

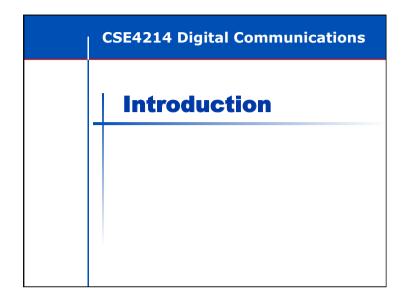
CSE4214 Digital Communications

 Instructor: Prof. Peter Lian email: <u>peterlian@cse.yorku.ca</u>

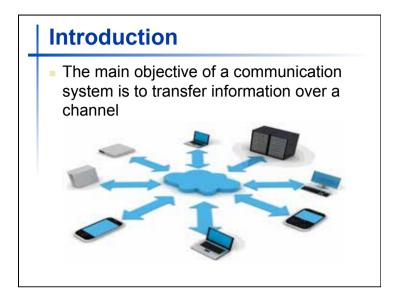
tel: 416-736-2100 ext 44647

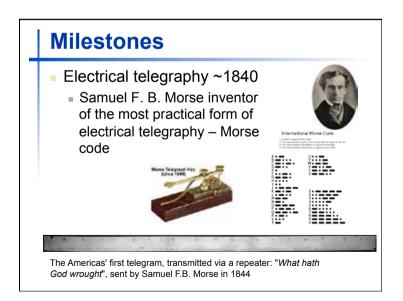
- Couse Web: <u>https://wiki.cse.yorku.ca/course_archive/2013-14/F/4214/</u>

 Schedule:
 - Lectures: TR 14:30 16:00, Room CB120
 - Labs: F 10:30 13:30, LAS 3057
- Office hours: TR 13:00 14:00 @ LAS 1012C



ISBN 0-13-084788-7 Assessment:

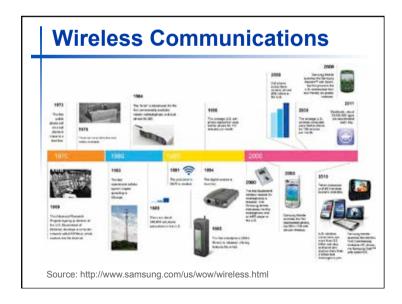

- Assignments: 10%
- Quizzes: 10%
- Lab projects: 20%
- Midterm test: 25%
- Final exam: 35%

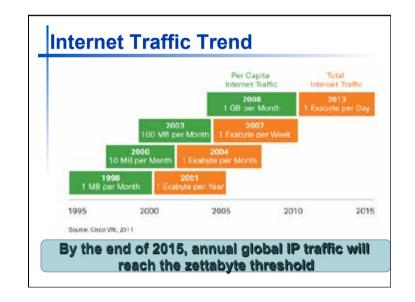

CSE4214 Digital Communications

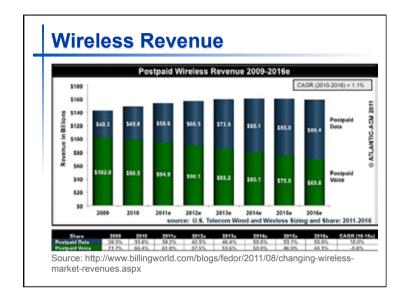
- Topics covered:
 - Introduction
 - Signal and Spectra
 - Formatting and baseband modulation
 - Baseband demodulation/detection
 - Bandpass modulation and demodulation/detection
 - Communication link analysis
 - Channel coding

Milestones

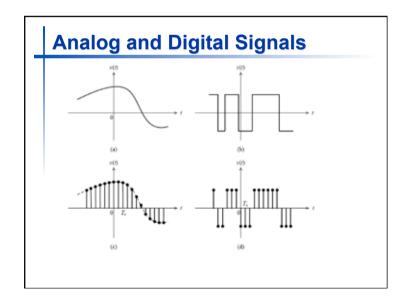
- Telephone
 - Alexander Graham Bell was awarded the first US patent for the invention of the telephone in 1876
 - Tivadar Puskás invented the telephone exchange switchboard in 1876

