 200ps       | 100 ps           | 200ps  |                  |                   | 500ps      |

Chapter 4 — The Processor — 29













Hazards occur when the next instruction in a pipelined program can not be executed until the prior instruction has been executed.

- Structure hazards
  - A required resource is busy
- Data hazard
  - Need to wait for previous instruction to complete its data read/write
- Control hazard
  - Deciding on control action depends on Chapter 4 — The Processor — 29
    - previous instruction



























14

## **Pipeline Summary**

- Pipelining improves performance by increasing instruction throughput
  - Executes multiple instructions in parallel
  - Each instruction has the same latency
- Subject to hazards
  - Structure, data, control
- Instruction set design affects complexity of pipeline implementation

Chapter 4 — The Processor — 29