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ABSTRACT
This paper considers Rigel, a programmable accelerator
architecture for a broad class of data- and task-parallel
computation. Rigel comprises 1000+ hierarchically-or-
ganized cores that use a fine-grained, dynamically sched-
uled single-program, multiple-data (SPMD) execution
model. Rigel’s low-level programming interface adopts
a single global address space model where parallel work
is expressed in a task-centric, bulk-synchronized manner
using minimal hardware support. Compared to existing
accelerators, which contain domain-specific hardware,
specialized memories, and/or restrictive programming
models, Rigel is more flexible and provides a straight-
forward target for a broader set of applications.

We perform a design analysis of Rigel to quantify the
compute density and power efficiency of our initial de-
sign. We find that Rigel can achieve a density of over
8 single-precision GFLOPS

mm2 in 45nm, which is compa-
rable to high-end GPUs scaled to 45nm. We perform
experimental analysis on several applications ported to
the Rigel low-level programming interface. We examine
scalability issues related to work distribution, synchro-
nization, and load-balancing for 1000-core accelerators
using software techniques and minimal specialized hard-
ware support. We find that while it is important to
support fast task distribution and barrier operations,
these operations can be implemented without special-
ized hardware using flexible hardware primitives.

1. INTRODUCTION
An accelerator is a hardware entity designed to pro-

vide advantages for a specific class of applications. Ac-
celerators exploit characteristics of the target domain to
deliver some combination of higher performance, lower
power, and lower unit cost compared to general-purpose
processors. Depending on the domain, accelerators uti-
lize architectural features such as stream-based data
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paths, vector processing, exotic memory systems, and
special-purpose functional units tailored to the compu-
tation and communication patterns of target workloads.

Domains including 3D graphics, audio, image, and
video processing find fixed-function logic beneficial be-
cause it can offer significant power, area, and through-
put advantages over programmable logic [7]; program-
mability is less essential when the workload can be de-
scribed by a small, fixed set of algorithms or encapsu-
lated in an API. Some domains require programmability
for other reasons, such as generality within a single do-
main, lack of standards, diversity of computation, or
complexity of a fixed-function solution.

Recent commercial and academic activities in GPU
computing [20, 21], stream computing [13], and many-
core systems [25] have created an awareness of the ap-
plication possibilities for programmable compute accel-
erators that exploit large degrees of parallelism. Due
to their programmability, such accelerators can be ap-
plied to a variety of domains that require high com-
putational performance provided the domains exhibit
large amounts of data parallelism. For example, applica-
tions such as MRI image reconstruction [28], molecular
dynamics simulation [27], and protein folding [5] have
demonstrated 10x or greater acceleration over conven-
tional high-end multi-core CPUs using GPU computing.

Accelerators are architected to maximize throughput,
or operations

sec
, while their general-purpose counterparts

are designed to minimize latency, or sec
operation

. Accel-
erators rely less on latency-based optimizations such
as caching, high-frequency operation, and speculation
to achieve high performance. Accelerators are able to
achieve an order of magnitude higher throughput/area
and throughput/watt compared to CPUs by limiting
programmability, supporting specific parallelism mod-
els, and implementing special-purpose memory hierar-
chies and functional units. While restricting the pro-
gramming model yields high performance for data-paral-
lel applications that have regular computation and mem-
ory access patterns, it presents a difficult target for ap-
plications that are less regular. GPUs, for example,
achieve high compute density with specialized memories
and data paths optimized for processing vectors with
hundreds or thousands of elements. GPUs thus require
the programmer to manage the memory hierarchy and
minimize control flow divergence within groups of par-
allel threads in order to obtain high performance. Gen-



erally speaking, existing compute accelerators provide
higher throughput than CPUs via architectural choices
that often compromise the programming model.

In this paper we provide a rationale, design overview,
and early evaluation of Rigel, an architecture and pro-
gramming interface for a 1000+ core fine-grained par-
allel accelerator. The Rigel design strikes a balance be-
tween performance and programmability by adopting
programming interface elements found in conventional
general-purpose processor interfaces and adapting them
for high-throughput execution. We demonstrate that
compromises in development of the programming inter-
face can be made in a principled manner so that the end
product provides high compute density, scalability, and
high performance for a broad class of applications, while
maintaining a general-purpose programming model that
programmers are accustomed to.

In Section 2, we provide a top-down motivation for the
Rigel architecture by deriving a set of elements that we
identify as requirements for the low-level programming
interface to Rigel. We derive these elements based on
experimental observations we have made in the design
and development of the Rigel architecture and software
targeting it, on anecdotal experience writing codes for
other compute accelerators, and on constraints placed
on the architecture by physical design.

In Section 3, we describe the microarchitectural ex-
ecution model for Rigel. We discuss the hierarchical
core and cluster architecture and provide an estimate of
the compute throughput and power based on the map-
ping of a 1024-core Rigel design onto 45nm technology.
Our analysis is based on area estimates derived from
synthesis of an early RTL implementation using com-
mercial standard cell libraries, IP blocks, and a mem-
ory compiler. We also describe the memory model and
the cache hierarchy, support for coherence, and moti-
vate the operations supported by the Rigel instruction
set architecture (ISA) to provide fast synchronization,
globally coherent and locally coherent memory accesses,
and locality management.

In Section 4, we describe the implementation of the
low-level programming interface for Rigel, which we re-
fer to as the Rigel Task Model. The low-level program-
ming interface supports enqueing of work into queues,
which are resident in memory, that dynamically dis-
tribute units of work across the chip.

In Section 5, we provide experimental studies of a
diverse set of computation kernels extracted from ap-
plications that require high performance. We show the
performance and scalability of these codes on simulated
Rigel configurations and evaluate the utility of hard-
ware primitives for our design. We demonstrate that
with a modest amount of specialized hardware for cer-
tain elements, we can support a dynamic task-parallel
programming model that is both flexible and efficient.

