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Weight and Distance of Binary Vectors 

n  Hamming weight (w) 
n  Number of non-zero elements in a cordword 

n  Hamming distance (d)  
n  Number of elements in 2 codewords in which they 

differ 
Example : 
U   = 1 0 0 1 0 1 1 0 1 à w(U)=5 
V   = 0 1 1 1 1 0 1 0 0 à w(V)=5,  d(U,V)=6 
U + V  = 1 1 1 0 1 1 0 0 1 à w(U+V)=6  

n  Hamming weight of a codeword is equal to its 
Hamming distance from the all-zeros vector 
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Minimum Distance of a Linear Code  
n  The smallest distance among all pairs of 

codeword (dmin) 
n  Determine the minimum distance 

n  Examine the weight of each codewords, and pick the 
minimum, that is dmin  

n  Minimum distance gives a measure of the 
code’s minimum capability and characterizes the 
code’s strength. 
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Error Detection and Correction 
n  An example 

n  Assume dmin between U and V = 5 
n  Case r1, 1 bit error from U, decoder 

will correct the vector r1 to U code 
words 

n  Case r2, 2 distances error from U and 
3 distance errors from V, decoder will 
choose U 

n  Case r3, 3 distances error from U and 
2 distances error from V, decoder will 
choose V 
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Error Detection and Correction (2) 
n  The decoder corrects the vector to the nearest code 

word 
n  The error-correcting capability t of a code is defined 

as: 

   where       means the largest integer not to exceed x. 
n  The error-detecting capability can be defined by : 
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Simultaneous Error Correction & Detection 

n  A code can be used for the simultaneous 
correction of α errors and detection of β errors, 
where β ≥ α, provide that its minimum distance 
is:  

        dmin ≥ α+β+1 
n  When t or fewer errors occur, the code is capable of 

detecting and correcting them 
n  When more than t but fewer than e+1 errors occur 

the code is capable of detection them but correcting 
only a subset of them. 
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Example 

A code with dmin=7 (t=3, e=6) can be used to 
simultaneously detect and correct in any one of 
the following ways: 
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Erasure Correction 
n  Some receiver might be designed to declare a 

symbol erased when it is received ambiguously.  
n  Given minimum distance dmin, any pattern of p or 

fewer erasures can be corrected if dmin≥p+1. 
n  Any pattern of α errors and γ erasures can be 

corrected simultaneously if dmin≥2α+γ+1 
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Activity 1 
Consider the codeword set of 
(6,3), suppose the codeword 
110011 was transmitted and 
that two leftmost digits were 
declared by the receiver to 
be erasures. Verify that the 
received flawed sequence 
xx0011 can be corrected. 
 

Message vector	 Codeword	
000	 000000	
100	 110100	
010	 011010	
110	 101110	
001	 101001	
101	 011101	
011	 110011	
111	 000111	
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Usefulness of the Standard 
Array 

The Standard Array 
n  Standard array for [n,k] code is a 2n-k by 2k 

matrix 
n  The 1st row list all codewords with 0 codewords on 

the extreme left 
n  Each row is a coset with the coset leader in the first 

column 
n  The entry in the i-th row and j-th column is the sum of 

the i-th coset leader and j-th codeword 
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An Example of (6,3) Code 

000000		 110100		 011010		 101110		 101001		 011101		 110011		 000111		

000001		 110101	 011011	 101111	 101000	 011100	 110010	 000110	

000010		 110110	 011000	 101100	 101011	 011111	 110001	 000101	

000100		 110000	 011110	 101010	 101101	 011001	 110111	 000011	

001000		 111100	 010010	 100110	 100001	 010101	 111011	 001111	

010000		 100100	 001010	 111110	 111001	 001101	 100011	 010111	

100000		 010100	 111010	 001110	 001001	 111101	 010011	 100111	

010001		 100101	 001011	 111111	 111000	 001100	 100010	 010110	

Estimating Code Capability 
n  Standards array allow the visualization of important 

performance issues, such as possible trade-offs 
between error correction and detection 

n  Hamming bound is one of the bounds on error-
correction capability 

Number of parity bits: 

 
or number of cosets: 
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Estimating Code Capability 
n  Plotkin bound is an upper bound on the t-bit error-

correction capability 

n  In general, a linear (n,k) code must meet all upper 
bounds involving error correction capability (or 
minimum distance).  
n  For high-rate code, if the Hamming bound is met, then Plotkin 

bound will also be met. 
n  For low-rate code, it is other way around. 
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dmin ≤
n×2k−1

2k −1

Example: No. of Cosets Required 
n  (127,106) code 

n  2127 n-tuples in the space 
n  Topmost row: 2106 codeword (columns) 
n  Leftmost column: 2n-k=221=2,097,152 coset leaders (rows) 

n  2,097,152 cosets = 2,097,152 error patterns, which can be 
corrected 

 
 
n  Hence, this Humming bound can guarantee the 

correction up to 3 bits only. 
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Design of a (n,k) Code 
n  How to choose n and k? 

n  Assume required error-correcting capability is at 
least t=2, then dmin=2t+1=5 

n  Assume k=2, i.e. 2k=4 codewords 
n  If Hamming bound is used, the min n=7.  
n  Checking for Plotkin bound, n≥7.5, so n=8 
n  The minimum dimensions of the code are (8,2). 
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Designing of (8,2) Code 
n  How to determine codeword? 

