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Why Baseband Demodulation/Detection ? 

  Received pulses are distorted because of the following factors: 
1.  Intersymbol Interference causes smearing of the transmitted pulses. 
2.  Addition of channel noise degrades the transmitted pulses. 
3.  Transmission channel causes further smearing of the transmitted pulses. 

  Demodulation (Detection) is the process of determining the transmitted 
bits from the distorted waveform. 

Transmitted        Received waveforms as a function of distance 
waveform 
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  For binary transmission, the transmitted signal over a symbol interval (0, T) is modeled by 

  The received signal is degraded by: (i) noise n(t) and (ii) impulse response of the channel   

 for i = 1, …, M. 
  Given r(t), the goal of demodulation is to detect if bit 1 or bit 0 was transmitted. 
  In our derivations, we will first use a simplified model for received signal 

  Later, we will see that degradation due to the impulse response of the channel is eliminated by 
equalization. 

Models for Transmitted and Received Signals 
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Basic Steps in Demodulation 



4 

Page 4 

7 

A Vector View of CT Waveforms (1) 
1.  Orthonormal Waveforms: Two waveforms ψ1(t) and ψ2(t) are orthonormal if they satisfy the 

following two conditions  

 
 
                                                                          Normalized to have unit energy   
2.  Two arbitrary signals s1(t) and s2(t) can be represented by linear combinations of two 

orthonormal basis functions                            , i.e. 
 

                             

Orthogonality Condition: ψ1(t)ψ2 (t)dt = 0
0

T

∫ (0 ≤ t ≤ T )

Unit Magnitude Condition: ψ1(t)ψ1(t)dt = K1 =1
0

T

∫ (0 ≤ t ≤ T )

ψ2 (t)ψ2 (t)dt = K2 =1
0

T

∫ (0 ≤ t ≤ T )

φ1(t) and φ2 (t)

s1(t) = s11φ1(t)+ s12φ2 (t)
s2 (t) = s21φ1(t)+ s22φ2 (t)

where sij = si
0

T

∫ (t)φ j (t)dt,     i, j ∈ 1, 2{ }

Geometric Representation of Signals 

s1(t) = s11φ1(t)+ s12φ2 (t)
s2 (t) = s21φ1(t)+ s22φ2 (t)

where sij = si
0

T

∫ (t)φ j (t)dt,     i, j ∈ 1,2{ }

si
0

T

∫ (t)φ j (t)dt  is the projection of si  on to 
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A Vector View of CT Waveforms (2) 
1.  N-dimensional basis functions: consists of a set {ψi(t)}, (1 ≤ i ≤ N), of 

orthonormal (or orthogonal) waveforms. 

 
 
 
 

2.  Given a basis function, any waveform in the represented as a linear 
combination of the basis functions. 

Orthogonality Condition: ψ j (t)ψk (t)dt = K jδ jjk
0

T

∫ (0 ≤ t ≤ T, j,k =1,…N )

where the operator: δ jk =
1
0

#
$
%

for j = k
otherwise
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A Vector View of CT Waveforms (3) 
3.  Given a basis function, any waveform in the represented as a linear combination of the basis 

functions 
 
 
 
 
 
 
or, in a more compact form, 

 
 

 
4.  The coefficient aij are calculated as follows 

 where Kj is the energy present in the basis signal. 

s1(t) = a11ψ1(t)+ a12ψ2 (t)++ a1NψN (t)
s2 (t) = a21ψ1(t)+ a22ψ2 (t)++ a2NψN (t)


sM (t) = aM1ψ1(t)+ aM 2ψ2 (t)++ aMNψN (t)
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Activity 1 
(a)  Demonstrate that signals si(t),  

i = 1,2,3, are not orthogonal.  
(b)  Demonstrate that ψi(t), i = 1,2, 

are orthogonal. 
(c)  Express si(t), i = 1,2,3, as a 

linear combination of the basis 
functions ψi(t), i = 1,2.  

(d)  Demonstrate that ψʹ′i(t), i = 1,2, 
are orthogonal. 

(e)  Express si(t), i = 1,2,3, as a 
linear combination of the basis 
functions ψ ʹ′i(t), i = 1,2. 

 

1
1 

Activity 2 
n  Show that the energy in a signal si(t) is given by 
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SNR used in Digital Communications 
1.  In digital communications, SNR is defined as the ratio 

of the energy (Eb) present in the signal representing a 
bit to the power spectral density (N0) of noise. 

2.  In terms of signal power S and the duration T of bit,  
the bit energy is given by Eb = S × T. 

3.  In terms of noise power N and bandwidth W, the PSD 
of noise is given by N0 = N / W. 

4.  SNR is therefore given by 

 where Rb is the rate of transmission in bits transmitted 
per second (bps). 

5.  Bit-error probability is the probability of error in a 
transmitted bit. 

6.  ROC curves are plots of Bit-error probability versus 
SNR. 

SNR = Eb

N0

=
S ×T
N /W

=
S / Rb
N /W

=
S
N
W
R

1
4 

Detection of binary signal in AWGN 
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Maximum Likelihood Detector (1)  
1.  The sampled received signal is given by 

 where ai(T) represents the signal levels obtained after sampling. For bit 1, ai(T) = a1 and for bit 
0, ai(T) = a2.  

