CSE4214 Digital Communications

Chapter 1

Signals and Spectra

Instructor: Prof. Peter Lian
Department of Electrical
Engineering & Computer Science
Lassonde School of Engineering
York University

CSE4214 Digital Communications

Instructor: Prof. Peter Lian

email: peterlian@cse.yorku.ca
tel: 416-736-2100 ext 44647

Couse Web:

https://wiki.cse.yorku.ca/course_archive/2013-14/F/4214/

- Schedule:
 - Lectures: TR 14:30 16:00, Room CB120
 - Labs: F 10:30 13:30, LAS 3057
- Office hours: TR 13:00 14:00 @ LAS 1012C

CSE2021 Computer Organization

Text book:

Digital Communications: Fundamentals and Applications 2nd Edition, by Bernard Sklar Prentice Hall (Pearson) ISBN 0-13-084788-7

Assessment:

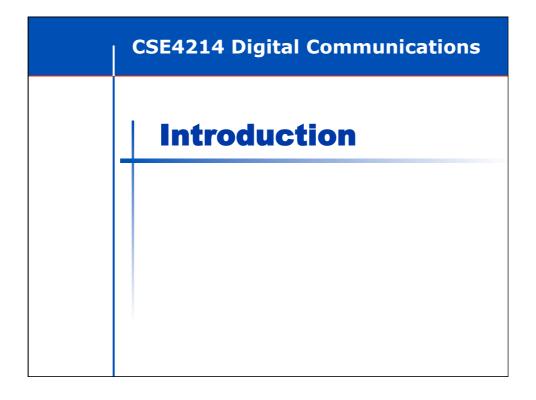
Assignments: 10%

Quizzes: 10%

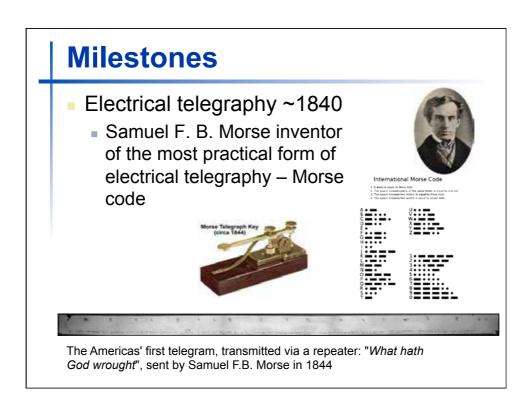
Lab projects: 20%Midterm test: 25%Final exam: 35%

CSE4214 Digital Communications

- Topics covered:
 - Introduction
 - Signal and Spectra
 - Formatting and baseband modulation
 - Baseband demodulation/detection
 - Bandpass modulation and demodulation/detection
 - Communication link analysis
 - Channel coding

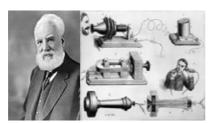


Introduction The main objective of a communication system is to transfer information over a channel



Milestones

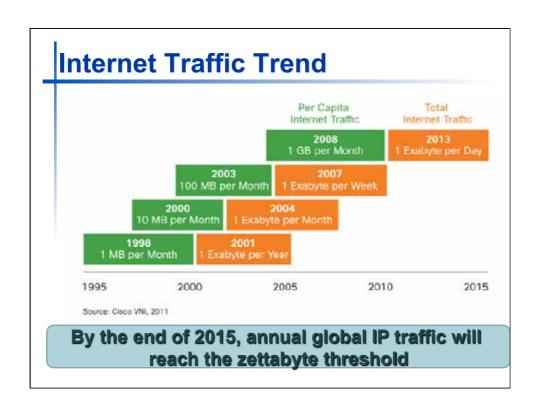
- Telephone
 - Alexander Graham Bell was awarded the first US patent for the invention of the telephone in 1876
 - Tivadar Puskás invented the telephone exchange switchboard in 1876

