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1. PURPOSE

In this lab, you will be introduced to transformations of random variables. Several engineering software packages
including Matlab include a library function for generating samples of a random variable with uniform distribution.
You will learn how transformations can be used to generate samples for a random variable with a different proba-
bility density function. You will also implement (i) an uniform pulse code modulator (PCM) that uses a uniform
quantizer; and (ii) a nonuniform PCM with a nonuniform quantizer. The nonuniform quantizer is implemented
by first distorting the signal using a logarithmic compression characteristic, followed by a uniform quantizer. The
logarithmic compression characteristic used in the project is the µ-law compander.

The learners will complete the following three simulations in MATLAB and submit their solutions along with
a soft copy of the code in the form of a report.

2. OBJECTIVES

By the end of this project, you will be able to:

1. Generate samples of a random variable for any given probability density function by transforming uniformly
distributed random variables.

2. Implement a uniform quantizer used in the pulse code modulation (PCM) system to digitally represent
sampled analog signals.

3. Augment the PCM system with a compander used to transmit signals with a large dynamic range over
communication channels with smaller dynamic range capability.

3. REFERENCES

1. Bernard Sklar text: Sections 2.6 - 2.7. Pages 79 – 84.

4. TRANSFORMATIONS OF RANDOM VARIABLES

A situation that frequently occurs in the analysis of communication systems is that in which a random variable Y
is functionally related to another random variable X whose probability density function (pdf) pX(x) is known and
it is desired to determine the pdf pY (y) of the first random variable Y . For example, the pdf of the transmitted
signal is known and it is often required to evaluate the pdf of the signal received through a nonlinear channel.
A complete discussion of this problem is beyond the scope of this project but a few elementary concepts can be
presented and will be useful for subsequent discussions.

In order to formulate the mathematical framework, let the random variable Y be a single-valued, real function
of another random variable X, i.e.,

Y = g(X) (1)

where it is assumed that the pdf pX(x) of the random variable X is known. Let the pdf of random variable Y be
denoted by pY (y) which is unknown. For simplicity, it is assumed that g(X) is a monotonically increasing function
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Figure 1: Transformations of variables.

of X, as illustrated in fig. 1. It is clear from fig. 1 that whenever the random variable X lies between x and x+ dx,
the random variable Y will lie between y and y + dy. Since the probabilities of these events are equal, therefore,

pY (y)dy = pX(x)dx (2)

from which the required pdf can be expressed as

pY (y) = pX(x)
dx

dy
. (3)

In eq. (3), g(X) is a monotonically increasing function ofX. A similar result is obtained when g(X) is a montonically
decreasing function of X. In the later case, the derivative dx

dy will be negative. Since a pdf must be positive, we

take the absolute value of the derivative dx
dy in eq. (3). Hence, for either situation

pY (y) =

∣∣∣∣dxdy
∣∣∣∣ pX(x)

∣∣
X=g−1(Y ) . (4)

The above expression is used to calculate the pdf of any random variable that is a function of a random variable
with a known pdf.

Example 1: Consider now a specific example of the transformation of random variables by assuming that the
random variable X has the pdf

pX(x) = e−xU(x) (5)

where U(x) is the unit step starting at x = 0. The random variable Y is related to X by

Y = X3 (6)

or X = Y 1/3 (7)

Since y and x are related by the same expression, the derivative dx
dy is given by

dx

dy
=

1

3y2/3
. (8)

Using eq. (4), the pdf of Y is

pY (y) =
1

3
y−2/3e−y

1/3

U(y). (9)



5. COMPUTER GENERATION OF RANDOM VARIABLES

A digital computer is often used to simulate systems in order to estimate their performance with noise prior to
the actual construction of the system. These simulations usually require that random numbers be generated that
are values of random variables having prescribed distributions. If software exists for the specified distribution,
there is no problem. However, if a computer library does not contain the desired program, it is necessary for the
simulation to generate its own random variables. Here we briefly describe how to generate a random variable with
any known distribution, given mainly that the computer is able to generate random numbers that are values of a
random variable with uniform distribution on (0,1). In Matlab, the function rand generate random numbers with
uniform distribution. The problem then is to find the transformation

Y = g(X) (10)

that will create a random variable Y with pdf pY (y) when X has the pdf pX(x). Both pdfs pY (y) and pX(x) are
therefore known. Since X has uniform distribution, pX(x) = 1 for (0 ≤ x ≤ 1).

