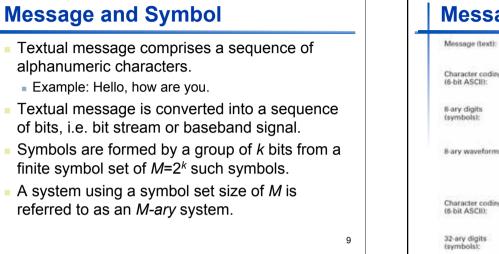
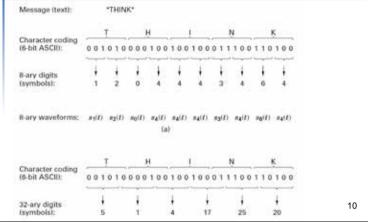
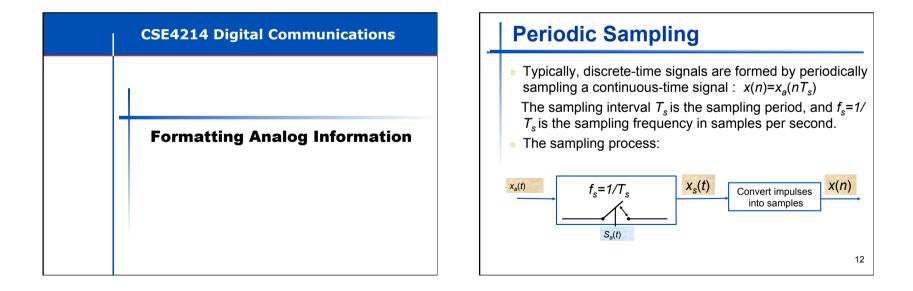
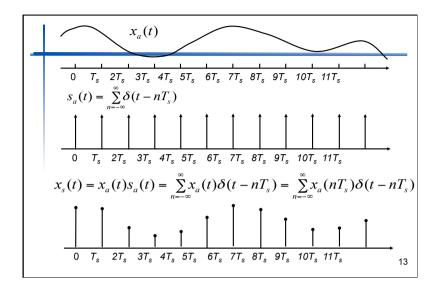

What is Formatting?

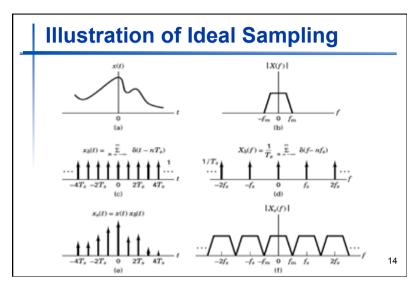

- Information can take either of the three forms:
- 1. Textual information
- 2. Analog signals
- 3. Digital data
- Before the signals are transmitted over a digital communication channel, an information bearing signal must be converted to digital symbols (Formatting).
- The resulting digital symbols are then represented by baseband waveforms (Pulse Modulation or Line Coding).

Block Diagram




				-							_					
		A	ne	eric	can	Stan	dard	Code	e for	Infor	natio	on Inte	ercha	nge (ASCII) for en	coding	alphanumerics
Г	Bits		5	0	1	0	1	0	1	0	1	1				
	DIG			6	0	0	1	1	0	0	1	1	1			
-	5	Б	4	7	0	0	0	0	1	1	1	1	1			
			0		VUL	DLE	SP	0	0	Р		p	NUL	Null, or all zeros	DC1	Device control 1
-	-	1-	0		OH	DC1	1	1	A	0	a	9	SOH	Start of heading	DC2	Device control 2
-	-	-	0	H -	STX	DC2	-	2	8	R	b	7	STX	Start of text	DC3	Device control 3
-	1	-	0	<u> </u>	TX	DC3		-	-		-	<u> </u>	ETX	End of text	DC4	Device control 4
			<u> </u>	ц			-	3	C	8	0	5	EOT	End of transmission	NAK	Negative acknowledg
0	-	<u> </u>	0	ц -	TO	DC4	\$	4	D	T	d	1	ENQ ACK	Enquiry Acknowledge	SYN	Synchronous idle End of transmission
1	0	1.	0	ц	NQ	NAK	- %	5	E	U	e	U	BEL	Bell, or alarm	CAN	Cancel
0	1	1	0	A	VCK.	SYN	8	6	F	V	1	v	BS	Backspace	EM	End of medium
1	1	1	0	1	BEL	ETB	1.0	7	G	W	9	w	HT	Horizontal tabulation	SUB	Substitute
0	0	0	1		85	CAN	(8	н	x	h	×	LF	Line feed	ESC	Escape
1	0	0	1	11	HT	EM)	9	1	V	1	v	VT	Vertical tabulation	FS	File separator
0	ĥ	Ĩ	<u> </u>	<u> </u>	LF.	SUB		:	j	z	1	7	CR	Form feed Carriage return	GS RS	Group separator Record separator
1	ŀ,	Ľ	ti	<u></u>	VT	ESC	+	;	ĸ	1 i	k	1 i	so	Shift out	US	Unit separator
0	1	Ľ	÷	н	FF	FS			1		÷.	1	SI	Shift in	SP	Space
<u> </u>	0	<u> </u>	÷	<u> </u>	CR	05	-		M	÷.	-	<u>'</u>	DLE	Data link escape	DEL	Delete
0	<u> </u>	-	÷	<u>. </u>			-			1	m	<u> </u>				
	1	1	1	11	so	RŞ		>	N	~	n	~ DEL				