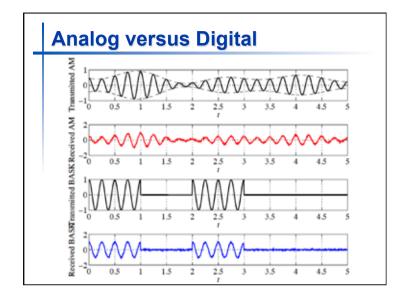

Milestones

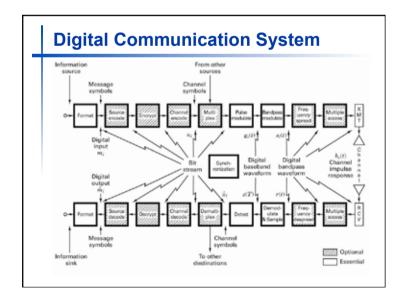

- Wireless telegraphy
 - Guglielmo Marconi begin his wireless experiments in 1895, and the patent for wireless telegraphy in 1896.

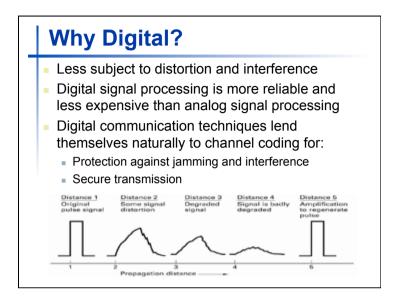


 In 1896, Alexandr Popov demonstrated a similar wireless system in Russia.


Source: http://www.ieeeghn.org/wiki/index.php/Wireless_Telegraphy



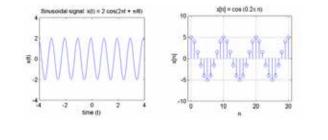




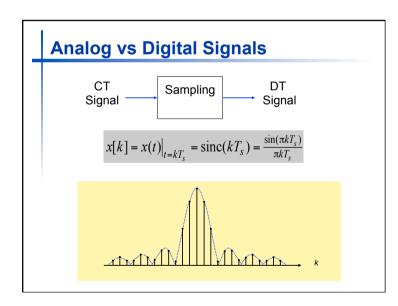
Analog versus Digital				
Analog	Digital			
Compute on a continuous set, e.g. real numbers	Compute on a discrete set, e.g. 0,1			
Difficult to implement arbitrary nonlinear operations	Can implement arbitrary nonlinear operations			
Noise prone	Less sensitive to variations in environment			
Graceful degradation	No-graceful degradation			
Generally not programmable	Is programmable			
High cost	Low cost			

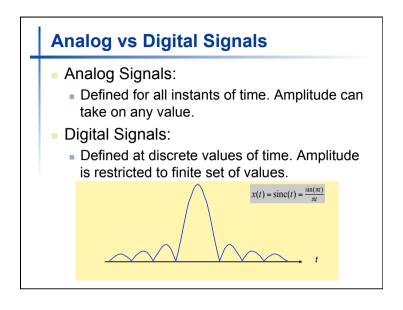
CSE4214 Digital Communications Classification of Signals

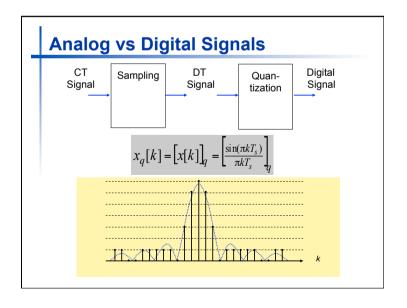
Deterministic vs Random Signals

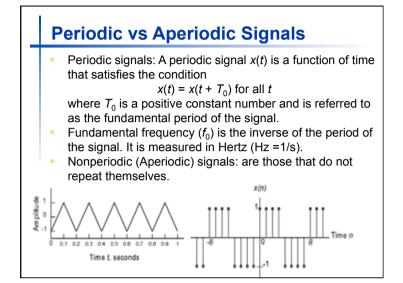

- Deterministic Signals:
 - Defined for all time
 - No uncertainty with respect to the value of the signal
 - Represented using a mathematical expression, e.g., x(t) = sin(5πt + 30°).
- Random Signals:
 - Are not known accurately for all instants of times
 - Different observations may lead to different results
 - Statistical properties such as mean, variance, or probability density function (pdf) are used to define the random signal

Classification of Signals


- Deterministic versus Random Signals.
- Continuous-time (CT) versus Discrete-time (DT) Signals.
- Analog versus Digital Signals.
- Periodic versus Aperiodic Signals
- Odd and Even Signals.
- Energy versus Power Signals.