n  The number of code is 2k=4, and 
each code is 8-bit 

n  The all-zero vector must be one 
of the codeword 

n  The closure property must be 
met 

n  Since dmin=5, the weight of each 
codeword, except for all-zero 
code), must also be at least 5. 

n  Assume the code is systematic, 
the rightmost 2 bits of each 
codeword are the message bits 

18 

Message Codewords 

00 00000000 

01 11110001 

10 00111110 

11 11001111 
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Cyclic Codes 

Definition 
§  Definition 

§  A code is cyclic if it is a linear code 
§  Any cyclic shift of a codeword is also a codeword, 
   i.e. U=(u0,… un -1) in subspace S, U(1)=[un -1 u0 … un –2] 

is also in S. 
§  Example 

§  Code U= {0000, 1111} is cyclic 
§  Code U = {000, 101, 011, 110} is cyclic. 
§  The binary linear code {000, 100, 011, 111} is not a 

cyclic. 
 

20 
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Algebraic Structure 
§  Express codewords in polynomial form. 

§  If U(X) is an (n-1) degree codeword polynomial, then 
U(i)(X), the remainder resulting from dividing XiU(X) 
by Xn+1, is also a codeword. 

§  Simply, 
 
n  In terms of modulo expression 
 

21 

U(X) = u0 +u1X +u2X
2 +...+un−1X

n−1

XiU(X) = q(X)(Xn +1)+U (i) (X)
remainder


U (i) (X) = XiU(X) modulo (Xn +1)

Activity 2 
Let U = 1 1 0 1, for n=4. Express the codeword in 
polynomial form, and solve for the third end-around shift 
of the codeword. 
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Cyclic Code Properties 
§  Generate a cyclic code using a generator polynomial 

§  The generator polynomial g(X) for an (n, k) cyclic code is 
unique and is of the form 

g(X) = g0 + g1X + g2X2 + … + gpXp 

§  The message polynomial m(X) is written as 
m(X) = m0 + m1X + m2X2 + … + mn-p-1Xn-p-1 

§  Every codeword polynomial in the (n,k) cyclic code can 
be expressed as  

U(X) = (m0 + m1X + m2X2 + … + mn-p-1Xn-p-1)g(X) 
§  The generator polynomial g(X) of an (n, k) cyclic code is a 

factor of Xn + 1, i.e. Xn + 1 = g(X) h(X).  
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Cyclic Code Example 
n  X7 + 1 = (1 + X + X3)(1 + X + X2 + X4) 

n  Let g(X) = 1 + X + X3 as a generator polynomial, n - 
k = 3, we can generate an (n, k) = (7, 4) cyclic code. 

n  Let g(X) = 1 + X + X2 + X4 as a generator 
polynomial, n – k = 4, we can generate an (n, k) = 
(7, 3) cyclic code. 

n  If g(X) is a polynomial of degree n - k and is factor of 
Xn + 1, then g(X) uniquely generates an (n, k) cyclic 
code. 

 

24 
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Error Detection 
§  Assume U(X) is transmitted and Z(X) is received 

 U(X) = m(X) g(X)  
 Z(X) = U(X) + e(X) 
 where e(X) is the error pattern polynomial 

§  The decoder tests whether Z(X) is a codeword 
polynomial, i.e. whether it is divisible by g(X) with a zero 
remainder 
§  Z(X)=q(X)g(x)+S(X), syndrome S(X) is the remainder 

of Z(X) divided by g(X) 
§  Also U(X) + e(X)=q(X)g(x)+S(X) 
à e(X)=[m(X)+q(X)]g(X)+S(X) 
Syndrome is the remainder of e(X) divided by g(X) 
 25 

Error Detection 
§  S(X) = Z(X) modulo g(X) 
§  S(X) = e(X) module g(X) 
§  The syndrome contains the information needed 

for the correction of the error pattern. 
§  The syndrome calculation is accomplished by a 

division circuit à feedback shift register 

26 



14 

Page 14 

Activity 3 
Let the received signal is Z = 1 0 0 1 0 1 1. Assume that 
the generator is g= 1 1 0 1. Calculate the syndrome. 

27 

Implementation with Shift Registers 

28 

   1 0 0 1 0 1 1 

     g(X) = 1 + X + X3         
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Well Known Block Codes 

Hamming Codes 
§  Invented by Richard Hamming in 1950 
§  Simple class of block codes characterized by the structure 

(n, k) =  (2m – 1, 2m – 1 – m) where m = 2, 3, …. 
§  Have a minimum distance of 3. 
§  Capable of correcting all single errors or detecting all 

combinations of two or fewer errors within a block 
§  The bit error probability can be written as 

 
 
 
 
    or the following equivalent equation 
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Extended Golay Code 
§  (24, 12) extended Golay Code, formed by adding 

an overall parity bit to the (23, 12) code. 
§  The added parity bit increases the minimum 

distance dmin from 7 to 8. 
§  These codes are considerably more powerful than 

the Hamming codes. 
§  The error performance of the extended Golay 

code is seen to be significantly better than that of 
the Hamming codes. 

31 

Hamming Codes 

32 
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BHC Codes 
§  Boss-Chadhuri-Hocqenghem (BCH) codes 

are generalization of Hamming codes that 
allow multiple error correction. 

§ They are a powerful class of cyclic codes that 
provides a large selection of block lengths, 
code rates, alphabet sizes, and error-
correcting capability. 
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BCH Codes 
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