2. MOTIVATION AND OBJECTIVES
In this section, we provide a top-down motivation of

the Rigel programming interface which includes the set
of functionality to be supported by the architecture and
low-level software of a programmable compute accel-
erator. Programmable accelerators span a wide spec-
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Figure 1: Software stack for accelerator architec-
tures. API: Application-level Programming In-
terface, LPI: Low-level Programming Interface,
ISA: Instruction Set Architecture.

trum of possible architectural models. At one end of
the spectrum are FPGAs, which can provide extremely
high compute density and fine-grained configurability
at the cost of a very low-level native application pro-
gramming interface (API). The gate-level orientation
of the FPGA interface, i.e., netlist, creates a large se-
mantic gap between traditional programming languages,
such as C or Java, and the low-level programming in-
terface (LPI). The semantic gap requires that the pro-
grammer make algorithmic transformations to facilitate
mapping or bear the loss of efficiency in the translation
and often, both. The other end of the spectrum is rep-
resented by hardware accelerators and off-load engines
tightly-coupled to general-purpose processors. Exam-
ples include TCP/IP and video codec accelerators in-
corporated into systems-on-a-chip. Here the LPI is an
extended version of the traditional CPU LPI, i.e., the
ISA, and thus makes an easier target for programmers
and programming tools.

Akin to an instruction set architecture, the LPI is the
interface between the applications development environ-
ment and the underlying software/hardware system of
the accelerator. The LPI subsumes the ISA: as with any
uniprocessor interface, the accelerator interface needs to
provide a suitable abstraction for memory, operations,
and data types. Given that programmable accelerators
provide their performance through large-scale parallel
execution, the LPI also needs to include primitive op-
erations for expressing and managing parallelism. The
accelerator LPI needs to be implemented in a scalable
and efficient manner using a combination of hardware
and low-level system software.

What is desirable from a software development point
of view is a programmable accelerator with an LPI that
is a relatively small departure from a conventional pro-
gramming interface. The LPI should also provide an ef-
fective way to exploit the accelerator’s compute through-



put. In this section, we motivate the tradeoffs made in
Rigel between generality in the LPI and accelerator per-
formance. To that end, we describe the elements that
we identify as necessary for supporting these objectives.
The elements described include: the execution model,
the memory model, work distribution, synchronization,
and locality management.

2.1 Element 1: Execution Model
The execution model is the mapping of the task to be

performed, specified by the application binary, to the
functional units of the processor. The choice of execu-
tion model is ultimately driven by characteristics of the
application domain and its development environment.
The overarching goal for accelerators is for the execu-
tion model to be powerful enough to efficiently support
common concurrency patterns, yet be simple enough
for an implementation to achieve high compute density.
The execution model encompasses the instruction set,
including its level of abstraction and use of specialized
instructions, static versus dynamic instruction-level par-
allelism, e.g., VLIW versus out-of-order execution, and
SIMD execution versus MIMD.

The goal for Rigel is to develop a general-purpose ex-
ecution model suitable for compact silicon implemen-
tation. The choice of the SPMD execution model is
backed by previous studies and experience that shows
that the SIMD model imposes undue optimization costs
for many irregular applications. Mahesri et al. [17] show
that even considering the area benefit of SIMD, some
parallel applications scale poorly on long vector archi-
tectures, reducing the effective compute density of the
accelerator.

2.2 Element 2: Memory Model
The design of a memory model for a parallel pro-

grammable system involves a choice of memory hierar-
chy, including software-managed memories such as those
found in the Cell Processor [10] or multiple specialized
address spaces found in GPUs [16], as well as choices
regarding explicit versus implicit interprocessor commu-
nication and allowable memory orderings. Tradeoffs be-
tween these choices are hard to quantify, but it is under-
stood that one can generally reduce hardware complex-
ity, thus increasing compute throughput, by choosing
simpler, software-controlled mechanisms, albeit at ad-
ditional complexity in software development.

2.3 Element 3: Work Distribution
When an application reaches a section of code suit-

able for parallel acceleration, work is systematically dis-
tributed to available chip resources, ideally in a fashion
that maximizes the throughput of the accelerator. With
Rigel, we adopt a task-based work distribution model
where parallel regions are divided into parallel tasks
by the programmer, and the underlying LPI provides
mechanisms for distributing tasks across the parallel re-
sources at runtime in a fashion that minimizes overhead.
Such an approach is more amenable to dynamic and ir-
regular parallelism than approaches that are fixed to
parallel loop iterations.

In Section 4 we discuss the actual programmer inter-
face for the Rigel Task Model, an API for enqueing and
dequeuing tasks, supported by a small number of prim-
itives in the underlying LPI. We show in Section 5 that
the Rigel Task Model can support fine-grain tasks at
negligible overhead at the scale of 1000 cores.

2.4 Element 4: Synchronization
Selection and implementation of synchronization prim-

itives abounds in the literature. Blelloch [2] describes
the generality of reduction-based computations. The
implementation of barriers in particular has been ac-
complished with cache coherence mechanisms [18], ex-
plicit hardware support such as the Cray T3E [24], and
more recently, a combination of the two on chip multi-
processors [23]. Using message passing networks to ac-
celerate interprocess communication and synchroniza-
tion was evaluated on the CM-5 [15]. Interprocessor
communication using in-network combining in shared-
memory machines such as in the NYU Ultracomputer [9]
and using fetch-and-φ operations as found in the Illinois
CEDAR computer [8] have also been studied. These de-
signs give relevant examples that influence our work as
we reevaluate the tradeoffs of past designs in the context
of single-chip, 1000+ core, hierarchical accelerators.

The ability to support fine-grained tasks, and thus
a high degree of parallelism, requires low-latency global
synchronization mechanisms. Limiting the scope to data-
and task-parallel computation focuses the support re-
quired for Rigel to two classes of global synchronization:
global barrier support, which is required to synchronize
at the end of a parallel section, and atomic primitive
support, which is useful for supporting shared state,
such as updating a global histogram using the atomic
increment primitive.

2.5 Element 5: Locality Management
Locality management involves the co-location of tasks

onto processing resources with the goal of increased lo-
cal data sharing to reduce the latency and frequency of
communication and synchronization amongst co-located
tasks. Locality management can be performed by a
combination of programmer effort, compiler tools, run-
time systems, and hardware support. In programming
parallel systems, performing locality-based optimization
constitutes a significant portion of the application tun-
ing process. An example of locality management is
blocked dense matrix multiply, in which blocking fac-
tors for parallel iterations increase the utility of shared
caches by maximizing data reuse and implicit prefetch-
ing across threads while amortizing the cost of misses.

