CSE4214 Digital Communications

Chapter 1

Signals and Spectra

Instructor: Prof. Peter Lian Department of Electrical Engineering & Computer Science Lassonde School of Engineering York University

CSE4214 Digital Communications

Instructor: Prof. Peter Lian

email: peterlian@cse.yorku.ca

tel: 416-736-2100 ext 44647

Couse Web:

https://wiki.cse.yorku.ca/course_archive/2013-14/F/4214/

- Schedule:
 - Lectures: TR 14:30 16:00, Room CB120
 - Labs: F 10:30 13:30, LAS 3057
- Office hours: TR 13:00 14:00 @ LAS 1012C

CSE2021 Computer Organization

Text book:

Digital Communications: Fundamentals and Applications 2nd Edition, by Bernard Sklar Prentice Hall (Pearson) ISBN 0-13-084788-7

- Assessment:
 - Assignments: 10%
 - Quizzes: 10%
 - Lab projects: 20%
 - Midterm test: 25%
 - Final exam: 35%

CSE4214 Digital Communications

- Topics covered:
 - Introduction
 - Signal and Spectra
 - Formatting and baseband modulation
 - Baseband demodulation/detection
 - Bandpass modulation and demodulation/detection
 - Communication link analysis
 - Channel coding

CSE4214 Digital Communications

Introduction

Introduction

The main objective of a communication system is to transfer information over a channel

Evolution of Communications

150 Years of Telecom-From the Telegraph to the Internet; Room 108E

150 Years of Telecom-From the Telegraph to the Internet; Room 108E

Source: http://www.dmacc.edu/ci/images/timeline-telecom.jpg

Milestones

- Electrical telegraphy ~1840
 - Samuel F. B. Morse inventor of the most practical form of electrical telegraphy – Morse code

Morse Telegraph Key (circa 1844)

International Morse Code

1. A dash is equal to three dots.
2. The space between parts of the same letter is equal to one dot.
3. The space between two letters is equal to three dots.
4. The space between two words is equal to seven dots.

The Americas' first telegram, transmitted via a repeater: "*What hath God wrought*", sent by Samuel F.B. Morse in 1844

Milestones

Telephone

- Alexander Graham Bell was awarded the first US patent for the invention of the telephone in 1876
- Tivadar Puskás invented the telephone exchange switchboard in 1876

Milestones

- Wireless telegraphy
 - Guglielmo Marconi begin his wireless experiments in 1895, and the patent for wireless telegraphy in 1896.
 - In 1896, Alexandr Popov demonstrated a similar wireless system in Russia.

Wireless Communications

Source: http://www.samsung.com/us/wow/wireless.html

Internet Traffic Trend

Source: Cisco VNI, 2011

By the end of 2015, annual global IP traffic will reach the zettabyte threshold

Wireless Revenue

Postpaid Voice

71.7%

66.4%

61.8%

Source: http://www.billingworld.com/blogs/fedor/2011/08/changing-wirelessmarket-revenues.aspx

53.6%

50.0%

46.9%

44.1%

57.5%

-5.6%

CSE4214 Digital Communications

Why digital ?

Analog and Digital Signals

15

Analog versus Digital

Analog	Digital
Compute on a continuous set, e.g. real numbers	Compute on a discrete set, e.g. 0,1
Difficult to implement arbitrary nonlinear operations	Can implement arbitrary nonlinear operations
Noise prone	Less sensitive to variations in environment
Graceful degradation	No-graceful degradation
Generally not programmable	Is programmable
High cost	Low cost

Analog versus Digital

17

Why Digital?

