CSE 2021 Computer Organization

| Chapter 4 Part 3

{ The Processor - Pipelining

24 November 2013

| Pipeline Summary

| Pipelining improves performance by
increasing instruction throughput
Executes multiple instructions in parallel
Each instruction has the same latency
Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation

| MIPS Pipelined Datapath

F nstrucson teich on decode/ | £X Exocuty MEM: Memcey accoss | Wik Wete back

et tie read | address calculation

Right-to-left
flow leads to
hazards

| Pipeline registers

| Need registers between stages
To hold information produced in previous cycle

—
(eee)

| Pipeline Operation

Cycle-by-cycle flow of instructions through

the pipelined datapath

“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle

Highlight resources used

c.f. “multi-clock-cycle” diagram
Graph of operation over time

We’'ll look at “single-clock-cycle” diagrams

for load & store

24 November 2013

| Single-Clock-Cycle Diagram

f

W

Instruction fetch

‘ IF for Load and Store

muel

Tal1

ID for Load, Store, ...

Ny = H s

— [

| EX for Load

)

L/

)
F‘ /
|’?w] -

i

vt
memcry

]
H -t "
eac
2 2
)
.

| MEM for Load

= =
i = -

e

|

L > s
e -

{2

el

:

24 November 2013

| WB for Load

Wrong
register
number

= o
e 1 o]
b
abeton wower 2
—
—— R R s [
el 7 -
v
o=

P

—

I J§

roas ||

| EX for Store

Lp
B

IR

g

24 November 2013

| MEM for Store

e

- -
-
[
el
L o
5 "
P) SN BN O -
b
e I

| WB for Store

|
RSS!
LRLE1E
!
O
|
—
T
ir
+
!i i
H]
i
¥
\}

1;
i

| Multi-Cycle Pipeline Diagram

Form showing resource usage

T cydes)
cc1 ccz ©c3 cca CGs CC6 0C7 CCB GCO

Program
ﬂ cCuUtion

1nmmml
wosn. 285 }I—]#-I-ul-lq
e }F!
- quﬂ.#.llyl.’,

| Multi-Cycle Pipeline Diagram

‘ Traditional form

Time (in clock cycles)

cc1 cc2 cc3 cc4 ccs cce cc7 ccs cCo

Program
@xecunon
order
(in Instructions)
o $10, 20(81) ['"‘,‘;““’“‘u]"m‘" xocution | D | wrae back
sub$11, 52,53 ["*“‘“’“ vtin | Execuion| | 0% | wito back
204$12,$3, 84 R e el
e $13, 24(51) st | et | Exscution | 08 | wiie back
34§14, 85, 56 nsructen | Insirectn | executon | 0% | Wins back

| Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

| 804 $14, 5., 36 | o $13.24 ($1) | #33$12,53, 34 | sub$11,52.53 | M $10, 20($1)
! Instruction fetch T Instructon decods I Execution T Memory 1 Wrie-back

24 November 2013

| Pipelined Control (Simplified)

| Pipelined Control

Control signals derived from instruction
= As in single-cycle implementation

1
L
i

IFAD IDEX EXMEM MEMWE

| Pipelined Control

oo

| Data Hazards in ALU Instructions

| Consider this sequence:
sub , $1,%3
and $12,%2,%5
or $13,%6,
add $14,5%2,
sw $15,100(%2)

We can resolve hazards with forwarding
How do we detect when to forward?

24 November 2013

| Dependencies & Forwarding

Time (in clock cycles) -
Valeof ©CC1 CC2 CC3 C€C4 CC5 CC6 CC7 ©C8 CC9

register $2: 10 10 10 10 10/~20 -20 =20 -20 =20
Program Assume that $2: initial value=10, value after sub=-20

execution

order

(in instructions)
sub$2, 51,83 ’ml}—”—ﬂ”r

1N b 7_ ‘i l

or$13,$6,52 m‘ﬁ—‘ e
add $14, 52,52 "IM}—”-»‘ _SE l—”—twi i—E,g‘

1 sWS15, 100(52) _@— ""%]

and $12, 52, 85

| Detecting the Need to Forward

| Pass register numbers along pipeline
e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
ALU operand register numbers in EX stage
are given by
ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when
EX/MEM.RegisterRd = ID/EX.RegisterRs Fwd from
EX/MEM.RegisterRd = ID/EX.RegisterRt D=
. . Lpipeline reg
MEM/WB.RegisterRd = ID/EX.RegisterRs }