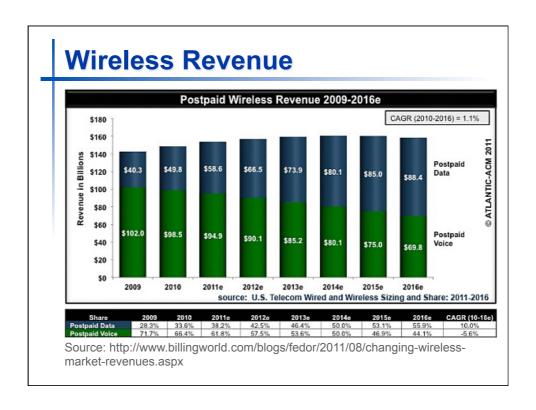


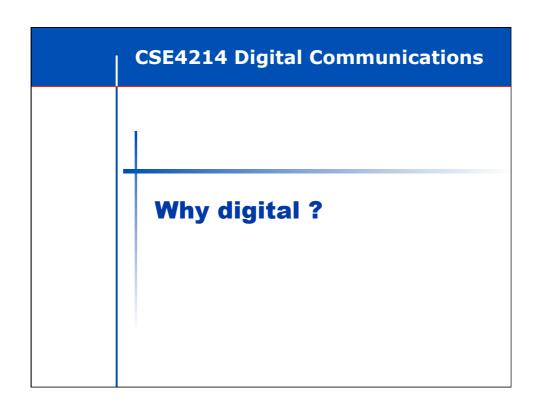
Milestones

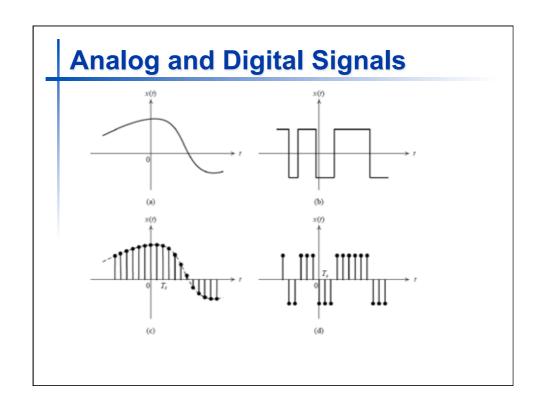
- Wireless telegraphy
 - Guglielmo Marconi begin his wireless experiments in 1895, and the patent for wireless telegraphy in 1896.
 - In 1896, Alexandr Popov demonstrated a similar wireless system in Russia.

Source: http://www.ieeeghn.org/wiki/index.php/Wireless_Telegraphy

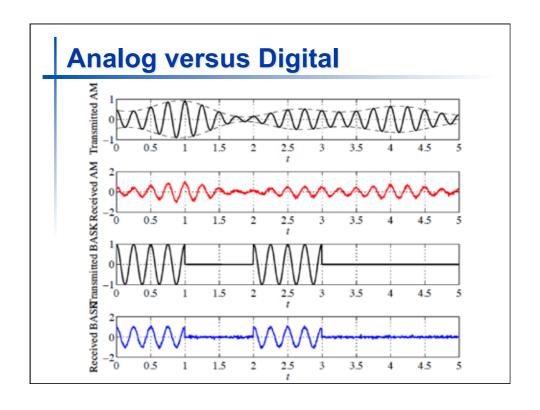






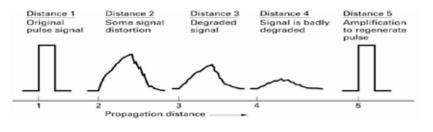


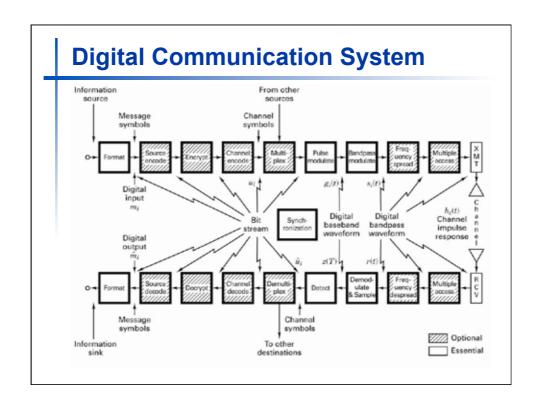
Analog versus Digital	
Analog	Digital
Compute on a continuous set, e.g. real numbers	Compute on a discrete set, e.g. 0,1
Difficult to implement arbitrary nonlinear operations	Can implement arbitrary nonlinear operations
Noise prone	Less sensitive to variations in environment
Graceful degradation	No-graceful degradation
Generally not programmable	Is programmable
High cost	Low cost

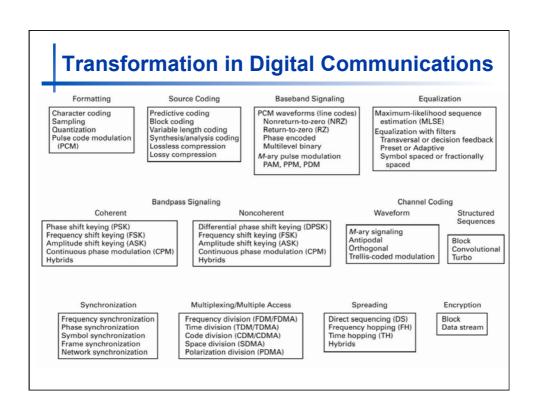


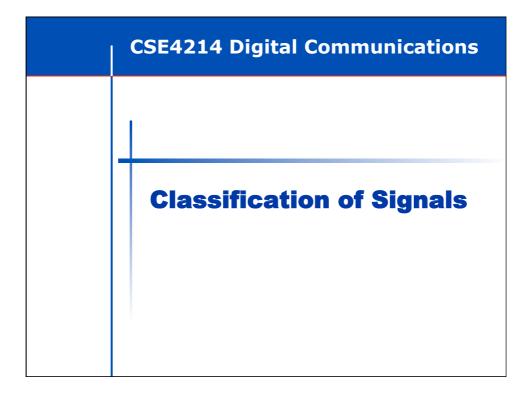
Why Digital?