- Less subject to distortion and interference
- Digital signal processing is more reliable and less expensive than analog signal processing
- Digital communication techniques lend themselves naturally to channel coding for:
 - Protection against jamming and interference

Secure transmission

Digital Communication System

Transformation in Digital Communications

Formatting	So	urce Coding	Baseband Sig	naling	Equ	ualiz	ation
Character coding Sampling Quantization Pulse code modulation (PCM)	Predictiv Block co Variable Synthesi Lossless Lossy co	e coding ding length coding s/analysis coding compression mpression	PCM waveforms (I Nonreturn-to-zero Return-to-zero (R Phase encoded Multilevel binary <i>M</i> -ary pulse modul PAM, PPM, PDM	ne codes) o (NRZ) Z) ation	Maximum-likeli estimation (M Equalization wit Transversal or Preset or Adap Symbol space spaced	hoo LSE) h fil dec otive d or	d sequence ters ision feedback fractionally
	Bandpass Signaling			Channel Coding			
Coherent		Noncoherent			Waveform Structured		Structured
Phase shift keying (PSK) Frequency shift keying (FSK Amplitude shift keying (ASK Continuous phase modulation Hybrids) .) on (CPM)	Differential phase shift keying (DPSK) Frequency shift keying (FSK) Amplitude shift keying (ASK) Continuous phase modulation (CPM) Hybrids) M-ary signaling Antipodal Orthogonal Trellis-coded modulation		on	Block Convolutional Turbo
Synchronization	ion	Multiplexing/Mul	tiple Access	Spr	eading		Encryption
Prequency synchronization Phase synchronization Symbol synchronization Frame synchronization Network synchronization	n	Time division (TDN Code division (CDN Space division (SD Polarization divisio	M/TDMA) M/TDMA) M/CDMA) MA) on (PDMA)	Frequency Time hopp Hybrids	v hopping (DS) v hopping (FH) bing (TH)		Data stream

CSE4214 Digital Communications

Classification of Signals

Classification of Signals

- Deterministic versus Random Signals.
- Continuous-time (CT) versus Discrete-time (DT) Signals.
- Analog versus Digital Signals.
- Periodic versus Aperiodic Signals
- Odd and Even Signals.
- Energy versus Power Signals.

Deterministic vs Random Signals

Deterministic Signals:

- Defined for all time
- No uncertainty with respect to the value of the signal
- Represented using a mathematical expression, e.g., $x(t) = \sin(5\pi t + 30^\circ)$.
- Random Signals:
 - Are not known accurately for all instants of times
 - Different observations may lead to different results
 - Statistical properties such as mean, variance, or probability density function (pdf) are used to define the random signal

Continuous-time vs Discrete-time Signals

- Continuous-time Signals
 - Defined for all instants of time.
- Discrete-time Signals
 - Defined at discrete values of time

Activity 1

Plot the CT signal $x(t) = \sin(5\pi t + 30^\circ)$. Discretize the CT signal with an uniform sampling period of $T_s = 0.25s$. Sketch the resulting waveforms.

Analog vs Digital Signals

- Analog Signals:
 - Defined for all instants of time. Amplitude can take on any value.
- Digital Signals:
 - Defined at discrete values of time. Amplitude is restricted to finite set of values.

Analog vs Digital Signals

$$x[k] = x(t)\Big|_{t=kT_s} = \operatorname{sinc}(kT_s) = \frac{\sin(\pi kT_s)}{\pi kT_s}$$

Analog vs Digital Signals

Periodic vs Aperiodic Signals

 Periodic signals: A periodic signal x(t) is a function of time that satisfies the condition

 $x(t) = x(t + T_0)$ for all t

where T_0 is a positive constant number and is referred to as the fundamental period of the signal.

- Fundamental frequency (f_0) is the inverse of the period of the signal. It is measured in Hertz (Hz =1/s).
- Nonperiodic (Aperiodic) signals: are those that do not repeat themselves.

For the following sinusoidal signals (a) $x[k] = \sin (5\pi k)$ (b) $y[k] = \cos(k/3)$ Determine the fundamental period K_0 of the DT signals.

Even vs Odd Signals

1. Even Signal: A CT signal *x*(*t*) is said to be an even signal if it satisfies the condition :

x(-t) = x(t) for all t.

1. Odd Signal: The CT signal x(t) is said to be an odd signal if it satisfies the condition

x(-t) = -x(t) for all t.

