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Structured Sequence	
	

n  Structured Sequence 

n  Transforming data sequence into “better sequence”, 
having structured redundancy. The redundant bits 
can be used for the detection and correction of 
errors. 

n  Three types of structure sequence 
n  Block 
n  Convolutional 
n  Turbo 
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Binary Symmetric Channel	
	

n  Binary Symmetric Channel (hard-decision decoding) 

n  The input and output alphabet sets consist of the binary 
elements (0 and 1) and the conditional probabilities P are 
symmetric. 

Given that a channel symbol was transmitted, the probability 
that it is received in error is p, the probability of received 
correctly is (1-p) 

n  The channel symbol error probability 

P 0 1( ) = P 1 0( ) = p and P 1 0( ) = P 0 0( ) =1− p
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Code Rate and Redundancy	
	

n  (n, k) block code 

n  Source data segmented into blocks of k data bits (message 
bits) 

n  Each block can represent any one of 2k distinct messages. 
n  Encoder transform each k-bit data block into a larger block of 

n bits called code bits or channel symbols. 
n  The (n-k) bits are called redundant bits, parity bits, or check 

bits. 
n  Code rate is k/n 
n  Redundancy of the code is (n-k)/k.  
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Parity-Check Code	
	

n  Single-Parity-Check Code 

n  A single-parity-check code is constructed by adding a single-
parity bit to a block of data bits. 

n  The parity bit takes on the value of 1 or 0 as needed to 
ensure the summation of all the bits in the codeword yields an 
even or odd result. 

n  Even parity – added parity yields an even result 
n  Odd parity – added parity yields an odd result 
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Parity-Check Code	
	

n  Probability of j errors occurring in a block of n symbols  

    where p is probability that a channel symbol is received 
in error. 

n  The probability of an undetected error Pnd with a block 
of n bits is: 
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  n/2(for n even)
(n−1)/2(for n odd)

∑ p2 j 1− p( )n−2 j
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Activity 1	
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Configure a (4,3) even-parity error-detection code 
such that the parity symbol appears as the 
leftmost symbol of the codeword. Which error 
patterns can the code detect?  
Compute the probability of an undetected 
message error, assume that all symbol error are 
independent events and that the probability of a 
channel symbol error is p = 10-3.	
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Rectangular Code	
	

n  A Rectangular code (product code) can be thought of 

as a parallel code structure 
n  The message bits are formed by M rows and N columns 
n  A horizontal parity check (row) and a vertical parity check 

(column), resulting an augmented array of dimension (M
+1)x(N+1), with the rate of rectangular code as 
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Rectangular Code (2)	
	

n  Rectangular code is capable of 

correcting a single error located 
anywhere in block. 

n  The probability of message error 
(block error) for a code that can 
correct all t and fewer error patterns : 
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Why Use Error-Correction Coding?	
	

n  Error Performance vs Bandwidth 
n  Power vs Bandwidth 
n  Coding Gain 
n  Data rate vs Bandwidth 
n  Capacity vs Bandwidth 
n  Code Performance at Low Values  of EB/N0 
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where R is data rate, Pr is 
received power, N0 is noise 
power in a 1-Hz BW	
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Vector Space	
	

n  The set of all binary n-tuples, Vn, is called a  vector 

space over the binary field of two elements (0 and 1). 
n  The binary field has two operation: addition and 

multiplication, and the results are in the same set of two 
elements. 

Addition	
	
 Multiplication	
	

0+0=0	
 0 . 0 = 0	

0+1=1	
 0 . 1 = 0	

1+0=1 1 . 0 = 0	

1+1=0	
 1 . 1 = 1	
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Vector Subspaces	
	

n  A subset S of the vector space Vn is called a subspace 

if the following two conditions are met: 
n  The all-zeros vector is in S 
n  The sum of any two vectors in S is also in S (known 

as the closure property). 
n  Example: If there is vector space V4 that is populated 

by the following 24= sixteen 4-tuples	

0000	
 0001	
 0010	
 0011	
 0100	
 0101	
 0110	
 0111	

1000	
 1001	
 1010	
 1011	
 1100	
 1101	
 1110	
 1111	


Subset V4 that forms a subspace is 
0000  0101  1010  1111	
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Vector Subspaces	
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Linear Block Code Example	
	

n  (6, 3) code à n=6, k=3 
n  Message vector:  2k=23=8 
n  6-tuples:  2n=26= 64 in the V6 vector space.	


