
THE BIG ASSIGNMENT (answers)

Due: 22 March 2011 (in class)

Logic, Fuzzy Logic & Sets
1. Andrew, Bernard, Claude, Donald, and Eugene have summer houses along the Atlantic coast. Each

wanted to name his house after the daughter of one of his friends - that is, Anne, Belle, Cecilia,
Donna, and Eve (but not necessarily in that order). To be sure that their houses would have different
names the friends met to make their choices together. Claude and Bernard both wanted to name their
house Donna. They drew lots and Bernard won. Claude named his house Anne. Andrew named his
house Belle. Eve’s father hadn’t come, and Eugene phoned to tell him to name his house Cecilia.
Belle’s father named his house Eve.

What is the name of each friend’s daughter? What is the name of his house?

Well, we know that:

• Andrew’s house is Belle.
• Bernard’s house is Donna.
• Claude’s house is Anne.

Their daughters are not so named. Claude cannot be Donna’s father and Eugene cannot be Eve’s
father. Belle’s father, who named his villa Eve, can only be Donald or Eugene. Similarly, Eve’s father
is Donald or Eugene. Since he phoned to the last one, he is Donald. His house is Cecilia. Eugene is
Belle’s father, Andrew is Donna’s father, Bernard is Anne’s father, and Claude is Cecilia’s father.
Thus we have:

Father Daughter House

Andrew Donna Belle
Bernard Anne Donna

Claude Cecilia Anne
Donald Eve Cecilia

Eugene Belle Eve

Isn’t deduction wonderful! Imagine the reasoning strategies you must develop when the situation
described above becomes many times more complicated. Think of an analogous situation of sorting
numbers: bubble sort is intuitive, easy to program and computationally expensive, quick sort is less
intuitive but very efficient. When reasoning of the sort described above becomes more complex, our
ability to reason clearly becomes clouded by detail. What is called for are procedures which we know
will work more efficiently but are perhaps seemingly more abstract initially.

2. Fuzzy logic has been successfully used in control systems methodology. How does fuzzy logic differ
from conventional control systems methods?

Fuzzy lolgic incorporates a simple, rule-based IF X AND Y THEN Z approach to a solving control
problem rather than attempting to model a system mathematically. The fuzzy logic model is
empirically-based, relying on an operator's experience rather than their technical understanding of the
system. For example, rather than dealing with temperature control in terms such as "SP =500F", "T

CSE4403 3.0 & CSE6002E - Soft Computing

Winter Semester, 2011

CSE 4403 & CSE 6002E Soft Computing

2

<1000F", or "210C <TEMP <220C", terms like "IF (process is too cool) AND (process is getting
colder) THEN (add heat to the process)" or "IF (process is too hot) AND (process is heating rapidly)
THEN (cool the process quickly)" are used. These terms are imprecise and yet very descriptive of
what must actually happen. Consider what you do in the shower if the temperature is too cold: you
will make the water comfortable very quickly with little trouble. Fuzzy logic is capable of mimicking this
type of behavior but at very high rate.

Rough Sets

3. Name five features that rough sets theory allows:
• characterization of set of objects in terms of attribute values
• finding dependencies (total or partial) between attributes
• reduction of superfluous attributes (data)
• finding significance attributes
• decision rule generation and others.

4. Given the following information system

The genetic algorithm (in Rosetta) generates four reducts. What are they?

No. Reduct Set
1 {make_model, compress, power, trans}
2 {make_model, cyl, compress, trans}
3 {make_model, displace, compress, trans}
4 {make_model, cyl, door, displace, trans, weight}

What is the core?

