Neural Networks I:
Subdivision and Hierarchy

Conceptual Outline

WPZNBl \otivated by the properties of biological neural networks, we introduce
simple mathematical models whose properties may be explored and related to as-
pects of human information processing.

The attractor network embodies the properties of an associative content-
addressable memory. Memories are imprinted and are accessed by presenting the
network with part of their content. Properties of the network can be studied using a
signal-to-noise analysis and simulations. The capacity of the attractor network for
storage of memories is proportional to the number of neurons.

The feedforward network acts as an input-output system formed out of
several layers of neurons. Using prototypes that indicate the desired outputs for a set
of possible inputs, the feedforward network is trained by minimizing a cost function
which measures the output error. The resulting training algorithm is called back-
propagation of error.

In order to study the overall function of the brain, an understanding of sub-
structure and the interactions between parts of the brain is necessary. Feedforward
networks illustrate one way to build a network out of parts. A second model of inter-
acting subnetworks is a subdivided attractor network. A subdivided attractor network
stores more than just the imprinted patterns—it stores composite patterns formed out
of parts of the imprinted patterns. If these are patterns that an organism might en-
counter, then this is an advantage. Features of human visual processing, language
and motor control illustrate the relevance of composite patterns.

Analysis and simulations of subdivided attractor networks reveal that par-
tial subdivision can balance a decline in the storage capacity of imprinted patterns
with the potential advantages of composite patterns. However, this balance only al-
lows direct control over composite pattern stability when the number of subdivisions
is no more than approximately seven, suggesting a connection to the 7 £ 2 rule of
short-term memory.
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WPZAHEI The limitation in the number of subdivisions in an effective architecture
suggests that a hierarchy of functional subdivisions is best for complex pattern-
recognition tasks, consistent with the observed hierarchical brain structure.

HPZWEEIl More general arguments suggest the necessity of substructure, and ap-
plicability of the 7 £ 2 rule, in complex systems.

Neural Networks: Brain and Mind

The functioning of the brain as part of the nervous system is generally believed to ac-
count for the complexity of human (or animal) interaction with its environment. The
brain is considered responsible for sensory processing, motor control,language, com-
mon sense,logic, creativity, planning, self-awareness and most other aspects of what
might be called higher information processing. The elements believed responsible for
brain function are the nerve cells—neurons—and the interactions between them. The
interactions are mediated by a variety of chemicals transferred through synapses. The
brain is also affected by diverse substances (e.g., adrenaline) produced by other parts
of the body and transported through the bloodstream. Neurons are cells that should
not be described in only one form, as they have diverse forms that vary between dif-
ferent parts of the brain and within particular brain sections (Fig. 2.1.1). Specifying
the complete behavior of an individual neuron is a detailed and complex problem.
However, it is reasonable to assume that many of the general principles upon which
the nervous system is designed may be described through a much-simplified model
that takes into account only a few features of each neuron and the interactions be-
tween them. This is expected, in part, because of the large number, on the order of
10", neurons in the brain.

A variety of mathematical models have been described that attempt to capture
particular features of the neurons and their interactions. All such models are incom-
plete. Some models are particularly well suited for theoretical investigations, others
for pattern-recognition tasks. Much of the modern effort in the modeling of the ner-
vous system is of commercial nature in seeking to implement pattern-recognition
strategies for artificial intelligence tasks.Our ap proach will be to introduce two of the
simpler models of neural networks, one of which has been used for extensive theo-
retical studies, the other for commercial applications. We will then take advantage of
the simple analysis of the former to develop an understanding of subdivision in
neural networks. Subdivision and substructure is a key theme that appears in many
forms in the study of complex systems.

There have been many efforts to demonstrate the connection between mathe-
matical models of neural networks and the biological brain. These are important in
order to bridge the gap between the biological and mathematical models. The addi-
tional readings located at the end of this text may be consulted for detailed discus-
sions. We do not review these efforts here; instead we motivate more loosely the arti-
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Figure 2.1.1 Several
different types of
neurons adapted from
illustrations obtained
by various staining
techniques. O

Figure 2.1.2 Schematic
illustration of a biologi-
cal neural network show-
ing several nerve cells
with branching axons.
Theaxons end at synapses
connecting to the den-
drites of the next neuron
that lead to its cell body.
This schematic illustra-
tion is further simplified
to obtain the artificial
network models shown in
Fig. 2.1.3. O

Felrons

Synapses

ficial models and rely upon investigations of the properties of these models to estab-
lish the connection, or to suggest investigations of the biological system.

To motivate the artificial models of neural networks, we show in Fig. 2.1.2 a
schematic of a biological neural network that consists of a few neurons.Each neuron
has a cell body with multiple projections called dendrites, and a longer projection
called an axon which branches into terminal fibers. The terminal fibers of the axon
of one neuron generally end proximate to the dendrites of a different cell body. The
cell walls of a neuron support the transmission of electrochemical pulses that travel
along the axon from the cell body to the terminal fibers. A single electrochemical
pulse is not usually considered to be the quantum of information. Instead it is the
“activity”—the rate of pulsing—that is considered to be the relevant parameter de-
scribing the state of the neuron. Pulses that arrive at the end of a terminal fiber re-
lease various chemicals into the narrow intracellular region separating them from
the dendrites of the adjacent cell. This region, known as a synapse, provides the
medium of influence of one neuron on the next. The chemicals released across the
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gap may either stimulate (an excitatory synapse) or depress (an inhibitory synapse)
the activity of the next neuron.

It is generally assumed, though not universally accepted, that the “state of the
mind”at a particular time is described by the activities of all the neurons—the pat-
tern of neural activity. This activity pattern evolves in time, because the activity of
each neuron is determined by the activity of neurons at an earlier time and the exci-
tatory or inhibitory synapses between them. The influence of the external world on
the neurons occurs through the activity of sensory neurons that are affected by sen-
sory receptors. Actions are effected by the influence of motor-neuron activity on the
muscle cells. Synaptic connections are in part “hardwired” performing functions that
are prespecified by genetic programming. However, memory and experience are also
believed to be encoded into the strength (or even the existence) of the synapses be-
tween neurons. It has been demonstrated that synaptic strengths are affected by the
state of neuronal excitation. This influence,called imprinting, is considered to be the
principle mechanism for adaptive learning. The most established and well-studied
form of imprinting was originally proposed by Hebb in 1949. The plasticity of
synapses should not be underestimated, because the development of even basic func-
tions of vision is known to be influenced by sensory stimulation.

Hebbian imprinting suggests that when two neurons are both firing at a partic-
ular time, an excitatory synapse between them is strengthened and an inhibitory
synapse is weakened. Conversely, when one is firing and the other is not, the in-
hibitory synapse is strengthened and the excitatory synapse is weakened. Intuitively,
this results in the possibility of reconstructing the neural activity pattern from a part
of it, because the synapses have been modified so as to reinforce the pattern. Thus,the
imprinted pattern of neural activity becomes a memory. This will be demonstrated
explicitly and explained more fully in the context of artificial networks that success-
fully reproduce this process and help explain its function.

The two types of artificial neural networks we will consider are illustrated in
Fig. 2.1.3. The first kind is called an attractor network, and consists of mathematical
neurons identified as variables s; that represent the neuron activity. i is the neuron in-
dex. Neurons are connected by synapses consisting of variables Jj; that represent the
strength of the synapse between two neurons i and j. The synapses are taken to be
symmetric,so that J;; =J;;. A positive value of J;; indicates an excitatory synapse.A neg-
ative value indicates an inhibitory synapse. A more precise definition follows in
Section 2.2. The second kind of network,discussed in Section 2.3, is called a feedfor-
ward network. It consists of a set of two or more layers of mathematical neurons con-
sisting of variables si' that represent the neuron activity. For convenience, | is added as
a layer index. Synapses represented by variables Ji} act only in one direction and se-
quentially from one layer to the next.

Our knowledge of biological neural networks indicates that it would be more re-
alistic to represent synapses as unidirectional,as the feedforward network does, but to
allow neurons to be connected in loops. Some of the effects of feedback in loops are
represented in the attractor network by the symmetric synapses.
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Figure 2.1.3 Schematic illustration of two types of artificial neural networks that are used
in modeling biological networks either for formal studies or for application to pattern recog-
nition. On the left is a schematic of an attractor network. The dots represent the neurons and
the lines represent the synapses that mediate the influence between them. The synapses are
symmetric carrying equal influence in both directions. On the right is a feedforward network
consisting of several layers (here four) of neurons that influence each other in a unidirec-
tional fashion. The input arriving from the left sets the values of the first layer of neurons.
These neurons influence the second layer of neurons through the synapses between layer one
and two. After several stages, the output is read from the final layer of neurons. O

A second distinction between the two types of networks is in their choice of rep-
resentation of the neural activity. The attractor network typically uses binary vari-
ables, while the feedforward network uses a real number in a limited range. These
choices are related to the nonlinear response of neurons. The activity of a neuron at a
particular time is thought to be a sigmoidal function of the influence of other neu-
rons. This means that at moderate levels of excitation, the activity of the neuron is
proportional to the excitation. However, for high levels of excitation,the activity sat-
urates. The question arises whether the brain uses the linear regime or generally drives
the neurons to saturation. The most reasonable answer is that it depends on the func-
tion of the neuron. This is quite analogous to the use of silicon transistors, which are
used both for linear response and switching tasks. The neurons that are used in sig-
nal-processing functions in the early stages of the auditory or visual systems are likely
to make use of the linear regime. However, a linear operation is greatly limited in its
possible effects. For example,any number of linear operations are equivalent to a sin-
gle linear operation. If only the linear regimes of neurons were utilized,the whole op-
eration of the network would be reducible to application of a linear operator to the
input information—multiplication by a matrix. Thus, while for initial signal process-
ing the linear regime should play an important role,in other parts of the brain the sat-
uration regime should be expected to be important. The feedforward network uses a
model of nonlinear response that includes both linear and saturation regimes, while
the attractor network typically represents only the saturation regime.Generalizing the
attractor network to include a linear regime adds analytic difficulty, but does not sig-
nificantly change the results. In contrast, both the linear and nonlinear regimes are
necessary for the feedforward network to be a meaningful model.

Each of the two artificial network models represents drastic simplifications over
more realistic network models. These simplifications enable intuitive mathematical
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treatments and capture behaviors that are likely to be an important part of more re-
alistic models. The attractor network with symmetric synapses is the most convenient
for analytic treatments because it can be described using the stochastic field formal-
ism discussed in Section 1.6. The feedforward network is more easily used as an input-
output system and has found more use in applications.

Attractor Networks

2.2.1 Defining attractor networks

Attractor networks, also known as Hopfield networks, in their simplest form, have
three features:

a. Symmetric synapses:

5= (2.2.1)
b. No self-action by a neuron:

3i=0 (22.2)
¢. Binary variables for the neuron activity values:

=1 (2.23)

There are N neurons, so the neuron indices i, j take values in the range {1,...,N}. By
Eq.(2.2.1) and Eq.(2.2.2),the synapses J; form a symmetric N~ N matrix with all di-
agonal elements equal to zero.

The binary representation of neuron activity suggests that the activity has only
two values which are active or “firing,” s; = +1 (oN), and inactive or “quiescent,”s; =- 1
(oFF). The activity of a particular neuron,updated at time t, is given by:

s:(t) =sign@ Jys;(t- D) (2.2.4)
j

where the values of all the other neurons at timet - 1 are polled through the synapses
to determine the ith neuron activity at time t. Specifically, this expression states that
a particular neuron fires or does not fire depending on the result of performing a sum
of all of the messages it is receiving through synapses. This sum is formed from the
activity of every neuron multiplied by the strength of the synapse between the two
neurons. Thus, for example,a firing neuron j, s; =+1, which has a positive (excitatory)
synapse to the neuron i, Jj; > 0, will increase the likelihood of neuron i firing. If neu-
ron j is not firing, s; = - 1, then the likelihood of neuron i firing is reduced. On the
other hand,if the synapse is inhibitory, J;; <0, the opposite occurs — a firing neuron
I 5=+1, will decrease the likelihood of neuron i firing, and a quiescent neuron j, 5=
- 1, will increase the likelihood of neuron i firing. When necessary, it is understood
that sign(0) takes the value 1 with equal probability.

The activity of the whole network of neurons may be determined either syn-
chronously (all neurons at once) or asynchronously (selecting one neuron at a time).
Asynchronous updating is probably more realistic in models of the brain. However,
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for many purposes the difference is not significant, and in such cases we can assume
a synchronous update.

2.2.2 Operating and training attractor networks

Conceptually, the operation of an attractor network proceeds in the following steps.
First a pattern of neural activities, the “input’, is imposed on the network. Then the
network is evolved by updating several times the neurons according to the neuron up-
date rule, Eq.(2.2.4). The evolution continues until either a steady state is reached or
a prespecified number of updates have been performed. Then the state of the network
is read as the “output.” The next pattern is then imposed on the network.

At the same time as the network is performing this process, the synapses them-
selves are modified by the state of the neurons according to a mathematical formula-
tion of the Hebbian rule:

Ji) =J(t- D +osi(t- Ds(t- 1) it (2.2.5)

where the rate of change of the synapses is controlled by the parameter c. This is a
mathematical description of Hebbian imprinting, because the synapse between two
neurons is changed in the direction of being excitatory if both neurons are either on
or oFF, and the synapse is changed in the direction of being inhibitory if one neuron
is oN and the other is oFF.

The update of a neuron is considered to be a much faster process than the
Hebbian changes in the synapses—the synaptic dynamics. Thus we assume that ¢ is
small compared to the magnitude of the synapse values, so that each imprint causes
only an incremental change. Because the change in synapses occurs much more slowly
than the neuron update, for modeling purposes it is convenient to separate it com-
pletely from the process of neuron update. We then describe the operation of the net-
work in terms of a training period and an operating period.

The training of the network consists of imprinting a set of selected neuron firing
patterns {E}'} where i is the neuronindex i1 {1,..,N} , w is the pattern index u 1
{1,...,p}, and E}'is the value of a particular neuron s; in the uth pattern. It is assumed
that there are a fixed number p of patterns that are to be trained. The synapses are then
set to:

. g Eiméjli it J
et (2:26)
0 i=j

T

|
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|
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The prefactor 1/N is a choice of normalization of the synapses that is often conve-
nient, but it does not affect in an essential way any results described here.

2.2.3 Energy analog

The formulation of the attractor network can be recognized as a generalization of the
Ising model discussed in Section 1.6. Neurons are analogous to spins, and the inter-
action between two spins s; and s; is the synapse Jj;.

We can thus identify the effective energy of the system as:
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efs)]=-28 3

[fs}]=-28 9, (22.7)
1]

The update of a particular neuron, Eq.(2.2.4), consists of “aligning” it with the effec-

tive local field (known as the postsynaptic potential):

ht)=a Jis;t- D (2.2.8)

ji

This is the same dynamics as the Glauber or Monte Carlo dynamics of an Ising model
at zero temperature. At zero temperature the system evolves to a local minimum en-
ergy state. In this state each spin is aligned with the effective local field.

The analogy between a neural network and a model with a well-defined energy
enables us to consider the operation of the network in a natural way. The pattern of
neural activities evolves in time to decrease the energy of the pattern until it reaches
a local energy minimum, where each neuron activity is consistent with the influences
upon it as measured by the postsynaptic potential. Imprinting a pattern of neural ac-
tivity lowers the energy of this pattern and, to a lesser degree,the energy of patterns
that are similar. In lowering the energy of these patterns,imprinting creates a basin of
attraction. The basin of attraction is the region of patterns near the imprinted pattern
that will evolve under the neural updating back to the imprinted pattern (Fig. 2.2.1).

The network operation can now be understood schematically as follows
(Fig. 2.2.2). We imprint a particular pattern. If we then impose a different pattern on
the network, the evolution of the neurons will recover the original pattern if the im-
posed pattern is within its basin of attraction. The more similar are the two patterns,
the more likely the imposed pattern will be in the basin of attraction of the imprinted
one. Since part of the imprinted pattern was retrieved, the network acts as a kind of
memory.