Message vector	
 Codeword	

000	
 000000	

100	
 110100	

010	
 011010	

110	
 101110	

001	
 101001	

101	
 011101	

011	
 110011	

111	
 000111	
 16	
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Generating Codeword	
	

n  If k is large, a table look-up implementation of the 

encoder becomes prohibitive.  
n  Example: (127,92) code have approximately 5X1027 code 

vectors. 

n  Since a set of codewords that forms a linear block 
code is a k-dimensional subspace of the n-dimensional 
binary vector space, it is always possible to find a set 
of n-tuple that can generate all the 2k codeword of the 
subspace. 

n  The smallest linearly independent set that spans the 
subspace is called a basis of the subspace. 
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Generating Codeword (2)	
	

n  Each of set of 2k codewords (U) can be generated by 

     where m=[m1, m2, …, mk] is a sequence of k message bits. 
n  G is a generator matrix  

G =
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Activity 2	
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Generate a codeword for message vector [1,1,0] 
(U4)  in a (6,3) code if the generator matrix G is 
given by 
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Systematic Linear Block Code	
	

n  A systematic (n, k) linear block is a mapping from a k-

dimensional message vector to an n-dimensional codeword in 
such a way that part of the sequence generated coincides with 
the k message digits and the remaining (n-k) digits are parity 
digits. 

n  The generator matrix of a systematic linear code is: 

   where P is the parity array portion of the generator matrix and I is 
the k X k identity matrix. 

G = P |Ik[ ] =

p11 p12  p1(n−k ) 1 0  0
p21 p22  p2(n−k ) 0 1  0

 
pk1 pk2  pk (n−k ) 0 0  1
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Systematic Linear Block Code (2)	
	

n  Each codeword is expressed as: 

u1,u2,...,un = m1,...,mk[ ]×

p11 p12  p1(n−k ) 1 0  0
p21 p22  p2(n−k ) 0 1  0

 
pk1 pk2  pk (n−k ) 0 0  1
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Activity 3 
For the (6,3) code, the codewords are described 
as follows: 
 
 
 
Find u1, u2, …, u6. 
 

U = m1,m2m3[ ]×
1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1
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Parity Check Matrix	
	

n  Parity-check matrix (H matrix) will enable to decode the 

received vectors. The components of H matrix are 
written as 

H = In−k | PT"
#$

%
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Parity Check Matrix	
	

n  The product UHT of each codeword U, generated by G 

and HT matrix, yields: 

where the parity bits p1, p2, …, pn-k are defined by  
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0,,, 2211 =+++= −− knkn
T ppppppUH …

p1 =m1p11 +m2p21 +...+mk pk1
p2 =m1p12 +m2p22 +...+mk pk2
...
pn−k =m1p1(n−k ) +m2p2(n−k ) +...+mk pk (n−k )
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Syndrome Testing	
	

n  Let r=r1,r2,…,rn be a received vector resulting of 

transmitting of U=u1,u2,…,un à r=U+e 
e is an error vector introduced by the channel.     

n  The syndrome of r is defined as  

n  The syndrome is the result of a parity check performed 
on r to determine whether r is a valid member of the 
codeword set 
n  If r is a member, the syndrome S has zero value. 
n  If r contains detectable errors, S has some nonzero value. 
n  If r contains correctable errors, S has some nonzero value 

that can earmark the particular error pattern. 