2.  The pdf of n0 is Gaussian with zero mean 

3.  The conditional pdf of z given that bit 1 or bit 0 was transmitted is given by 
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4.  The conditional pdf of z given that bit 1 or bit 0 was transmitted are referred to as maximum 
likelihoods. 

5.  The maximum likelihoods have the following distributions 
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9 

Page 9 

17 

6.  Maximum Likelihood Ratio Test: is given by 
 
 
 
 
 
where P(s1) and P(s2) are the priori probabilities that s1(t) and s2(t), respectively, are 
transmitted.  

 H1 and H2 are two possible hypotheses. H1 states that signal s1(t) was transmitted and 
hypothesis H2 states that signal s2(t) was transmitted. 

6.  For P(s1) = P(s2), the maximum likelihood ratio test reduces to 

( )
( )

( )
( )1
2

2

1

2

1

sP
sP

szp
szp

H

H

<
>

0
21

2
)(

2

1

γ=
+

<
> aaTz

H

H

Maximum Likelihood Detector (1)  

Activity 3 
n  Show that the probability of bit error for maximum likelihood ratio test 

is given by 

n  Values of Q(x) are listed in Table B.1 in Appendix B page 1046. 
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Matched Filtering (1) 

20 

Matched Filtering (2)  

Design the Receiving filter h(t) 
1.  Design a filter that maximizes the SNR at time (t = T) of the sampled signal 

2.  The instantaneous signal power to noise power is given by 

 where ai(t) is the filtered signal and     is the variance of the output noise 

3.  The information bearing component is given by 
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Matched Filtering (3)  

4.  Given that input noise n(t) is AWGN with Sn(f) = N0/2, the PSD of the output noise is given by 

5.  The output noise power is given by 

6.  The SNR is given by 
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Matched Filtering (4)  

Schwartz Inequality:  

 

 

with the equality valid if f1(x) = kf2
*(x).  

7.  Applying the Schwatz inequality to the SNR gives 
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Matched Filtering (5)  

8.  The maximum SNR is given by 

  

       which is possible if 
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Activity 4 
n  Given that the transmitted signal is shown in the 

following figure, determine the impulse response of 
the matched filter. 

24 
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Matched Filtering (6)  

Correlator Implementation of matched filter: 
The output of the matched filter is given by 
 
 
 

The output at t = T is given by 
 
 
 

which leads to the following correlator implementation for matched filter 
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Detection of binary signal: Review 
)()()( 0 TnTaTZ i +=)()()( tntstr i +=
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Matched Filter: 
Impulse response: 
Maximum SNR = (a1)2/σ2

0  = 2Es/N0  
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  The overall goal of the receiver should be to minimize the probability of bit error PB.. 

  In other words, we are interested in maximizing (a1 – a2)2/σ2
0.	


  The filter is designed such that it is matched to the difference of [s1(t) – s2(t)]. 

  Maximum SNR of the matched filter = (a1 – a2)2/σ2
0 = 2(Es1 – Es2)/N0 = 2Ed/N0. 

  Probability of Error:  
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Activity 5 
By defining the cross-correlation coefficient as 
 
 
 
show that the probability of bit error using a filter matched to [s1(t) – s2(t)] is given by 
 
 
 
Using the above relationship, show that the probability of bit error is given by 
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Activity 6 
Determine the probability of bit error for a binary communication system, 
which receives equally likely signals s1(t) and s2(t) shown in the following 
diagram 
 
 
 
 
 
 
 
 

Assume that the receiving filter is a matched filter and the power spectral 
density of AWGN is N0 = 10-12 Watt/Hz.  
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Error Probability Performance of Binary Signal 

1. Unipolar signaling 
In Unipolar signaling, the signal selection to represent bits 1 and 0 is as follows: 
 
 
 
The receiver is shown by the following diagram.  
 

0.bit for ),0(,0)(
1bit for ),0(,)(

2

1
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Unipolar Signaling 
n  Unipolar signal forms an orthogonal signal set. 
n  When s1(t) plus AWGN being received, the expected value of z(T), given that 

s1(t) was sent, is 

n  When s2(t) plus AWGN being received, a2(T)=0. 
n  The optimum decision threshold is: 

n  The bit-error performance is: 

30 

a1(T ) = E z(T ) s1(t){ }= E (A2 + An(t))dt
0

T

∫
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∫ dt = A2T
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Bipolar Signaling 
In bipolar signaling, the signal selection to represent bits 1 and 0 is as follows: 
 
 
 
The receiver is shown by the following diagram.  
 

0.bit for ),0(,)(
1bit for ),0(,)(

2
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Bipolar Signaling 
n  Bipolar signal is a set of antipodal signal, e.g. s1(t)=-s2(t). 
n  The optimum decision threshold is: 

n  The bit-error performance is: 
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