Figure 2.2.1 Schematic illustration of the energy analog of imprinting on an attractor net-
work. Imprinting a pattern lowers its energy and the energy of all patterns in its vicinity. This
creates a basin of attraction. If we initialize the network to any pattern within the basin of
attraction, the network will relax to the imprinted pattern by its own neural evolution. The
network acts as a memory that is “content-addressable.” When a pattern is imprinted we can
recover it by starting from partial information about it (see Fig. 2.2.2). This is also a form of
associative memory. [
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The operation of the network may be described as an associative memory. The
restoration of the complete imprinted pattern, in effect, associates the reconstructed
part of the pattern with the part of the pattern that was imposed. We can also say that
the network has the ability to perform a kind of generalization (Fig. 2.2.3). The net-
work has generalized the imprinted pattern to the set of patterns that are in its basin
of attraction. Moreover, the retrieval process is also a form of categorization,since it
assigns the imprinted pattern as a category label to the set of patterns in the basin of
attraction. All of these properties of the neural network are suggestive of some of the
basic features that are thought to apply to human memory, and thus to the biological
neural network. Their natural relationship to each other and the simplicity by which
they are achieved in this model is one of the main reasons for the interest in this neural
network representation.

We can contrast the properties of the network memory with a computer mem-
ory. In a computer, the memory is accessed by an address that specifies the location of
a particular piece of information. In order to retrieve information, it is necessary to
have the address, or to search systematically through the possibilities. On the other
hand, for a human being, retrieving the rest of the sentence “To be or not to be ...”is
generally much easier than retrieving line 64 from act 3, scene 1, of Hamlet, by
William Shakespeare. To emphasize the difference in the nature of addressing between

Imprint
S

/3

Impose Recover

%

/3

Figure 2.2.2 Schematic operation of the attractor network as a content-addressable memory.
Imprinting a pattern on the network in the training stage (top) enables us to use the net-
work as a content-addressable memory (bottom). By imposing a pattern that has a signifi-
cant overlap with the imprinted pattern the original pattern can be recovered. This is analo-
gous to being able to complete the sentence “To be or not to be ...” O
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Figure 2.2.3 The neural dynamics of an attractor network maps a variety of patterns onto an
imprinted pattern. This is equivalent to a classification of patterns by a category label, which
is the imprinted pattern. The category of patterns labeled by the imprinted pattern is its basin
of attraction. Classification is also a form of pattern recognition. Moreover, we can say that
the basin of attraction is a generalization of the imprinted pattern. Thus the attractor net-
work has properties very unlike those of a conventional computer memory, which is accessed
using a numerical address that is distinct from the memory itself. It works much more like hu-
man memories that are accessed through information related to the information that is
sought after.
The behavior of the attractor network may be summarized as follows:

Attractor network training and operation:
Training — Imprint a neural state.
Operation — Recover original state from part of it.

Analogies for operation:

« Content-addressable memory

« Limited form of classification

« Limited form of pattern recognition
« Limited form of generalization

The relationship between human information-processing and various network models will be
discussed further in Chapter 3. O

a computer memory and a network memory, we say that the network memory is con-
tent addressable.

The associative nature of the attractor network thus captures some of the prop-
erties of human memory that are quite distinct from those of a computer memory. It
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should be understood,however, that this is not expected to be the last word in devel-
opment of such models or in the understanding of these processes.

One of the important properties of a memory is its capacity. If we try to imprint
more than one pattern on the network,the basin of attraction of each pattern will take
up some of the space of all possible patterns. It is natural to expect that there will be
a limit to how many patterns we can imprint before the basins of attraction will in-
terfere destructively with each other. When the memory is full, the basins of attrac-
tion are small and the memory is not usable because it can only recover a pattern if
we already know it. When the destructive interference is complete, the basins of at-
traction disappear. At that point, a typical imprinted pattern will no longer even be
stable, because stability is a basin of attraction of one. Studying the number of im-
prints that are possible before the network reaches this condition gives us an under-
standing of the network capacity and how this capacity depends on network size.
Thus we can determine the storage capacity by measuring the stability of patterns that
are imprinted on the network.

Our mathematical study of attractor networks begins in Section 2.2.4 with an
analysis of the network behavior when there are a few imprints. This analysis shows
the retrieval of patterns and the relevance of their basin of attraction. In Section 2.2.5
we use a signal-to-noise analysis to determine the stability of an imprinted pattern,
and thus the storage capacity of the network. Simulations of an attractor network are
discussed in Section 2.2.6. Finally, some aspects of the overload catastrophe that oc-
curs when network capacity is exceeded are discussed in Section 2.2.7.

2.2.4 One or two imprinted patterns

We first consider the case of imprinting a single pattern {&}. The synapses are con-
structed as the “outer product” of the neural activities and we have:

1

| —EE. il

=N (2.29)
b0 i=j

Using these synapses, we start the network at a set of neural activities {s;(0)} and
evolve the network using the definition of the dynamics (Eq. (2.2.4)):

(1) =sign(@ Jys(0) =sign(@ &%@,—s,— (0)) =sign(&)sign(A &)
R i i (2.2.10)
=§&;sign(gq §;s;(0)
jri
The second line is a consequence of the normalization [g;| = [+1| = 1.
If we didn’t have the restriction of j  iin the sum in Eqg.(2.2.10),the factor mul-
tiplying &; would be independent of i. We would then have

5O Eiisign(é. Eisi(0)= £ (2.2.11)

]
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where the + sign in front is independent of i. This means that in one iteration the net-
work neurons reached either the imprinted pattern or its inverse. This implies that re-
call of the pattern has been achieved. Why either the pattern or its inverse? It shouldn’t
be too surprising that we can arrive at either the imprinted pattern or its inverse be-
cause the form of the energy function (Eq.(2.2.7)) and the neural update (Eq.(2.2.4))
is invariant under the transformation s; ® -, for all i simultaneously. Thus,in an at-
tractor network we automatically store both the pattern and its inverse.
How do we treat the actual case with the i = j term missing? We write

si(D) =§i5i9n(é. £js(0)- €isi(0))=&signE>H0)- E;si(0)) (2.2.12)
j

where §>(0) = S5;5;(0) is the inner product of the imprinted pattern with the initial
state of the network. As long as this inner product is greater than 1 or less than -1, the
extra term doesn’t affect the result. This means that for [£5(0)|> 1, recall is achieved and
s(0) iswithin the basin of attraction of the imprinted pattern or its inverse. This is nearly
all of the possible choices for s(0). Note that the imprinted pattern is a stable fixed point
of the network dynamics—once the imprinted pattern is reached it will be repeated.

The case of a single imprinted pattern is somewhat unusual in that even if the ini-
tial pattern {s;(0)} is not correlated with the imprinted pattern, we will still recover
the imprinted pattern. If we take random numbers for {s;(0)}, then the sum over j in
Eg. (2.2.12) is a random walk—the sum over N uncorrelated values of +1
(Section 1.2). The typical size of this number is (N, which places the pattern solidly
within the basin of attraction of the imprinted pattern or its inverse. It has been sug-
gested that the case of a single dominant imprinted pattern has properties analogous
to human obsession, compulsion or fixation—because the imprinted pattern is the
output regardless of the input—and is a natural mode of failure of the network that
can arise in Hebbian imprinting.

We can also ask what will happen if the magnitude of £%(0) is equal to - 1,0, or 1.
In these cases the first iteration should not lead to the imprinted pattern. However, it is
still most likely that after two updates the network will be in either the imprinted pattern
or its inverse. When the inner product £x%(0) is +1, the result of the first update is a new
pattern s(1) that is likely to have a larger than unit overlap with g, £s(1) > 1. When £(0)
is-1,itislikely that £%(1) <- 1. The second iteration would be analogous to Eq.(2.2.12):

5 (=5 sign(Q &5,(D - &5, (D)
j (2.2.13)
=§; sign(&>s(D - §s; 1))
resulting in retrieval of the imprinted pattern.

The case of £%(0) = 0 is special, and a synchronous update in this case simply
leads to oscillation of the pattern—a 2-cycle:

5 (D) =E;sign(§ &;5;(0) - Ei(0))
i (2.2.14)
=§;sign(- §s;(0)) =- Eizsi ©0) =-5,(0
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More generally:
Si(t+1) =-s(t) (2.2.15)

This is one of the few cases where asynchronous updating would lead to a different
result,since the randomness inherent in the asynchronous updating would lead to the
evolution of the network to the imprinted pattern or its inverse.

We ran into some additional trouble in the preceding discussion because of the
omission of the i = j term in the synapses. Why don’t we just include this term? The
answer, from the point of view of the formal analysis, is that this corresponds to self-
action by a neuron on itself. Such self-action is inconsistent with an energy function.
In a real network, self-action is not impossible. It might correspond, for example, to
an inhibition of neural activity during a period of time after activity has happened.
This does occur in biological neurons where the period of self-inhibition is known as
a refractory period. The implications of such terms are,however, outside the present
discussion.

Our conclusion from the analysis of the single imprint case is that the basin of at-
traction of the single imprint is large. To measure the size of the basin of attraction,
we define the Hamming distance d(s,s® between two patterns as the number of neu-
rons that differ between the two patterns. The Hamming distance is related to the in-
ner product by

N 1
d(s,s9= rh Eé‘ sist (2.2.16)
i

as can be verified using a few examples. The Hamming distance of a pattern from it-
self is zero, from an orthogonal state is N/2, and from its opposite is N. For a single
imprint in a neural network the initial pattern s(0) is in the basin of attraction of the
imprinted pattern ifthe inner product between them is positive. This implies that the
Hamming distance must be less than N/2. This is the effective size (radius) of the
basin of attraction.

We can now ask what happens if two patterns are imprinted instead of just one.
The synapses are given by Eq.(2.2.6) with p = 2. Following through the same steps we
have the expression:

s =sign(@ Jisi () =sinE' A E5; O+’ AERS ) (2217
j jri jri

Qualitatively, we can understand this result by considering an initial pattern s(0) that
is close to one of the imprinted patterns,say gl Let us assume that there is no particu-
lar relationship between the two patterns that were imprinted and, quite reasonably,
that there is also no relationship between the initial pattern s(0) and the second im-
printed pattern g% The first sum in Eq. (2.2.17) will give us a number that has a mag-
nitude N - 2d(s,E%). The assumption that the initial configuration is close to the first
imprinted pattern meansthat d(s,£") is small. The magnitude of the second sum is given
by the inner product of the initial pattern with the second imprinted pattern. If there
is no relationship between them,then each term in the inner product is independent.
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Since each term has the value +1 with equal probability, it is a random walk with
(N- 1) steps. The typical magnitude of the second term is thus CN - 1. For large enough
Nthereisessentially no chance that the second termisaslarge asthe firstterm. Neglecting
the second term, the first term gives us the same result we had before, which is recov-
ery of the imprinted pattern. We see from this argument that retrieval depends on the
proximity of the initial state with the pattern that will be retrieved. If the initial pattern
is close to the second imprinted pattern,then the second imprinted pattern will be re-
trieved. Successful retrieval also depends on the number of neurons in the network.

The retrieval of two patterns can be extended to more patterns. For a large
enough number of neurons, retrieval will still occur. We can make this argument
more rigorous by considering a“signal-to-noise” analysis that pits the term that is try-
ing to retrieve the pattern—the signal—against the rest of the terms—the noise. To
do this formally we will assume that all the imprinted patterns are truly uncorrelated
with each other. The neural activities are randomly selected values +1. These values
are fixed over the duration of the discussion. In the language of Section 1.3 they are
guenched variables. Including correlations between the patterns would be important
in understanding how the real brain works. We will consider correlations between
patterns later in this chapter in Section 2.4.

2.2.5 Signal-to-noise analysis of memory stability

In this section, we formulate what is called a signal-to-noise analysis that enables us
to determine statistically the stability of an imprinted pattern. This in turn enables us
to determine the storage capacity of the network. Question 2.2.1 generalizes the
analysis to give an estimate of the basin of attraction of an imprinted pattern.

We start from a network imprinted with p uncorrelated patterns. From
Eq. (2.2.4) and Eq. (2.2.8), an imprinted pattern,imposed as the neural state {s;[s; =
€', is stable when s; = sign(h;) or equivalently:

shi>0 il {1,...N} (2.2.18)

which implies that the local field at each neuron has the same sign as the value of the
imprinted pattern.

Without loss of generality, we consider the stability (retrieval) of the first pattern
{5ils;i = ’gil}, since by symmetry the choice of pattern is arbitrary. To simplify slightly
the notation, we consider the stability of the first neuron s;, from the results we will
be able to infer the stability of the others. The stability of s; depends on the sign of

N N
o] o]

shy=s:@ 35j8; =& @ 1] (2.2.19)
j=2 j=2

Inserting the Hebbian form for the synapses after p imprints, Eq. (2.2.6), we have:

h -irc\’l S clen pe 1
sty = N a A &Ei§jE; (2.2.20)

j=2 p=l
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We separate this expression into two parts. The first part is due to the imprint of the
pattern we are trying to retrieve. The other part is due to all of the other patterns:

sihy =

N

éaaz g +—a a&f@ FElE]

I= N 2= (2.2.21)
188 o
ﬁa a.Ell 1M j‘uE}

]:2 =2

-1
N

=

The first sum was explicitly evaluated because the square of either +1 is 1. The second
sum we can also evaluate, at least statistically. Since €', is not correlated with %1“ for
jt1,and E is not correlated with E” for ut 1, the four factors in each term of the
sum are mdependent of each other. Moreover each term in the sum has a factor that
is independent of the factors in every other term. Therefore,each term in this sum is
+1 with equal probability,and each term is uncorrelated with the others. Thus it is just
a random walk with (N - 1)(p - 1) terms.

We can see that the two parts of s;h, play distinct roles. The first part,called the
signal,is positive,and therefore tries to satisfy the stability condition of the imprinted
pattern. This is consistent with the idea that a Hebbian imprint contributes to stabil-
ity of the imprinted pattern. For N >> 1, the size of the signal is 1.

The second part,called the noise, can be either positive or negative. The average
value of the noise is zero, but the typical value (root mean square value) is given by:

0=%JN-D@-1»£§ (2.2.22)

where the latter expression is valid for N,p >> 1. When the typical value of the noise
is much less than the size of the signal,then most of the time the neurons will be sta-
ble and we can say that we have a stable imprinted pattern. When the noise is the same
size as the signal, then each neuron may either stay the same or switch after a single
update, and the pattern will not be stable.

From the expression for the noise term, we see that the stability of the pattern de-
pends on p, the number of patterns that are imprinted on the network. For low stor-
age, p << N, the noise term becomes negligible and the imprinted patterns are stable.

If we want to understand how large p can be before the storage will deteriorate,
we need to estimate the probability that a single neuron will be unstable—the proba-
bility that s;h; is negative (see Fig. 2.2.4). The probability that a particular neuron will
be unstable is given by the probability that the noise is less than - 1. This depends on
the distribution of the values of the noise, not just its typical value. We can find the
distribution of the noise using the central limit theorem (Section 1.2). When the
number of steps in the random walk is large, the distribution of values of the noise
can be approximated by a Gaussian (Eg. (1.2.39)). Then we can find the probability
that a neuron is unstable using:
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12 ¢

P(sih;)

Figure 2.2.4 The probability distribution of the neuron activity times the local field s;h;. This
figure illustrates the signal-to-noise analysis of the stability of an imprinted pattern. The av-
erage value of s;h; (the signal) is 1. The standard deviation o of the distribution P(s;h;) (the
noise) is given by Eq. (2.2.22). Neurons that are unstable have a negative value of sh;. The
figure is drawn for o = .379, when less than 1% are unstable. If o is larger than this critical
value there are more unstable neurons, and when they switch after one update of the network
they destabilize the whole pattern. When o is smaller than this critical value and there are
fewer unstable neurons, the rest of the pattern remains stable. The critical value of s corre-
sponds to a maximum number of patterns that can be stored in the network. O

-1

2 2
P(s;h; <0)= yxe X 1%

® Q

2
- 2no (2.2.23)

0

= Egl - erf(L):
2 ov2 9

The latter expression follows from the definition of the error function erf(x). For
0 < 0.430 this probability, and therefore the fraction of unstable neurons in the im-
printed pattern, is less than 1%. The unstable neurons will switch their values when
the network updates itself. We now make the assumption that a few unstable neurons
will not,when they flip their values, destabilize many other neurons. This makes sense
for few enough unstable neurons. If we are satisfied with a small fraction of error of
about 1%, we can store a number of patterns that is given by

o, ==—=0 (2.2.24)
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or approximately 0.185 for o = 0.430. A more formal analysis, which we do not re-
produce here,shows that there is a critical value of p/N at which the error fraction in
a pattern jumps from about 1% to essentially no useful retrieval. The critical value
o, =0.144 (0 =0.379) can be obtained from techniques developed in the study of spin
glasses.

uestion 2.2.1 Generalize the signal-to-noise analysis to describe the

behavior of an initial pattern which is a Hamming distance B away from
one of the imprinted patterns. Assume that the initial pattern is not corre-
lated with any of the other imprinted patterns. Use the analysis to obtain an
estimate of the basin of attraction of the imprinted patterns.

