CSE4214 Digital Communications

Chapter 5

Activities

Page 1

Activity 1

Configure a $(4,3)$ even-parity error-detection code such that the parity symbol appears as the leftmost symbol of the codeword. Which error patterns can the code detect?
Compute the probability of an undetected message error, assume that all symbol error are independent events and that the probability of a channel symbol error is $p=10^{-3}$.

Activity 1 Solution

Configure a $(4,3)$ even-parity error-detection code such that the parity symbol appears as the leftmost symbol of the codeword.
Which error patterns can the code detect?

	Message	Parity	Code Word	
The code is capable of	000	0	0	000
detecting all single and	100	1	1	100
triple error patterns.	010	1	1	010
	110	0	0	110
	001	1	1	001
	101	0	0	101
	011	0	0	011
	111	1	1	111
			parity	message

Activity 1 Solution

Compute the probability of an undetected message error assume that all symbol error are independent events and that the probability of a channel symbol error is $p=10^{-3}$.
Given:

$$
P_{n d}=\sum_{\mathrm{j}=1}^{\substack{n / 2(\text { for } \mathrm{n} \text { even }) \\(n-1) / 2(\text { for n odd })}}\binom{\mathrm{n}}{2 \mathrm{j}} p^{2 j}(1-p)^{n-2 j}
$$

The probability of an undetected error is equal to the probability that 2 or 4 errors occur anywhere in a codeword

$$
\begin{aligned}
& P_{n d}=\binom{4}{2} p^{2}(1-p)^{2}+\binom{4}{4} p^{4} \\
& =6 p^{2}(1-p)^{2}+p^{4}=6 p^{2}-12 p^{3}+7 p^{4} \\
& =6 \times\left(10^{-3}\right)^{2}-12 \times\left(10^{-3}\right)^{3}+7 \times\left(10^{-3}\right)^{4} \approx 6 \times 10^{-6}
\end{aligned}
$$

Activity 2

Generate a codeword for message vector [1,1,0] $\left(U_{4}\right)$ in a $(6,3)$ code if the generator matrix G is given by

$$
G=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Activity 2 Solution

Generate a codeword for message vector $[1,1,0]\left(\mathrm{U}_{4}\right)$ in a $(6,3)$ code if the generator matrix G is given by

$$
G=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$U=m G$
$U_{4}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2} \\ V_{3}\end{array}\right]=1 \cdot V_{1}+1 \cdot V_{2}+1 \cdot V_{3}$
$=110100+011010+000000$
$=101110$

Activity 3

For the $(6,3)$ code, the codewords are described as follows:

$$
U=\left[m_{1}, m_{2} m_{3}\right] \times\left[\begin{array}{cccccc}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Find $u_{1}, u_{2}, \ldots, u_{6}$.

Activity 3 Solution

Given:

$$
U=\left[m_{1}, m_{2} m_{3}\right] \times\left[\begin{array}{cccccc}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

We have:
$U=\left[m_{1}, m_{2} m_{3}\right] \times\left[\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
$=\left[m_{1}+m_{3}, m_{1}+m_{2}, m_{2}+m_{3}, m_{1}, m_{2}, m_{3}\right]$

Activity 4

Suppose that codeword $U=101110$ from the $(6,3)$ code in Activity 3 is transmitted and the vector $\mathbf{r}=001110$ is received; i.e. the leftmost bit is received in error. Find the syndr\&new'ector value and verify that it is equal to $\mathbf{e H}^{\top}$.

Activity 4 Solution

$S=r H^{T}=[001110]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]=[1,1+1,1+1]$
$=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ (syndrome of corrupted code vector)
$S=e H^{T}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right] H^{T}$
$=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ (syndrome of error pattern)

Activity 5

Assume that codeword $\mathbf{U}=101110$, from $(6,3)$ code in Activity 3, is transmitted, and the vector $\mathbf{r}=$ 001110 is received. Show how a decoder can correct the error (by using syndrome look-up table)

Activity 5 Solution

Assume that codeword U=1 01110 , from $(6,3)$ code in Activity 3, is transmitted, and the vector $r=001110$ is received. Show how a decoder can correct the error (by using syndrome look-up table)
The syndrome of r is computed as:
$\mathrm{S}=\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0\end{array}\right] \mathrm{H}^{T}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
Using the Lookup Table, the error pattern corresponding to the syndrome above is estimated to be

$$
\hat{\mathrm{e}}=1 \quad 0 \quad 0 \quad 0 \quad 0
$$

The corrected vector is then estimated by

$$
\begin{aligned}
& \hat{\mathrm{U}}=\mathrm{r}+\hat{\mathrm{e}} \\
& =001110+100000 \\
& =101110
\end{aligned}
$$

Page 7

| Activity 1

Consider the codeword set of	Message vector	Codeword
$(6,3)$, suppose the codeword	000	000000
110011 was transmitted and	100	110100
that two leftmost digits were	010	011010
declared by the receiver to	110	101110
be erasures. Verify that the	001	101001
received flawed sequence	101	011101
xx0011 can be corrected.	011	110011
	111	000111

| Activity 1 Solution

Since $d_{\text {min }}=p+1=3, p=2$, the code	Message vector	Codew ord
can correct as many as 2	000	000000
erasures.	100	110100
Compare the rightmost four digits	010	011010
of received word xx0011 with the	110	101110
codeword in the Table, the	001	101001
codeword that was actually	101	011101
transmitted is cloest in Hamming	011	110011
distance to the flawed sequence.	111	000111