- 2. Even signals are symmetric about the vertical axis or time origin.
- 3. Odd signals are antisymmetric (or asymmetric) about the time origin. $x_{1}(t) = x_{2}(t)$

Even vs Odd Signals

5. Signals that satisfy neither the even property nor the odd property can be divided into even and odd components based on the following equations:

Even component of x(t) = 1/2 [x(t) + x(-t)]Odd component of x(t) = 1/2 [x(t) - x(-t)]

For the signal

Y=1-|x-1|

do the following:

(a) sketch the signal(b) evaluate the odd part of the signal(c) evaluate the even part of the signal.

Energy vs Power Signals

Energy:

$$E_{\infty} = \begin{cases} \int_{-\infty}^{\infty} |x^{2}(t)| dt & \text{for CT Signals} \\ \int_{-\infty}^{\infty} |x[k]|^{2} & \text{for DT Signals} \end{cases}$$

Power:

$$P_{\infty} = \begin{cases} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt & \text{for CT Signals} \\ \lim_{N \to \infty} \frac{1}{N+1} \sum_{-N/2}^{N/2} |x[k]|^2 & \text{for DT Signals} \end{cases}$$

Energy vs Power Signals

- Energy Signals: have finite total energy for the entire duration of the signal. As a consequence, total power in an energy signal is 0.
- Power Signals: have non-zero power over the entire duration of the signal. As a consequence, the total energy in a power signal is infinite.
- 3. Periodic signals are always power signals with power given by

$$P_{\infty} = \begin{cases} \frac{1}{T_0} \int_{\langle T_0 \rangle} |x(t)|^2 & \text{for CT Signals} \\ \frac{1}{N_0} \sum_{\langle -N_0 \rangle} |x[k]|^2 & \text{for DT Signals} \end{cases}$$

Elementary Signal

- Unit Impulse Function
 - Defined from the following properties:

1.
$$\delta(t) = \begin{cases} \text{undefined} \quad t = 0 \\ 0 \quad t \neq 0 \end{cases}$$

2.
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

3.
$$\delta(at) = \frac{1}{|a|} \delta(t)$$

4.
$$x(t) \delta(t - t_{o}) = x(t_{o}) \delta(t - t_{o})$$

5.
$$\int_{-\infty}^{\infty} x(t) \delta(t - t_{o}) dt = x(t_{o})$$

Solve the integral

$$\int_{-\infty}^{\infty} (t^3 + 5t^2 + 5t + 25)\delta(t+5)dt = x(t_0)$$

Deterministic Signals

Energy and Spectral Density

An energy (aperiodic) signal x(t) can be represented by its Fourier transform X(t)

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \quad \text{and} \quad x(t) = \int_{-\infty}^{\infty} x(f)e^{j2\pi ft}df$$

The energy spectral density (ESD) of an energy signal is defined as

$$\psi_x(f) = \left| X(f) \right|^2$$

Energy and Spectral Density

 A power (periodic) signal x(t) can be represented by its Fourier Series

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{-j2\pi n f_0 t} \text{ where } c_n = \frac{1}{T_0} \int_{\langle T_0 \rangle} x(t) e^{j2\pi n f_0 t} dt$$

The power spectral density (PSD) of a power signal is defined as

$$G_x(f) = \sum_{n=-\infty}^{\infty} |c_n|^2 \delta(f - nf_0)$$

Deterministic Signals

- Autocorrelation
 - The autocorrelation of an energy (aperiodic) signal x(t) is defined as

$$R_x(\tau) = \int_{-\infty}^{\infty} x(t) x(t+\tau) dt$$

Autocorrelation

The autocorrelation satisfies the following properties

$$I. \qquad R_x(\tau) = R_x(-\tau)$$

2.
$$R_x(\tau) \leq R_x(0)$$

Even function w.r.t. τ

Maximum occurs at $\tau = 0$

3. $R_x(\tau) \xleftarrow{FT} \psi_x(f)$ Fourier transform pairs

4.
$$R_x(0) = \int_{-\infty}^{\infty} x^2(t) dt$$

Value at the origin is equal to the energy of the signal