Solution 2.2.1 Wk initialize the network with a pattern that is a Hamming
distance B from the first pattern. For convenience, we choose the pattern so
that the first N - B neurons are given by the first pattern,and the last B neu-
rons are inverted:

_1E iT{..N-B (2.2.25)
‘Q*(O)_f-gil iT{N- B+1,.,N}

Our objective is to see whether the neural update will recover the imprinted
pattern. To simplify the analysis, we assume that the recovery of the pattern
must occur in the first update of the network. This will occur if the first
N - B neurons are stable and the last B neurons are unstable.

We check the stability of the first N - B neurons by studying the stabil-
ity of the first neuron. It is stable if

N -B N

o o A
sOh=gih =8 al§+a a WSy (222

j=2 j=N-B+1

is positive. Similarly, we check the stability of the last B neurons by studying
the stability of the last neuron. It is unstable if:

N- B N
su©@hy =(- &)y = (-E0) A& g +(-50) A (&) 227)
j=2 j=N- B+1
is negative. Multiplying Eq. (2.2.27) by -1, we see that the condition that
Eq.(2.2.27) is negative is actually the same as the condition that Eq.(2.2.26)
is positive. Thus we can study the stability of the first neuron in order to ver-
ify whether the imprinted pattern will be recovered after one update.
Inserting the Hebbian form for the synapses after p imprints into
Eq. (2.2.26), we have:

1NB 9
g, = ~aa ElEfEE -

18 8 1
N a a&EEE (2229

=2 u= j=(N-B+#) u=1
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The attractor neural network is well suited for simulation. In Fig. 2.2.5 we show the
probability that an imprinted pattern is unstable and in Fig. 2.2.6 we show the num-
ber of stable imprinted patterns. Both are plotted as a function of the number of im-
prints p. The network used in the simulations has N = 100 neurons. The results are

Neural Networks |

We separate each sum in this expression into two parts. The first part is due
to the imprint of the pattern we are trying to retrieve. The other part is due
to all of the other patterns

1 1%% 1 11s 1N5831uu1
§hy = N a &&i§§; +W a a&g s
=2 j=2 u=2
1 9 1 & @ .
T asees - = 4  aciees (2.2.29)
j=(N -B+1) j=(N-B+1) u=2
N-28-1 1%°%8 1 & 8
=———+=§ aEEleE- = a4 assyy
N j=2 u=2 N j=(N -B+l) u=2

where the parts due to the first imprinted pattern are explicitly evaluated be-
cause the square of either +1 is 1. As before,the remaining sums constitute a
random walk. It doesn’t matter that there is a minus sign, since all of the
terms are either =1 and are uncorrelated. The total number of terms is
(N - 1)(p- 1). The typical magnitude (root mean square) of the noise is the
same as before, but the signal term is different. The ratio of signal to noise is:

gN-ZBMN_!N—ZB!
Jp/_N = Jp_N (2.2.30)

where we have neglected 1 compared to both N and p.

To obtain an approximation to the size of the basin of attraction, we set
the signal-to-noise ratio equal to the critical value for pattern stability 1/C")Tc
obtained before. This gives a basin of attraction of size:

N & p o]
B==—c¢Cl1- ’—- 2.
Zé OtcNE, (2.2.31)

The result is consistent with two limiting results that we already know. The
basin of attraction for a small number of imprints is just N/2, which is con-
sistent with our discussion of a single imprint in Section 2.2.4. The basin of
attraction vanishes when p reaches o,N. O

2.2.6 Simulations

obtained by following the procedure:

1.

Generate p random neural states {E}}:

gl =+l w={1,..phi ={1,...N} (2.2.32)
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Figure 2.2.5 Fraction of unstable imprints as a function of the number of imprints p on a
neural network of 100 neurons using Hebbian imprinting. For p less than 10 the stability of
all of the stored patterns is perfect. Above this value the percentage of unstable patterns in-
creases until all patterns are unstable. [
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Figure 2.2.6 Number of stable imprints as a function of the number of imprints p on a neural
network of 100 neurons using Hebbian imprinting. For p less than 10 all patterns are stable.
The maximum number of stable imprinted patterns is less than 12. Above 15 imprints the num-
ber of stable patterns decreases gradually to zero. However, throughout this regime the basins
of attraction of the patterns are very small and the system is not usable as a memory. O

2. Imprint them on the synapses of the neural network:

Y18
as'g it (2.2.33)

u=l

Z|=

|
1
Jij =i
|
7

i=]
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3. Find the number of imprinted neural states that are stable:

P =~ & | & 60
Psave = O 5§i” ,sgngajl Jijﬁj”jﬂjﬂ (2.2.34)

u=1 i
where 8(i,j) is the Kronecker delta function defined by
1 =i
8G.,j)= ,{1 ' J (2.2.35)

4. Find the probability that a pattern is stable:

Pstable = Pstable /P (2.2.36)
5. Average Pypie aNd Pg,p OVer a number of trials (steps 1-4) with fixed N and p.

We can also investigate the basin of attraction. Consider a particular stable state
of the neural network {s;} which may be an imprinted state. The basin of attraction of
{s;} measures the size of the region of possible network states which is “attracted” to
{s;}- A neural state {sf} is attracted to {s;} if {s@ evolves to {s;} upon multiple applica-
tion of the neuron update rule. Measuring the size of the basin of attraction is im-
portant, because the functioning of the neural network as an associative memory de-
pends upon it.

In Fig. 2.2.7(a),the distribution of sizes of the basins of attraction B is shown for
different numbers of imprints p on a network with 100 neurons. Each curve is nor-
malized to 1 so that it gives the probability of finding a particular imprinted state with
the specified basin of attraction.Fig. 2.2.7(b) shows the corresponding histograms of
sizes of the basins of attraction for p imprinted states (the normalization of each curve
is p). The maximum possible size of the basin of attraction is 50,half of the number
of neurons. We can see from these figures that as the number of imprints increases,
the average size of the basins of attraction decreases,and the width of their distribu-
tion increases. In addition,the number of imprinted states that are unstable increases.
The algorithm used to obtain these figures includes the unstable states as having a
basin of attraction of zero.

Fig. 2.2.7 was obtained using the following procedure:

1. Generate p random neural states {€}}:
gl =+1 u={1,..,phi={1,.,N} (2.2.37)
2. Imprint them on the synapses of the neural network:

118 o
[ — Ml g1

Ji :Nf}f‘ 5 1 (2.2.38)
1

0 i=
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Figure 2.2.7 (a) Probability distribution of the size of the basin of attraction of imprinted
patterns for a neural network of 100 neurons, and (b) histograms of the number of imprinted
patterns with a particular basin of attraction. The horizontal axis is the Hamming distance,
which measures the size of the basin of attraction. The probability distributions are normal-
ized to 1, while the histograms are normalized to p. Each curve is for a different number of
imprinted patterns as shown. The size of the basin of attraction decreases as the number of
imprints increases. The probability distribution also broadens. When the number of imprints
becomes greater than 10, the number of imprints with basins of attraction of zero begins to
increase. This is the probability that a pattern is unstable as shown in Fig. 2.2.4. O

3. Find the basin of attraction of each of the imprinted patterns £". The following
steps measure the size of the basin of attraction by finding the average Hamming
distance to a state which is not in the basin of attraction of the pattern ";

a. Set the neural state to €',
b. Pick (at random) an ordering of neurons | (i).
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. Switch the state of each neuron in sequence according to the ordering I(i) and

find the minimum number of switches for which:the neural state resulting af-
ter at most a prespecified number n (taken to be 10) neural updates is not
equal to the neural state E":

L
W?,o =OQ - 23,1G9)E" b={0,..,N/2}

je1
& o]
wP' =signga Jw" la r={1,..,n} (2.2.39)
j

BE")= min b

® 1 _b,nf):
ci)aé% Wi 00

The last expression specifies that we take the minimal value of b subject to the
constraint that the state w™" is not equal to ", A straightforward procedure
would increment b, evaluate w", and stop incrementing b when the condi-
tion of the last equation is satisfied.

d. Average over choices of neuron orderings I(i).
. Make a histogram of the basins of attraction for different €", with fixed N and p.

uestion 2.2.2 Use Glauber dynamics (Section 1.6.7) to introduce noise
into the neural dynamics. Show that the noise actually can improve the

retrieval of imprinted states. Specifically, use a network with 100 neurons
and imprint 8 (random) neural states. Starting from a random neural state
that was not imprinted, evolve the network a number of times with a mea-
sured amount of noise.Find the fraction of times that the network recovers
one of the imprinted states. Vary the amount of noise to see its effect.

Why would noise increase the probability of retrieving the imprinted

states? The imprinting not only creates basins of attraction for the imprinted
states, it also causes the existence of many small shallow local energy minima
that are called spurious memories. The noise enables the network to escape
these shallow local energy minima and fall into the deeper energy minima
that are the imprinted states. Spurious memories are discussed in
Section 2.2.7.

Solution 2.2.2 Glauber dynamics is a standard implementation of a noisy
update rule for neural networks. It uses a statistical rule for the state of each
neuron at the next time step. At each time step the value of the neuron is set
according to a probability given by the local field. The probability is written as:

o BA 1 s 20
%(+1't)_§i+tanhg[3ai ‘]Us](t ])_E.Q/Z (2.2.40)

R(-1t) =1- R (+1})
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where § = 1/KT and T is the effective temperature associated with the noise.
While Glauber dynamics uses asynchronous updating by selecting neurons
to update at random,synchronous updating does not give significantly dif-
ferent results in many cases.

We can write the Glauber dynamics in an implicit way by introducing a
temperature-dependent sign function which implies the probabilistic rule:

s (1) :sgnTgeé %S - 9% (2.2.41)
j %]

where sign+ () is suggestive of a finite temperature version of the sign func-
tion. However, this notation means nothing else than the previous p roba-
bilistic expression. In the limit as T approaches zero, the original T =0 up-
date rule is recovered. It should be noted that the temperature as used here
does not necessarily correspond to the physical temperature. In the brain
there is noisiness in the neural firing that may depend on the physical tem-
perature, but may also be controlled by other factors.

With the introduction of the temperature-dependent update rule, care
must be taken in defining the normalization of the synapse matrix J;;. This
is one of the reasons for the introduction of the normalization 1/N in the de-
finition of the Hebbian imprinting rule (Eq. (2.2.6)).

Fig. 2.2.8 shows the probability of retrieving an imprinted state as a func-
tion of the amount of noise. This is the fraction of evolved-random states that
result in imprinted states of the network (memories) for different values of 5.
No noise (T =0) corresponds to 3 =¥ . The optimal noise for retrieval in these
simulations is around = 4. One problem in the simulations is how to identify
when we have arrived at an imprinted state. Since we are evolving the network
with noise, we should not arrive precisely at the imprinted state. One way to
solve this problem is to assume that all states within a small Hamming distance
are accepted as the imprinted state. For these simulations we avoid this prob-
lem by evolving the network at zero temperature,after it is evolved with noise.

Fig. 2.2.8 was generated using the following procedure:

1. Generate p =8 random neural states {€}'}:
gl =41 u={1,..,phi={1,..,N} (2.2.42)
2. Imprint them on the synapses of the neural network:

i
Ji :’%ggugu 't (2.2.43)
Poo s
3. Generate a random neural state {w;}:
W, =1 i={1,..N} (2.2.44)

317
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Figure 2.2.8 Tests of the influence of noise on the recovery of patterns imprinted on a net-
work. The curves show the fraction of times neural evolution from a random initial state re-
sults in an imprinted state. The simulations use a network of N = 100 neurons and p = 8 im-
printed states. The horizontal axis is the inverse of the effective temperature that describes
the noise. The smallest amount of noise corresponds to the highest value of . For low levels
of noise the probability of recovering an imprinted state is less than 0.6. When noise is in-
cluded the recovery rate can reach almost 0.7. The recovery rate improves gradually with in-
creasing noise until about § » 0.04 when the recovery rate decreases dramatically. (a) shows
a broader range of B, and (b) shows a narrower range near the optimal value of § for these
simulations. The variability in the result, despite averaging in the simulations, reflects the
importance of the particular (random) choice of imprinted patterns, and the use of only a lim-
ited number of updates of the network. O
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4. Update the neural state {w;} according to the Glauber dynamics update
rule r; = 20 times at temperature T:

[cSe 0
w! :signTga Jijwﬁ'la r={1,..r}i={1...N} (2.2.45)
i

5. Update the neural state {w;} according to the update rule r, =5 times at
T=0:

o [0}
w! =sign gajijw{'1+ r={r,+1..r,+5}5i={1,..N}  (2.2.46)
i a
J

6. Find if the evolved neural state is equal to one of the originally im-
printed states:

o A~ O
Pstable = A O 6?# ‘Wir1+rzg (2.2.47)
W

7. Average Py, over different trials to find the proportion of evolved ran-
dom states equal to one of the imprinted states. [

2.2.7 Overload and spurious states

We have discussed the storage capacity of attractor networks with Hebbian imprint-
ing. As part of this discussion we showed that the basins of attraction of the imprinted
states go to zero when the memory becomes overloaded. This implies that there is a
catastrophic failure of the network—when we exceed capacity, all of the memories are
forgotten. The reason that this occurs is that all of the memories are treated the same
by the imprinting process. When the capacity is exceeded, there is no mechanism for
the network to select which of them to remember.

There are modifications of the imprinting rule that enable the memory to retain
some of the imprinted patterns as memories,at the expense of losing the others. The
simplest way to determine which imprints to remember is by the order of the imprint.
Rather than keeping the first few imprints, it makes sense to retain the most recent
(last few) imprints. A memory that retains the most recent imprints is known as a
palimpsest memory, after the name of parchments that were erased and reused in me-
dieval times. Historians benefited from the residuals of earlier writings that remained
visible. For our neural network implementation, we could modify the Hebbian im-
printi/rllg by progressively increasing the strength of the imprint of patterns by a fac-
tore®’™;

Bt =3 - D+e ™ NEE (1)) (2.2.48)

where we assume that each imprint is performed in a unit time interval,and the pat-
terns are indexed by time.A value of £ = 8.44 has been calculated as optimal for stor-
ing random neural states. In general this and other palimpsest memories reduce the
effective capacity of the network. Because of the difference in treatment of recent ver-
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sus older memories, there is a significant degradation in total number of memories
retained. This sacrifice occurs for the benefit of ensuring that some memories are re-
tained after overload would otherwise occur.

Note that multiplying all the synapses J;; by a constant does not affect any results
of retrieval or stability. Thus, only the relative strength of different imprints is impor-
tant. If a bound on the magnitude of synapses is desired, we can adopt the expression

Bt)y=e Ny - n+EE] (1) (2.2.49)

instead of Eq. (2.2.48). This is more like the erasure of previous writing, because all
the synapses are reduced by the factor e’ ¢N hefore the next imprint.

While there are methods,like these palimpsest memories, to ensure that overload
does not occur, it is important to understand how overload occurs. Overload is a nat-
ural mode of failure of the attractor neural network. Therefore,it is likely to occur for
biological networks under some circumstances. Detailed studies of attractor networks
at high capacity indicate that the behavior of the network near overload becomes
dominated by what are called spurious memories. We have spoken about the im-
printed patterns as if they are the only stable states of a network. This is not the case.
Spurious memories are stable states of the network that were not imprinted. Without
an independent way of telling whether they were imprinted or not, these states mas-
querade as memories, but they are not. Spurious memories are not completely unre-
lated to the imprinted states. Instead they are generally a mixture of states. One ex-
ample is a state formed by a majority rule from three imprinted states:

5 =sign(g' +& +E)) (2.2.50)

In Question 2.2.3 the stability of this state is shown using a signal-to-noise analysis.
The problem that arises as the number of imprints increase is that the number of such
spurious states increases combinatorially (greater than exponentially) with the num-
ber of imprints. The growth in the number of spurious states occurs because they are
formed from all possible combinations of the imprinted states. When overload oc-
curs,it is actually the basins of attraction of these states that swamp the basins of at-
traction of the imprinted states.

