24 November 2013

CSE 2021 Computer Organization

| Chapter 4 Part 3

| The Processor - Pipelining

| Pipeline Summary

‘ Pipelining improves performance by
increasing instruction throughput
Executes multiple instructions in parallel
Each instruction has the same latency
Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation

24 November 2013

MIPS Pipelined Datapath

IF: Instruction fetch 1 10: nstruction decoder | EX: Execute/ | MEM: Memory access | WB: Writo back
register file read 1 address calculation 1

.

Right-to-left
flow leads to
hazards

Pipeline registers

Need registers between stages
To hold information produced in previous cycle

24 November 2013

| Pipeline Operation

| Cycle-by-cycle flow of instructions through
the pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used
c.f. “multi-clock-cycle” diagram
Graph of operation over time
We'll look at “single-clock-cycle” diagrams
for load & store

| Single-Clock-Cycle Diagram

‘ IF for Load and Store

Instruction fetch

24 November 2013

ID for Load, Store, ...

L W

Instruction deccde L

EXMEM MEWWS

Insucton

R

EX for Load

10

NENAWE
Asd
4 —
0)
~
Maaled Add
x I -
U
[l g'_’.
Instruction . 9 -
—
-] Wiito

24 November 2013

MEM for Load

WB for Load

T o

Wrong
register L

number

24 November 2013

Corrected Datapath for Load

IDEX MM MEwwe
A%
shin .
len2
Fo
rogsier 1 i S
b Aees 2o —
vine2 ALY
Ay Peas
x Registers oy rovess - -
4 - o | e cun
opise Ows
e memory
d =
weon
cum
) e)

EX for Store

24 November 2013

MEM for Store

WB for Store

[

}L

Write-back

MO

24 November 2013

Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles)
cC1 cC2 cC3

Program
execution
order

(in instructions)

Iw $10, 20($1)

. y
sub$11,$2, §3 M-I-Bla_l:

add $12, $3, $4

Iw $13, 24(81)

add $14, $5, $6

CcCa

0 g

CcCs

cCs

cc7

cCs

cCo

DM

Multi-Cycle Pipeline Diagram

Traditional form

Time (in clock cycles)
cC1 cc2 cCc3 cc4 cCs cC6 cc7 ccs cCc9o
Program
execution
order
(in instructions)
w$10,20(51) | "MSimcton | InScton | gyecurion | 022 | wiite back
sub$11,$2, $3 mi‘:z‘g'm '"::"'c,m Execution Dazas Write back
add $12, $3, $4 Instruction | InStructon | execution | D2 | writs back
Iw $13, 24($1) insiructon | Instructon | execution | 22 | wiite back
add 14, 5, 56 Insirucion | Insuchon | execution | 04 | wrte back

24 November 2013

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

| add $14, §5, $6 | w $13, 24 (S1) | add $12, 83, 84 | sub $11, 82,83 | v $10. 20(s1)
| Instruction fetch | Instruction decode | Execution | Memory | write-back

Pipelined Control (Simplified)

24 November 2013

Pipelined Control

Control signals derived from instruction
= As in single-cycle implementation

we

ws

g |
M
[=]
Tl
3]

[

IF/ID ID/EX EXMEM MEMWB

10

24 November 2013

| Data Hazards in ALU Instructions

‘ Consider this sequence:
sub $2, $1,$3
and $12,%2,9%5
or $13,9%6,
add $14,%2,
sw $15,100(%2)

We can resolve hazards with forwarding
How do we detect when to forward?

| Dependencies & Forwarding

Time (in clock cycles)
Value of cc1 cc2 ccs3 cCc4 cCs CC6 cc7 ccs cco

register $2: 10 10 10 10 1020 20 20 20 -20
Program Assume that $2: initial value=10, value after sub=-20
execution
order
(in instructions)

sub$2, $1,$3 @—HJ‘@:”:D

and $12, $2, $5 —&g

or $13, 6, $2 \T_[% —Eq'

add $14, 52,82 agg |\ g:

sw $15, 100(52) Wﬂ— -:.:n ’ | Il' g

11

24 November 2013

| Detecting the Need to Forward

| Pass register numbers along pipeline
e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
ALU operand register numbers in EX stage
are given by
ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when

EX/MEM.RegisterRd = ID/EX.RegisterRs Fwd from
EX/MEM.RegisterRd = ID/EX.RegisterRt EX/MEM

