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1. PURPOSE

In this lab, you will be introduced to random variables and stochastic processes. Using MATLAB, you will learn how
to generate random variables of any known power spectral density (PSD) through a linear, time invariant (LTI)
system representation whose impulse response is derived from the PSD. You will also implement a quadrature
amplitude modulator and demodulator as a prototype communication system. The lab will also serve as a review
of MATLAB.

The learners will complete the following three simulations in MATLAB and submit their solutions along with
a soft copy of the code in the form of a report.

2. OBJECTIVES

By the end of this project, you will be able to:

1. Generate random variables of commonly used probability density function (pdf) including uniform and Gaus-
sian pdfs.

2. Derive and plot the autocorrelation function as well as the PSD of a sequence of random variables.

3. Implement a quadrature amplitude modulator and demodulator widely used in many digital radio commu-
nications and data communications applications.

3. REFERENCES

1. Bernard Sklar text: Sections 1.5 - 1.7. Pages 20 - 50.

4. INTRODUCTION

As covered in the class, a random variable is a function that associates a real number with each element in the
sample space of a random experiment . For example, the sample space giving a detailed description of each possible
outcomes when three electronic components are tested may be written as S = NNN, NND, NDN, NDD, DNN,
DND, DDN, DDD, where N denotes a nondefective and D denotes a defective component. A natural concern is
the number of defective components that occur. If we assign a random variable X that counts the number of
defective components, then each event or point in the sample space can be assigned a numerical value of 0, 1, 2,
or 3. For the sample point NNN, the value of X is 0 and for DDN, X has a value of 2. Similarly, for the rest of
the sample points. The random variable considered in the above example is a discrete random variable because
its set of possible values is countable. When a random variable can take on values on the continuous scale, it is
called a continuous random variable. Such is the case, for example, when one conducts an investigation measuring
the distances that a certain make of automobile travels over a prescribed course in 5 liters of gasoline. Assuming
distances to be a random variable measured with any degree of accuracy, say up to two decimal points, then clearly
we have an infinite number of possible distances in the sample space. For further discussion on random variables,
refer to the handout on random variables available on the course home page.



A (one-dimensional) random process is a scalar function x(t), where t is usually time, for which the future
evolution is not determined uniquely by any set of initial dataor at least by any set that is knowable to you and me.
In other words, random process is just a fancy phrase that means unpredictable function. Example of a random
process is the voltage measured across a resistor in an RLC circuit. The voltage is a function of time hence the
notation v(t) used to represent it. Second, each time the voltage is measured you would get a different waveform
(referred to as ensemble). Therefore, the sample space of a random process consists of a number of waveforms
varying with time instead of a combination of numbers as observed with the random variable. If on the other
hand, we fix time t = t0 in the sample space then each ensemble will produce a single number. The combination of
these numbers across all ensembles can be treated as a random variable. A particular category of random process
is one where the mean of the random variable obtained by fixing time is constant (independent of time) and the
autocorrelation between two random variables obtained by fixing time at two different instants is only dependent
on the time difference between the two instants. Such a random process is called a wide sense stationary (WSS)
process, which has wide applications in digital communication including modeling of noise.

In this lab, you will use MATLAB to generate random variables and random processes through three simulations.

5. GENERATION OF A GAUSSIAN SEQUENCE:

In the first simulation, you are required to generate 1000 pairs of Gaussian random variables (x1, x2) that have
mean vector

m = E
[
x1
x2

]
=

[
0.5
0.5

]
(1)

and covariance matrix

C =

[
1 0.5

0.5 1

]
(2)

where E is the expectation operator.

Problem 1: In MATLAB, the function randn generates random variables with Gaussian distribution having
mean zero and variance one. Write a function based on randn that will generate the correlated variables (x1, x2)
defined above.

Problem 2: For the random variables generated above, determine the mean of the samples (x1, x2), i =
1, 2, . . . , 1000, using the relationships

m1 =
1

1000

1000∑
i=1

x1i (3)

m2 =
1

1000

1000∑
i=1

x2i. (4)

Problem 3: Compare the values obtained from the samples with the theoretical values that were provided to you.
Why are the two different? Now, increase the number of samples to 10000. Does this affect your answer in any
way? Has the approximation improved?