{make_model, trans}

Make_model Cyl Door Displace Compress Power Trans Weight Milage
USA 6 2 medium high high auto medium medium
USA 6 4 medium medium medium manual medium medium
USA 4 2 small high medium auto medium medium
USA 4 2 medium medium medium manual medium medium
USA 4 2 medium medium high manual medium medium
USA 6 4 medium medium high auto medium medium
USA 4 2 medium medium high auto medium medium
USA 4 2 medium high high manual light high

Japan 4 2 small high low manual light high
Japan 4 2 medium medium medium manual medium high
Japan 4 2 small high high manual medium high
Japan 4 2 small medium low manual medium high
Japan 4 2 small high medium manual medium high

USA 4 2 small high medium manual medium high

CSE 4403 & CSE 6002E Soft Computing

3

Neural Networks & Perceptrons

5. How much information does it take to describe a two-input perceptron? The classical description uses
a vector of three real-valued parameters: w = 〈w0,w1,w2〉. But the perceptron’s decision boundary is a
line, which can be uniquely specified with just two parameters, e.g., slope and intercept.

Jack says: “A perceptron can be described with less information than three real numbers. Here’s
how I would do it: set s0 = w0/w2, and s1 = w1/w2. From the description 〈s0, s1〉, I can construct a
weight vector 〈s0, s1, 1〉 that describes a line with the same slope and intercept as the one described
by w. So it should behave the same as w for all inputs.”

Jill replies: “A perceptron requires more than that to describe. A line is not an inequality. Consider
the case where w2 is negative. How will that effect the results of your transformation?”

(a) Whose claim is correct, and why? (b) How much information does it really take to correctly
describe a two-input perceptron? (Don’t worry about the case where w2 = 0.)

Answer. Jill’s claim is closer to correct. Jack has the right idea initially when he says that three
real numbers is overkill; the description of the line is over-determined since w0, w1 and w2 are not
independent. But in settling on just two real numbers he is throwing away too much information,
because the vectors w and ~w have the same representation in Jack’s scheme, even though they
produce opposite results. (When w2 is negative, dividing through by w2 requires us to exchange ≤ for
> and vice versa, otherwise the resulting perceptron will misclassify every training point.) So
it would appear to take two real numbers plus a sign bit to describe a two-input perceptron: two
real numbers to describe the line, as Jack proposes, and one bit to specify which side of the line is
class 1 and which is class 0.

However, there is an alternative solution which can do the job with two real numbers: the decision
boundary can be described by an angle θ plus a y-intercept. Negating w alters θ by 180 degrees.

6. Perceptrons cannot handle tasks which are not separable. A set of points in n-dimensional space are
linearly separable if there is a hyper-plane of (n-1) dimensions that separates the sets. In 2-d space,
the sets can separated by a straight line.

Can a perceptron learn to classify the following problem correctly? Why?

Input x1 Input x2 output
0 0 0

 1 1 0

0 1 1

1 0 1

Even parity means even number of 1 bits in the input

Odd parity means odd number of 1 bits in the input

There is no way to draw a single straight line so that the circles
are on one side and the dots are on the other side. Thus the
perceptrron is unable to find a line separating even parity input
patterns from odd parity patterns.

CSE 4403 & CSE 6002E Soft Computing

4

Genetic Algorithms and Evolutionary Computing

7. With regards to Genetic Algorithms

 a) Describe a parent selection technique and describe the algorithm.

The technique described is called roulette wheel selection. The idea behind the roulette wheel
selection technique is that each individual is given a chance to become a parent in proportion to its
fitness. It is called roulette wheel selection as the chances of selecting a parent can be seen as
spinning a roulette wheel with the size of the slot for each parent being proportional to its fitness.
Obviously those with the largest fitness (slot sizes) have more chance of being chosen.
Roulette wheel selection can be implemented as follows

1. Sum the fitnesses of all the population members. Call this TF (total fitness).
2. Generate a random number n, between 0 and TF.
3. Return the first population member whose fitness added to the preceding population

members is greater than or equal to n.

b) Explain the concept of mutation with regard to GA’s. Why is it important to have such an operator?

If we use a crossover operator such as one-point crossover we may get better and better
chromosomes but the problem is, if the two parents (or worse – the entire population) has the
same value in a certain position there is nothing that will change that that value. Mutation is
designed to overcome this problem and so add some diversity to the population.

c) If you were developing a GA for The Travelling Salesman Problem (TSP), what type of

crossover operator would you use? Show how this crossover method works and explain why you
would use it in preference to other crossover operators?

