CSE4214 Digital Communications

Signals and Spectra

Activity 1

Plot the CT signal $x(t)=\sin \left(5 \pi t+30^{\circ}\right)$. Discretize the CT signal with an uniform sampling period of $T_{s}=0.25 \mathrm{~s}$. Sketch the resulting waveforms.

Plot

Activity 2

For the following sinusoidal signals
(a) $x[k]=\sin (5 \pi k)$
(b) $y[k]=\cos (k \pi / 3)$

Determine the fundamental period K_{0} of the DT signals.

Determine fundamental period

(a) $x[k]=\sin (5 \pi k)=\sin \left(5 \pi\left(k+K_{0}\right)\right)$
$5 \pi K_{0}=2 \pi \rightarrow K_{0}=2 / 5$
(b) $y[k]=\cos (k \pi / 3)=\cos \left(\left(\mathrm{k}+\mathrm{K}_{0}\right) \pi / 3\right)$
$\pi \mathrm{K}_{0} / 3=2 \pi \rightarrow K_{0}=6$

Activity 3

For the signal
$Y=1-|x-1|$
do the following:
(a) sketch the signal
(b) evaluate the odd part of the signal
(c) evaluate the even part of the signal.

Plot of $\mathrm{Y}=1-|\mathrm{x}-1|$

Even part

Odd part

Both even and odd

Activity 4

Solve the integral

$$
\int_{-\infty}^{\infty}\left(t^{3}+5 t^{2}+5 t+25\right) \delta(t+5) d t=x\left(t_{\mathrm{o}}\right)
$$

$=x(-5)$

CSE4214 Digital Communications

Random Signals

Activity 1

Consider a random process

$$
X(t)=A \sin \left(2 \pi f_{0} t+\varphi\right)
$$

where A and f_{0} are constants, while Φ is a uniformly distributed RV over [$0,2 \pi$]. Calculate the mean and autocorrelation for the aforementioned process.

Activity 1

Given Φ is a uniformly distributed RV over [$0,2 \pi$], we have:

$$
\begin{aligned}
& p_{\phi}(\varphi)=\left\{\begin{array}{cc}
\frac{1}{2 \pi} & {[0,2 \pi]} \\
0 & \text { else }
\end{array}\right. \\
& m_{x}=E[X(t)]=E\left[A \sin \left(2 \pi f_{o} t+\varphi\right)\right]=A E\left[\sin \left(2 \pi f_{o} t+\varphi\right)\right] \\
& =A \int_{0}^{2 \pi} \sin \left(2 \pi f_{o} t+\varphi\right) p_{\phi}(\varphi) d \varphi=\frac{A}{2 \pi} \int_{0}^{2 \pi}\left[\sin \left(2 \pi f_{o} t+\varphi\right)\right] d \varphi=0 \\
& R_{X X}\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
& =E\left[A^{2} \sin \left(2 \pi f_{0} t_{1}+\varphi\right) \sin \left(2 \pi f_{0} t_{2}+\varphi\right)\right] \\
& =\frac{A^{2}}{2} E\left[\cos 2 \pi f_{0}\left(t_{2}-t_{1}\right)\right]-\frac{A^{2}}{2} E\left[\cos 2 \pi f_{0}\left(t_{2}+t_{1}+2 \varphi\right)\right] \\
& =\frac{A^{2}}{2} \cos 2 \pi f_{0}\left(t_{2}-t_{1}\right)
\end{aligned}
$$

Activity 2

Suppose we form a random process $\mathrm{Y}(\mathrm{t})$ by modulating a carrier with another random process $X(t)$, i.e.

$$
Y(t)=X(t) A \sin \left(2 \pi f_{0} t+\varphi\right)
$$

Where Φ is a uniformly distributed RV over $[0,2 \pi]$ and independent of $X(t)$. Under what condition is $Y(t)$ WSS?

Activity 2

For a WSS process, $m_{Y}=$ constant, $R_{Y Y}\left(t_{1}, t_{2}\right)=R_{Y Y}\left(t_{1}-t_{2}\right)$. Let's find m_{x} and $R_{Y Y}\left(t_{1}, t_{2}\right)$

$$
\begin{aligned}
& m_{Y}=E\left[X(t) \sin \left(2 \pi f_{o} t+\varphi\right)\right]=E[X(t)] E\left[\sin \left(2 \pi f_{o} t+\varphi\right)\right]=0 \\
& R_{Y Y}(t, t+\tau)=E\left[X(t) X(t+\tau) \sin \left(2 \pi f_{0} t+\varphi\right) \sin \left(2 \pi f_{0}(t+\tau)+\varphi\right)\right] \\
& =E[X(t) X(t+\tau)] E\left[\cos \left(2 \pi f_{0} \tau\right)+\cos \left(2 \pi f_{0}(2 t+\tau)\right)+2 \varphi\right] \\
& =\frac{1}{2} R_{X X}(t, t+\tau) \cos 2 \pi f_{0}\left(t_{2}-t_{1}\right)+\frac{1}{2} R_{X X}(t, t+\tau) E\left[\cos 2 \pi f_{0}\left(t_{2}+t_{1}+2 \varphi\right)\right] \\
& =\frac{1}{2} R_{X X}(t, t+\tau) \cos 2 \pi f_{0}\left(t_{2}-t_{1}\right)
\end{aligned}
$$

It is clear $m_{Y}=$ constant, $R_{Y Y}\left(t_{1}, t_{2}\right)=R_{Y Y}\left(t_{1}-t_{2}\right)$ only if $X(t)$ is a WSS process.