Accelerator hardware and programming models also
rely heavily on locality management. Modern GPUs
such as the NVIDIA G80 make use of programmer-
managed local caches and provide implicit barrier se-
mantics, at the warp-level, using SIMD execution [16].
The CUDA programming model allows for the program-
mer to exploit the benefits of shared data using the
shared memories of the GPU, fast synchronization across
warps using __syncthreads primitives, and the implicit
gang scheduling of threads through warps and thread
blocks. Models such as Sequoia [6] and HTA [11] demon-



strate examples of how to manage locality on accelera-
tors such as the Cell and for clusters of workstations.

Memory bandwidth has historically lagged compute
throughput; thus, the memory bandwidth a single chip
can support limits achievable performance [3]. The cost
of communicating across the chip has grown to where it
takes hundreds of cycles to perform cross-chip synchro-
nization or memory operation between two cores [1].
Because they are optimized for compute throughput on
kernels, accelerators tend to have smaller amounts of
on-chip cache per core. The fraction of per-core cache
allocated to each processing element in modern acceler-
ators, which can be on the order of kilobytes [16], is a
fraction of the megabytes per core available on a con-
temporary multicore CPU. The communication latency,
synchronization overheads, and limited per-core caching
are all indicative that the locality management interface
is a critical component of an LPI moving forward.

2.6 Low-level Programming Interface
We conclude this section with an overview of the Rigel

LPI, summarizing the points raised in the earlier sub-
sections. The low-level programming interface to Rigel
supports a simple API for packaging up tasks that are
managed using a work queue model. The individual
tasks are generated by the programmer, who uses the
SPMD execution model and single global address space
memory model in specifying the tasks. It is the respon-
sibility of the work distribution mechanism, the Rigel
Task Model implementation, to collect, schedule, and
orchestrate the execution of these tasks. Execution of
these tasks is based on the prevalent Bulk Synchronous
Parallel (BSP) [31] execution model, which is also the de
facto model for many other accelerator platforms such
as CUDA-based GPUs. With BSP, a parallel section of
tasks is followed by global synchronization, followed by
the next parallel section.

The Rigel LPI supports task queues as a means to
distribute tasks. Global synchronization is provided by
an implicit barrier when all tasks for a given phase of
the computation have completed, forming an intuitive
model for developers. The Rigel LPI also provides a
means to implicitly (at barriers) or explicitly (under
software control) make updates to shared state globally
visible before entering a barrier to provide a coherent
view of memory to programmers.

Locality management at the LPI is provided via a
combination of mechanisms to co-locate groups of tasks
to clusters of cores on chip and to manage the cache
hierarchy. Much of the locality management is pro-
vided implicitly by hardware-managed caches that ex-
ploit temporal and spatial locality, as with a typical
CPU. A programmer can tune the effectiveness of these
implicit structures through co-location of tasks to in-
crease reuse of shared data. To that end, the Rigel LPI
supports grouping of tasks that have similar data access
streams, thus increasing the effectiveness of local caches
for co-located tasks. Similarly, tasks that require local
synchronization can be co-located onto the same cluster
of cores, thus synchronizing through the local caches
with less overhead than with global synchronization.
To provide explicit control when necessary, the Rigel

Figure 2: Diagram of the Rigel processor.

LPI supports cache management instructions, explicit
software-controlled flushes, memory operation that by-
pass local caches, and prefetch instructions for explicit
control for performance-minded programmers to extract
higher performance from the accelerator when desired.

With the LPI for Rigel, we choose to present appli-
cation software a general-purpose memory model typ-
ical of multi-core CPUs: a single global address space
across the various cores of the accelerator. The address
space can be cached and is presented to the program-
mer in a coherent way; however the actual hardware
does not provide coherence directly. With such a model,
managing the memory hierarchy can be done implicitly
by the software. Interprocessor communication is im-
plicit through memory, reducing the semantic gap be-
tween high-level programming and the LPI. Providing
implicit support for the memory model creates an imple-
mentation burden on the underlying LPI: if the address
space is cached, which is required to conserve memory
bandwidth, then one needs to consider the overheads of
caching and also coherence, discussed with respect to
hardware and software in Sections 3 and 4, respectively.

3. THE RIGEL ARCHITECTURE
The architectural objective of Rigel is to provide high

compute throughput by minimizing per-core area while
still supporting a SPMD parallel model and a conven-
tional memory heirarchy. Density is improved by focus-
ing on the LPI, identifying which elements of the LPI for
Rigel should be supported directly in hardware versus
those that can be supported by low-level software.

A block diagram of Rigel is shown in Figure 2. The
fundamental processing element of Rigel is an area-op-
timized dual-issue in-order processing core. Each core
has a fully-pipelined single-precision floating-point unit,
independent fetch unit, and executes a 32-bit RISC-
like instruction set with 32 general-purpose registers.
Cores are organized as clusters of eight cores attached
to a shared write-back data cache called the cluster
cache. The cores, cluster cache, core-to-cluster-cache
interconnect and the cluster-to-global interconnect logic
comprise a single Rigel cluster. Clusters are connected
and grouped logically into a tile. Clusters within a
tile share resources on a tree-structured interconnect.
Tiles are distributed across the chip and are attached to
global cache banks via a multi-stage crossbar intercon-



nect. The global caches provide buffering for high-band-
width memory controllers and are the point of coherence
for memory.

In this section, we provide a description and an anal-
ysis of the Rigel Architecture. We find that in 45nm
technology, a 320mm2 Rigel chip can have eight GDDR
memory channels, 32 global cache banks (4MB) and
eight tiles of 128 clusters resulting in 1024 cores across
the chip. At a frequency of 1.2 GHz, a peak throughput
of 2.4 TFLOPS is achievable. We show that the peak
performance of the chip is comparable to commercial
accelerators scaled to the 45nm process generation. We
show that the achievable performance for a variety of
accelerator kernels enables Rigel to strike a good bal-
ance between a flexible programming interface and high
compute throughput.