Continuous-time vs Discrete-time Signals

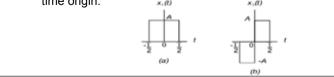

- Continuous-time Signals
 - Defined for all instants of time.
- Discrete-time Signals
 - Defined at discrete values of time



Plot the CT signal $x(t) = \sin(5\pi t + 30^\circ)$. Discretize the CT signal with an uniform sampling period of $T_s = 0.25s$. Sketch the resulting waveforms.

For the following sinusoidal signals (a) $x[k] = \sin (5\pi k)$ (b) $y[k] = \cos(k/3)$ Determine the fundamental period K_0 of the DT signals.

Even vs Odd Signals


1. Even Signal: A CT signal *x*(*t*) is said to be an even signal if it satisfies the condition :

x(-t) = x(t) for all t.

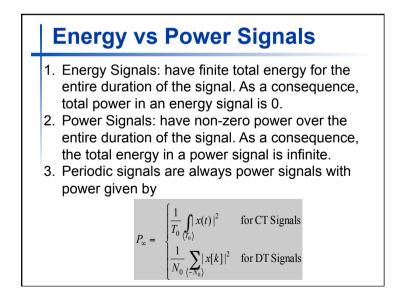
1. Odd Signal: The CT signal *x*(*t*) is said to be an odd signal if it satisfies the condition

x(-t) = -x(t) for all t.

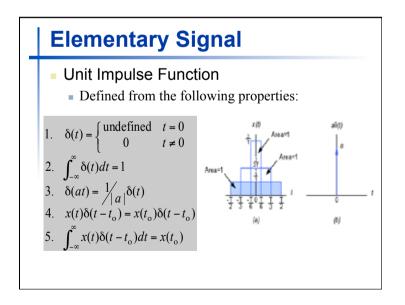
- 2. Even signals are symmetric about the vertical axis or time origin.
- 3. Odd signals are antisymmetric (or asymmetric) about the time origin.

Even vs Odd Signals

5. Signals that satisfy neither the even property nor the odd property can be divided into even and odd components based on the following equations:

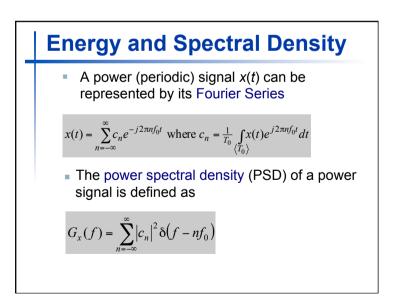

Even component of x(t) = 1/2 [x(t) + x(-t)]Odd component of x(t) = 1/2 [x(t) - x(-t)]

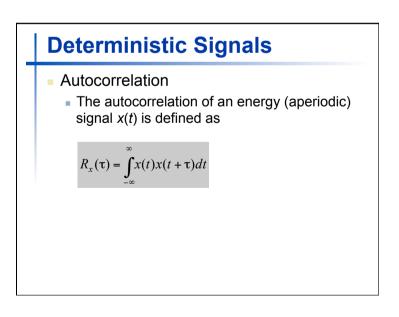
For the signal


Y=1-|x-1|

do the following:

- (a) sketch the signal
- (b) evaluate the odd part of the signal
- (c) evaluate the even part of the signal.





Solve the integral

$$\int_{-\infty}^{\infty} (t^3 + 5t^2 + 5t + 25)\delta(t+5)dt = x(t_0)$$

• Energy and Spectral Density • An energy (aperiodic) signal x(t) can be represented by its Fourier transform X(t) $X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$ and $x(t) = \int_{-\infty}^{\infty} x(f)e^{j2\pi ft} df$ • The energy spectral density (ESD) of an energy signal is defined as $\psi_x(f) = |X(f)|^2$

A	Autocorrelation				
	 The autocorrelation satisfies the following properties 				
	1.	$R_x(\tau) =$	$R_x(-\tau)$	Even function w.r.t. τ	
	2.	$R_{x}(\tau) \leq$	$R_x(0)$	Maximum occurs at $\tau = 0$	
	3.	$R_{x}(\tau) \leftarrow$	$\xrightarrow{FT} \psi_x(f)$	Fourier transform pairs	
	4.	$R_x(0) =$	$\int_{-\infty}^{\infty} x^2(t) dt$	Value at the origin is equal to the energy of the signal	