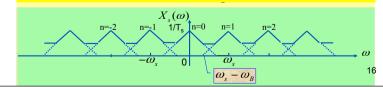




Message and Symbol: Example

Fourier Transform of a CT Sampled Signal
• Fourier transform pair:

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$


$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$$
• Fourier transform of sampled signal :

$$X_{s}(\omega) = \frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} X_{a}(\omega - n\omega_{s}), \quad \omega_{s} = \frac{2\pi}{T_{s}}$$
15

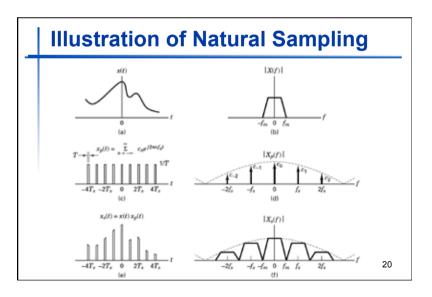
 $X_{s}(\omega) = \frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} X_{a}(\omega - n\omega_{s}), \quad \omega_{s} = \frac{2\pi}{T_{s}}$

The Fourier transform of the continuous-time sampled signal X_s(ω) is a periodic function of ω consisting of a superposition of shifted replicas of X_a(ω), scaled by 1/T_s.

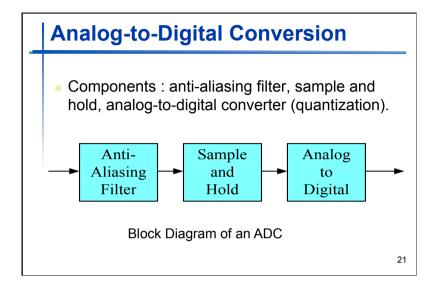
The overlap of the Fourier transform of each of the terms of the sampled signal is called aliasing

Sampling Theorem :

- A bandlimited continuous-time signal, with highest frequency(bandwidth) *B* Hz, can be uniquely recovered from its samples provided that the sampling rate $F_s \ge 2B$ samples per second.
- The frequency $F_s = 2B$ is called the *Nyquist* sampling frequency.
- If the signal is sampled at less than the Nyquist rate, then the *aliasing* occurs.


Example $x_1(t) = \cos 2\pi F_1 t$, $F_1 = 0.5Hz$ $x_{\pm}(t) = \cos 2\pi F_{\pm}t, \quad F_{\pm} = 1.5H_{\Xi}.$ \Rightarrow $x_1(nTs) = x_2(nTs)$ $F_{\rm s} = 2 \ samples/sec$ x(t)0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 t(sec)18

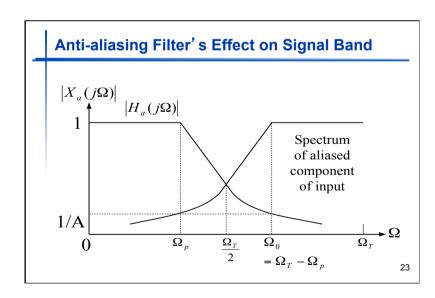
Natural Sampling

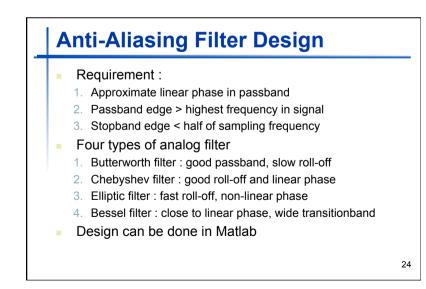

- Replace impulse train in ideal sampling with a pulse train *p*(*t*) (also know as the gating waveform).
- The pulse train

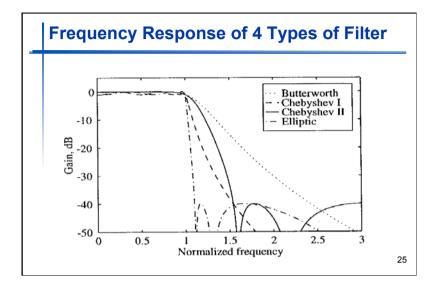
$$p(t) = \sum_{n=-\infty}^{\infty} h(t - nT_s)$$

- where h(t) = 1 for $0 \le t \le \tau$ and h(t) = 0 otherwise.
- The pulse train can be implemented by an on/off switch.

