Chapter 4 Activities

Activity 1

Consider two waveforms $\cos(2\pi f_1 t + \phi)$ and $\cos(2\pi f_2 t)$ to be used for non-coherent FSK-signaling, where $f_1 > f_2$. The symbol rate is equal to 1/T symbols/s, where T is the symbol duration and ϕ is a constant arbitrary angle from 0 to 2π . Prove that the minimum tone spacing for non-coherent detected orthogonal FSK signaling is 1/T.

Activity 1

For two waveforms to be orthogonal, they must fulfill the orthogonality constraint, i.e.

$$\begin{split} & \int_{0}^{T} \cos(2\pi f_{1}t + \phi)\cos(2\pi f_{2}t)dt = 0 \\ & \cos\phi \int_{0}^{T} \cos2\pi f_{1}t \cos2\pi f_{2}tdt - \sin\phi \int_{0}^{T} \sin2\pi f_{1}t \cos2\pi f_{2}tdt = 0 \\ & \frac{\cos\phi}{2} \int_{0}^{T} [\cos2\pi (f_{1} + f_{2})t + \cos2\pi (f_{1} - f_{2})t]dt \\ & - \frac{\sin\phi}{2} \int_{0}^{T} [\sin2\pi (f_{1} + f_{2})t + \sin2\pi (f_{1} - f_{2})t]dt = 0 \end{split}$$

Activity 1

which yields,

$$\cos\phi \left[\frac{\sin 2\pi (f_1 + f_2)t}{2\pi (f_1 + f_2)} + \frac{\sin 2\pi (f_1 - f_2)t}{2\pi (f_1 - f_2)} \right]_0^T + \sin\phi \left[\frac{\cos 2\pi (f_1 + f_2)t}{2\pi (f_1 + f_2)} + \frac{\cos 2\pi (f_1 - f_2)t}{2\pi (f_1 - f_2)} \right]_0^T = 0$$

$$\cos\phi \left[\frac{\sin 2\pi (f_1 + f_2)T}{2\pi (f_1 + f_2)} + \frac{\sin 2\pi (f_1 - f_2)T}{2\pi (f_1 - f_2)} \right] + \sin\phi \left[\frac{\cos 2\pi (f_1 + f_2)T - 1}{2\pi (f_1 + f_2)} + \frac{\cos 2\pi (f_1 - f_2)T - 1}{2\pi (f_1 - f_2)} \right] = 0$$

Assume that $(f_1+f_2)>>1$, we have the following approximation:

$$\frac{\sin 2\pi (f_1 + f_2)T}{2\pi (f_1 + f_2)} \approx \frac{\cos 2\pi (f_1 + f_2)T}{2\pi (f_1 + f_2)} \approx 0$$

We have:

$$\cos \phi \sin 2\pi (f_1 - f_2)T + \sin \phi [\cos 2\pi (f_1 - f_2)T - 1] \approx 0$$

4

Activity 1

For arbitrary ϕ , to let $\cos \phi \sin 2\pi (f_1 - f_2)T + \sin \phi [\cos 2\pi (f_1 - f_2)T - 1] \approx 0$ We must let $\sin 2\pi (f_1 - f_2)T = 0$ at the same time $\cos 2\pi (f_1 - f_2)T = 1$ We know:

$$\sin x=0$$
 for $x=n\pi$
 $\cos x=1$ for $x=2k\pi$

If n=2k, the $\sin x=0$ and $\cos x=1$. We can write:

$$2\pi(f_1 - f_2)T = 2k\pi$$

or

$$f_1 - f_2 = \frac{k}{T}$$

So the minimum spacing occurs for k=1, in which $(f_1-f_2)=1/T$

5

Activity 2

Find the bit error probability for a BPSK system with a bit rate of 1Mbit/s. The received waveforms $s_1(t) = A\cos\omega_0 t$ and $s_2(t) = -A\cos\omega_0 t$ are coherently detected with a matched filter. The value of A is 10mV. Assume that the single-sided noise power spectral density is N_0 =10⁻¹¹ W/Hz and that signal power and energy per bit are normalized relative to a 1 ohm load.

Activity 2

Solution:

$$\therefore A = \sqrt{\frac{2E_b}{T}} = 0.01V, \ T = \frac{1}{R} = 10^{-6} s$$

$$\therefore E_b = \frac{A^2}{2} T = 5 \times 10^{-11} J \text{ and } \sqrt{\frac{2E_b}{N_0}} = 3.16$$

$$P_B = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = Q(3.16)$$

Using Table B.1, we obtain P_B =8X10⁻⁴