3.1 Caching and Memory Model
Cores comprising the Rigel processor share a single

address space. Cores within a cluster share the same
components of the memory hierarchy (except register
files) and are thus coherent by design. Cores in separate
clusters, in contrast, have different cluster caches, and
thus require some coherence protocol if the memory hi-
erarchy is to be kept consistent. We describe the mech-
anism for maintaining coherence of the cluster caches
and the primitive low-level operations required for sup-
porting the Rigel memory model.

Rigel cores have access to two classes of memory op-
erations: local and global. Local memory operations
are akin to standard memory operations and are fully
cached by a core’s cluster cache. They constitute the
majority of memory operations and support low latency
and high throughput for data accesses. Values evicted
from the cluster cache are written back to the global
cache, which also services cluster cache misses. The
cluster and global cache are not kept coherent in hard-
ware and are non-inclusive, non-exclusive. Local loads
that miss in both the cluster and global cache are cached
in the global cache to facilitate read sharing and are
brought into the cluster cache of the requesting core.
Local stores are not made visible to the global cache
until an eviction occurs or the data is explicitly flushed
by software. Local operations are used for accessing
read-only data, private data, and data shared intra-
cluster. Per-word dirty bits are used to merge updates
at the global cache and eliminate the performance penal-
ty caused by false sharing and lost updates due to partial
writes to shared cache lines.

Global operations always bypass cluster caches with-
out updating its contents. Global memory operations
on Rigel complete at the global cache which is the point
of full-chip coherence. Memory locations operated on
solely by global memory operations are kept inherently
coherent across the chip. Global memory operations
are used primarily by the low-level software to construct
synchronization mechanisms and enable fine-grained inter-
cluster communication through memory, i.e., they are
used to implement the LPI. The cost of global oper-
ations is high relative to local operations due to the
greater latency of accessing the global caches versus the
local cluster caches. Furthermore, the achievable global
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Figure 3: Area estimates for the Rigel Design

memory throughput is limited by the global cache port
count and on-chip global interconnect bandwidth.

Software must enforce coherence in the scenarios when
inter-cluster read-write sharing exists. This may be
done by co-locating sharers on a single (coherent) clus-
ter, by using global memory accesses for shared data,
or by forcing the writer to explicitly flush shared data
before allowing the reader to access it.

Memory ordering on Rigel is defined separately for lo-
cal and global memory operations. Global memory op-
erations are kept coherent across the chip with respect
to other global memory operations by forcing all global
memory operations to complete at the global caches.
The ordering between local and global operations from
a single core can be enforced by using explicit memory
barrier operations. A memory barrier forces all out-
standing memory operations from a cluster to complete
before allowing any after the memory barrier to begin.

3.2 Coherence and Synchronization
The algorithm used for enforcing cache coherence on

Rigel is not implemented in hardware, but instead ex-
ploits the sharing patterns present in accelerator work-
loads to enforce coherence in software using a form of
lazy write-through at barriers. Mutable data shared
across clusters on Rigel could be kept coherent between
sharers by forcing all memory accesses to be made using
global operations; however the cost of using only global
memory operations is high and strains global network
and cache resources. One of the key motivations for
Rigel is that many accelerator workloads have a low
frequency of inter-core write-shared data between two
consecutive barriers. As an example, Mahesri et al. [17]
demonstrate the relative lack of inter-core shared data
on a set of visual computing workloads similar to what
Rigel targets. Instead, most read-write sharing occurs
across barriers, in the form of write-output data. Rigel
exploits this fact by lazily writing back data prior to bar-
riers, avoiding long-latency global memory operations.

The sharing patterns present in our target workloads
allow Rigel to leverage local caches for storing write-
output data between barriers before lazily making mod-
ifications globally-visible. Lazy updates can be per-
formed as long as coherence actions performed to write-
output data are complete before a barrier is reached.
Rigel enables software management of cache coherence
in two ways. One is by providing instructions for explicit
cluster cache management that include cache flushes
and invalidate operations at the granularity of both the
line and the entire cache. Explicit cluster cache flushes



Architecture Power Perf. Machine

Balance

( W
mm2 ) (GOPS

mm2 ) (GBPSP EAK
GOPSP EAK

)

CellBE .3 1.8 .13

Intel Quad-core .5 .4 .25

NVIDIA GTX280 .3–.4 3.3 .14

ATI R700 .55–.9 6.4 .1

Rigel .3 8 .05

Table 1: Power, area, and performance compari-
son of Rigel to accelerators normalized to 45nm.

update the value at the global cache, but do not modify
nor invalidate copies that may be cached by other clus-
ters. The second is broadcast invalidation and broad-
cast update operations that allow software to implement
data synchronization and wakeup operations that rely
on invalidation or update-based coherence in conven-
tional cache coherent CMP designs; these operations are
discussed further in the evaluation section of the paper.

3.3 Area and Power Estimates
A goal of programmable accelerators is to provide

higher performance compared to a general-purpose so-
lution by maximizing compute density. With an initial
RTL implementation of the Rigel cluster, we provide
an area and power estimate on 45nm technology to un-
derstand the impact of our choices on compute density.
Our estimates are derived from synthesized Verilog and
include SRAM arrays from a memory compiler and IP
components for parts of the processor pipeline. For large
blocks, such as memory controllers and global cache
banks, we use die plot analysis of other 45 nm designs to
approximate the area that these components will con-
sume for Rigel. Figure 3 shows a breakdown of prelimi-
nary area estimates for the Rigel design. Cluster caches
are 64kB each (for a total of 8MB) and global cache
banks are 128kB each (for a total of 4MB) and are con-
structed from a selection of dual-ported (one-read/one-
write) SRAM arrays chosen for optimal area. Cluster
logic includes estimates for core area, including FPU,
and the cluster cache controller. Other logic includes in-
terconnect switches as well as memory and global cache
controller logic. Register files have four read and two
write ports and are synthesized from latches. Our ini-
tial area estimate totals 266mm2. For a more conser-
vative estimate, we include a 20% charge for additional
area overheads. The resulting area of 320mm2 is quite
feasible for current process technologies.