TrHS =
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Syndrome Testing	
	

n  Given               and               , we have  

Since UHT=0, à   
 

n  Note the following two required properties of the parity 
check matrix: 
n  No column of H can be all zeros, or else an error in  the 

corresponding codeword position would not affect the 
syndrome and would be undetectable. 

n  All columns of H must be unique. If two columns of H were 
identical, errors in these two corresponding codeword 
positions would be indistinguishable. 

eUr +=TrHS =
TT eHUHS +=
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S= eHT
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Activity 4 
Suppose that codeword U=101110 from the (6,3) 
code in Activity 3 is transmitted and the vector 
r=001110 is received; i.e. the leftmost bit is 
received in error. Find the syndrome vector value            
and verify that it is equal to eHT. 

TrHS =

Error Correction	
	

n  Standard array – 2n n-tuples that represent possible 

received vectors in an array 
n  The first row contain all the codewords starting with the all-

zeros codeword, and the first column contains all the 
correctable error patterns. 

n  Each row is called coset 
n  Row consists of an error pattern in the first column is called 

coset leader. 
n  Coset is short for “a set of numbers having a common 

feature”.  

	


28	
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Error Correction (2)	
	

n  The standard array format as follows 

  Each coset consists of 2k n-tuples, therefore there are (2n/2k)=2n-k 
cosets 
  Codeword Ui (i=1,...,2k) is transmitted over a noisy channel, 
resulting a corrupted vector Ui+ej.  
  If the error pattern ej caused by the channel is a coset leader, the 
received vector will be decoded correctly into the transmitted 
codeword Ui. 
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jjijj
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i
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





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Error Correction (3)	
	

n  Syndrome of a coset 

n  The syndrome of this n-tuple can be written as 

 

n  Error Correction Decoding procedure 

n  Calculate the syndrome of r using S=rHT 

n  Locate the coset leader (error pattern) ej, whose syndrome 
equals rHT 

n  This error pattern is assumed to be the corruption caused by 
the channel 

n  The corrected received vector, or codeword, is identified as 
U=r+ej. We retrieve the valid codeword by subtracting out the 
identified error. 

 

S= Ui + e j( )HT =UiH
T + e jH

T = e jH
T

30	
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Error Correction (4)	
	

n  Locating the error pattern 

n  Standard array for a (6,3) code 
000000	
	
 110100	
	
 011010	
	
 101110	
	
 101001	
	
 011101	
	
 110011	
	
 000111	
	


000001	
	
 110101	
 011011	
 101111	
 101000	
 011100	
 110010	
 000110	


000010	
	
 110110	
 011000	
 101100	
 101011	
 011111	
 110001	
 000101	


000100	
	
 110000	
 011110	
 101010	
 101101	
 011001	
 110111	
 000011	


001000	
	
 111100	
 010010	
 100110	
 100001	
 010101	
 111011	
 001111	


010000	
	
 100100	
 001010	
 111110	
 111001	
 001101	
 100011	
 010111	


100000	
	
 010100	
 111010	
 001110	
 001001	
 111101	
 010011	
 100111	


010001	
	
 100101	
 001011	
 111111	
 111000	
 001100	
 100010	
 010110	
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221

eUeUeUe

eUeUeUe

eUeUeUe
eUeUeUe

UUUU











Error Pattern	
	
 Syndrome	
	


000000	
 000	


000001	
 101	


000010	
 011	


000100	
 110	


001000	
 001	


010000	
 010	


100000	
 100	


010001	
 111	
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⎣
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101
110
011
100
010
001

eS j

Syndrome look-up table	
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Error Correction (5)	
	

n  Determine the syndrome corresponding to each of the 

correctable error sequence by computing ejHT for each 
coset leader: 

Error Pattern	
	
 Syndrome	
	

000000	
 000	

000001	
 101	

000010	
 011	

000100	
 110	

001000	
 001	

010000	
 010	

100000	
 100	

010001	
 111	


S= e j

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1
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Syndrome look-up table	
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Activity 5	
	

Assume that codeword U=1 0 1 1 1 0, from (6,3) 
code in Activity 3, is transmitted, and the vector r= 
0 0 1 1 1 0 is received. Show how a decoder can 
correct the error (by using syndrome look-up 
table) 
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Decoder Implementation	
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