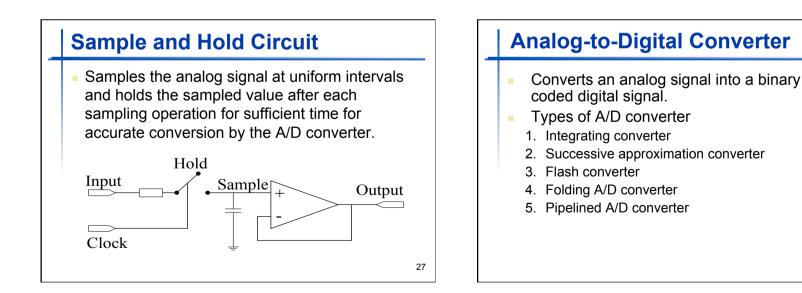
19

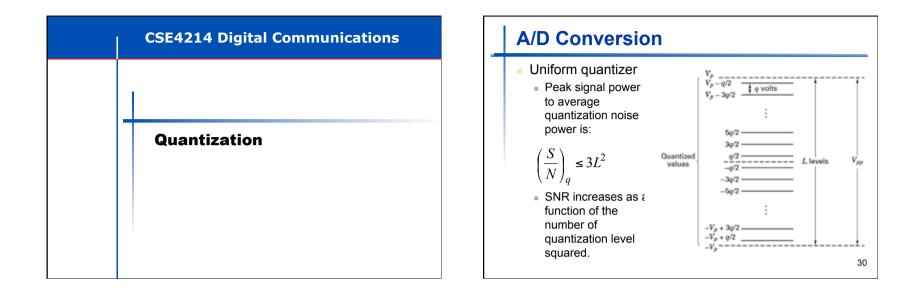


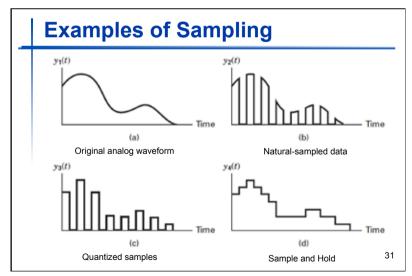

Anti-aliasing Filter

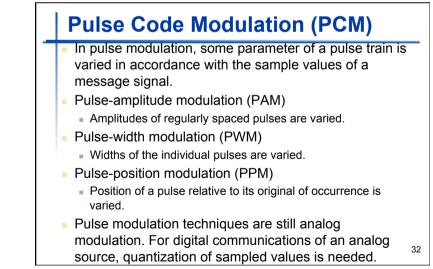

- The role of anti-aliasing filter is to cut off the frequency components that is higher than the half of sampling frequency.
- Ideally, the anti-aliasing filter should have a lowpass frequency response,

$$H_{a}(j\Omega) = \begin{cases} 1, & \left| \Omega \right| < \Omega_{T}/2 \\ 0, & \left| \Omega \right| \ge \Omega_{T}/2 \end{cases}$$

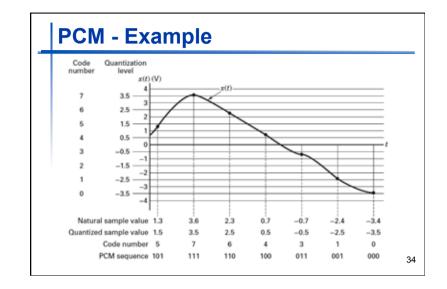

Such a "brickwall" filter can't be realized using practical analog circuit, hence, must be approximated.