Typical power consumption of the design with real-
istic activity factors for all components at 1.2GHz is
expected to be in the range of 70–99W. Our estimate is
based on power consumption data for compiled SRAMs,
post-synthesis power reports for logic, leakage, and clock
tree of core and cluster components, and estimates for
interconnect and I/O pin power. A 20% charge for ad-
ditional power overhead is included. Peak power con-
sumption beyond 100W is possible for Rigel. The figure
is similar to contemporary GPUs, such as the GTX8800
from NVIDIA which has a stated power consumption of
150W [16], and CPUs, such as Intel’s 8-core Xeon pro-
cessor which can reach 130W [22].

In Table 1, we compare our initial area and power
estimates to those of comparable accelerators scaled to
match the process generation of the Rigel implementa-
tion. The numbers provided are meant to lend context
for our estimates and are subject to parameter variation,
such as clock speed. Early estimates indicate that a
Rigel design could potentially surpass accelerators such
as GPUs in compute density; this is partially due to the
lack of specialized graphics hardware. GPUs also spend
a substantial portion of their area budget on graphics-
related hardware for texture, framebuffer, and raster
operations that take considerable area, but do not im-
prove the performance of general-purpose computation.
GPUs also incorporate high levels of multi-threading
which increase utilization, but reduce peak compute
throughput. Rigel recovers this area and puts it towards
additional compute and cache resources. As expected,
Rigel and other accelerators hold a significant advantage
in compute density compared to general-purpose CPUs,
such as those from Intel [22] and Sun [30].

The Rigel core area estimates are comparable to those
of other simple core designs. Tensilica cores with 8kB
SRAM scaled to 45nm cost .06-.18 mm2 [29] , approxi-
mating a cluster area of .5 to 1.6 mm2. Higher perfor-
mance MIPS softcores consume .42mm2 scaled to 45nm,
and if used to build 8-core clusters, would approximately
occupy 3.5mm2 [19]. Neither match the features of a
Rigel core exactly, but both contain additional features
that are not required such as debug ports, MMU com-
ponents, and peripheral bus interfaces. Frequency and
area depend on many parameters, including enabled fea-
tures, synthesis, process, and cell libraries.

4. RIGEL PROGRAMMING MODEL
In this section we describe the task-based API used

by programmers, the Rigel Task Model, and how it maps
to the Rigel architecture.

4.1 The Rigel Task Model API
The software API of the Rigel Task Model is how

the applications developer accesses the LPI. The API is
composed of basic operations for (1) managing the re-
sources of queues located in memory, (2) inserting and
removing units of work at those queues, and (3) intrin-
sics, such as atomic primitives, that are supported by
the LPI. Applications are written for the Rigel Task
Model using a SPMD/MIMD execution paradigm where
all cores share a single address space and application bi-
nary, but arbitrary control flow among cores is allowed.

The programmer defines parallel work units, which
we refer to as tasks, that are inserted and removed from
queues between barrier operations. We refer to the pe-
riod between two barriers as an interval of computation.
The barriers thus provide a partial ordering of tasks. In
the Rigel Task Model, barriers are used to synchronize
the execution of all cores using a queue. Barriers also
define a point at which all locally-cached non-private
data modified after the last barrier will be made glob-
ally visible using invalidate and flush operations. From
the programmer’s perspective, tasks that are inserted
between two barriers should not be assumed to be or-
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Figure 4: Rigel Task Model execution.

dered and any inter-barrier write-shared data between
barriers must be explicitly managed by the programmer.
Figure 4 shows the actions as they would occur during
an interval.

4.1.1 Queue Management
The Rigel Task Model provides the following set of

basic API calls: TQ_Create, TQ_Enqueue, TQ_Dequeue,
TQ_EnqueueGroup. Each queue has a logical queue ID
associated with it. TQ_Create is called once for each
queue generated in the system. The call to TQ_Create

allocates resources for the queue and makes it available
to all other cores in the system. Once a queue has been
created, any core in the system can enqueue tasks on the
queue or can attempt to dequeue tasks from the queue.
Each basic enqueue and dequeue action operates on a
single task descriptor. The TQ_EnqueueGroup operation
provides a single operation to enqueue a DO-ALL-style
parallel loop similar to the loop operation available in
Kumar et al. [14]. We extend the model adding the
notion of a task group to encompass locality.

An initialized queue can be in one of four states: full,
tasks-available, empty, and completed. Any initial-
ized task queue without available tasks but without all
cores blocking on dequeue, will be in the empty state.
Attempts to dequeue to an empty queue block. Enqueu-
ing tasks transitions the state of the queue from empty

to tasks-available. When tasks are available, dequeue
operations return tasks without blocking. If cores are
blocking on the task queue during a transition to tasks-

available, newly available tasks are allocated and cores
become unblocked. If the queue exceed its defined size
limit, the queue becomes full and any enqueue opera-
tion returns notifying the core attempting the enqueue
of the queue’s full status.

The completed state is used to provide an implicit
barrier in the Rigel Task Model and requires special
consideration. When all cores participating in an inter-
val have finished executing all tasks, they will all be-
gin blocking on the task queue and the task queue will

transition to the completed state. When the completed
state is reached, a barrier is executed and all cores are
returned a notification that a barrier has been reached.
The semantics of the completed state allow work to be
generated between barriers and work creation is not con-
strained to only occur at the start of an interval. An
example of where this may be useful is in the traversal
of a tree structure where sibling subtrees can be pro-
cessed in parallel, but the number of tasks generated is
not known a priori.

4.1.2 Scheduling and Locality
Each task is tracked by a task descriptor. We define

a task group as a set of tasks that are guaranteed by the
Rigel Task Model to execute on a single Rigel cluster.
The shared cluster cache enables low-cost fine-grained
communication amongst the tasks within a task group;
a task group can be thought of as logically executing on
a coherent eight-processor SMP. The number of tasks in
a task group can be tuned by the programmer. Enforc-
ing concurrent execution of tasks within a task group is
possible using cluster-level barrier operations inserted
by the programmer.

As part of the API, we provide performance-minded
programmers with mechanisms to manage locality and
work allocation. We provide an API call to partition
work statically among all cores and have them execute
tasks in a data-parallel fashion. The goal of the data-
parallel mode is to keep the same API, but to allow
the LPI to take advantage of application characteristics
to reduce task management costs known statically, e.g.,
that an application is highly regular and does not benefit
from dynamic scheduling. Other API calls allow the
programmer to adjust the granularity at which blocks
of tasks are fetched from the various levels of queue. The
hierarchy is otherwise transparent to the programmer.