Once the spurious states swamp the imprinted states, the network becomes es-
sentially equivalent to a spin glass (Section 1.6) that has random weights for each of
the synapses. We can understand this qualitatively because the noise becomes larger
than the signal in the signal-to-noise analysis. Thus the energy of any state is given by
a sum over random variables. Beyond overload, the characteristics of the neural net-
work become similar to those of the spin glass, where there are a hierarchically struc-
tured set of minimum energy configurations with large barriers between them. The
lowest energy states are not the imprinted ones.

uestion 2.2.3 Evaluate the stability of the symmetric mixture of three

states given by Eq. (2.2.50) using a signal-to-noise analysis. Hint: con-
vince yourself that the noise is essentially the same as that for an imprinted
state and evaluate only the signal.
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Solution 2.2.3 A difficulty in studying the stability of the spurious pattern
given by Eq. (2.2.50) is that there are two distinct types of neurons—those
where all three patterns in the mixture have the same activity, and those
where only two out of the three have the same activity. It is important to dis-
tinguish these two cases. We evaluate first the signal and then discuss the
noise.

The stability of s; for the state given by Eq. (2.2.50) is determined by

N
shy =sign(l +&7 +5)8 1, sign@e] +&/+E))  (225)
=2

Inserting the Hebbian form for the synapses after p imprints gives

188 . :
shi==aa sign@ +& +&), &, sign@} +5 +8) (2252)

j=2u=l

Our objective is to determine the probability that this is negative, in which
case §; is unstable. As in the treatment of the imprinted patterns in the text,
we do this by evaluating the average (the signal) and the standard deviation
(the noise) of the distribution, and approximate the distribution as a
Gaussian.

The signal arises from the first three terms in the sum over u, which we
separate to obtain:

N ..
shy==3 siontel +&7 veDRIE) + ] +eleGsione] +5f +5)
j=2
y g |
+13 A signi+EF +EDElE signel +EF +ED) (2.253)
j=2 u=4

The average value of the first sum depends on whether £1, £2 and &5 have the
same sign. If they do we have a signal given by:

+17

ENEY
Mlw
NI1w

(65 +]Jsion] +57+))=3

le—\
“Qloz

<shy >= (2.2.54)

j=2

where the intermediate equation indicates the value of the term multiplied
by the probability of its occurrence. Thus, terms that have a magnitude of 3
occur 1/4 of the time, while terms that have a magnitude of 1 occur 3/4 of
the time. Similarly, if E%, Ei and Ef do not have the same sign, then two out
of three of them have the same sign, and they have a signal given by:

L8 o2 ed\eelie? ey g Lol 11
<slm>—ﬁ§2 (& +5f - & Jsionce} +5F - g)=1 243 2-17 5= 2
(2.2.55)
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We see that for the first type of neuron (1/4 of the neurons are of this type)
the signal is higher than the signal of an imprinted pattern. On the other
hand for the second type of neuron (the remaining 3/4 of the neurons) the
signal is lower than that of an imprinted pattern.

The noise can be determined by direct evaluation of the standard devi-
ation of Eq.(2.2.53). However, we can convince ourselves that it is not much
different than the noise found for an imprinted pattern in Eq.(2.2.22). The
last sum in Eq. (2.2.53) is a sum over (N - 1)(p - 3) uncorrelated random
values of 1. Its root mean square magnitude is o, =Q(p - 3)/N. This is most
of the noise for p >> 1 because the first sum,after we subtract the mean, con-
tains no more than 3N uncorrelated terms with magnitude one. Thus the
standard deviation of the first sum is no more than roughly o; » /N, and
the total standard deviation satisfies

o? :012+022 »022 » Jp/N (2.2.56)
for p >> 1. This is the same as the noise term found for imprinted patterns.
The main conclusion that we reach from this analysis is that for low
storage, p << N, the neurons have a signal that is much greater than the
noise, so the pattern will be stable. The observation above that 3/4 of the
neurons have a signal that is half of the signal in an imprinted pattern im-
plies that the basin of attraction of the spurious patterns is shallower and
smaller than that of the imprinted patterns. O

Feedforward Networks™

2.3.1 Defining feedforward networks

Feedforward networks (Fig. 2.3.1) are convenient for visualizing input-output sys-
tems. They have also been more extensively used in the construction of commercial
applications than other neural network models.A feedforward network is composed
of several layers. The number of these layers is not large,in part because of difficulties
in training these networks. The synapses of a feedforward network are unidirectional.
The neuron activity is represented by a continuous variable over a limited range of
possible values. We take the range of values to be (- 1,+1):

st T(-1,+1) it NI L. (2.3.1)

where | is the layer index,and the number of neuronsin a layer N, may vary from layer
to layer. For the synapses we adopt the notation:

% it N T NI L -1 (2.3.2)

For L layers of neurons there are L - 1 sets of synapses. By our indexing conventions,
the last set of synapses is J;*.

*This section may be omitted without significant loss of continuity.
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Figure 2.3.1 Schematic of a feedforward network showing the notation for the neurons si' and
synapses Ji} running in only one direction between the layers of neurons. The input to the
network enters from the left and the output is read from the right. The most commonly used
training algorithm for the feedforward network is the back-propagation algorithm. Starting
from an initial set of values of the synapses, the output is calculated from a preselected in-
put for which a desired output is known. The desired output is compared with the output that
is calculated. The difference is the error on the last layer of neurons (here the fourth layer)
sf. The error is used to change incrementally the synapses Ji? so as to reduce the error. The
error is also used to obtain the corresponding error on the previous layer s? so that the pre-
vious layers of synapses Jif can also be corrected accordingly. In this way the error is propa-
gated backward through the network to correct all of the synapses. O

The propagation of input through the network proceeds in a layer by layer fash-
ion. We can picture this as a signal that is propagating through the network, so that
the layer index | in the neuron variable si' becomes the analog of a time index.
However, it is important to recognize that the propagation through the network is
both the space and time coordinate when the processing of an individual input pat-
tern is considered. There is no other time coordinate in the network operation.

The update rule that determines the activity of aneuron ata particular timeisafunc-
tion of the influence of the neurons of the previous layer, usually taken to be sigmoidal:

SilJrl =ng(é J :jSIJ) (2.3.3)
i
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The sigmoidal function may be the function tanh(x), which may also be general-
ized to

sgm(x) =tanh(B(x - h)) (2.3.4)

The parameter  is an overall multiplier of the synaptic weights, and therefore is re-
dundant. It may nevertheless be convenient to use it under some circumstances. h is
an additional parameter that could vary from neuron to neuron (with the notation
hi'), and may also be adjusted as part of the training procedure described in the fol-
lowing section. Other forms of sigmoidal function may be used as well.

2.3.2 Operating and training feedforward networks

The operation of a feedforward network begins with the imposition of a pattern of
activity on the first layer of the neurons. This pattern is assumed to represent the op-
eration of sensory neurons. The activity of each successive layer is then determined
according to Eq. (2.3.3). The action of the network on this input ends with the ex-
traction of the neuron activities from the final layer of neurons. This extraction may
be considered to be an effect—an action caused by motor neurons. Alternatively, we
could consider the activities of the final layer of neurons to be a new representation
of the input sensory information—the recognition of a pattern.

To train the network synapses, we begin from a set of examples of input and out-
put pairs that the network should emulate. The objective is to produce the specified
outputs from the specified inputs. Once the network is trained, as far as possible, to
produce the desired output from each input, it automatically generalizes from these
training examples. The generalization is obtained by inputting other patterns to the
network and obtaining the resulting output. In effect, the network interpolates be-
tween the training examples.

We designate the input and output training pairs (of which there are p) as:

G mj) it ,NjT{L...N3v={..p} (2.3.5)

The training of the feedforward network can be performed in many ways. The most
common method begins from the recognition that it is only the values of the neurons
in the final layer that explicitly matter to the operation of the system. The layers be-
tween the input and output layer are “hidden.” The objective is to optimize the agree-
ment between the action of the network and the desired output. To achieve this we
write a cost function (energy), which measures the error—the difference between the
value of the output neurons after action on the input trial state and the desired out-
put. The cost function is:

N
EOh=4 & 6 - Y (2:36)

vali=l
where we have introduced the notation siL(v) to indicate the activities of the Lth layer
of neurons that result from application of the network to the vth input. For simplic-
ity, the different errors are weighted equally. Implicitly, si"(v) and the cost function de-
pend on the values of all of the synaptic variables Ji'j. The cost function should be min-
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imized with respect to them. The cost function may be minimized in a variety of ways
(Section 1.7.4), however, as usual for a problem with a high-dimensional minimiza-
tion space,there may be problems with many local minima. Nevertheless,the simplest
approach is a steepest-descent minimization algorithm.

Before proceeding with a mathematical derivation of the most common ap-
proach to minimizing the cost function, we briefly summarize the results. At each step
of the procedure, we present to the network a particular one of the input examples.
Once the network has operated on the input, we compare the activities of the last neu-
ron layer to the desired output.Our objective is to decrease the error. The easiest way
to improve the agreement is to change the last layer of synapses. We calculate the di-
rection to change these synapses to improve the agreement. In general, making this
change in the synapses will not be sufficient. To improve the agreement further, we
take the error at each of the output neurons and d etermine what changes would be
needed in the activity of the previous layer of neurons in order to correct the output-
neuron values. This is done using the existing synapses between the two layers. This
step, taking the error in the final layer of neurons and identifying the corresponding
error in the previous layer of neurons, is called back-propagation of error. Once we
know the error in the second to last layer of neurons, we can find the direction to
change the second to last layer of synapses. We repeat the procedure for earlier layers,
and correct incrementally all of the synapses of the network.

The following derivation is difficult only because of the number of subscripts and
superscripts. We adopt standard practice and assume that we will minimize the cost
function by modifying Ji'j in steps that reduce the cost function successively for each
of the patterns separately. Convergence is not guaranteed, but will work if the cost
function is well behaved. We thus adopt the partial cost function

NL
EVI0IN=a 6 6)-n') (23.7)

i=l

To minimize this function we change Ji'j in the direction of steepest descent:

Jjt +1) =35 ®)+83; ()
V[
aJ;(0)
We use the time variable to indicate repetitive cycling over the different patterns v. It
keeps track of the steps in the minimization, not propagation of the signal through
the network. ¢ is chosen small enough, and possibly time-dependent, to provide for
convergence. In principle it doesn’t matter in which order we consider the Ji'j, but it is
convenient to start from the synapses leading to the final (Lth) layer Jiﬁ' L

N
ao L vy
CETTON El(sk(v) ) 2.3.9)

&]il'-_lt =-
0 R0 )
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where we have taken care to use a new index for the sum in the numerator. Taking the
derivative inside the sum we have:

=28 6)- D e ) (2.3.10)
)

k=1 Ij
The value of the kth neuron in the Lth layer can only depend on synapses leading di-
rectly to it, and not on other synapses. Thus the derivative has to be zero unless k =i,
and the other terms in the k sum can be neglected. We show this explicitly using the
expression for skL(v) in terms of the previous layer of neurons:

) 9 sgm(é Tt sh )

EAFI() EAF(9)

=samt 8 i 055 ) s “()“k“ ((tt)) (23.11)

'J

-sgmq(aJ s (V))asn (v Pkidn
= sgmﬂ(a A9 (D) T (D I

The prime on the sigmoidal function has the conventional meaning of a derivative
with respect to its argument. In the third line we made use of the knowledge that
sy '(v) is independent of Ji™* because the (L - 1)st layer of neurons precede the
(L - 1)st layer of synapses.

Returning to the evaluation of the change in J;™* we find

)=+ 2ca(sk<v) m)sgmczaJ 0T TRY
=1 (2.3.12)
=-2(sF (v)- m))sgm& @ J.%n YOsm V))s V)

m

We can simplify the notation by defining two auxiliary quantities. We define the error
at the Lth layer as:

e (v)=6v)-n") (23.13)
The derivative of the sigmoidal function in Eq. (2.3.12) could be written as a function

of the neuron si"(v) , since it applies the sigmoidal derivative to the same argument (the
postsynaptic potential) that determines the neuron value. We call this function w(s):

WG ) =sgm & Iz 6 ()= sgmAsom 6 V) (2,314

This leads to the simplified form of Eq. (2.3.12)
I =- 2 el )W (V)] (V) (2.3.15)

which is the desired result.
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Before we continue to find the incremental changes in the other Ji'j forl<L- 1,
we discuss the result for Jﬁ'l in a simple case. Consider Eq. (2.3.15) if all of the neu-
rons have a level of activity that is within the linear range of the sigmoidal function,
taken to be tanh(x). This would be equivalent to neglecting the nonlinear response of
the neurons. Then sgm&x) =1 and W(SiL(V)) =1. Inserting Eq.(2.3.15) into Eq.(2.3.8)
we have:

3 e+ 27N (E)- 26 v, - Y )s; v, (linear regime) (2.3.16)

Note that all of the neuron activities, indexed by v, also have a t index,since they de-
pend on the synapses, and thus their values change during the minimization. We can
act with the new synapse values on the neurons of the previous layer to obtain the new
neuron values in the final layer. We assume that the values of the neurons at the pre-
vious layer have not been changed. This would be true if we chose not to modify the
previous layers of synapses, or if there were only two layers of neurons (one layer of
synapses), then:

st t+D)Z QI+ D vt (23.17)
i

Inserting Eq. (2.3.16)

s, t+DEQ IO 6L - 20650, M)A ST Vs )
j j
=57 (viD)- 2667 (Vi) - DA S T (v,
i

(2.3.18)

From this we see that if the neuron values of layer L - 1 are normalized to
1(Ss st =1) and ¢ = 1/2 (or if ¢ is chosen to be 1/2 of the inverse of the normal-

ization) then convergence will be perfect for the pattern v, since then
s v, t+1)=n) (2.3.19)

More generally, a smaller value of ¢ will bring the neuron values closer to the desired
result, as should be expected from a steepest descent. This shows that for a single
input-output training pair, the cost function may be readily minimized using only the
linear regime of one layer of synapses. Constructing a network that will perform a de-
sired pattern-recognition task can be much more difficult when there are many input-
output training patterns representing the task.

We return to the main line of our discussion and consider the second to last layer
of synapses Jj; 2

. JEVI . o OEVT{IRN ost(v) osti(v)
6Ji|'_ 2t =- LR ! X I -9.
0= a2 ) C? sk (v) 9stH(v) 9352 (M) (2320)

The latter expression uses the sequentiality of the determination of the neuron val-
ues. We have also taken into account that in the (L - 1)st layer, it is only the ith neu-
ron that depends on the synapse JiJ-L' 2 Each of the factors is readily evaluated:
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81 2() = -2 ek WG W OWETTST)  (2322)
k

We can recast this expression into the same form as for the synapses JijL' !
83 A1) = - 2 e T (vIWGE T IV)B6) (2.3.23)

by defining the error on the (L - 1)st layer of neurons as:

e W) = é. ek (VWG )G () (2.3.24)
k

This expression,in effect,takes the error that was known on the L th layer and obtains
the error on the previous layer using the existing set of synapse values JkLi'l(t). This
procedure isknown as back-propagation of error and gives the name back-propagation
algorithm to this method of training feedforward networks.

The modification of earlier layers is obtained similarly by extending this analysis
layer by layer. In each case, an expression of the form of Eq. (2.3.24) can be written
that takes the error of one layer and sends it back to the previous layer. The correction
to the synapses is then written as in Eq. (2.3.23).

Subdivided Neural Networks

Among the objectives of the study of neural networks is the development of a basis
for an understanding of sensory processing, motor control, memory and higher
information-processing functions of the brain. In previous sections, we have seen that
it is possible to describe an associative content-addressable memory using an attrac-
tor neural network. The associative memory captures an important generic property
that we would like to build upon to understand additional aspects of brain function.
We also touched upon some aspects of the processing by feedforward networks that
are suggestive of sensory-motor systems. However, most of the higher information-
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processing tasks, of which the brain is readily capable,ap pear remote from these con-
siderations.

In order to make progress in understanding the higher information-processing
functions of the brain we must construct an additional level of organization between
neurons and the brain—that of brain subdivisions or subnetworks. The substructure
of the brain is well known to students of neurophysiology (see Fig. 2.4.1).
Experimentally, the mapping of brain function has identified sensory- or motor-
related aspects of the brain—visual processing centers, auditory processing centers,
the motor cortex, as well as aspects of language processing that may be counted
among the higher information-processing functions. There is a long-standing debate
regarding the degree of localization of function in the brain. In a simplified form,the
debate is between two camps, one suggesting that specific functions are localized on
individual neurons, the other suggesting complete delocalization of function
throughout the brain. At present, experimental evidence has led to general agreement
that at least an intermediate degree of regional specialization exists.

