ENG2200 Electric Circuits

Chapter 10 Sinusoidal Steady Power Calculation

Objectives

- Understanding the difference between instantaneous power, average power reactive power, complex power and how to calculate them.
- Understanding power factor and how to calculate it.
- Understand the condition for a maximum real power delivered to the load.

Figure 10.1 The black box representation of a circuit used for calculating power.

Instantaneous Power

• $v = V_m cos(\omega t + \theta_v) i = I_m cos(\omega t + \theta_i)$

$$v = V_m \cos(\omega t + \theta_v - \theta_i)$$

$$i = I_m \cos(\omega t)$$

$$p = I_m V_m \cos(\omega t + \theta_v - \theta_i) \cos(\omega t)$$

$$n = \frac{1}{2} I_n V_n \left(\cos(\theta_i - \theta_i) + \cos(2\omega t + \theta_i - \theta_i)\right)$$

$$p = \frac{1}{2} I_m V_m \left\{ \cos(\theta_v - \theta_i) + \cos(2\omega t + \theta_v - \theta_i) \right\}$$

$$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(2\omega t + \theta_v - \theta_i)$$

$$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t - \frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$

Average and Reactive Power

$$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t - \frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$

$$p = P + P \cos 2\omega t - Q \sin 2\omega t$$

- P is the average power (real power) the power transferred from electric to non-electric (the consumer made use of it)
- Q is the reactive power

Purely Capacitive Circuits $\theta_i = \theta_v + 90^\circ$

$$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t - \frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$

 $p = Q \sin 2\omega t$

Power Factor

- The units for p is Watt (W)
- The units for Q is VAR (Volt Ampere Reactive)
- θ_i - θ_v power factor angle
- PF = $cos(\theta_i \theta_v)$
- Note that $cos(\theta_i \theta_v) = cos(\theta_v \theta_i)$
- PF is defines as lagging (current lags voltage inductive)or leading (currents leads voltage – capacitive)

Appliance	Average Wattage	Est. kWh Consumed Annually ^a	Appliance	Average Wattage	Est. kWh Consumed Annually ^a
Food preparation			Health and beauty		
Coffeemaker	1,200	140	Hair dryer	600	25
Dishwasher	1,201	165	Shaver	15	0.5
Egg cooker	516	14	Sunlamp	279	16
Frying pan	1,196	100	Home entertainment		
Mixer	127	2	Radio	71	86
Oven, microwave (only)	1,450	190	Television, color, tube type	240	528
Range, with oven	12,200	596	Solid-state type	145	320
Toaster	1,146	39	Housewares		
Laundry			Clock	2	17
Clothes dryer	4,856	993	Vacuum cleaner	630	46
Washing machine, automatic	512	103	a) Based on normal usage. When using these figures for projection such factors as the size of the specific appliance, the geographic area of use, and individual usage should be taken into consider tion. Note that the wattages are not additive, since all units are		
Water heater	2,475	4,219			
Quick recovery type	4,474	4,811			
Comfort conditioning			normally not in operation at the sa	ame time.	
Air conditioner (room)	860	860b	 Based on 1000 hours of operation per year. This figure will var widely depending on the area and the specific size of the unit. EEI-Pub #76-2, "Air Conditioning Usage Study," for an estima for your location. 		
Dehumidifier	257	377			
Fan (circulating)	88	43			
Heater (portable)	1,322	176	Source: Edison Electric Institute.		
	Copyright © 20	11 Pearson Educat	ion, Inc. publishing as Prentice Hall		

Figure 10.7 A sinusoidal voltage applied to the terminals of a resistor.

$$P = \frac{1}{T} \int_{t_0}^{t_0+T} \frac{V_m^2 \cos^2(\omega t + \theta_v)}{R} dt$$

$$P = \frac{1}{R} \left[\frac{1}{T} \int_{t_0}^{t_0+T} V_m^2 \cos^2(\omega t + \theta_v) dt \right]$$

$$P = \frac{V_{RMS}^2}{R}$$

$$P = I_{RMS}^2 R$$

Complex Power

• Complex power S = P + JQ

$$\frac{Q}{P} = \frac{(V_m I_m / 2)\sin(\theta_v - \theta_i)}{(V_m I_m / 2)\cos(\theta_v - \theta_i)} = \tan(\theta_v - \theta_i)$$

• Apparent Power |S|

Example

 An electrical motor operates at 240 V rms. The average power is 8 kW at a lagging power factor of 0.8

Power calculation

$$S = (V_m I_m / 2) \cos(\theta_v - \theta_i) + j(V_m I_m / 2) \sin(\theta_v - \theta_i)$$

$$S = \frac{V_m I_m}{2} \left[\cos(\theta_v - \theta_i) + j \sin(\theta_v - \theta_i) \right]$$

$$S = \frac{V_m I_m}{2} e^{j(\theta_v - \theta_i)} = \frac{V_m I_m}{2} \angle (\theta_v - \theta_i)$$

$$S = V_{rms} \angle \theta_v \times I_{rme} \angle - \theta_i$$

$$S = V_{rms} I_{rms}^* = \frac{1}{2} V I^*$$

Power calculation

$$S = V_{rms} I_{rms}^*$$

$$V_{rms} = I_{rms} Z$$

$$S = I_{rms} I_{rms} Z$$

$$S = |I_{rms}|^2 Z$$

$$S = |I_{rms}|^2 (R + jX)$$

$$S = |I_{rms}|^2 R + j |I_{rms}|^2 X$$

$\begin{array}{c} \text{Example} \\ \bullet \text{ Find } I_L \text{ and } V_L \\ \bullet \text{ Calculate S supplied by the source} \\ \bullet \text{ Calculate S delivered to the load} \\ \bullet \text{ Calculate S delivered to the line} \\ \end{array}$

Example Load 1 8 KW leading pf 0.8 Load 2 20 kVA at lagging pf 0.6 v_s v_s

- Find the pf of the 2 loads in parallel
- ullet Find I_s and the apparent power to supply the load
- Assuming 60 Hz, what is the capacitor required to correct the power factor

Maximum Power Transfer

- Assume the source is replaced by its Thevenin equivalent circuits.
- V_{TH} , Z_{TH} and a load or Z_L is connected

Maximum Power Transfer

$$I = \frac{V_{TH}}{(R_{TH} + R_L) + j(X_{TH} + X_L)}$$

$$P = |I|^2 R_L$$

$$P = \frac{|V_{TH}|^2 R_L}{(R_{TH} + R_L)^2 + (X_{TH} + X_L)^2}$$

$$\frac{\partial P}{\partial R_L} = \frac{\partial P}{\partial X_L} = 0$$

$$X_L = X_{TH}, R_L = \sqrt{R_{TH}^2 + (X_L + X_{TH})^2}$$

$$Z_L = Z_{TH}^*$$

Restriction

- Sometimes, we have restrictions on the load impedance.
- First, set X_L as close as possible to $-X_{TH}$, then calculate R_L as close as possible to $\sqrt{R_{TH}^2+(X_{TH}+X_L)^2}$
- If we can change the magnitude of the load impedance, but not the phase; set the magnitude of the load impedance to the magnitude of Thevenin impedance