Problem 4: Repeat (b) but now calculate the covariances. The analytical expression for the covariances are

Variance of x1: σ2
1 =

1

1000

1000∑
i=1

(x1i −m1)2 (5)

Variance of x2: σ2
2 =

1

1000

1000∑
i=1

(x2i −m2)2 (6)



Covariance of x1 and x2: c12 =
1

1000

1000∑
i=1

(x1i −m1)(x2i −m2). (7)

6. FILTERING OF STOCHASTIC SIGNALS:

Problem 5: Modify the code of simulation 1 to generate an independent identically distributed (i.i.d.) sequence
{xn} of N = 1000 uniformly distributed random variables in the interval [-0.5, 0.5]. Unlike simulation 1, you
are now dealing with a single random variable with uniform distribution in the interval [-0.5, 0.5]. Calculate the
mean and variance of the generated sequence and compare with the theoretical values obtained directly from the
distribution.

Problem 6: The sequence {xn} is passed through a causal and stable linear filter with impulse response

h[n] =

{
(0.95)n, for n ≥ 0

0 elsewhere.
(8)

Prove that the recursive equation that describes the output y[n] of this filter as a function of the input x[n] is

y[n] = 0.95y[n− 1] + x[n] for n ≥ 0 and y[−1] = 0. (9)

Problem 7: Using relationship (9) and the filter function in MATLAB, generate the random sequence y[n]
that results if the input sequence {xn} is filtered by the linear filter. Compute and plot the autocorrelation function
Rx[m] and the power spectral density Gx(f) using the following relations:

Rx[m] =
1

N −m

N−m∑
n=1

x[n]x[n+m], for m = 0, 1, . . . 50 (10)

Rx[m]
F←→ Gx[k]. (11)

Try to plot autocorrelation function Rx[m] and the power spectrum Gx[k] for different ensembles of x[n]. It will be
noted that the two exhibit a significant variability over different ensembles. To get reasonable results, it is necessary
to average the sample autocorrelation and power spectrum over several realizations.

Problem 8: Compute and plot the autocorrelation function Ry[m] and the power spectral density Gy(f) for the
output sequence {yn}. Is there any relationship between the input and output power spectral densities? Why or why
not? If yes, prove the relationship is indeed valid for the above simulation.

7. QUADRATURE AMPLITUDE MODULATION:

Problem 9: Using the code of (2), generate two i.i.d. sequences {wcn} and {wsn} of N = 1000 uniformly
distributed random numbers in the interval [-0.5, 0.5]. Compare their respective means and variances with each
other and with the theoretical values.

Problem 10: Each of these sequences is passed through a linear filter with impulse response

h[n] =

{
(0.5)n, for n ≥ 0

0 elsewhere.
(12)

Prove that the input-output characteristic of the above LTI system, is given by the recursive relation

x[n] = 0.5x[n− 1] + w[n] for n ≥ 1 and x[0] = 0. (13)



where x[n] is now the output and w[n] the input.

Problem 10: Calculate the resulting output sequences, {xcn} and {xsn} when {wcn} and {wsn} are applied at the
input of the system in (b). The output sequence {xcn} modulates the carrier cos(π/2)n, and the output sequence xsn
modulates the quadrature carrier sin(π/2)n. The bandpass signal is formed by combining the modulated components
as in

x[n] = xcn cos(
15π

8
n) + xsn sin(

15π

8
n). (14)

Problem 11: Compute and plot autocorrelation components Rc[m] and Rs[m] for |m| ≤ 10 for the sequences
{xcn} and {xsn} respectively. Also, compute the autocorrelation function Rx[m] for |m| ≤ 10 for the bandpass signal
x[n]. Is there any relationship between the three autocorrelation functions? As in question 2, you are required to
average the sample autocorrelations and power spectrums over several realizations.

Problem 12: Use the DFT (calculated using fft function in MATLAB) to compute the power spectra Gc(f),
Gs(f), and Gx(f). Plot the power spectra and comment on the results.

Problem 13: Design a demodulator to retrieve {xcn} and {xsn} from {x[n]}. Implement in MATLAB and show
that {xcn} and {xsn} can be retrieved without any error.