As we discussed in Section 1.10.7, most fields of inquiry are built upon levels of
description each of which is constructed on finer scales. To neglect the description of
the subdivisions of the brain and try to explain brain function directly from the be-
havior of individual neurons would be to skip an important and simplifying level of
description.One of our primary tasks,therefore,in studying neural networks,is to in-
vestigate and identify the function and interaction of subnetworks. We hope then to
build models of human information-processing using subnetworks as the analog of
brain subdivisions. It is almost a separate endeavor to construct such a theory of
higher information-processing. The historical efforts in this area are the theories of
the mind such as those of Freud, which separated the mind in two ways. The first sep-
aration was between the conscious and subconscious and the second between the id,
ego and superego. This and other theoretical models should be considered within the
domain of our inquiry. However, until we have a better understanding of the function
of brain subdivisions, we will not be able to evaluate the validity of the many psycho-
logical theories or propose more complete ones.

There are two forms of subdivision that can be readily identified—Ilongitudinal
and lateral. We have already considered the longitudinal form of subdivision in the
example of feedforward networks. A multilayer feedforward network describes a set
of neural subdivisions each of which is a single layer of the network. In this model
there are no synapses within a neural subdivision,all of the synapses run between sub-
divisions, specifically in a feedforward direction. The input layer (or first few layers)
represents sensory processing, and the output layer (or last few layers) represents mo-
tor control. Intermediate layers are less clear ly identified. This longitudinal subdivi-
sion in feedforward networks is directly related to sequential stages in processing.
Longitudinal subdivision in feedforward networks is necessary because of limitations
on what a single layer of synapses can be trained to accomplish.

In the remainder of this chapter we consider the second type of subdivision—Ilat-
eral subdivision—formed when the synaptic connections within each subdivision are
of greater number or of greater strength than between the subdivisions. In contrast to
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longitudinal subdivision, lateral subdivision separates the processing of sensory or
other information into parallel channels. This kind of subdivision can be treated and
understood within the attractor network model (Fig. 2.4.2).

In developing an understanding of the role of subdivisions in the brain, we must
begin from basic questions. The most basic is the question, Why should the brain be
subdivided at all? This may seem a simple question,since it might seem obvious that,
for example, language should be separate from visual processing and from auditory
processing and from motor control—doesn’t this make sense? But we know that all of
these are also connected to each other. Why then should we not process them all to-
gether? In the attractor network, we simplify the consideration of network function
to that of an associative memory. If we compare a subdivided attractor network with
the fully connected attractor network, we immediately run into a fundamental prob-
lem—a lower storage capacity.

The storage capacity of a neural network increases with the degree of intercon-
nectedness. In Section 2.2 we determined the storage capacity for the fully connected
network with Hebbian imprinting. The network could store o N patterns. We can
count,instead,the total number of independent bits in the stored patterns. Since each
pattern has N bits,this gives a total of ;N 2 bits. This is somewhat deceptive,since in
the limit of maximum storage, just below overload, we must present almost all of the
pattern in order for it to be “retrieved.” However, because any part of the pattern could
be retrieved, we might still consider o,,N? to be the maximum number of bits of in-
formation stored in the network. The expression o, N 2should not be surprising, since
the information is stored in the synapses and the number of synapses is NZ. While it
is difficult to guess the value of the prefactor o, the maximum number of stored bits
must be proportional to the number of synapses. Many efforts have been made to im-
prove upon this storage capacity, however, for a fully connected network it is possible
to prove that the maximum number of stored independent bits cannot be greater than
2N?, or 2N uncorrelated patterns. More generally, if all neurons are not connected to
each other, then the maximum number of patterns that can be stored is limited by the
average number of synapses per neuron.

The loss of memory on reducing the number of synapses occurs when the
synapses are set to zero a priori, independent of the information to be stored. This is
a clue to the motivation for subdivision. The storage capacity would not be reduced
if the synapses are set to zero because a zero value is ap propriate to the information
that is to be stored.

There may be reasons that are quite independent of storage considerations that
the brain does not make use of a fully connected network. The most well known of
these is the “connection problem.” Three-dimensional space does not allow us to con-
nect all neurons because of the difficulties in packing all of the connections into a vol-
ume in the presence of communication delays and heat-dissipation constraints. This
problem is familiar to those who study the problems of designing massively parallel
computers. While the connection problem might explain why the brain is not fully
connected, it does not reveal the reason for nonuniformity of function in the brain.
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(b)

Figure 2.4.2 Subdivided neural network formed out of three subnetworks. The subdivision
may be achieved either by setting the synapses between the subnetworks to be systemati-
cally weaker than those within a subnetwork or by systematically reducing the number of
synapses between subnetworks. The former is indicated by the relative thickness of the lines
in (a). In (b) the extreme case of a completely subdivided network is shown where the
synapses between the subdivisions have been removed. O

We summarize our fundamental question as follows. For a network where each
neuron is connected to every other neuron, the number of imprints that can be re-
called, aN, is proportional to the number of neurons N with a constant of propor-
tionality o < o, somewhat dependent on the particular imprinting rule and the de-
sired properties of retrieval. When additional imprints are added, an overload
catastrophe causes erasure of all information. Removing synapses or systematically



Subdivided neural networks 333

weakening synapses between subdivisions inherently results in a decreased storage ca-
pacity. Why then subdivide the brain?

2.4.1 The left-right universe

To begin to answer this question, consider first an artificial world composed of pic-
tures with independent (uncorrelated) left and right halves (Fig. 2.4.3). This means
that any left half that is seen in the universe may be found with any right half.A con-
crete example is the set of possible first and last name initials, where all letters of the
alphabet might appear on the left,as they might on the right. Our task is to design a
neural network for an organism in this artificial world. We assume that the pictures
are mapped directly onto the network so that they are represented point by point as
the neuron activity pattern. We will consider this example in detail, since it captures
many of the essential concepts that will be relevant later.

As we have discussed, a fully connected network of N neurons is capable of re-
calling aN distinct and uncorrelated pictures. We can represent the stored pictures us-
ing the notation (L;,R;), where R; is the right half of the ith picture and L; is the left
half of the ith picture. Then the stored images are of this form with i in the range
{1,...,aN}. In order for the pictures not to be correlated,the left sides of all stored pic-
tures must be different from each other, as must be the right sides. If the pictures that
the organism encountered in the universe were indeed distinct and uncorrelated,this
is the best that can be expected from Hebbian training. However, in the left-right uni-
verse, the pictures that might be encountered are correlated.

Let us divide the network into left and right hemispheres by cutting all of the
synapses running between them. The left hemisphere receives the left part of each
picture and the right hemisphere receives the right part of each picture. Each of the
hemispheres has N/2 neurons. Using Hebbian imprinting, each hemisphere can store
(aN/2) distinct half-pictures. Because the subnetworks are halfas large as the full net-
work, the number of patterns that can be stored is half as many and each pattern is
also half as large. The storage of the left hemisphere is of left halves of pictures, L;. The
storage of the right hemisphere is of right halves of pictures, R;. In both cases i takes
values in the range {1,...,aN/2}. Storage in the left hemisphere is independent of the
storage of the right hemisphere. When we test for recall,each of the patterns stored by
the left hemisphere can be combined with each of the patterns in the right hemisphere
to obtain a different stored picture. These are composites of the imprinted pictures.
Thus the subdivided network stores a total of (ocN/2)2 composite pictures of the form
(Li,R;) , where both i and j are taken independently from the range {1,...,aN/2}. Each
of these (aN/2)? pictures may be encountered in the left-right universe. Since the
number of neurons N is large, (aN/2) is much larger than aN. Cutting the synapses
between the hemispheres results in a huge increase in the number of pictures that can
be stored in the network. For an organism in the artificial world, this is a significant
advantage.

The retrieval process is different in the fully connected network and in the sub-
divided network. In the fully connected network, retrieval starts by presenting to the
network an image that is close to one of the stored images (L;,R;). Somewhat over 50%
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Figure 2.4.3 lllustration of the left-right universe, which consists of images that are com-
posed out of independent left and right halves. The set of all initials is a simple example of
such a universe. We could try to store these images on a fully connected network, or we could
first subdivide the network into two hemispheres. The fully connected network would re-
member more completely independent images, but would fail to be able to store multiple im-
ages with the same left half or the same right half. The subdivided network would store in-
dependently the left and right half, and so would store many more images that would be
composed of a selection of the stored left halves and the stored right halves. A biological
analog of the left-right universe may arise in the control by the different brain hemispheres
of left- and right-hand motion. O

of the neurons must be presented to the network in order to recover the full image. If
we stored the patterns (L;,R;) and (L ,,R,) and then the universe presents the pattern
(L;,R,),the network will choose to settle into either (L;,R;) or (L,,R,), depending on
which one of these is closer to (L;,R,). In either case we could say that the network is
in error, but this error occurs for a state that the network never imprinted.

The subdivided network works on the retrieval of each half of the picture sepa-
rately. It recognizes (L,,R,) from a pattern that is close to L, on the left and close to R,
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on the right. It might appear that there is a disadvantage because the subdivided net-
work cannot use partial information from one half of the network to help in recall of
the other half. However, it is imp ortant to recognize that this is actually dictated by
the nature of the information in the left-right universe and only incidentally by the
subdivision of the network. Using information from the left half to help on the right
would only lead to errors, since it was assumed that there is no correlation between
the two parts of the information.

It is significant that the training of the subdivided network was achieved with
only (aN/2) imprints. The subdivided network recognizes many more pictures than
were trained. In this way the network generalized from the training set to a much
larger number of pictures. This works if we are able to select which pictures to train
initially. We take (aN/2) of the pictures and make sure that all of the left halves and
all of the right halves are different. We imprint these pictures. From the perspective of
the storage of complete patterns, what we have done may appear quite strange. It is
true that we have caused the network to store (ocN/2)2 patterns, but aren’t all of these
really only a few patterns? Yes, they are all related to the imprinted (aN/2) patterns.
The point is that in the artificial world, where the left and right parts of the image are
independent, we want to store the (ozN/2)2 different combinations rather than only a
particular set of complete patterns.

Let us consider an alternative design of an organism in the left-right universe—
a different way of subdividing the network. Instead of cutting the synapses between
left and right hemispheres, we cut the synapses between the top and bottom halves of
the network. In this case each half of the network acts to store (aN/2) half pictures.
The top half stores the top part of each picture. The bottom half stores the bottom
part of each picture. Now we cannot claim that the network stores (ocN/Z)2 pictures,
because different combinations of top and bottom are not possible pictures in the
universe. Instead the network stores at most only a total of (aN/2) of the possible pic-
tures. There is an additional problem in retrieval, because information from the top
cannot be used to help with retrieval of the bottom part of the image, and informa-
tion from the bottom cannot be used to help with the top. In order to retrieve a par-
ticular image, we must have over 50% of the neurons correct in the top half and over
50% of the neurons correct in the bottom half. We have degraded the network stor-
age with no compensating advantages. We have also created a whole host of undesir-
able memories that are not real. These undesirable memories are combinations of
stored top and bottom halves of pictures.

From this discussion we learn that subdividing a network can improve dramati-
cally the storage of patterns. However, the effectiveness of subdivision requires direct
matching to the nature of the information:if we know that the organism lives in the
left-right universe we can cut synapses between left and right hemispheres.

2.4.2 Imprinting correlated patterns

The advantage of subdivision in terms of the number of pictures that can be stored is
not the whole story for the left-right universe. The fully connected network actually
fails when patterns that are imprinted are significantly correlated. We have,until now,
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considered only uncorrelated pattern storage in the fully connected network. In the
left-right universe, the independence of information between the two halves of the
pictures means that the patterns themselves are correlated. Two or more patterns that
are to be remembered may have the same right halves and different left halves. When
we imprint such correlated information in a fully connected network using Hebbian
imprinting, the patterns are not stored.Qualitatively, the problem arises because the
right-hand side of the network does not know which of the left sides to reconstruct.
When we try to retrieve one of the stored patterns,the result on the left is retrieval of
some intermediate picture that is neither of the desired memories. The degree of fail-
ure of the network depends on the number of pictures that are imprinted with the
same right halves. Memory degradation occurs for just two imprinted pictures.
Failure becomes explicit when there are as few as three imprinted pictures. It is,how-
ever, simplest to consider first the case of four imprinted patterns, all of which have
the same right halves.

We can see the failure of a fully connected network analytically by considering the
update of neurons when starting from one of the imprinted patterns. Extending
Eq. (2.2.17) to the case of four patterns we have:

5i(1) =sign(Q Jis(0)
) (2.4.1)
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We assume that we are looking at the value of a neuron in the left half of the network
iT{1,...,N/2} and the four patterns &}, &7, &, &/, are identical in the right half of the

network j T {N/2,...,N}. We split the sums in Eq. (2.4.1) into separate sums over the
left and right halves of the network so that:
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We have collected the sums over the right halves together since they are the same.We
can test the stability of the first imprinted pattern. Setting s;(0) = §i1, the first sum and
the last sum are just N/2

N/2 N /2 N/2
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The remaining three sums are random walks, because the left sides of the patterns are
assumed to be uncorrelated. They have a typical size of ON and are smaller than the
last set of terms. So we can ignore the first three terms. As we look at different values
of i T {1,...,N/2}, one-eighth of the time we will have pattern 2,3,4 opposite the first
pattern £ = - £2 =- £ = - £/, In this case the neuron will flip after the first update. If
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one-eighth of a pattern changes after a single update, it is not stable. Since the same
argument holds for each of the imprinted patterns, they were not stored.

Let us now think about the case of three patterns imprinted with the same left
halves. Instead of Eq. (2.4.3) we have:

N/2 N /2
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This implies that whenever the other two patterns differ from the first at a particular
neuron & = - £2 = - £2, which happens 25% of the time, then the result is dependent
upon the overlap of the three states. Specifically, in this case we have

NO/Z NO/Z
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The argument of the sign function would always have to be negative in order for the
imprinted pattern to be recovered. Statistically, the sign function will be negative or
positive with equal probability. When it is negative,the whole pattern is stable. When
itis positive,25% of the initial pattern will not be recovered after a single iteration and
the pattern is unstable. Thus for three imprinted patterns, on average half of the pat-
terns will be stable. The stability of these patterns is based upon the sign of the
random-walk terms in Eq.(2.4.5). Imprinting any other pattern, correlated or uncor-
related, on the network will destabilize them.

In this section we have shown that the fully connected network fails for correlated
patterns.Earlier, in Section 2.4.1, we discussed storage of uncorrelated pictures in the
same network. If we have control over the order of pictures that are presented to the
network, we can choose uncorrelated pictures to imprint. However, in the left-right
universe, we should allow for an arbitrary order of the possible pictures. Some of the
pictures will have the same left or right halves. In this case, the fully connected net-
work with Hebbian imprinting will fail. Thus it is necessary to modify the fully con-
nected network to work in the artificial left-right universe,and subdivision of the net-
work is one way to do this. A network without synapses between left and right
hemispheres does not suffer from this failure.

The real world is not constructed out of independent left and right pictures, at
least the visual field is not. Can we make any sense of the actual subdivision of the
brain (specifically the cerebrum) into left and right hemispheres from this model left-
right universe? We can, at least in part, by recognizing that both tactile sensation and
motor control of the arms and legs requires states that are left-right independent.
Motor control requires neural activity patterns that describe (or prescribe) the mo-
tion. If we were to try to store the possible patterns of motion of the two hands in a
uniform network,the actions of one hand would always be directly related to the ac-
tions of the other hand. If we want to be able to do one of several actions with the left
hand for the same action of the right hand,then subdividing the network that stores
the pattern of neural activity makes sense,and may even be necessary. Of course we
would like there to be coordination between actions of the two hands or legs. This
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means that we need a balance between the independence and dependence of the pat-
terns in the two different divisions. We will investigate partially subdivided networks
as one way to achieve this balance.

2.4.3 Separating independent information

The example of left-right motor control is a special case in which the simple model of
subdivision might help, and might even correspond to an important example of sub-
division of the brain. We can generalize this example by recognizing that the infor-
mation we process is highly correlated. One of the reasons for the correlation is that
different aspects of the information are independent of each other in similar manner
to the independence of the left-right universe. It is this independence that gives rise
to correlations.

We therefore recognize that there are two tasks.First, we must in some way iden-
tify which parts of the information to be stored are independent (uncorrelated) and
separate these parts of the information. Then we must store these different types of
information in different parts of the network. Achieving this will enable tremendous
increase in storage of the correlated patterns.Fig. 2.4.4 shows a simple model for the
function of sensory processing consistent with this concept. Sensory information is
separated by input processors to distinct channels. The input processors are presumed
to be composed of feedforward neural networks that are illustrated only schemati-
cally. The information is then imposed on a subdivided attractor network that serves
as a content-addressable memory.

