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Weight and Distance of Binary Vectors 

n  Hamming weight (w) 
n  Number of non-zero elements in a cordword 

n  Hamming distance (d)  
n  Number of elements in 2 codewords in which they 

differ 
Example : 
U   = 1 0 0 1 0 1 1 0 1 à w(U)=5 
V   = 0 1 1 1 1 0 1 0 0 à w(V)=5,  d(U,V)=6 
U + V  = 1 1 1 0 1 1 0 0 1 à w(U+V)=6  

n  Hamming weight of a codeword is equal to its 
Hamming distance from the all-zeros vector 
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Minimum Distance of a Linear Code  
n  The smallest distance among all pairs of 

codeword (dmin) 
n  Determine the minimum distance 

n  Examine the weight of each codewords, and pick the 
minimum, that is dmin  

n  Minimum distance gives a measure of the 
code’s minimum capability and characterizes the 
code’s strength. 
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Error Detection and Correction 
n  An example 

n  Assume dmin between U and V = 5 
n  Case r1, 1 bit error from U, decoder 

will correct the vector r1 to U code 
words 

n  Case r2, 2 distances error from U and 
3 distance errors from V, decoder will 
choose U 

n  Case r3, 3 distances error from U and 
2 distances error from V, decoder will 
choose V 
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Error Detection and Correction (2) 
n  The decoder corrects the vector to the nearest code 

word 
n  The error-correcting capability t of a code is defined 

as: 

   where       means the largest integer not to exceed x. 
n  The error-detecting capability can be defined by : 
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Simultaneous Error Correction & Detection 

n  A code can be used for the simultaneous 
correction of α errors and detection of β errors, 
where β ≥ α, provide that its minimum distance 
is:  

        dmin ≥ α+β+1 
n  When t or fewer errors occur, the code is capable of 

detecting and correcting them 
n  When more than t but fewer than e+1 errors occur 

the code is capable of detection them but correcting 
only a subset of them. 
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Example 

A code with dmin=7 (t=3, e=6) can be used to 
simultaneously detect and correct in any one of 
the following ways: 
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Erasure Correction 
n  Some receiver might be designed to declare a 

symbol erased when it is received ambiguously.  
n  Given minimum distance dmin, any pattern of p or 

fewer erasures can be corrected if dmin≥p+1. 
n  Any pattern of α errors and γ erasures can be 

corrected simultaneously if dmin≥2α+γ+1 
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Activity 1 
Consider the codeword set of 
(6,3), suppose the codeword 
110011 was transmitted and 
that two leftmost digits were 
declared by the receiver to 
be erasures. Verify that the 
received flawed sequence 
xx0011 can be corrected. 
 

Message vector	
 Codeword	

000	
 000000	

100	
 110100	

010	
 011010	

110	
 101110	

001	
 101001	

101	
 011101	

011	
 110011	

111	
 000111	
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Usefulness of the Standard 
Array 

The Standard Array 
n  Standard array for [n,k] code is a 2n-k by 2k 

matrix 
n  The 1st row list all codewords with 0 codewords on 

the extreme left 
n  Each row is a coset with the coset leader in the first 

column 
n  The entry in the i-th row and j-th column is the sum of 

the i-th coset leader and j-th codeword 
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An Example of (6,3) Code 

000000	
	
 110100	
	
 011010	
	
 101110	
	
 101001	
	
 011101	
	
 110011	
	
 000111	
	


000001	
	
 110101	
 011011	
 101111	
 101000	
 011100	
 110010	
 000110	


000010	
	
 110110	
 011000	
 101100	
 101011	
 011111	
 110001	
 000101	


000100	
	
 110000	
 011110	
 101010	
 101101	
 011001	
 110111	
 000011	


001000	
	
 111100	
 010010	
 100110	
 100001	
 010101	
 111011	
 001111	


010000	
	
 100100	
 001010	
 111110	
 111001	
 001101	
 100011	
 010111	


100000	
	
 010100	
 111010	
 001110	
 001001	
 111101	
 010011	
 100111	


010001	
	
 100101	
 001011	
 111111	
 111000	
 001100	
 100010	
 010110	


Estimating Code Capability 
n  Standards array allow the visualization of important 

performance issues, such as possible trade-offs 
between error correction and detection 

n  Hamming bound is one of the bounds on error-
correction capability 

Number of parity bits: 

 
or number of cosets: 
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Estimating Code Capability 
n  Plotkin bound is an upper bound on the t-bit error-

correction capability 

n  In general, a linear (n,k) code must meet all upper 
bounds involving error correction capability (or 
minimum distance).  
n  For high-rate code, if the Hamming bound is met, then Plotkin 

bound will also be met. 
n  For low-rate code, it is other way around. 
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dmin ≤
n×2k−1

2k −1

Example: No. of Cosets Required 
n  (127,106) code 

n  2127 n-tuples in the space 
n  Topmost row: 2106 codeword (columns) 
n  Leftmost column: 2n-k=221=2,097,152 coset leaders (rows) 

n  2,097,152 cosets = 2,097,152 error patterns, which can be 
corrected 

 
 
n  Hence, this Humming bound can guarantee the 

correction up to 3 bits only. 
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Design of a (n,k) Code 
n  How to choose n and k? 

n  Assume required error-correcting capability is at 
least t=2, then dmin=2t+1=5 

n  Assume k=2, i.e. 2k=4 codewords 
n  If Hamming bound is used, the min n=7.  
n  Checking for Plotkin bound, n≥7.5, so n=8 
n  The minimum dimensions of the code are (8,2). 
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Designing of (8,2) Code 
n  How to determine codeword? 

