
24 November 2013

1

 CSE 2021 Computer Organization

CChhaapptteerr 44 PPaarrtt 33

The Processor - Pipelining

Pipeline Summary

n  Pipelining improves performance by
increasing instruction throughput
n  Executes multiple instructions in parallel
n  Each instruction has the same latency

n  Subject to hazards
n  Structure, data, control

n  Instruction set design affects complexity of
pipeline implementation

24 November 2013

2

MIPS Pipelined Datapath

WB

MEM

Right-to-left
flow leads to
hazards

Pipeline registers
n  Need registers between stages

n  To hold information produced in previous cycle

24 November 2013

3

Pipeline Operation
n  Cycle-by-cycle flow of instructions through

the pipelined datapath
n  “Single-clock-cycle” pipeline diagram

n  Shows pipeline usage in a single cycle
n  Highlight resources used

n  c.f. “multi-clock-cycle” diagram
n  Graph of operation over time

n  We’ll look at “single-clock-cycle” diagrams
for load & store

Single-Clock-Cycle Diagram
n  IF for Load and Store

24 November 2013

4

ID for Load, Store, …

EX for Load

24 November 2013

5

MEM for Load

WB for Load

Wrong
register
number

24 November 2013

6

Corrected Datapath for Load

EX for Store

24 November 2013

7

MEM for Store

WB for Store

24 November 2013

8

Multi-Cycle Pipeline Diagram
n  Form showing resource usage

Multi-Cycle Pipeline Diagram
n  Traditional form

24 November 2013

9

Single-Cycle Pipeline Diagram
n  State of pipeline in a given cycle

Pipelined Control (Simplified)

24 November 2013

10

Pipelined Control
n  Control signals derived from instruction

n  As in single-cycle implementation

Pipelined Control

24 November 2013

11

Data Hazards in ALU Instructions
n  Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

n  We can resolve hazards with forwarding
n  How do we detect when to forward?

Dependencies & Forwarding

Assume that $2: initial value=10, value after sub=-20

24 November 2013

12

Detecting the Need to Forward
n  Pass register numbers along pipeline

n  e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register

n  ALU operand register numbers in EX stage
are given by
n  ID/EX.RegisterRs, ID/EX.RegisterRt

n  Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

*Recall for R-type: add rd, rs, rt, i.e. ALU uses values of
rs and rt registers for calculation.

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Detecting the Need to Forward
n  But only if forwarding instruction will write

to a register!
n  EX/MEM.RegWrite, MEM/WB.RegWrite

n  And only if Rd for that instruction is not
$zero
n  EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

24 November 2013

13

Forwarding Paths

Forwarding Conditions
n  EX hazard

n  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

n  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

n  MEM hazard
n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

24 November 2013

14

Datapath with Forwarding

Load-Use Data Hazard

Need to stall
for one cycle

24 November 2013

15

Load-Use Hazard Detection
n  Check when using instruction is decoded

in ID stage
n  ALU operand register numbers in ID stage

are given by
n  IF/ID.RegisterRs, IF/ID.RegisterRt

n  Load-use hazard when
n  ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

n  If detected, stall and insert bubble

How to Stall the Pipeline
n  Force control values in ID/EX register

to 0
n  EX, MEM and WB do nop (no-operation)

n  Prevent update of PC and IF/ID register
n  Using instruction is decoded again
n  Following instruction is fetched again
n  1-cycle stall allows MEM to read data for lw

n  Can subsequently forward to EX stage

24 November 2013

16

Stall/Bubble in the Pipeline

OR IF
repeated

Stall inserted
here

Datapath with Hazard Detection

24 November 2013

17

Stalls and Performance

n  Stalls reduce performance
n  But are required to get correct results

n  Compiler can arrange code to avoid
hazards and stalls
n  Requires knowledge of the pipeline structure

Branch Hazards
n  If branch outcome determined in MEM

PC

Flush these
instructions
(Set control
values to 0)

7

Branch to PC+4+7*4=72

24 November 2013

18

Solution to Control Hazard
n  Example: branch taken

 36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

n  Assume additional hardware to determine
outcome of branch in ID stage
n  Target address adder: PC+4+4*7=72
n  Register comparator: e.g. if $1=$3

Example: Branch Taken

24 November 2013

19

Example: Branch Taken