If the information in the different channels were completely independent, the
channels should be completely independent and the entire problem would be to iden-
tify what the channels should be. However, the information is not usually completely
independent. This suggests that we adopt a model where the network is partially sub-
divided, with weaker or fewer synapses between the subdivisions of the attractor net-
work. This is the model that we will adopt and investigate. Before pursuing this ap-
proach we discuss two more examples of the relevance of this architecture to human
information-processing: vision and language.

2.4.4 Sensory processing: color, shape and motion in vision

The human visual system does not take advantage of the two hemispheres of the brain
to divide the visual information right from left because the left and right parts of the
visual field are not independent. There is a large interconnection area called the cor-
pus callosum that connects the visual areas in the two hemispheres. Instead, detailed
mapping of the visual cortex has revealed that visual processing separates three
attributes of the information: color, shape and motion. The implication of the sepa-
rate processing of these three attributes using, in effect, a preprocessing step to sepa-
rate them, is that these information categories are partially independent. For exam-
ple, visual fields with different shapes can have the same colors. Or, vice versa, the
same shapes can have different colors. This independence has been used in the design
of the genetically encoded structure of the initial visual information-processing.
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Figure 2.4.4 Schematic illustration of a model for sensory processing that first separates the
information into distinct channels, each of which corresponds to a different attribute of the
input. The separated attributes are then imprinted on distinct subdivisions of a neural net-
work. This approach is effective if the different attributes of the information are independent,
or at least partially independent. [

The use of these three channels in the visual system can be recognized in our use
of attributes to identify objects. In describing objects, we generally distinguish distinct
types of attributes—color, shape and action/motion. Within each of these attribute
categories we can construct a list of attributes such as

color: RED, GREEN, BLUE, ORANGE, PURPLE, WHITE, BLACK, ...

shape: ROUND, OVAL, SQUARE, FLAT, TALL, ...

action/motion: STATIONARY, MOVING-LEFT, MOVING-RIGHT, RISING, FALLING,
GROWING, SHRINKING, ...

The existence of three attribute categories enables a large number of descriptive cat-
egories to be constructed. A description is composed out of a selection of one at-
tribute from each category. The number of descriptive categories is the product of the
numbers of attributes of each type.
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By subdividing a network into three subnetworks and separating the color infor-
mation to one subnetwork, the shape information to the second,and the movement
information to the third,it is possible for the network to identify categories such as:
RED ROUND MOVING-LEFT, RED ROUND FALLING, BLUE SQUARE MOVING-LEFT, and
BLUE ROUND FALLING. The network receiving color information identifies the color,
and so on. In a fully connected network these categories would each require separate
identification (and correlations would actually cause the network to fail).As with our
descriptions,in the subdivided network the total number of categories is the product
of the number of categories stored in each subnetwork.

We caution that the shape, color and motion attributes of the information are not
completely independent, and neither is their processing in the brain. Partial subdivi-
sion implies correlations between the different attributes are also significant.
Particularly in the natural world,there are important correlations between the over-
all shape of an object, its color, and both its direction and likelihood of motion. For
example, leaves have a set of characteristic shapes and they are usually green. Tree
trunks and their associated vertical or branching shapes are usually brown. The ways
in which leaves are likely to move are not the same as the way tree trunks are likely to
move. If we used a completely subdivided network for vision,after imprinting brown
stationary trees and green rustling leaves we would also remember brown rustling tree
trunks and green stationary tree trunks. In order not to lose the color-shape-motion
relationships, we must be able to store the correlations between these different attrib-
utes. This may be done in a partially subdivided network using the weaker or fewer
synapses that run between the different subdivisions.

2.4.5 Language and grammar: nouns, verbs and adjectives

If subdivision provides advantages for neural network function, then this should be
particularly manifest in man-made constructs. These constructs are likely to reflect
the architecture of the brain and therefore mirror the use of subdivision. In the con-
text of vision, one might consider the use of color and shape in abstract art,as well as
the decoration of man-made objects (e.g.,package labels).Studies of these construc-
tions might help develop an understanding of the human visual system. Another
source of information is human language. Known as “natural language” in the artifi-
cial intelligence community, to contrast it with computer languages, the spoken or
written language is a man-made construct that has been studied for many years by lin-
guists as a source of information or insight into the functioning of the human brain.

Linguists differentiate between the grammatical and semantic aspects of lan-
guage construction. Loosely speaking, grammar is the structure of well-formed sen-
tences, while semantics is the content of the sentences. It is grammar, which is much
more amenable to formal studies, that has been considered to reflect the architecture
of the brain. A basic premise in the field of modern linguistics is that common fea-
tures in the grammar of different languages exist and are the primary clue to the in-
herent brain architecture. The most recent widely accepted linguistic theory is the
transformational grammar. It suggests that there exists an underlying representation
that is transformed upon output into the usual grammatical form of sentences.



Subdivided neural networks 341

Sentences are interpreted upon input to reconstruct the underlying representation.
This resembles our model of the neural architecture, with feedforward input process-
ing that leads to the subdivided attractor networks and, we add here,output process-
ing from the subdivided network to the motor controls. The input and output map-
pings that form the grammatical constructions used in a particular language are not
completely universal and must be trained. This will not be the focus of our attention
here.

Our objective at this stage in describing the connection between grammar and
our model is quite modest: to make contact with one of the most fundamental aspects
of grammatical construction that is familiar to everybody—the existence of parts of
speech in sentence construction. Indeed, without the existence of parts of speech,
there would be no meaning to the term “grammar.” Grammar investigates the con-
struction of sentences out of words. Words are separated into categories that are the
“parts of speech,” such as nouns, verbs, adjectives, and adverbs. The central role of
grammar is to describe the rules by which properly formed sentences are constructed
out of the parts of speech.

In order for words to be stored in the brain, some appropriate representation
must exist in terms of neuron activity patterns. We do not know what this represen-
tation is,nor how universal the representation is. However, assuming some represen-
tation, we can ask how the organization of words into parts of speech can be realized
in the brain. One way is to attach a label to each word that indicates what part of
speech it is,and to store each word with its label as a pattern in a uniformly connected
neural network. When we use a particular word,the label can serve to identify how it
should be used in a sentence. This is how dictionaries are organized. After each word
appears the usage—part of speech (abbreviated n, v, adj, adv, etc.)—identifying how
it may be used in a sentence. There are some technical problems with storing patterns
which incorporate labels in this way. Since the same label (part of speech) applies to
many words,this will not work in a conventional attractor network. There are ways to
overcome this problem, but we will not take this route here.

Instead we describe an alternative that makes use of network subdivisions. The
architecture is similar to the model for vision that was used in the previous section,
or the more general model of Fig. 2.4.4. We simplify the construction by considering
only three parts of speech—nouns, verbs and adjectives. We assign each part of speech
to a particular brain subdivision and assume that visual (reading) or auditory pro-
cessing separates the information stream into three parts. The separation of the in-
formation is equivalent to parsing sentences using the grammatical sentence struc-
ture, a process that is reasonably well-understood. The importance of input
processing provides a reason for the need for consistency in grammatical construc-
tion. After the initial processing parses the sentence,the parts (noun, verb and adjec-
tive) are transferred to distinct brain subdivisions. In order to generate sentences for
writing or speaking, an output processor (presumably another set of feedforward net-
works) is necessary to take the content of the brain subdivisions (noun, verb and ad-
jective) and compose a sentence. This output processor precedes the motor control of
speaking, writing or typing. It reimposes the grammatical construction of sentences.
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In this picture the brain as a whole does not store words, per se, but rather phrases
or short sentences that consist of one each of a noun, verb and adjective (n, v, adj). If
we wanted to discuss how this model is capable of continuous language we would add
a time evolution of the network that causes a transition from one word triple (n, v,
adj) to the next. We limit our consideration of this model to an understanding of the
role of subdivision by comparing a model with completely separated subnetworks with
another model that stores phrases or short sentences in a fully connected network.

The comparison is illustrated in Fig. 2.4.5. We take two networks with the same
number of neurons—a uniformly connected network and a network divided into
three parts. Since the independent pattern storage capacity grows linearly with the
number of neurons,the number of short sentences that can be stored in the uniform
network is three times the number of patterns that can be stored in each of the three
pieces of the subdivided network. For this example we take quite small networks,so
that each of the subdivisions can store three words coded appropriately. The uniform
network would then be able to store nine sentences with three words each. We choose
to imprint the nine sentences that are shown in Fig. 2.4.6 on the left. On the subdi-
vided network we can only imprint three sentences. However, twenty-seven compos-
ite sentences would be recognized.

The difference between the set of sentences that can be remembered by the full
network and the set that can be “remembered” by the subdivided network are related
to the distinction between the grammatical and semantic content of a sentence. The
complete network knows more full sentences, but does not have knowledge of the di-
visibility of the sentences into parts that can be put together in different ways. It does
not even recognize the existence of word boundaries. The subdivided network knows
the parts but does not know the relationship between them, thus it knows grammar
and it knows the individual words, but it does not know the semantic content. For ex-
ample,it does not know who it is that fell. The subdivided network generalizes from
the three imprinted sentences to twenty-seven sentences. This generalization is based
on the grammatical construction of the sentence. The fully connected network does
not generalize in this way because it remembers the specific imprinted sentences to
the exclusion of all others.

The field of linguistics as well as our intuition suggests that the actual process in
the human brain lies somewhere between these extremes. Sentences make sense or are
“grammatically correct” if properly put together out of largely interchangeable parts.
However, a recalled event is described by a specific combination. Language, whether
written or spoken, is generated by each individual out of sentences. The particular
sentences that are used were not necessarily learned. Whether read or heard,language
is understood by each individual by recognizing the component words. Yet much of
the new meaning that is learned is contained in the interrelationship of words.A spe-
cific combination of words can be remembered by an individual and repeated.
However, in general such memorization is not easy and is not as permanent as the
memory of individual words.

It is possible to achieve an intermediate balance between storage of components
and complete imprints by use of a partial interconnection between subnetworks. We
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Figure 2.4.5 A practical example of the separation of processing into separate channels is
the separation of visual processing into color, shape and motion. A significant body of ex-
perimental literature indicates that visual processing is separated into different channels. The
channels are not fully characterized but are roughly considered to correspond to color, shape
and motion. O

will investigate a few properties of partially subdivided networks in Section 2.5. One
of the features of the partially subdivided network is that the synapses that run be-
tween subnetworks impose “compatibility” relations between the patterns stored in
each subdivision. Some combinations of subpatterns are stable while others are not.

The subdivided network provides a systematic method for information organi-
zation in terms of elements (the stable states of subnetworks) which are organized in
element-categories (the stable states of a particular subnetwork) and the compatibil-
ity relationships between elements as dictated by the inter-subnetwork synapses. This
is indeed reminiscent of the structure of grammar, where nouns, verbs and adjectives
and other parts of speech are categories that have elements,and there are compatibil-
ity relations among them. It is ttmpting to speculate that different subdivisions of the
brain are responsible for the classification of words into parts of speech,and that the
ability to combine them in different ways results from balancing the strength of inter-
subnetwork synapses and the intra-subnetwork synapses which store representations
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Fully connected network Subdivided network

Imprinting and Retreival Imprinting Retreival

Big Bob ran. Big Bob ran. Big Bob ran.
Kind John  ate. Kind John  ate. Big Bob ate.
Tall Susan fell. Tall Susan fell. Big Bob fell.
Bad Sam sat. Big John  ran.
Sad Pat went. Big John  ate.
Small  Tom jumped. Big John  fell.
Happy Nate gave. Big Susan ran.
Mad Dave  took. Big Susan ate.
Shy Cathy  slept. Big Susan fell.

Kind Bob ran.
Kind Bob ate.
Kind Bob fell.
Kind John ran.
Kind John  ate.
Kind John  fell.
Kind Susan ran.
Kind Susan ate.
Kind Susan fell.

Tall Bob ran.
Tall Bob ate.
Tall Bob fell.
Tall John ran.
Tall John ate.
Tall John  fell.
Tall Susan ran.
Tall Susan ate.
Tall Susan fell.

Figure 2.4.6 lllustration of the use of subdivided networks in the context of language. A fully
connected network with enough neurons to store exactly nine sentences shown on the left
may be imprinted with and recognize these sentences. If the network is divided into three
parts it may be imprinted with only three sentences (center). However, because each sub-
network functions independently, all twenty-seven sentences (right) that are formed as com-
posites of the imprinted sentences are recognized. Comparing left and right columns suggests
the difference between semantics and grammar in sentence construction. [

of each word. There is even some biological evidence for the separation of nouns and
verbs in different parts of the brain. We could take a step further and consider the re-
lationship of the subdivisions of the brain that store noun and verb representations
with other parts of the brain. For example,it makes sense to speculate that the subdi-
vision that stores nouns would be more strongly connected by synapses to sensory-
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processing parts of the brain as compared to motor-processing parts. In contrast,
verbs would be likely to be more strongly connected to motor control than most of
the sensory processing (but also to the motion-detection subdivision of the visual sys-
tem). This might even be part of an explanation of why words are divided into the cat-
egories of noun and verb, rather than some other categorization.

The discussion of the previous paragraph is the beginning of an approach to dis-
cussion of the architecture of the brain based on an understanding of how subdivided
neural networks function. A more detailed discussion of how this approach might
help in developing an understanding of neurophysiology will be given in Chapter 3.
However, we mention here the implication that one might use the logic of grammar
to represent more generally the function of the brain. To do this we would expand the
articulated sentence to include additional “unvoiced” words in new categories repre-
senting the state of brain subdivisions other than the language-related ones.

Analysis and Simulations of
Subdivided Networks

Our objective is to consider the advantages of subdivided networks in the context of
sensory processing or, more generally, in the context of pattern-recognition tasks. The
advantage of subdivision arises when the information is naturally subdivided so that
combinations of imprinted subnetwork states also represent desirable states to be re-
called by the network. We call these combinations of subnetwork states composite
states. For completely subdivided networks,the analysis is immediate (Section 2.5.1).
For partially subdivided networks, the analysis is discussed in Sections 2.5.2-2.5.4.
Partially subdivided networks are relevant to pattern recognition when the informa-
tion may be divided into partially but not completely independent parts. Thus a de-
termination of the interdependence of recalled subnetwork states is relevant. It is as-
sumed that for a particular pattern-recognition task, a balance is desirable between
independence and correlation of subnetwork states. The central question is whether
it is possible to achieve an adjustable intermediate balance between storage of com-
plete neural patterns and storage of composite states.

We will use partially subdivided networks consisting of a conventional network
of N neurons with Hebbian imprinting, where the strength of synapses between g
subdivisions of N ¢=N/q neurons are reduced by a factor g compared to the synapses
between neurons within each subnetwork. We can expect that dilution of inter-
subnetwork synapses, with g the fraction of remaining synapses, will lead to similar
results (Question 2.5.1 on p. 364). It is important to distinguish the subdivided net-
work from a randomly diluted network. Random dilution would sever synapses se-
lected at random. Dilution of inter-subnetwork synapses results in storage of com-
posite patterns. This would not occur for random dilution.

Consider a network with predefined subdivisions. The training of the network is
performed by imprinting complete neural states. Since subdivision is favorable only
when it is desirable to store and recognize composite patterns, we measure the stabil-
ity of various composite patterns such that the state of each subnetwork corresponds
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to its state for one of the imprinted patterns.* Thus,two questions to be asked about
the capacity of the network are: (1) How many complete neural states can be stored
in the network? and (2) How many composite patterns are stored in the network?

2.5.1 Completely subdivided networks

For either fully connected or completely subdivided networks, the capacity is ob-
tained from the results of Section 2.3 on fully connected networks. The maximum ca-
pacity of a large attractor network of N neurons for storage of complete neural states
is o, N, where o, = 0.145 for Hebbian learning when a small fraction of errors in re-
trieval is allowed. For a network of N neurons completely subdivided into q subdivi-
sions,the maximum capacity for complete neural states is o, N/qg, which is lower than
for the undivided network. However, since storing o, N/q states results in all possible
combinations of these substates being stored,the number of composite states stored
is (a,,N/g)%, which is much larger than o, N for large N and not too large g. This result
follows directly from the linear dependence of the network capacity on the number
of neurons.

As an example, for a network of 100 neurons, the storage capacity is 14.5 states
for the full network. When subdivided into two halves, the network capacity is 7.25
full memories,and (7.25)%- 7.25=46 composite patterns in addition to the full mem-
ories. When subdivided into four subnetworks,the same 100 neurons store 3.75 com-
plete states and 195 composite patterns. This example is described and simulated
more fully below (see Fig. 2.5.1 through Fig. 2.5.4).