For the TSP we need to use a crossover operator such as Order-Based Crossover. This
operator ensures that illegal solutions to the TSP problem are not produced (e.g. duplicate and
lost cities in this case).

(In the case of the TSP a chromosome will be coded as a list of towns. If we allow the one-point
crossover operator we can (and almost definitely will) produce an illegal solution by duplicating
some cities and deleting others).

The problem with other operators (such as one-point crossover) is that it can (and invariably
will) lead to illegal solutions.

Order-based crossover works as follows (assume the coding scheme represent cities)

 Parent 1 A B C D E F G
 Parent 2 E B D C F G A
 Template 0 1 1 0 0 1 0

 Child 1 E B C D G F A
 Child 2 A B D C E G F

• Select two parents
• A template is created which consists of random bits
• Fill in some of the bits for child 1 by taking the genes from parent 1 where there is a

one on the template (at this point we have child 1 partially filled, but it has some
“gaps”).

CSE 4403 & CSE 6002E Soft Computing

5

• Make a list of the genes in parent 1 that have a zero in the template
• Sort these genes so that they appear in the same order as in parent 2
• Fill in the gaps in child 1 using this sorted list.
• Create child 2 using a similar process

8. a) Given the following parents, P1 and P2, and the template T

P1 A B C D E F G H I J
P2 E F J H B C I A D G
T 1 0 1 1 0 0 0 1 0 1

Assume that Cn, are crossover points where Cn = 0 means that the crossover point is at the extreme left
of the parent.

Show how the following crossover operators work
• one point crossover (using C1 = 4)
• two point crossover (using C2 = 2 and C3 = 8)
• uniform crossover
• order-based crossover

with regards to genetic algorithms

One Point

P
1

A B C D E F G H I J

P
2

E F J H B C I A D G

Assume crossover point at the position shown. The two children would be

C1 A B C D B C I A D G
C2 E F J H E F G H I J

Two Point

P1 A B C D E F G H I J
P2 E F J H B C I A D G

Assume crossover at the points shown

C1 A B J H B C I A I J
C2 E F C D E F G H D G

1 0 1 1 0 0 0 1 0 1

Uniform

P1 A B C D E F G H I J
P2 E F J H B C I A D G
T 1 0 1 1 0 0 0 1 0 1

C1 A F C D B C I H D J
C2 E B J H E F G A I G

Order-Based

CSE 4403 & CSE 6002E Soft Computing

6

P1 A B C D E F G H I J
P2 E F J H B C I A D G
T 1 0 1 1 0 0 0 1 0 1

C1 A E C D F B I H G J
C2 E B J H C D F A I G

b) Why is mutation important with regards to genetic algorithms? Give an example to demonstrate your
point.

It is important to add diversity to the population. The worst case scenario is that a certain bit position
(assuming a bit representation) is the same in every parent. This bit, using an operator such as one point
crossover, can never be changed.

For example, given two parents (which we will assume are the entire population)

P1 0 0 1 0 0 0 1 0 1 1
P2 1 1 0 1 0 1 0 1 0 0

The shaded bits can never get set to one unless we allow mutation.

c) Genetic algorithms are an example of a population based approach to problem solving. Give your
ideas as to other potential population based approaches that could be used.

One example is an approach based on the way ants forage for food (ant algorithms). I am really looking
for other ideas from the real world that could be converted into search techniques. Maybe they have ideas
on the behaviour of bees, flocking birds etc.

I am looking for more than a description of the real world aspect of the problem. I would like some idea as
to how it could be converted into a search algorithm (for example, how do bees find their way from the
hive to the flowers – which is similar to ants looking for food).

I do not want meta-heuristic approaches such as simulated annealing, tabu search etc. as these are not
population based.

General (includes extra credit points)

9. a) Describe and show a hill climbing algorithm?

The algorithm presented in the lectures is given below. It is taken from the course textbook.
I will accept any suitable algorithm that considers all the neighbourhood states and accepts the best one.

Taking into account part (c) of this question, it would be nice if the student introduced the concept of an
accept function.