MEM/WB_RegisterRd = ID/EX RegisterRt | Frsfom

pipeline reg
*Recall for R-type: add rd, rs, rt, i.e. ALU uses values of
rs and rt registers for calculation.

| Detecting the Need to Forward

| But only if forwarding instruction will write

to a register!
EX/MEM.RegWrite, MEM/WB.RegWrite

And only if Rd for that instruction is not
$zero

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

24 November 2013

Forwarding Paths

IDEX EX/MEM MEMWE

Registers 4ForwardA

. - '
W ||/ oua | |
E— 17 x memory
¥
orw

bl

EXMEM RogsterRd

l__‘/;m""‘"""g\v—l MEMWE Registeriid

unit

¥ ».]w].*

]

b. With forwarding

Forwarding Conditions

EX hazard
= if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10
« if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

MEM hazard
= if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01
« if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

| Datapath with Forwarding

IDEX
7\ i 1 EXMEM
| Rvel
1¢ "‘/ " B MEMWE
\ . | ove | [
IFID ./ I_. EX ™ ViBl—

“HEnl]

instruction

. X
(AI.U —qﬂ —
Instruction
pc— b
"7 memory !] A | B —
X memory
™ -
e
IF/ID. RegisterRs Rs -
/D Regstert At
TF] Storf AT (u EXMEM Regs
IF/1D RogisterAd Ral TTT1G 0
x —-/F § -
owardng [T | MEMWB RegisterRd

unit

| Load-Use Data Hazard

Time (in clock cycles) -

cc1 cc2 cc3 cC4 cCcs cCe cc? ccs ccs
Program
execution
order
(in instructions)
weeaey [T > Need to stall
N for one cycle
and 54,52, 55 [3Req, |
|
or $8, 52, 86 ! o]
294 $9, 54,52
sn$1, 86,87

| Load-Use Hazard Detection

| Check when using instruction is decoded

in ID stage

ALU operand register numbers in ID stage

are given by
IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when
ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt))
If detected, stall and insert bubble

24 November 2013

| How to Stall the Pipeline

| Force control values in ID/EX register
to 0

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again
1-cycle stall allows MEM to read data for Tw

Can subsequently forward to EX stage

| Stall/Bubble in the Pipeline

Time (in clock cycles)

-
| cc1 cc2 cc3 cc4 cCs cceé cc7 ccs8 Ccce cC1o

| Datapath with Hazard Detection

here

and becomes nop

Stall inserted

and $4, §2, $5 stalled in 1D

or $8, 52, 86 stalled in IF

add $9, $4, §2

ORIF
repeated

——
/" Wazaed VE .
{ JHonaed _ID/EX MemRead

IDEX
W

N\ (;\ ‘“j——‘_siwsm
fecneril » fwe} MEMWE
AT

I 1 Tl

Rogisters

£/10 Hogstorfis
1 smeres
| £110 Rogatorfit
F/1D Rogsteris

— OEX Rogistorft f—

_ll

24 November 2013

| Stalls and Performance

‘ Stalls reduce performance
But are required to get correct results
Compiler can arrange code to avoid
hazards and stalls
Requires knowledge of the pipeline structure

| Branch Hazards

If branch outcome determined in MEM

Tiene (in clock cyches)
cc1

cc2 cc3 cca

cC5 CCE CC7 CCB ccs

::’:; Branch to PC+4+7*4=72
order

{in instrucsons)

44and$12, 52,85
48.0r$13, 95,52
52 00d $14, 82, 82

—

372 W S4.50(57)

. [j “ 4.'#

a4

S

|2

L N
]

=kl

=N

Flush these
instructions
(Set control
values to 0)

Feiphsle

> 5]

| Solution to Control Hazard

‘ Example: branch taken

72:

sub
beq
and
or

add
st

W

$10, $4, $8
$1, $3, 7

$12, $2, $5
$13, $2, $6
$14, $4, $2
$15, $6, $7

$4, 50(87)

Assume additional hardware to determine
outcome of branch in ID stage
Target address adder: PC+4+4*7=72
Register comparator: e.g. if $1=$3

| Example: Branch Taken

and $12,52, 85
I Fush

beq$1,83.7

e]

f
i
1}
i
]

Tazra

«wb$10,84.88 ! velore<t> !

bafore<2>

“__unit
it

| Example: Branch Taken

bedorect>

‘ s ¥ 84 50687) ; Bubble (nop) : beq$1,$3,7 . sbS10... .

24 November 2013

10