As an exercise we might calculate the number of subdivisions that results in stor-
age of the largest number of composite patterns:

d &oN y'0 éoL No .6
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For this number of subdivisions, the number of neurons in a subdivision would be
only e/ o » 19. The number of memories stored (assuming that the usual formula ap-
plies, which is only approximate in this small subnetwork limit) ise » 2.7, or less than
3 on average. The total number of independent memories stored is:
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(2.5.2)

* In the present discussion we neglect the inversion of imprinted substates. For example, for a network
subdivided into two parts, we could consider a state formed out of the right half of one imprinted pattern
and the left half of the same pattern inverted. Such states may also be stable.A bias in the relative number
of oN and oFF neurons (see also Section 3.2.13),as is found in the brain, would lead such states to be less
relevant.
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#of patternsin  #of patternsin  # of patterns in maximal
#of Neurons  full network 2 subdivisions 3subdivisions g, #of patterns
100 1.45x10" 5.26x10" 1.13x10° 5 1.48x10°
1000 1.45x10° 5.26x10° 1.13x10° 53 1.04x10%
10000 1.45x10° 5.26x10° 1.13x108 533  3.01x10%!

Table 2.5.1 Table of the storage capacity for composite patterns in various subdivision
schemes. If the number of composite patterns stored is maximized, the number of subdivi-
sions ggpe and the number of memories stored is indicated. Note that the number of imprints
needed to store a large number of composite patterns is not great. In particular it is only
three for all cases in the last column.

This subdivision size is based on considering the maximum number of composite
states which can be stored.

The main problem with this analysis is that it only applies if the information can
be divided into independent parts consisting of N/q bits. We could also consider a
more extreme case where all bits are independent. In this case there would be no need
for synapses (or storage) since all 2" patterns are possible. Nevertheless,the implica-
tion that an optimal subnetwork size only stores approximately e states may be of sig-
nificance when we can adjust the pattern-recognition task to suit the capabilities of
the neural architecture.

Table 2.5.1 indicates the potential advantage of subdivision if the information
can be appropriately subdivided into aspects that can be mapped onto subdivisions
of the network. The human brain (with 10t neurons) has left and right hemispheres
that are further subdivided into a hierarchy of subdivisions. Small divisions are some-
times modeled as having about 10* neurons in number. Further subdivisions into still
smaller neuron groups may also occur in the brain.

2.5.2 Summary of results on partially subdivided networks

In Section 2.5.3 and Section 2.5.4 we analyze networks that are partially subdivided.
In Section 2.5.3 simulations are used and in Section 2.5.4 a signal-to-noise analysis is
used. Before proceeding, we summarize the results. All of the results on partially sub-
divided networks depend on the degree of subdivision. g sets the relative strength of
inter-subnetwork synapses and intra-subnetwork synapses. For g = 1 we have a fully
connected network,and for g =0 we have a completely subdivided network. The sim-
ulations and signal-to-noise analysis show that

1. For g =1 the maximal number of imprinted patterns may be stored and for g =0
the minimal number of imprinted patterns may be stored with a continuous in-
terpolation between them.

2. For g = 1 the lowest number of composite patterns may be stored and for g =0
the largest number of composite patterns may be stored with a continuous in-
terpolation between them.
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For particular values of g a well-defined balance between complete patterns and
composite pattern storage is achieved.

a. We should distinguish between composite patterns that have some subdivi-
sions with the same imprinted pattern in them. For example, for three subdi-
visions,there are composite patterns with two of the subdivisions having the
same imprinted pattern in them and the third subdivision with a different
imprinted pattern. Patterns that have more than one subdivision with the
same imprinted pattern continue to be stable to higher values of g. More
specifically:

b. The simulations study a network subdivided into four subdivisions.A com-
posite pattern formed by setting two of the subdivisions to one imprinted pat-
tern and two subdivisions to another is stable to higher values of g.

c. The signal-to-noise analysis considers networks with g subdivisions. Let a be
the smallest number of subdivisions occupied by an imprinted pattern in a
particular composite pattern. Then for low storage,this pattern will be stable
for all g satisfying

< L (25.3)
¢ q-2a+l o

The significance of result 4 is that we can use the value of g to impose correlations

between patterns stored in different subnetworks by stabilizing some composite

patterns and not others.

When the number of subdivisions becomes large, Eq.(2.5.3) ceases to apply, and
it becomes impossible to selectively impose correlations between patterns stored
on different subnetworks. If we try to reduce g to allow composite states,then all
composite states become possible. As a consequence, we learn that beyond a cer-
tain number of subdivisions, partial subdivision is essentially impossible. The
network either behaves as a fully connected network or as a completely subdi-
vided network. For many purposes it is thus undesirable to have more than a few
subdivisions. The crossover point is calculated to occur for approximately seven
subdivisions. This result has some significance for our understanding of the sub-
division in the brain and brain function. For example,it is consistent with the 7
+ 2 rule of short-term memory. It is also of significance for our understanding of
complex systems in general.

Another way to state result 5 is in the language of Section 1.3.6. A uniform net-

work may be categorized as a complex material. Removing part of the network affects
the smaller part but does not affect the larger part of the network. In contrast, for less
than approximately seven subdivisions,at intermediate values of g, subdivided neural
network function depends on each of its subdivisions. It is therefore in the category
of complex organisms. For greater than seven subdivisions it can no longer be in the
category of a complex organism. For large enough g it behaves as a fully connected
network and is a complex material. For smaller g the network decouples and becomes
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a set of independent networks. In this case it is unchanged under subdivision, like a
thermodynamic system.

2.5.3 Simulations of partially subdivided networks

To evaluate the behavior of networks that are partially subdivided rather than com-
pletely subdivided,it is natural to perform simulations. These simulations,analogous
to those of fully connected networks, test the stability of imprinted and composite
neural states. In the following we use Hebbian imprinting and synchronous updating
of an attractor network with 100 neurons partially subdivided into either two or four
subdivisions. The imprinted patterns are chosen at random with an equal probability
of the two neuron activities +1. The procedure used for performing the simulations
of subdivided networks is:

1. Generate p complete random neural states:

gl=+1 u={1,..p}i={1,.,N} (25.4)
2. Imprint these neural states on the synapses of the neural network:
i
18 -
T — We- UL il
Jj=IN uaE 5 J (2.5.5)
|
i 0 i=]
3. Write the matrix of synapses in block form corresponding to q equal size neuron
subdivisions
&l j12 . .0
EJ abe 1295
“c . . - (2.5.6)
ngll jez e E

where each superscripted J isan N¢” N ¢matrix, N ¢= N/g. Diminish off diago-
nal blocks of synapses, which connect between q different subnetworks of equal
size, by a factor g.

AR i={1..,q
1o gyl 5= it ]

4. Find the number of imprinted and composite states that are stable under updat-
ing of the neurons.A composite state is composed from imprinted states in each
subdivision. In general:

Ciﬁ =g
Ciﬁ =g"

(2.5.7)

Wphi={L...N¢

og T{L.
ol {L,...,pHi ={NC+1.. 2N ¢ (2.5.8)

z;ﬁ =E o1 L., phi ={@- DN G+1,.., N}
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The number of stable composite states is:

o AN %5 a; 500
Pstable = A ()6 ggi[ 0 ga ‘]i,jCJ[ :: (25.9)
i

p i 2@

In the simulations, the number of stable memories for small p are counted by
enumerating all combinations. For p greater than a few, the number of stable
states is obtained by sampling. In both cases, averaging over many sets of im-
printed states is performed. Note that no errors are allowed in recall.

Fig. 2.5.1 shows the results of simulations of a network with 100 total neurons
and two subdivisions. It shows separately the number of stable composite states that
were not imprinted (Fig. 2.5.1(a)),and the imprinted states (Fig. 2.5.1(b)).Fig. 2.5.2
shows the total number of stable states. Different curves show the result of diminish-
ing the inter-subnetwork synapses by g ranging from 0 to 1 in increments of 0.1. The
maximum number of stable imprinted states is for a network that has not been sub-
divided, g = 1. The maximum is obtained for 13 or 14 imprints and is about 11 mem-
ories. This is the same as the earlier Fig. 2.2.6. The maximum number of composite
states recalled is for the completely subdivided network. The maximum is obtained
for approximately 7 imprints, resulting in recall of 45 composite states. These num-
bers approximate the expected results given by the analytic treatment. Note that the
analytic treatment need not give exactly the same result as the simulation, because it
assumes that N, N ¢are very large, and it allows some error in the network recall.

(b)

12 -

Composite patterns Imprinted patterns

10

Figure 2.5.1 The number of stable memories after imprinting p patterns (horizontal axis) on
a subdivided neural network with 100 total neurons and two subdivisions. (a) shows the num-
ber of stable composite patterns composed of combinations of imprinted subnetwork patterns
where the complete pattern is not an imprinted one. (b) shows the number of stable imprinted
patterns. Note the difference in vertical scale. The different curves are labeled by the factor
g which weakens the synapses connecting different subnetworks. The curves labeled 0 are for
a completely dissociated network. O
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Of particular interest in these simulations is the possibility of partially subdivid-
ing the network and achieving an intermediate balance between storing imprinted
states and composite states. For interconnection strengths reduced by g = 0.3, and
with 9 imprints of which nearly all are recalled,the number of additional composite
states recalled is about 10. This example of the network subdivided into two parts il-
lustrates the balance between complete and composite memories. However, the na-
ture of stability of subnetwork combinations in a subdivided network is more effec-
tively illustrated with additional subdivisions.

Imprinting on a network with four subdivisions results in various possibilities for
composite patterns. As in step 4 (p. 349), letting £ be the state of the ith neuron in
the o, imprint, we can write the composite states using the notation Z'® (o, oy, 0,
o). The distinct types of vectors whose stability can be tested are distinguished by the
equality or inequality of the o; as shown in Table 2.5.2. The number of stable memo-
ries of each type for 100 neurons and after p imprints is plotted in Fig. 2.5.3, and to-
taled in Fig. 2.5.4.

For a completely subdivided network (g = 0) the storage capacity for imprints is
just over 3, compared with the full network capacity of 11. The number of composite

60 —

All stable patterns

40 1

30 +

20 4+

10 +

Figure 2.5.2 The total number of stable composite and imprinted states after imprinting p
patterns on a subdivided neural network with 100 total neurons and two subdivisions. The
value of g is indicated on each curve. [
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Category Number of Such States Label Schematic
(ajapagay) p Imprinted states @
(apapaay) 4p(p-1) Three equal substates @
(apagazay) 3p(p- 1) Two & two equal substates @
(a1apa2as) 6p(p- 1(p- 2) Two equal substates @
(agasaszay) pp- (- 2)(p- 3) Unequal neural substates @

Table 2.5.2 Different types of composite states for a network subdivided into four parts. The
first type consists of substates that all originate from the same imprinted state—an imprinted
state. The second type consists of substates of which three are from the same imprinted state
and one originates from a different imprinted state. The other types are similarly defined. The
number of states of each type is indicated (it is assumed that p 3 4) in the second column.
A label for each type, which is used in the figures and in the text, is given in the third col-
umn. A schematic is indicated in the last column. Note that the number of states in the last
category is largest when p becomes large enough, however, for p < 9, the second to last cat-
egory has a larger number of states. O

states recalled is nearly 400. When interconnection strengths are reduced by g =0.2,it
is possible to store between 6 and 7 complete memories while enabling the stability of
70 additional composite states at the same time. These composite states are roughly
equally divided between those with two equal substates, and those with two & two
equal substates. Other values for the interconnection strength can provide a distinct
balance between the independence and dependence of subnetwork states.

Systematically, it is possible to see that composite patterns that have more than
one subdivision containing the same imprinted pattern remain stable at higher val-
ues of g. When all substates arise from different imprinted states (Fig. 2.5.3(a)), the
stability decreases very rapidly as g increases. The number of substate combinations
with two equal substates (Fig. 2.5.3(b)) decreases almost as rapidly. In contrast, the
stability of states with two & two equal substates (Fig. 2.5.3(c)), diminishes much
more slowly. The number of states with three equal substates (Fig. 2.5.3(d)) is in-
significant in these simulations. The greater stability of states with two & two equal
substates at higher values of g is reasonable because the synapses between the subdi-
visions can contribute to the stability of each of the two parts of the composite pat-
tern that arise from different imprints, even though the interactions between the two
parts tend to destabilize each other. This will become more apparent through the an-
alytic discussion in the following section.

2.5.4 Signal-to-noise analysis of subdivided networks

A signal-to-noise analysis of the stability of composite patterns in partially subdivided
networks requires some care, because there are several different contributions to the
signal and to the noise. Before we perform the analysis, it is helpful to discuss these
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140 __(a) Unequal neural substates 250 -+ (b) Two equal substates
158 1 200 {
80l 150 1
60 1 100 }
40 4
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Three equal substates

D

20 30

Figure 2.5.3 Same as Fig. 2.5.1 but for four subdivisions. Each panel (a)—(e) is for a differ-
ent type of composite pattern (see Table 2.5.2). O

contributions qualitatively. Confirmation of the qualitative discussion can be found
in the details of the analysis below. Fig. 2.5.5 illustrates an example of a composite pat-
tern formed from four imprinted patterns in a subdivided network with eight total
subdivisions. We will analyze the stability of a neuron in the first subdivision. The
state of this neuron is initially chosen from the first imprinted pattern. We must de-
termine ifit retains this value after an update of the network. The synapse matrix con-
tains one contribution from the imprinting of each of the imprinted patterns,and the
synapses between subdivisions are reduced by the factor g.

The signal term that tries to maintain the stability of the neuron in the first sub-
division arises from the imprint of the first pattern. However, only synapses to other
neurons whose activity is set according to the first imprinted pattern contribute to the
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All stable patterns

350 |

300 +

250 +

200 1

150 4

100 4
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1000 1
All stable patterns

100 {
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Figure 2.5.4 Total number of stable composite and imprinted patterns corresponding to the
sum of Fig. 2.5.2(a)-(e). (a) shows a linear scale, and (b) shows a logarithmic scale for the
same results. O

signal. Thus, the signal arises from synapses to other neurons within the first subdi-
vision,and also from synapses to neurons in the second subdivision, but not to neu-
rons in any other subdivisions. The signal from the second subdivision is reduced
from what it would be in a fully connected network by the factor g.

The noise terms arise from the imprinting of all the other patterns. However,
there are special problems with the subdivisions that have other patterns present in
them. These subdivisions are trying to recreate their own pattern in the full network.
For example,the third, fourth and fifth subdivisions in Fig. 2.5.5 all contain the sec-
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Figure 2.5.5 Schematic illustration of a composite pattern represented by a subdivided net-
work. Each of the distinct shadings indicates the region of the network that contains a par-
ticular imprinted pattern. In the illustrated case, the network has eight subdivisions and the
composite pattern is formed from parts of four imprinted patterns, El through §4. For sim-
plicity the parts of the network that contain the same pattern are shown adjacent to each
other. The values of a; through a, indicate how many subdivisions represent each of the im-
printed patterns. [

ond imprinted pattern. The neurons in these subdivisions act coherently to try to in-
fluence the neuron in the first subdivision to take its value according to the second
imprinted pattern. Its value in the first imprinted pattern, whose stability we are test-
ing, may or may not be the same as its value in the second imprinted pattern.On av-
erage,half of the neurons in the first subdivision will receive an influence that will try
to flip them. Because all the neurons in the third, fourth and fifth subdivisions act co-
herently to try to reconstruct their pattern in the first subdivision, we must calculate
their combined influence as a contribution to the noise which may destabilize the pat-
tern in the first subdivision. It is important that this destabilizing influence is dimin-
ished by the factor g, since in a fully connected network the composite pattern would
be unstable for this reason.

An important distinction between two cases arises in our analysis when we con-
sider the combined effect of all of the other patterns present in the composite state.
There are a total of four patterns in Fig. 2.5.5. This means that there are three coher-
ent noise terms that are trying to destabilize the first pattern. When we calculate the
effect of these noise terms, we must decide whether we can average them together or
whether we must add their effects. The correct answer depends on how many patterns
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there are. When there are only a few patterns, we cannot average them together, but
when there are many, we can. By the analysis discussed below, the crossover point oc-
curs roughly at seven patterns.A simple way to understand this result is to realize that
seven equal contributions to the noise will add together (have the same sign) 1 in 2
times, or just under 1% of the time. As discussed in the case of a fully connected net-
work (Section 2.2.5),this is the limiting fraction of unstable neurons that can be tol-
erated in a stable pattern. Thus, when there are more than seven patterns,it is not nec-
essary to add their contributions to determine the impact of the pattern stability; it is
enough to average them.