Fwd from
MEM/WB
pipeline re

MEM/WB.RegisterRd = ID/EX.RegisterRt

. . pipeline re
MEM/WB.RegisterRd = ID/EX.RegisterRs }

*Recall for R-type: add rd, rs, rt, i.e. ALU uses values of
rs and rt registers for calculation.

| Detecting the Need to Forward

| But only if forwarding instruction will write
to a register!
EX/MEM.RegWrite, MEM/WB.RegWrite

And only if Rd for that instruction is not
$zero

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

12

24 November 2013

| Forwarding Paths

‘ ID/EX EX/MEM MEM/WB

i —~ —
M
= U
X
— -
\A/ForwaldA .
Registers ALU
~
M
Ly Data
X memory
P
(.
.
ForwardB |
Rs
f ;)
E m | EXMEM RegisterRd
o u
i -
{ F°"'L’:“"d'"9) MEM/WB. RegisterRd

b. With forwarding

| Forwarding Conditions

‘ EX hazard

if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

13

24 November 2013

| Datapath with Forwarding

IIEX
/\ e .
|

Vo I X/MEM
| Control M B MEMWE
IFID L EX ‘—— M L&E‘—
—_ = ~ | -
M
—el U
| x
c |
S N
g Registers : ALU —1»—7 - M
B —]
Instruction <] | ,; .
memory N u Data
T | x memory
-
—
IF/ID.RegisterRs Rs -
IF/ID.RegisterRt Rt
— — ' .
IF/ID.RegisterRt Rt M 1 EX/MEM .RegisterRd|
IF/ID.RegisterRd Rd u f—]
L L x L L
-y

Forwarding {2 | MEM/WB.RegisterRd
\ unit

Load-Use Data Hazard

Time (in clock cycles)
cc1 ccz2 CcC3 cC4 CCs CCé cc7 ccs cc¢

Program
execution
order

(in instructions)

w $2, 20($1) Need to stall
for one cycle

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2 “gi

st $1,86, 87 IDMr

14

24 November 2013

| Load-Use Hazard Detection

Check when using instruction is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

| How to Stall the Pipeline

Force control values in ID/EX register
to0

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for Tw
Can subsequently forward to EX stage

15

24 November 2013

Stall/Bubble in the Pipeline

Time (in clock cycles)
cc1 cc2 cc3 cC4 CCs CcCs cc7 ccs cC9 cCCc10

Program
execution
order
(in instructions) -
w2, 2001 EE_I]'@:I]:D
; Stall inserted
and becomes nop M :73 here

and $4, $2, 85 stalled in ID

or $8, $2, $6 stalled in IF E@_ [@_ ‘

add $9, $4, $2

OR IF
repeated

Datapath with Hazard Detection

2
2 ID/EX
£ e EX/MEM
A/\ M Lor
o U u M MEM/WB
£ X — —]
: f v L L e
a
M
u
§ X
E Registers Ll Ll L
2
el ettt m -
u Lo
X aenary
L.
IFD.R lerRs. L
IFD . RogisterRt
IF/D. RegisterRt e, [
IFAD. Registerid 1 R | :
- ID/EX Registerfit e | - —
As Forwarding
L unit J- d

16

24 November 2013

| Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compiler can arrange code to avoid
hazards and stalls

Requires knowledge of the pipeline structure

| Branch Hazards

If branch outcome determined in MEM

Time (in clock cycles)

cC1 cc2 cc3 cc4 CcCs ccs cc7 ccs ccs

Program

| Branch to PC+4+7+4=72 |
order /
(in instructions)
omns ! s s

44 and $12, 52, 55 Ern-lxai: :>~

Flush these
480r$13,$6, 52 :ﬂ— .—"ng'_' instructions
(Set control
52 add $14, 52, 52 iHE values to 0)

72 w $4, 50(S7) b ‘ 9
—

17

24 November 2013

Solution to Control Hazard

Example: branch taken

36: sub $10, $4, $8
40: beq $1, $3, 7

44: and $12, $2, $5
48: or $13, $2, %6
52: add $14, $4, $2
56: slt $15, $6, $7

72: 1w $4, 50($7)
Assume additional hardware to determine
outcome of branch in ID stage
« Target address adder: PC+4+4*7=72
« Register comparator: e.g. if $1=$3

Example: Branch Taken

and $12, 2, 85 : beq$1,83,7 : sub $10, $4, §8 before<t> i before<2>

IF.Flush

Data
memory

18

24 November 2013

Example: Branch Taken

- tw 4, 50(87) : Bubble (nop) : beq$1,$3,7 ' sub$10,... .

Clock 4

19