4.1.3 Atomic Primitives
Atomic primitives are used extensively in the imple-

mentation of the Rigel Task Model runtime where mu-
tual exclusion of accesses to the shared queues must be
maintained. The primitives are also exposed to the pro-
grammer as part of the Rigel Task Model API. The
primitives can be used to implement data structures
that require shared updates during an interval. Opera-
tions for atomic increment, decrement, integer addition,
and exchange are available to the programmer using in-
trinsics in the code. These operations are perfromed at
the global cache and are thus atomic with respect to
other global memory and atomic accesses issued from
all cores across the chip. A global broadcast operation
is provided that allows for one core to update the value
of a word cached in any cluster cache and at the global
cache. The broadcast reduces the traffic requirement for
supporting polling by allowing cores to poll locally at the
cluster cache and receive a new value from the broadcast
when it becomes available thus avoiding the need to use
global memory operations to implement polling. Primi-
tives for load-link and store-conditional are provided by
the cluster cache for implementing low-latency synchro-
nization at the cluster. Cluster-level atomic operations
are not kept coherent across clusters.
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4.1.4 Implementation
The Rigel Task Model is presented to the program-

mer as a monolithic global queue, but is implemented
with the Rigel LPI using hierarchical task queues [4].
The hierarchy of local and global queues reduces con-
tention and latency compared to a single global queue
implementation as well as the load imbalance that would
be a concern if private task queues alone were adopted.
Queues are resident in memory and can be cached in
the global cache when existing in the global task queue
and at the cluster cache when in the local task queue.
Atomic add operations are used to enqueue and dequeue
tasks. Task descriptors are inserted into the global task
queue after being made globally visible, i.e., by either
being flushed to the global cache or by using global
stores to avoid caching in local caches. As an opti-
mization, the programmer can specify local enqueing
for reduced task overhead at the cost of potential load
imbalance. The barrier mechanism is integrated as part
of the task queue system by using the same multi-level
hierarchy used by the queues to track completion status.

While task queues in general are not novel, the imple-
mentation of task queues on Rigel presents a relevant
case study in the co-optimization of hardware mecha-
nisms (broadcast and atomic primitives), a runtime sys-
tem, and software techniques for applications targeting
SPMD hierarchical accelerators. The value of atomic
operations and the broadcast mechanism are evaluated
in Section 5 to demonstrate the benefit of our minimal-
ist approach to hardware support for task management
on an accelerator such as Rigel.

5. EVALUATION AND ANALYSIS
In this section we evaluate design choices made for the

Rigel architecture using a set of accelerator benchmarks
representing a variety of compute, communication, and
memory access patterns. We demonstrate scaling up
to 1024 cores using software-managed work distribution
and synchronization while maintaining a conventional
programming model. In particular, we find that our
task-based work queueing system can support dequeue
and enqueue operations in tens to a few hundred cy-
cles on average, but the scalability of most workloads

is robust with increased task overhead and that mini-
mizing these overheads does not always represent the
best tradeoff for performance. We demonstrate that
atomic operations that complete at the global caches,
as opposed to at the cores, and a broadcast notification
mechanism for supporting fast barriers to be useful in
supporting fine-grained irregular applications.

5.1 Benchmark Overview and Scalability
Optimized versions of benchmarks targeting the Rigel

Task Model API are used throughout our evaluation.
The list of benchmarks includes: A conjugate gradient
linear solver (cg) performed on sparse matrices from the
Harwell-Boeing collection of dimension 4884 (147,631
non-zero elements) representing a real-word physical sys-
tem; GJK collision detection (gjk) for a scene consisting
of 512 randomly-generated convex polyhedra of varying
size and complexity; An iterative 2D stencil computa-
tion that performs a heat transfer simulation (heat) on
a 4096x512 element grid; A computer vision kernel, k-
means clustering (kmeans) performed on 16k element
18-dimensional data sets; A 1024x1024 blocked dense-
matrix multiply (dmm); And a medical image reconstruc-
tion kernel (mri) derived from the work of Stone et al. [28].
All simulations are executed for one to five billion in-
structions after initialization. The results are from an
execution-driven timing model of the design described in
Section 3, including the network, caches, memory con-
trollers, and a GDDR4 DRAM model.

Figure 5 shows the scaling of the Rigel benchmark
suite for 128- to 1024-core configurations relative to ex-
ecution on an optimistically configured single cluster of
eight cores. The baseline has global cache and memory
bandwidth equal to that of a full tile of 128 cores. Oth-
erwise, global cache and memory bandwidth scale with
the number of tiles. A cluster of eight cores can achieve
roughly 16 GFLOPS (peak) at 1.2 GHz in 2 mm2 at 45
nm. For comparison, a single core from a contemporary
quad-core Intel i7 processor [12] can support 25 single-
precision GFLOPS (peak) using 4-wide SIMD units at
roughly ten times the area and three times the clock fre-
quency. Therefore, our scalability numbers demonstrate
Rigel’s ability to perform one to two orders of magni-
tude better than a conventional multicore with similar
power and area constraints.

Figure 6 displays a histogram of global cache traf-
fic, i.e., requests from the clusters. The figures show
that each benchmark makes use of the caching system
in a distinct manner. Visualizing global cache traffic
patterns helps in understanding the tradeoffs in our de-
sign and has suggested optimization techniques. As an
example, the figure for gjk, showing one interval, ini-
tially dominated by loading data becoming limited by
global task queue interactions. Using task prefetching
from the global queue and a mechanism for enqueing
directly into the local queue, we were able to achieve
scaling and avoid the pathology demonstrated in the fig-
ure. Due to space limitations, we select a subset of our
workloads, cg, kmeans, and dmm, that exemplify patterns
found across all of our benchmarks and explain how they
map to the Rigel architecture to illustrate Rigel as a
programmable accelerator.
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Figure 6: Three global cache traffic patterns from: kmeans, where atomic operations dominate the
global cache traffic due to a histogram optimization; cg, where writebacks of shared data dominate,
but do not saturate the global cache bandwidth; and gjk, showing high levels of load balancing resulting
in global task queue actions dominating global cache traffic. With additional tuning we have found
most of this overhead can be removed.

