ENG2200 Electric Circuits Chapter 10 Sinusoidal Steady Power Calculation ### **Objectives** - Understanding the difference between instantaneous power, average power reactive power, complex power and how to calculate them. - Understanding power factor and how to calculate it. - Understand the condition for a maximum real power delivered to the load. **Figure 10.1** The black box representation of a circuit used for calculating power. ### Instantaneous Power • $v = V_m cos(\omega t + \theta_v) i = I_m cos(\omega t + \theta_i)$ $$v = V_m \cos(\omega t + \theta_v - \theta_i)$$ $$i = I_m \cos(\omega t)$$ $$p = I_m V_m \cos(\omega t + \theta_v - \theta_i) \cos(\omega t)$$ $$n = \frac{1}{2} I_n V_n \left(\cos(\theta_i - \theta_i) + \cos(2\omega t + \theta_i - \theta_i)\right)$$ $$p = \frac{1}{2} I_m V_m \left\{ \cos(\theta_v - \theta_i) + \cos(2\omega t + \theta_v - \theta_i) \right\}$$ $$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(2\omega t + \theta_v - \theta_i)$$ $$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t - \frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$ ### Average and Reactive Power $$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t - \frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$ $$p = P + P \cos 2\omega t - Q \sin 2\omega t$$ - P is the average power (real power) the power transferred from electric to non-electric (the consumer made use of it) - Q is the reactive power ### Purely Capacitive Circuits $\theta_i = \theta_v + 90^\circ$ $$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t - \frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$ $p = Q \sin 2\omega t$ ### Power Factor - The units for p is Watt (W) - The units for Q is VAR (Volt Ampere Reactive) - θ_i - θ_v power factor angle - PF = $cos(\theta_i \theta_v)$ - Note that $cos(\theta_i \theta_v) = cos(\theta_v \theta_i)$ - PF is defines as lagging (current lags voltage inductive)or leading (currents leads voltage – capacitive) | Appliance | Average
Wattage | Est. kWh
Consumed
Annually ^a | Appliance | Average
Wattage | Est. kWh
Consumed
Annually ^a | |----------------------------|--------------------|---|--|--------------------|---| | Food preparation | | | Health and beauty | | | | Coffeemaker | 1,200 | 140 | Hair dryer | 600 | 25 | | Dishwasher | 1,201 | 165 | Shaver | 15 | 0.5 | | Egg cooker | 516 | 14 | Sunlamp | 279 | 16 | | Frying pan | 1,196 | 100 | Home entertainment | | | | Mixer | 127 | 2 | Radio | 71 | 86 | | Oven, microwave (only) | 1,450 | 190 | Television, color, tube type | 240 | 528 | | Range, with oven | 12,200 | 596 | Solid-state type | 145 | 320 | | Toaster | 1,146 | 39 | Housewares | | | | Laundry | | | Clock | 2 | 17 | | Clothes dryer | 4,856 | 993 | Vacuum cleaner | 630 | 46 | | Washing machine, automatic | 512 | 103 | a) Based on normal usage. When using these figures for projection
such factors as the size of the specific appliance, the geographic
area of use, and individual usage should be taken into consider
tion. Note that the wattages are not additive, since all units are | | | | Water heater | 2,475 | 4,219 | | | | | Quick recovery type | 4,474 | 4,811 | | | | | Comfort conditioning | | | normally not in operation at the sa | ame time. | | | Air conditioner (room) | 860 | 860b | Based on 1000 hours of operation per year. This figure will var
widely depending on the area and the specific size of the unit.
EEI-Pub #76-2, "Air Conditioning Usage Study," for an estima
for your location. | | | | Dehumidifier | 257 | 377 | | | | | Fan (circulating) | 88 | 43 | | | | | Heater (portable) | 1,322 | 176 | Source: Edison Electric Institute. | | | | | Copyright © 20 | 11 Pearson Educat | ion, Inc. publishing as Prentice Hall | | | ## **Figure 10.7** A sinusoidal voltage applied to the terminals of a resistor. $$P = \frac{1}{T} \int_{t_0}^{t_0+T} \frac{V_m^2 \cos^2(\omega t + \theta_v)}{R} dt$$ $$P = \frac{1}{R} \left[\frac{1}{T} \int_{t_0}^{t_0+T} V_m^2 \cos^2(\omega t + \theta_v) dt \right]$$ $$P = \frac{V_{RMS}^2}{R}$$ $$P = I_{RMS}^2 R$$ ### Complex Power • Complex power S = P + JQ $$\frac{Q}{P} = \frac{(V_m I_m / 2)\sin(\theta_v - \theta_i)}{(V_m I_m / 2)\cos(\theta_v - \theta_i)} = \tan(\theta_v - \theta_i)$$ • Apparent Power |S| ### Example An electrical motor operates at 240 V rms. The average power is 8 kW at a lagging power factor of 0.8 ### Power calculation $$S = (V_m I_m / 2) \cos(\theta_v - \theta_i) + j(V_m I_m / 2) \sin(\theta_v - \theta_i)$$ $$S = \frac{V_m I_m}{2} \left[\cos(\theta_v - \theta_i) + j \sin(\theta_v - \theta_i) \right]$$ $$S = \frac{V_m I_m}{2} e^{j(\theta_v - \theta_i)} = \frac{V_m I_m}{2} \angle (\theta_v - \theta_i)$$ $$S = V_{rms} \angle \theta_v \times I_{rme} \angle - \theta_i$$ $$S = V_{rms} I_{rms}^* = \frac{1}{2} V I^*$$ ### Power calculation $$S = V_{rms} I_{rms}^*$$ $$V_{rms} = I_{rms} Z$$ $$S = I_{rms} I_{rms} Z$$ $$S = |I_{rms}|^2 Z$$ $$S = |I_{rms}|^2 (R + jX)$$ $$S = |I_{rms}|^2 R + j |I_{rms}|^2 X$$ # $\begin{array}{c} \text{Example} \\ \bullet \text{ Find } I_L \text{ and } V_L \\ \bullet \text{ Calculate S supplied by the source} \\ \bullet \text{ Calculate S delivered to the load} \\ \bullet \text{ Calculate S delivered to the line} \\ \end{array}$ ## Example Load 1 8 KW leading pf 0.8 Load 2 20 kVA at lagging pf 0.6 v_s - Find the pf of the 2 loads in parallel - ullet Find I_s and the apparent power to supply the load - Assuming 60 Hz, what is the capacitor required to correct the power factor ### Maximum Power Transfer - Assume the source is replaced by its Thevenin equivalent circuits. - V_{TH} , Z_{TH} and a load or Z_L is connected ### **Maximum Power Transfer** $$I = \frac{V_{TH}}{(R_{TH} + R_L) + j(X_{TH} + X_L)}$$ $$P = |I|^2 R_L$$ $$P = \frac{|V_{TH}|^2 R_L}{(R_{TH} + R_L)^2 + (X_{TH} + X_L)^2}$$ $$\frac{\partial P}{\partial R_L} = \frac{\partial P}{\partial X_L} = 0$$ $$X_L = X_{TH}, R_L = \sqrt{R_{TH}^2 + (X_L + X_{TH})^2}$$ $$Z_L = Z_{TH}^*$$ ### Restriction - Sometimes, we have restrictions on the load impedance. - First, set X_L as close as possible to $-X_{TH}$, then calculate R_L as close as possible to $\sqrt{R_{TH}^2+(X_{TH}+X_L)^2}$ - If we can change the magnitude of the load impedance, but not the phase; set the magnitude of the load impedance to the magnitude of Thevenin impedance