Function HILL-CLIMBING(Problem) returns a solution state

Inputs: Problem, problem
Local variables: Current, a node
 Next, a node

Current = MAKE-NODE(INITIAL-STATE[Problem])
Loop do

Next = a highest-valued successor of Current
If VALUE[Next] < VALUE[Current] then return Current
Current = Next

End

CSE 4403 & CSE 6002E Soft Computing

7

b) Describe the idea behind simulated annealing?

Simulated Annealing (SA) is motivated by an analogy to annealing in solids. The idea of SA comes from a
paper published by Metropolis etc al in 1953 [Metropolis, 1953). The algorithm in this paper simulated the
cooling of material in a heat bath. This is a process known as annealing.
If you heat a solid past melting point and then cool it, the structural properties of the solid depend on the
rate of cooling. If the liquid is cooled slowly enough, large crystals will be formed. However, if the liquid is
cooled quickly (quenched) the crystals will contain imperfections.
Metropolis’s algorithm simulated the material as a system of particles. The algorithm simulates the
cooling process by gradually lowering the temperature of the system until it converges to a steady, frozen
state.

In 1982, Kirkpatrick et al (Kirkpatrick, 1983) took the idea of the Metropolis algorithm and applied it to
optimisation problems. The idea is to use simulated annealing to search for feasible solutions and
converge to an optimal solution.

The main parameters to the algorithm are the change in the cost function and the temperature of the
system. These dictate if a worse move is to be accepted. The lower the temperature and the greater the
difference between the current cost and the potential new cost, the less probability there is of the new
state being accepted.

The main idea behind the algorithm is that, unlike hill climbing, it is able to escape from local optima.

c) How would you change the algorithm developed in (a) so that simulated annealing can be used as a
search method?

The algorithm presented in the course textbook is given below. However, I would like to see the students
pick up from what I said in the lectures that the main difference is that the accept function should be
changed so that instead of only taking better moves, worse moves are taken with some probability. In
fact, hill climbing could be emulated by running simulated annealing with a temperature of zero.

I will give full marks for making the SA/HC comparison with regards to the accept function. If they simply
produce an SA algorithm, then half marks will be given

Function SIMULATED-ANNEALING(Problem, Schedule) returns a solution state

Inputs : Problem, a problem
 Schedule, a mapping from time to temperature
Local Variables : Current, a node

 Next, a node
 T, a “temperature” controlling the probability of downward steps

Current = MAKE-NODE(INITIAL-STATE[Problem])
For t = 1 to ∞ do

T = Schedule[t]
If T = 0 then return Current
Next = a randomly selected successor of Current
ΛE = VALUE[Next] – VALUE[Current]
if ΛE > 0 then Current = Next
else Current = Next only with probability exp(-ΛE/T)

d) Show, by way of an example, how changing the parameters to the simulated annealing algorithm,
affect whether it will accept a given move?

The table below shows how different temperatures and differences in the evaluation function affect the
probability of worse moves being accepted (better moves are always accepted). You can see that at
lower temperatures, with the same change in the evaluation function, the probability of worse moves
being accepted are less.

CSE 4403 & CSE 6002E Soft Computing

8

It is important to know the acceptance function, i.e., exp(-C/T), where C is the change in the evaluation
function and T is the current temperature of the system.

This table implements this function.

Probability of accepting with high
temperature

 Probability of accepting with low temperature

Change in
Evaluation
Function

Temperature of
System

exp(-C/T) Change in
Evaluation
Function

Temperature of
System

exp(-C/T)

10 100 0.904837418 10 10 0.367879441
20 100 0.818730753 20 10 0.135335283
30 100 0.740818221 30 10 0.049787068
40 100 0.670320046 40 10 0.018315639
50 100 0.60653066 50 10 0.006737947
60 100 0.548811636 60 10 0.002478752
70 100 0.496585304 70 10 0.000911882
80 100 0.449328964 80 10 0.000335463
90 100 0.40656966 90 10 0.00012341

100 100 0.367879441 100 10 4.53999E-05