5.1.1 Conjugate Gradient Linear Solver
The cg benchmark has an interesting memory access

pattern for accelerator platforms due to frequent global
barriers and reduction operations. The algorithm com-
prises a sparse-matrix vector multiply (SMVM), consti-
tuting 85% of the sequential execution time, followed by
simple vector-vector scaled additions and dot products
separated by barriers.

Each element in the large, read-only data array is
accessed only once per iteration while performing the
SMVM. Although the matrix is accessed in a streaming
fashion, the vectors that are generated each iteration
can be shared by cores within a cluster to amortize read
latency and increase effective cluster cache size through
sharing. The ability to efficiently exchange the vector
modifications each iteration through the global cache,
shown in Figure 6 by the periodic writebacks from each
iteration, significant performance benefit. However, the
vectors conflict with the read-once sparse matrix in the
global cache. We make use of a prefetch operation in
the Rigel ISA that allows for data to bypass the global
cache thus avoiding pollution for touch-once data not
shared across clusters.

We find that after managing locality and maximizing
memory bandwidth utilization, the ultra-fine granular-
ity of tasks in cg and the small number of tasks between
barriers stresses the LPI’s ability to not only dequeue
tasks, but also enqueue work fast enough to keep up
with the rate at which tasks complete, and can limit
scalability. We find that trading off a small degree of
load imbalance for coarser task granularity in cg reduces
the rate of task management operations translating into
reduced contention and better enqueue efficiency (fewer
operations enqueue a greater amount of work) resulting
in higher achieved performance for the benchmark; A
similar pattern is found in gjk.

5.1.2 K-Means Clustering
The kmeans benchmark iteratively converges on the

set of k bins in an n-dimensional space that minimize
the aggregate error in the selection of mapping N points
in n-dimensions to the k bins. The distributed reduc-
tion operation of kmeans exploits our ability to perform
efficient atomic operations at the global caches, inter-
leaving updates to the shared histograms with other

compute, instead of performing a global reduction at
the end of the parallel section. The kmeans benchmark
makes heavy use of atomic operations to remove a re-
duction at the end of each parallel region and the pat-
tern is clear from Figure 6. However, due to the high
arithmetic intensity of the benchmark and high reuse in
cluster caches, the increased global cache traffic does not
adversely impact performance. In fact, even with atom-
ics dominating global cache traffic, the tradeoff provides
better performance at 1024 cores compared to our ex-
periments with using a global reduction at the end of an
interval instead of atomics at the end of each task. The
benchmark also makes use of software prefetching for
object data and the position of the current set of bins
used for computing the next set. The set of bins is also
read-shared by the tasks that execute on a single cluster.
Grouping of multiple points to execute as part of a task
group, i.e., mapped to a single cluster, and combined
to make tasks comprising multiple points is found to be
beneficial from a cache management standpoint as well.

5.1.3 Dense-Matrix Multiply
The dense-matrix multiply benchmark (dmm) has a

very regular data-access pattern with high arithmetic
intensity. The value of dense matrix multiply is that
it demonstrates Rigel’s ability to maximize its effective
use of prefetching, cache management through blocking,
read sharing at the cluster cache using task group forma-
tion, staging of data in the global cache using a combi-
nation of prefetching and added synchronization. Most
importantly, dmm shows that we can support applica-
tions amenable to static partitioning efficiently, though
do not make use of the dynamic mechanisms provided
by the LPI.

5.2 Rigel Task Model Evaluation
The cost of dequeue and enqueue operations limits

the minimum exploitable task length. Similarly, bar-
rier operations can be viewed as an overhead limiting
the minimum amount of parallel work that can be done
between two global synchronization points. The load
imbalance represents the ability of the LPI implemen-
tation, in both hardware and software, to compensate
for task length variability and the impact of dynamic
system behavior.
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Figure 7: The per-task cost of task execution, barriers, enqueue, and dequeue operation are plotted
as a percentage of the average task length in cycles.

Task Length (1000 Cycles)
Benchmark Mean Max Min

dmm 24 511 4.4
heat 124 454 54

kmeans 98 173 41
mri 1607 1664 1585
gjk 23 58 2.6
cg 17 41 0.38

Table 2: Task length statistics (1024 cores)

Task length is a parameter that can be adjusted by
the programmer. The choice of task granularity is con-
strained from below by the minimum size parallel unit
of work inherently supported by the application and
the marginal cost of generating, scheduling, and syn-
chronizing a task. The choice to increase task length is
constrained from above by load imbalance brought on
by task length variance and by the lack of parallelism
should too few tasks be available to saturate the proces-
sor. Table 2 shows statistics related to task length used
for our study. The task lengths are generally tens to
hundreds of thousands of cycles across all benchmarks,
but can vary greatly from hundreds to millions of cycles
(even within a single benchmark). The variety of task
lengths supports the choice of dynamic task allocation
and MIMD execution model. The ability to support
1000-way parallelism with tasks that are thousands of
cycles supports our choice of software task management
with limited hardware support.

The high average task lengths, as is found in mri and
heat, lead to infrequent barriers and increased barrier
wake up costs due to the code and data responsible for
exiting the barrier and beginning the next interval of-
ten being evicted from the caches during task execu-
tion. The length of tasks relative to these costs makes
the effect on overall performance minimal. We measure
barrier wake up as the number of cycles, on average,
between the last core entering a barrier until the other
cores begin executing after the barrier. Load imbalance
is measured as the average number of cycles from when
one core performs a dequeue operation with the task
queue being empty until the last core enters the barrier.
The cost of load imbalance and barrier synchronization

for each core during one interval of computation are
plotted in Figure 7 as a fraction of a task since the fixed
cost is not borne by each marginal task.

Enqueue and dequeue overheads are a function of pa-
rameters chosen by the runtime and/or the programmer
for the Rigel Task Model. The minimum per-task cost
of an enqueue and a dequeue can be as little as 44 and
66 cycles, respectively, while the actual overheads that
we find provide the best tradeoff for performance and
load balancing are generally higher by a factor of three
to ten. Nonetheless, as Figure 7 shows, the overhead of
barriers, enqueue, and dequeue as a percentage of task
length is not more than a few percent for all runs other
than cg. The cg benchmark is sensitive to task man-
agement overhead due to the short and irregular nature
of its tasks, limiting the enqueing cores’ ability to dis-
tribute work as fast as the dequeuing cores can consume
it. The contention for cluster-level task queue locks and
access to the cluster caches exacerbates the problem.