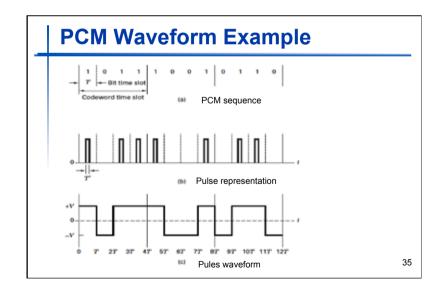


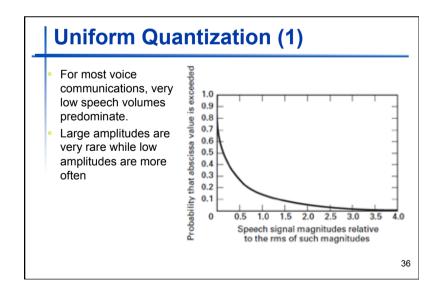


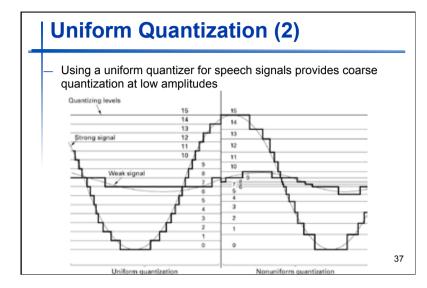


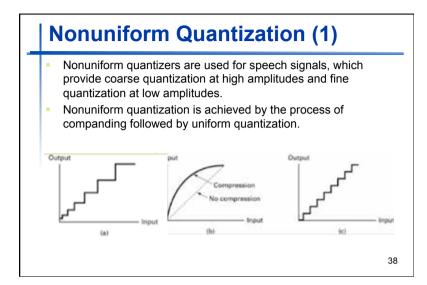
Sample and Hold Sample and hold is the most popular sampling method. Involves two operations: Sample and hold m(t) m(t) m(t) m(t) m(t) m(t) T 26

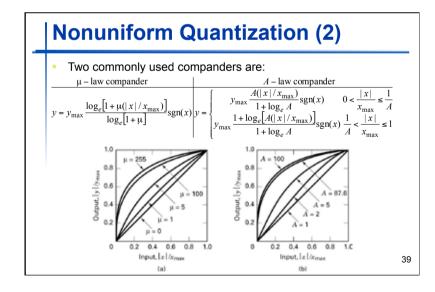


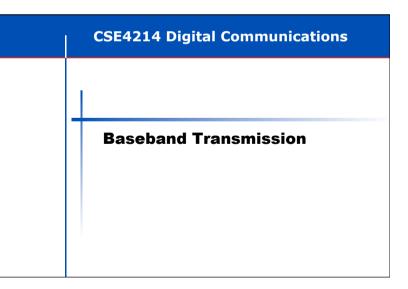


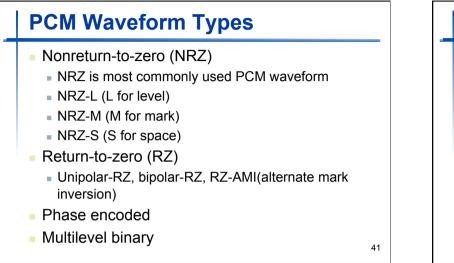


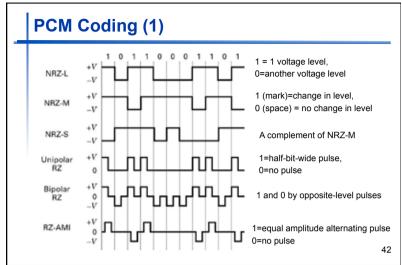

PCM

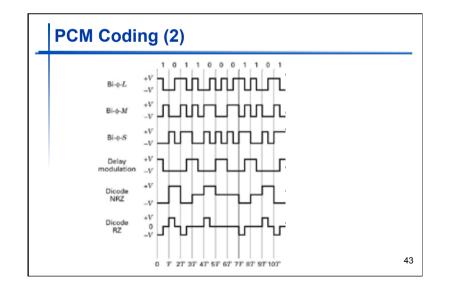

- A PCM signal is obtained from the quantized PAM signal by encoding each quantized sample to a digital codeword
- In binary PCM each quantized sample is digitally encoded into an *R*-bit binary codeword.
- Binary digits of a PCM signal can be transmitted using many efficient modulation schemes.

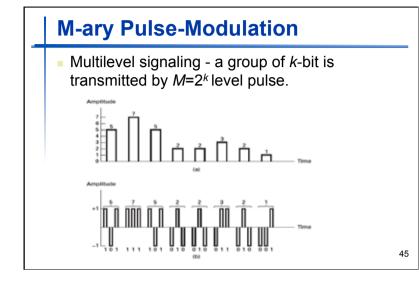












Bits per PCM Word and Bits per Symbol • PCM word size • How many bits shall we assign to each analog sample? $|e| \le pV_{pp}$ e: quantization error, $|e_{max}| = \frac{q}{2} = \frac{V_{pp}}{2L}$ e: quantization error, V_{pp} peak-to-peak voltage q: quantization level $\frac{V_{pp}}{2L} \le pV_{pp} \rightarrow 2^{l} = L \le \frac{1}{2p}$

 $l \ge \log_2\left(\frac{1}{2p}\right)$

Activity 1

The information in an analog waveform, with maximum frequency f_m =3kHz, is to be transmitted over an M-ary PAM system, where the number of pulse levels is M=16. The quantization error is specified not to exceed (+/-)1% of the peak-to-peak analog signal.

- (a) What is the minimum number of bits/samples, or PCM word size that should be used in digitizing the analog waveform?
- What is the minimum required sampling rate, and what is the resulting bit transmission rate?
- (c) What is the PAM pulse or symbol transmit rate?
- (d) If the transmission bandwidth equals 12 kHz, determine the bandwidth efficiency for this system.