n  The number of code is 2k=4, and 
each code is 8-bit 

n  The all-zero vector must be one 
of the codeword 

n  The closure property must be 
met 

n  Since dmin=5, the weight of each 
codeword, except for all-zero 
code), must also be at least 5. 

n  Assume the code is systematic, 
the rightmost 2 bits of each 
codeword are the message bits 

18 

Message Codewords 

00 00000000 

01 11110001 

10 00111110 

11 11001111 
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Cyclic Codes 

Definition 
§  Definition 

§  A code is cyclic if it is a linear code 
§  Any cyclic shift of a codeword is also a codeword, 
   i.e. U=(u0,… un -1) in subspace S, U(1)=[un -1 u0 … un –2] 

is also in S. 
§  Example 

§  Code U= {0000, 1111} is cyclic 
§  Code U = {000, 101, 011, 110} is cyclic. 
§  The binary linear code {000, 100, 011, 111} is not a 

cyclic. 
 

20 
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Algebraic Structure 
§  Express codewords in polynomial form. 

§  If U(X) is an (n-1) degree codeword polynomial, then 
U(i)(X), the remainder resulting from dividing XiU(X) 
by Xn+1, is also a codeword. 

§  Simply, 
 
n  In terms of modulo expression 
 

21 

U(X) = u0 +u1X +u2X
2 +...+un−1X

n−1

XiU(X) = q(X)(Xn +1)+U (i) (X)
remainder


U (i) (X) = XiU(X) modulo (Xn +1)

Activity 2 
Let U = 1 1 0 1, for n=4. Express the codeword in 
polynomial form, and solve for the third end-around shift 
of the codeword. 

22 
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Cyclic Code Properties 
§  Generate a cyclic code using a generator polynomial 

§  The generator polynomial g(X) for an (n, k) cyclic code is 
unique and is of the form 

g(X) = g0 + g1X + g2X2 + … + gpXp 

§  The message polynomial m(X) is written as 
m(X) = m0 + m1X + m2X2 + … + mn-p-1Xn-p-1 

§  Every codeword polynomial in the (n,k) cyclic code can 
be expressed as  

U(X) = (m0 + m1X + m2X2 + … + mn-p-1Xn-p-1)g(X) 
§  The generator polynomial g(X) of an (n, k) cyclic code is a 

factor of Xn + 1, i.e. Xn + 1 = g(X) h(X).  
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Cyclic Code Example 
n  X7 + 1 = (1 + X + X3)(1 + X + X2 + X4) 

n  Let g(X) = 1 + X + X3 as a generator polynomial, n - 
k = 3, we can generate an (n, k) = (7, 4) cyclic code. 

n  Let g(X) = 1 + X + X2 + X4 as a generator 
polynomial, n – k = 4, we can generate an (n, k) = 
(7, 3) cyclic code. 

n  If g(X) is a polynomial of degree n - k and is factor of 
Xn + 1, then g(X) uniquely generates an (n, k) cyclic 
code. 

 

24 
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Error Detection 
§  Assume U(X) is transmitted and Z(X) is received 

 U(X) = m(X) g(X)  
 Z(X) = U(X) + e(X) 
 where e(X) is the error pattern polynomial 

§  The decoder tests whether Z(X) is a codeword 
polynomial, i.e. whether it is divisible by g(X) with a zero 
remainder 
§  Z(X)=q(X)g(x)+S(X), syndrome S(X) is the remainder 

of Z(X) divided by g(X) 
§  Also U(X) + e(X)=q(X)g(x)+S(X) 
à e(X)=[m(X)+q(X)]g(X)+S(X) 
Syndrome is the remainder of e(X) divided by g(X) 
 25 

Error Detection 
§  S(X) = Z(X) modulo g(X) 
§  S(X) = e(X) module g(X) 
§  The syndrome contains the information needed 

for the correction of the error pattern. 
§  The syndrome calculation is accomplished by a 

division circuit à feedback shift register 

26 
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Activity 3 
Let the received signal is Z = 1 0 0 1 0 1 1. Assume that 
the generator is g= 1 1 0 1. Calculate the syndrome. 

27 

Implementation with Shift Registers 
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   1 0 0 1 0 1 1 

     g(X) = 1 + X + X3         
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Well Known Block Codes 

Hamming Codes 
§  Invented by Richard Hamming in 1950 
§  Simple class of block codes characterized by the structure 

(n, k) =  (2m – 1, 2m – 1 – m) where m = 2, 3, …. 
§  Have a minimum distance of 3. 
§  Capable of correcting all single errors or detecting all 

combinations of two or fewer errors within a block 
§  The bit error probability can be written as 

 
 
 
 
    or the following equivalent equation 
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Extended Golay Code 
§  (24, 12) extended Golay Code, formed by adding 

an overall parity bit to the (23, 12) code. 
§  The added parity bit increases the minimum 

distance dmin from 7 to 8. 
§  These codes are considerably more powerful than 

the Hamming codes. 
§  The error performance of the extended Golay 

code is seen to be significantly better than that of 
the Hamming codes. 
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Hamming Codes 

32 
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BHC Codes 
§  Boss-Chadhuri-Hocqenghem (BCH) codes 

are generalization of Hamming codes that 
allow multiple error correction. 

§ They are a powerful class of cyclic codes that 
provides a large selection of block lengths, 
code rates, alphabet sizes, and error-
correcting capability. 
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BCH Codes 
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