Figure 7 also shows that without explicit support for
global synchronization, Rigel is able to achieve low load
imbalance and implement efficient barriers in software.
Our experience tuning both the runtime and bench-
marks has demonstrated that minimizing the absolute
costs of task overheads often leads to lower overall per-
formance. The lower performance is due to load imbal-
ance and the inability of the runtime to perform task
queue optimizations such as pre-loading of tasks into
the local task queues and intelligent prefetching from
the global task queues.

5.3 Accelerator Primitives
We examine two mechanisms provided by the Rigel

architecture to support the LPI described in Section 2.
In our work porting applications to Rigel, it has become
apparent that components of the LPI can benefit greatly
from hardware acceleration in the form of primitives
exposed to low-level systems programmers via the ISA.
Figure 8 shows the use of two such operations that are
particularly helpful in supporting the task distribution
mechanism and synchronization elements of the LPI:
broadcast update and global atomic operations.
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Figure 8: Execution time relative to using both broadcast-update instructions for barriers and oper-
ations that complete at the global cache (baseline).

The broadcast update operation replaces a function
served by invalidate messages in multi-processors with
hardware cache coherence. The bcast.update instruc-
tion reduces the contention for the barrier completion
flag. Without a broadcast mechanism, the value of the
flag would be polled at the global cache by the cores al-
ready in the barrier. When the last core enters the bar-
rier, it flips the sense of the global barrier thus allowing
other cores polling on that value to proceed past the bar-
rier. On Rigel, instead of writing the value with a global
store, the last-entering core issues a bcast.update with
the new global sense. The data is sent from the core
to the global cache where it is updated and then a no-
tification message is sent to all clusters via the cache
interconnect. Each router in the interconnect replicates
the update notification message to all cores it is con-
nected to. The broadcast operations may also be used
to provide fine-grained sharing between barriers and to
support other operations served by invalidate messages
in conventional coherence schemes; however, such stud-
ies are left to future work.

We find that atomic operations, integer accumulate
in particular, are useful in implementing efficient algo-
rithms for work allocation and scheduling, histogram-
ming, reductions, barriers, and other synchronization
mechanisms. The exposed serial latency is minimized
by executing atomic operatations at the global caches
instead of at the core. The overhead is a small amount
of area for functional units and some added complexity
at each global cache bank. A conventional cache coher-
ent design would require cores issuing atomic operations
to obtain ownership of a line, then to perform the mod-
ification, and if there are other cores waiting to access
that line, the line must then be sent to another core.

Coherence is used to guarantee atomicity in conven-
tional multiprocessors at the cost of exposing the la-
tency of highly-contended values across the chip. Rigel
guarantees atomicity by executing the operation at the
point of coherence (the global cache on Rigel). Thus
multiple read-modify-write operations can be pipelined
through the network instead of being serialized by cache
coherence state transitions. Atomics that execute at the
global cache also reduce the number of network mes-
sages for each atomic operation issued, thus minimizing
the latency experienced by a single core and the con-
tention at the global caches and interconnect.

Figure 8 shows the results of our study for bench-

marks most affected by the broadcasts and global atom-
ics; results are normalized to the baseline configura-
tion where both are enabled. The relative benefit of
broadcast updates is evaluated by replacing them with
polling loops that use global loads/stores to perform
the polling/updates at the global cache. Performance
gained from implementing atomics that execute at the
global cache is shown by modifying the implementation
of all atomics to lock values on read from the global
cache, perform the update locally at the core, and then
store that value back to the global cache and unlock the
value. The implementation is similar to atomic opera-
tions implemented with full-empty bits on the HEP mul-
tiprocessor [26]. For coarse-grained data-parallel work-
loads with few reductions and long intervals between
barriers, less than 1% performance difference is seen and
those results are omitted for brevity.

For kmeans we find that without fast atomic support,
performance is degraded by as much as 40% with the
difference from the baseline being more pronounced as
the number of cores scales. cg is most affected by the
primitives as it does a large number of barriers and has
a large number of interactions with global state due to
the finer granularity of tasks in the benchmark. The gjk
benchmark provides a counter intuitive result: with ac-
celerator hardware lower performance is observed. The
reduced performance is due to the flood of messages gen-
erated by the broadcast operations and the stampeding-
herd effect a broadcast wakeup can generate. The lat-
ter is an interesting effect observed in some situations
where all cores begin requesting the same data or code
from the global cache in a short period of time. The
correlation of accesses results in heavily loaded areas of
the cache interconnect, global cache, and memory con-
troller buffers. Staggering accesses either from the nat-
ural throttling effects of polling on the global caches or
from programmer intervention, tend to spread out the
traffic yielding higher performance.

6. CONCLUSION
In this paper we motivate, describe, and evaluate a

programmable accelerator architecture targeting a broad
class of data- and task-parallel computation. The Rigel
Architecture consists of 1000+ hierarchically-organized
cores that use a fine-grained single-program, multiple-
data (SPMD) execution model. The concept of a low-



level programming model is described in the context of
a set of elements that we have found to be requirements
for supporting scalable programmable accelerator ap-
plications on our architecture. These elements include
the execution, memory, and work distribution models
as well as synchronization and locality management.

Our initial findings and evaluation show that, ulti-
mately, Rigel can achieve a compute density of over
8 single-precision GFLOPS

mm2 in 45nm with a more flex-
ible programming interface compared to conventional
accelerators. Rigel thus offers promise for higher com-
putational efficiency on a broader class of applications.
In support of scalability beyond 1000 cores, we demon-
strate experimental results and analysis of several ap-
plications ported to the low-level programming interface
for Rigel, the Rigel Task Model. We examine scalability
issues with work distribution, locality management, syn-
chronization, load-balancing, and other overheads asso-
ciated with massively parallel execution. We find that it
is important to support fast task enqueue and dequeue
operations and barriers, and both can be implemented
with a minimalist approach to specialized hardware.
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