Referring to fig. 1, the probability of the event {Y ≤ y} equals the probability of the event {X ≤ x} because of
one-to-one correspondence between X and Y , i.e.,

P{Y ≤ y} = P{X ≤ x} (11)

or FY (y) = FX(x) (12)

where FX(x) and FY (y) are the distribution functions for the random variables X and Y . For uniform distribution,
with pX(x) = 1 for (0 ≤ x ≤ 1),

FX(x) = x for 0 < x < 1 (13)

therefore, eq. (12) becomes

FY (y) = x for 0 < x < 1 (14)

from which the expression for y can be evaluated as

y = F−1Y (x) for 0 < x < 1. (15)

The above expression is our principal result. It states that, given a specified distribution FY (y) for Y , we find the
inverse function by solving FY (y) = x for y.

Theoretical Problem 1. (Generation of random numbers with Exponential pdf:) An exponential random variable
is defined by the pdf

pY (y) =

{
ae−ay y ≥ 0

0 otherwise
(16)

where a > 0 is a given constant.

1. Show that the distribution FY (y) is given by

FY (y) = (1− e−ay)U(y). (17)

2. Using FY (y) and eq. (14), evaluate the relationship Y = g(X) that transform a random variable X with
uniform pdf between (0, 1) to a random variable Y with exponential pdf.

3. Determine the mean and variance of the exponential random variable defined in (16).

Problem 2. Using the result of Problem 1, generate an independent identically distributed (i.i.d.) sequence {yn}
of N = 10000 random variables with exponential distribution. Assume a = 1. Compute the mean and variance of
the generated sequence and compare with the theoretical values obtained analytically from the distribution (16).
Plot the histogram of y and show how it relates to the pdf of y in eq. (16).



6. UNIFORM QUANTIZATION

The uniform quantizer is discussed in section 2.5 of the Sklar text. In uniform quantization, the quantization
regions are chosen to have equal length, referred to as quantile interval. Review section 2.5 of the text and focus
on the implementation of a uniform quantizer.

Problem 3. Write a Matlab function myunfquantizer with the following calling syntax

function [yq] = myunfquantizer(y,n)

that quantizes the input vector y having exponential distribution with a uniform quantizer having L = 2n levels.
Take the interval of interest to be [0, 1]. The output is returned in the column vector yq.

Problem 4. Assuming a = 1, quantize the random numbers generated in Problem 2 with uniform quantizers
having L = 2,4,8,16, . . ., 1024 levels for the source. You may want to scale the random numbers between the range
[0, 1] by dividing with the maximum value before applying the uniform quantizer. After quantization, multiply
with the maximum value to restore the original scale.

Problem 5. Compute the quantization error (QE) between the original vector y and the quantized vector ŷ
defined as

QE =

N∑
i=1

(y(i)− ŷ(i))2 (18)

for L = 2,4,8,16, . . ., 1024. Note ŷ(i)) = yq in your case and i is the inddex for the samples.

Problem 6. Plot the entropy of the quantized source and log2(L) as function of n on the same figure. Comment on

your results. Recall entropy H(y) = −
∑L

i=1 yq(i) Pr(yq(i)) where Pr(yq(i)) denotes the probability (normalized
frequency of occurance) of the quantized sample yq(i) set to level i, for (1 ≤ i ≤ L).

7. NONUNIFORM QUANTIZATION

Nonuniform quantization can be achieved by first passing the input signal through a nonlinear system that reduces
its dynamic range and then applying the input to a uniform quantizer. At the receiving end, the output is passed
through the inverse of the nonlinear element used in the transmitter. Here we will use the µ-law characteristics

z =
log(1 + µ|y|)
log(1 + µ)

sgn(y) (19)

where y is the normalized input (|y| ≤ 1) and µ is a positive constant. The inverse of the µ-law nonlinearity is

y =
(1 + µ)|z| − 1

µ
sgn(z) (20)

Problem 7. Derive equation (20) from (19).

Problem 8. Plot the input-output characteristics of the nonuniform quantizer obtained from (19) using µ = 255.

Problem 9. Repeat Problem 4 for the random variables y that have been compressed using (19). In other
words, generate random variables y with exponential distribution, compress them using (19), and then use uniform
quantization to quantize them. Compare your results with the results of Problem 4 and comment on the differences.

Problem 10. List the first 32 samples of the random variable y with exponential pdf, the output of the uniform
quantizer in Problem 4, and the output of Problem 9. Make sure that you use the same ensembles of y in each
case. Comment on your results.

Problem 11. Using equation (20), expand the output of Problem 9. Compare the first 32 samples with the first
32 samples of the output of the uniform quantizer in Problem 4

Problem 12. Repeat Problems 9-11 for two values of µ (other than 255) in the range 0 ≤ µ ≤ 255.