- Less subject to distortion and interference
- Digital signal processing is more reliable and less expensive than analog signal processing
- Digital communication techniques lend themselves naturally to channel coding for:
 - Protection against jamming and interference
 - Secure transmission









Classification of Signals

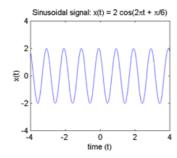
- Deterministic versus Random Signals.
- Continuous-time (CT) versus Discrete-time (DT) Signals.
- Analog versus Digital Signals.
- Periodic versus Aperiodic Signals
- Odd and Even Signals.
- Energy versus Power Signals.

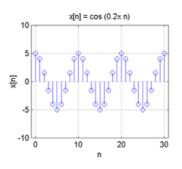
Deterministic vs Random Signals

- Deterministic Signals:
 - Defined for all time
 - No uncertainty with respect to the value of the signal
 - Represented using a mathematical expression, e.g., $x(t) = \sin(5\pi t + 30^\circ)$.
- Random Signals:
 - Are not known accurately for all instants of times
 - Different observations may lead to different results
 - Statistical properties such as mean, variance, or probability density function (pdf) are used to define the random signal

Continuous-time vs Discrete-time Signals

- Continuous-time Signals
 - Defined for all instants of time.
- Discrete-time Signals
 - Defined at discrete values of time



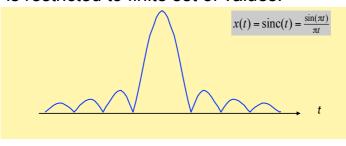


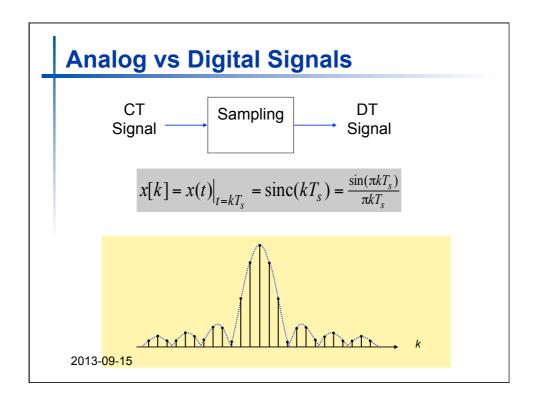
Activity 1

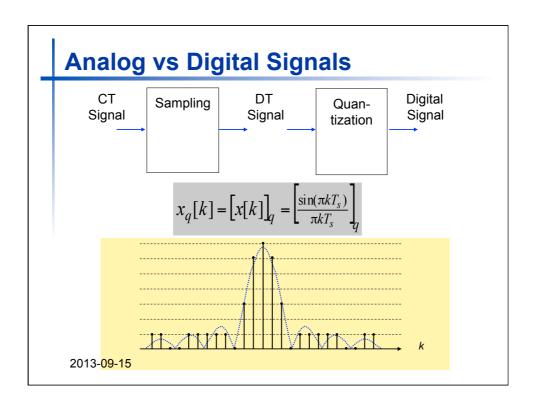
Plot the CT signal $x(t) = \sin(5\pi t + 30^\circ)$. Discretize the CT signal with an uniform sampling period of $T_s = 0.25$ s. Sketch the resulting waveforms.

Analog vs Digital Signals

- Analog Signals:
 - Defined for all instants of time. Amplitude can take on any value.
- Digital Signals:
 - Defined at discrete values of time. Amplitude is restricted to finite set of values.







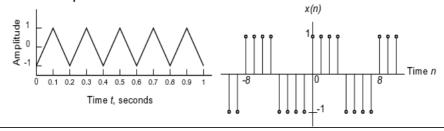
Periodic vs Aperiodic Signals

 Periodic signals: A periodic signal x(t) is a function of time that satisfies the condition

$$x(t) = x(t + T_0)$$
 for all t

where T_0 is a positive constant number and is referred to as the fundamental period of the signal.

- Fundamental frequency (f_0) is the inverse of the period of the signal. It is measured in Hertz (Hz =1/s).
- Nonperiodic (Aperiodic) signals: are those that do not repeat themselves.



Activity 2

For the following sinusoidal signals

(a) $x[k] = \sin(5\pi k)$

(b) $y[k] = \cos(k/3)$

Determine the fundamental period K_0 of the DT signals.

Even vs Odd Signals

1. Even Signal: A CT signal x(t) is said to be an even signal if it satisfies the condition:

$$x(-t) = x(t)$$
 for all t .

1. Odd Signal: The CT signal x(t) is said to be an odd signal if it satisfies the condition

$$x(-t) = -x(t)$$
 for all t .

- 2. Even signals are symmetric about the vertical axis or time origin.
- 3. Odd signals are antisymmetric (or asymmetric) about the time origin. $x_{i,(t)} = x_{i,(t)}$

2013-09-15

Even vs Odd Signals

5. Signals that satisfy neither the even property nor the odd property can be divided into even and odd components based on the following equations:

Even component of x(t) = 1/2 [x(t) + x(-t)]Odd component of x(t) = 1/2 [x(t) - x(-t)]

2013-09-15

Activity 3

For the signal

$$Y=1-|x-1|$$

do the following:

- (a) sketch the signal
- (b) evaluate the odd part of the signal
- (c) evaluate the even part of the signal.

2013-09-15

Energy vs Power Signals

Energy:
$$E_{\infty} = \begin{cases} \int_{-\infty}^{\infty} |x^{2}(t)| dt & \text{for CT Signals} \\ \sum_{-\infty}^{\infty} |x[k]|^{2} & \text{for DT Signals} \end{cases}$$

Power:

$$P_{\infty} = \begin{cases} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt & \text{for CT Signals} \\ \lim_{N \to \infty} \frac{1}{N+1} \sum_{-N/2}^{N/2} |x[k]|^2 & \text{for DT Signals} \end{cases}$$

Energy vs Power Signals

- 1. Energy Signals: have finite total energy for the entire duration of the signal. As a consequence, total power in an energy signal is 0.
- 2. Power Signals: have non-zero power over the entire duration of the signal. As a consequence, the total energy in a power signal is infinite.
- 3. Periodic signals are always power signals with power given by

$$P_{\infty} = \begin{cases} \frac{1}{T_0} \int_{\langle T_0 \rangle} |x(t)|^2 & \text{for CT Signals} \\ \frac{1}{N_0} \sum_{\langle -N_0 \rangle} |x[k]|^2 & \text{for DT Signals} \end{cases}$$

Elementary Signal

- Unit Impulse Function
 - Defined from the following properties:

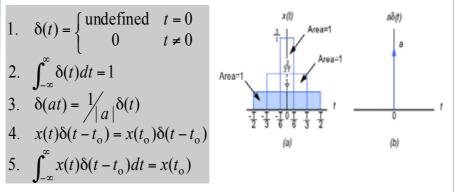
1.
$$\delta(t) = \begin{cases} \text{undefined} & t = 0 \\ 0 & t \neq 0 \end{cases}$$

2.
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

3.
$$\delta(at) = \frac{1}{|a|} \delta(t)$$

4.
$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

5.
$$\int_{-\infty}^{\infty} x(t)\delta(t-t_{o})dt = x(t_{o})$$



Activity 4

Solve the integral

$$\int_{-\infty}^{\infty} (t^3 + 5t^2 + 5t + 25)\delta(t+5)dt = x(t_0)$$

Deterministic Signals

- Energy and Spectral Density
 - An energy (aperiodic) signal x(t) can be represented by its Fourier transform X(f)

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \quad \text{and} \quad x(t) = \int_{-\infty}^{\infty} x(f)e^{j2\pi ft}df$$

 The energy spectral density (ESD) of an energy signal is defined as

$$\psi_{x}(f) = \left| X(f) \right|^{2}$$

Energy and Spectral Density

 A power (periodic) signal x(t) can be represented by its Fourier Series

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{-j2\pi n f_0 t} \text{ where } c_n = \frac{1}{T_0} \int_{\langle T_0 \rangle} x(t) e^{j2\pi n f_0 t} dt$$

 The power spectral density (PSD) of a power signal is defined as

$$G_{x}(f) = \sum_{n=-\infty}^{\infty} |c_{n}|^{2} \delta(f - nf_{0})$$

Deterministic Signals

- Autocorrelation
 - The autocorrelation of an energy (aperiodic) signal x(t) is defined as

$$R_{x}(\tau) = \int_{-\infty}^{\infty} x(t)x(t+\tau)dt$$

Autocorrelation

The autocorrelation satisfies the following properties

1.
$$R_x(\tau) = R_x(-\tau)$$
 Even function w. r. t. τ

2.
$$R_x(\tau) \le R_x(0)$$
 Maximum occurs at $\tau = 0$

3.
$$R_x(\tau) \stackrel{FT}{\longleftrightarrow} \psi_x(f)$$
 Fourier transform pairs

4.
$$R_x(0) = \int_{-\infty}^{\infty} x^2(t) dt$$
 Value at the origin is equal to the energy of the signal