The existence of a crossover in the behavior of the subdivided network with seven
parts of a composite pattern is the basis of our discussion of the 7 £+ 2 rule. In essence,
when we can average over the effects of other subdivisions,then each subdivision does
not influence the other subdivisions directly, only the average effect is relevant. In
contrast, when there are no more than seven different patterns, which is always true
when there are no more than seven subdivisions,then the effect of each of the subdi-
visions must be considered explicitly in evaluating the stability.

We review and introduce additional notation for the signal-to-noise analysis. \We
assume a network comprised of g subnetworks each containing N ¢= N/q neurons that
are fully internally connected but more weakly connected to each other. The ratio of
connection strengths is controlled by the parameter gT [0,1]. g = 0 corresponds to a
completely subdivided network and g =1 corresponds to a fully connected network.
For arbitrary g, the synaptic connection matrix is written as:

o Giu eju
T YT (25.10)

i
i
‘]j = |,
%gJ ¢ otherwise

where &xQis the integer part of x. The first case corresponds to i and j in the same block
along the matrix diagonal,i.e.,in the same subnetwork. J ¢is the usual Hebbian matrix:

i

8 ven 1

If= E ass v (2511)
7

0 i=

Z|l—‘

The composite pattern that we wish to test the stability of is formed out of pieces
of imprinted states. As in the simulations, it is important to distinguish how many
subdivisions have the same imprinted pattern. \We test the stability of a trial compos-
ite pattern written in the form:

1 1 2 2
[ - e Een - SHeaay ) (25.12)

This pattern is constructed by taking the first a; subdivisions from the corresponding
part of the first pattern. The next a, subdivisions are taken from the second pattern
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and so on. In general there are a, subdivisions extracted from the pattern €". We de-
note the number of {a,} that are non zero by p. The sum over all a, is the total num-
ber of subdivisions:
8
aa,=q (2.5.13)
u=1
We start by considering the stability of the first subdivision by looking at the sta-
bility of the first neuron

N
[o]
sihy =s1a 34 (2.5.14)
j=2
and separate J into the part due to the subdivision itself and all the rest, which is mul-
tiplied by the factor g compared to the usual expression:

_1 8% &
—a as:&E) 8,+ﬁ a aslélam (2.5.15)

j=2 u=1 j=NG®1u=1

Z

Itis helpful to consider separately the part of the j sum that corresponds to each of the
parts of the composite pattern. The first imprinted pattern appears in the composite
pattern not only in the first subnetwork, but in the firsta; subnetworks. We also have
to consider each of the other patterns in the composite state. To simplify the notation,
we will look at only the second pattern (in the subdivisions {a; +1,...,a; + a,}) and
add the rest at the end:

1 Q g g a1N¢ g ge(a1+az)N¢ U

=ﬁaasfé Ejsj-‘-ﬁ a anélEJSH'NQ a 615151%1 ';J

j=2 u=1 j=Ne1p=1 €j=a;Nelu=t u
(2.5.16)

With this separation of the sum over j, we can now replace the values of s; with their
corresponding values in terms of the imprinted patterns. The first two sums have
5, =& and the third term has s; = &. We also substitute the value of s; = & which ap-
pears in each of the terms:

1 'c\>l g aN¢ g é(a1+az)N¢g u

:ﬁa a§1§ EJ E] +ﬁ a a§l§ EJME] +Ne a a§1§ EJME] -Q

j=2 u=1 j=Ne1 u=1 Ci=aN ¢+1 u=1 u
(25.17)

The signal will arise from the imprinting of the first pattern, uw =1, but only in the
first two terms above. All the rest of the terms will give rise to the noise. However, we
must also be careful in the third term how we treat the contribution of the imprint-
ing of the second pattern w = 2. So we separate these parts from each of the terms:
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We can now resolve all squares of variables to +1. When we do this,the first two sums
can be directly evaluated, since they are sums over unity. Note also that the middle
sum in the square brackets is a summation over terms that are independent of j, and
can be evaluated by taking out the factor £} = €2

_N¢1 g@-DNGC

N N
1588 g ¢ 8
rSAAGYEG T A Ay
j=2 u=2 j=NG1 p=2 (2.5.19)
da+a))N¢ @ 82N € p U
+he d HEPrEFaNe 3 QEEEE g
CizaN &1 j=auN ¢ u=3 u

The signal term is now visible. The first part of the signal arises from the first subdi-
vision acting upon itself,and the rest is from the other subdivisions that contain the
first imprinted pattern. We can take N >> 1 and substitute g = N/N ¢to obtain the
expression:

. 1-g)+ga
signal = (Q)Tgl (2.5.20)

To evaluate the noise we must pay attention to the special terms mentioned be-
fore. We have succeeded to resolve Eq.(2.5.19) in such a way that each of the remain-
ing terms is uncorrelated in sign.When we reached this point in the uniform network,
all we had to do was to count the number of terms—the number of steps in the ran-
dom walk—and use a root mean square evaluation of its magnitude. In this case,
however, all of the steps do not have the same magnitude. This is a particular prob-
lem for the special term in the middle of the square bracket. There will be one such
term for each of the imprinted patterns. We can rewrite the noise term by replacing
the uncorrelated values with the notation +1. This makes it easier to count how many
terms there are in each sum:
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(2.5.21)

In the last expression we have restored the contribution of all of the other parts of the
composite pattern explicitly. We can now see that there are three kinds of steps in our
random walk,those that have a coefficient of 1/N of which there are (N¢- 1)(p - 1),
those with a coefficient of g/N of which there are a total of

&
-DN&p- D+ (a N¢a,N&p- 2)=gN&p-1)- N€p- 1)

Ve (2.5.22)
=(N-NO®(p-D
and a special set of p - 1 terms with coefficients of the form
N¢
& = & (2.5.23)
N q

Because of this last set of terms—the coherent noise terms—we have to be much more
careful about our analysis than in the uniform network case. The magnitude of the
first two kinds of terms are small as N becomes large, and the number of terms is
large. The coherent noise terms may be large even for large N, and their number can
be small since it only increases withp. For the uniform network we considered a root
mean square estimate of the noise. This root mean square estimate only works,how-
ever, if the number of terms is large. Thus we must distinguish between the cases
wherep is small and whenp is large.

When we studied the signal-to-noise analysis of the fully connected network and the
retrieval of imprinted patterns, we found that for low storage, p << N, the noise disap-
peared and retrieval of the imprinted patterns would occur. Then we could consider the
storage capacity as p increased. For composite patterns, the situation is different, because
the noise does not disappear for low storage. Thus we first study the low-storage case.

We start by considering two estimates of the magnitude of the noise relevant for
p large and small respectively. For the case ofp large we can use a root mean square es-
timate of the noise because the number of independent terms is large. To obtain the
noise we use a generalization of the random walk with different step sizes D; (left half
of Eq. 1.2.51):

o=08p? (2.5.24)
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In the limit of low storage p << N and not too many subdivisions q << N only the co-
herent noise terms are important. From Eq.(2.5.23) this gives us a root mean square

noise i
L
noise » ¢=+ [Q a, (2.5.25)
elal,

Whenp is small we cannot average the noise terms and consider only the typical value.
Thus we consider the maximum possible effect of the coherent noise terms. This oc-
curs when all values of +1 are - 1. The magnitude of the maximum noise is

maximum noise = gé_ ay =g—(q -ay) (2.5.26)
v=2

If the signal is greater than the maximum noise, then the pattern must be stable.
However, if the signal is significantly greater than the typical noise, but less than the
maximum noise, then it may be stable. If the signal is about the same as the typical
noise, then the pattern is almost certainly unstable.

Thus, we can guarantee retrieval of a composite pattern if the maximum possi-
ble noise is less than the signal. This places a limit on g determined by the inequality

@-9)+ga
q

If g =0, this inequality is always satisfied. This is just the completely subdivided case
that we know leads to stability of composite patterns. If g =1,this condition becomes:

a, >q/2 (2.5.28)

This means that the first pattern must have more than half of the subdivisions in or-
der to be stable. How we define subnetworks is arbitrary in the case of g = 1, but the
meaning of this statement is that a pattern is stable only if it occupies more than half
of the network. However, this must apply to each of the parts of the composite pat-
tern,and thus implies that no composite pattern except the trivial one of a single im-
printed pattern can be stable in the case g = 1.

If we assume that 1 > g > 0, we can simplify the inequality in Eq. (2.5.27) to
obtain:

>%(q “ay) (2.5.27)

9 -2 (2.5.29)
g
or
1
9< el (2.5.30)

This limit on g ensures that the part of the composite pattern in the first subnetwork
is stable. In order for all parts of the composite pattern to be stable, g must be smaller
than the minimum value of this expression taken over all subnetworks:
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< =
g m;“q_z%ﬂ q- 2a+1 (2.5.31)

where
a=mina, (25.32)

is the minimum number of subnetworks containing any one of the imprinted pat-
terns. The greatest restriction on g arises from demanding the stability of the smallest
part of the composite pattern (smallesta,). This result is the same as Eg. (2.5.3).

Forp large, this limit on g is overly severe, since the maximum noise occurs in-
frequently. In this case we use the root mean square estimate of the noise, Eq.(2.5.26).
However, stability of the pattern does not result when the signal is just greater than
the noise. As in the signal-to-noise analysis of the fully connected network
(Section 2.2.5),it must be sufficiently greater to ensure that only about 1% of the neu-
rons will be unstable. The mean probability that a given neuron is unstable is given by
integrating the probability of the noise being less than the signal. We thus require the
signal-to-noise ratio to be greater than the number r = 1/C")x_C » 2.64:

2 +(1- o 2
@r@9),8 18, (2.5.33)
q q )\‘ll

This gives a limit on acceptable g of
1

<=
r ’é_ akz -a; +1 (2.5.34)
Al

If we assume that the maximal allowable error rate at any neuron in any subdivision
is given by this inequality, then we have the result:

1

)< —F————
. ’é o al-atl (2.5.35)
A

The limit in Eq.(2.5.35) corresponds to a certain probability, rather than a guarantee,
that subnetworks of the composite pattern are stable. This is important,since requir-
ing that all parts of the composite pattern are likely to be stable is a much stricter con-
dition. Similarly, requiring that at least one of the parts is likely to be stable is a much
weaker condition. For example,if all of the subdivisions have distinct imprinted pat-
terns {a, = 1} and each has a probability P of being stable then the probability that all
are stable is only P9 and the probability that at least one is stable is 1 - (1 - P)%. Thus,
as a function of g, composite patterns become progressively unstable in more subdi-
visions in the vicinity of the limit in Eq. (2.5.35).

The analysis that we have performed reveals an interesting limitation to the de-
gree of useful subdivision if we consider the role subdivision may play in the brain, or
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in an artificial pattern-recognition task. The second limit we obtained in Eq.(2.5.35)
is a higher one than the first limit in Eq. (2.4.37) when there are many subdivisions.
Why is this a problem? Because it indicates that once the number of subdivisions be-
comes large, for g values that satisfy Eq.(2.5.35),essentially all possible combinations
become stable, but some parts will be stable at higher values of g and some at lower
values. Moreover, individual subdivisions do not affect the stability of the state. In
contrast, when there are only a few subdivisions, we can control which combinations
are stable using the value of g, and the state of each subdivision matters.

We can estimate the crossover point where the number of subdivisions becomes
too large by looking at a pattern where each subdivision has a different imprinted pat-
terna, =1, for u=1,..,q, and equating the two limits

11
rdgq- 1- 141 G- 2+1

(2.5.36)

or
q=r?+1»7.94 (2.5.37)

This suggests that g should be less than this value for effective use of partially corre-
lated information stored by subdivisions in a network. It is possible to suggest that this
limitation in the number of useful subdivisions may be related to the characteristic
number of independent pieces of information a human is able to “keep in mind”at
one time. This number is conventionally found to be 7 + 2. The comparative rigidity
of this number as compared with many other tests of variation between human be-
ings suggests that it may indeed be tied to a fundamental limitation related to the ar-
chitecture of neural networks as we have found.

Up to this point we have been considering the case of low storage. In the case of
high storage, we must consider all three types of noise terms found in Eq. (2.5.21)
rather than just the coherent terms. We should still distinguish between the cases
wherep is small or large. In either case, we estimate the contribution of the first two
types of terms as a random walk. However, only for p large can we treat the coherent
terms as a random walk.

Forp large we calculate the typical noise from the three types of terms as:
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This can be simplified using N,N ¢ p >> 1 to obtain:
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The relationship between the storage capacity, which limits the value of p/N, and the
interconnection strength g can be found by setting the signal-to-noise ratio to be less
than r = 1/Qu,. This gives
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We have replaced a; by a. Note that the numerator is zero when the maximum value
of g, according to Eq. (2.5.35), is reached.

Forp small we must take the maximum value of the coherent noise terms. This
value should be subtracted from the signal before we compare the result with the root
mean square value of the rest of the noise. Separating the two noise terms from each
other we have:
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1 6 &0
noise; = fo = (V- D(p-1) tog (N-N 9p-1) (2.5.42)

orusing N,N¢p >>1

noise, = ,q% Jl+ 3°@- 1) (2.5.43)

Subtracting the first noise term from the signal and insisting the result is greater than
r times the rest of the noise we have:
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This implies that the number of patterns that can be imprinted,and the correspond-
ing composite patterns recalled, is limited by:
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where we have again replaced a, by a. Note that the numerator is zero when the max-
imum value of g at low storage is reached according to Eq. (2.5.32). The storage ca-
pacity increases for lower values of g if a is small compared to q; i.e., for a composite

pattern. If we ask about the retrieval of only the imprinted patterns, then we can use
the same expression witha =qor

(2.5.45)
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In this case the maximum storage is for g = 1, as we would expect for the imprinted
patterns.

(2.5.46)
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uestion 2.5.1 Compare the signal-to-noise analysis presented above

with a signal-to-noise analysis of a subdivided network where the sub-
division is accomplished by diluting inter-subnetwork synapses.Specifically,
assume that a fraction g ¢of synapses between neurons in different subdivi-
sions remain after dilution.

Solution 2.5.1 Since the signal-to-noise analysis of a diluted network fol-
lows very similar steps to the analysis of a network whose inter-subnetwork
synapses are multiplied by the factor g, we mention only the differences in
the two treatments.

Reducing the number of terms in a sum by the factor g ¢leads to the
same effect on its average value as multiplying each of the terms by the same
factor. However, there will be a different effect on a root mean square esti-
mate of the magnitude of a random walk.A random walk with fewer steps,
by a factor g ¢ will be reduced in magnitude by a factor of (3 ¢rather than g ¢

Thus, the analysis of the signal is the same for dilution as that given in the
text except for the substitution of g by g ¢ This also applies to the low-storage
analysis of the coherent noise terms, either for small p or for large p. In each
of these cases, the sums over individual synapses are performed directly, rather
than as a random walk, and thus g can be directly replaced by g ¢

The only place in the analysis where the dilution gives a different result
is in the discussion of the noise terms that limit the storage capacity. These
terms, in EQ.(2.5.39) and Eq.(2.5.43), can be found for the case of dilution
by substituting Cy ¢for g. The resulting noise terms are larger for the case of
dilution, resulting in a smaller storage capacity as compared to the effect of
multiplying all the inter-subnetwork synapses by the same factor. O

From Subdivision to Hierarchy

In the last section our analysis of the properties of partially subdivided networks led
to a conclusion that begs for further discussion. Our motivation for investigating the
properties of subdivided networks was to discover the underlying purpose of func-
tional subdivision. We were able to demonstrate that subdivision does provide a
mechanism for storage of patterns with a particular composite structure. However, we
encountered a fundamental limitation. Once there are too many subdivisions, the
ability to store correlations between the subdivisions is diminished. In this section we
review the argument that led to this conclusion and discuss further implications.

A fully connected network stores complete neural patterns.On the other hand, a
completely subdivided network stores independent subpatterns without correlations
between them. For most applications it is reasonable to assume that different aspects
of the information are partially independent. This requires the ability to balance the
storage of independent subpatterns and yet retain correlations between them. To
achieve this balance requires an intermediate degree of interconnection between the
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subdivisions. This is possible, we found, when the number of subdivisions is small.
However, when the number of subdivisions is large there is essentially no intermedi-
ate possibility: either the connections are strong enough to store complete states or
they are weak enough to allow all combinations. What is particularly surprising is that
the meaning of the term “large” is any number greater than roughly seven. While this
is consistent with the well established 7+2 rule of short term memory, the implica-
tions extend yet further.

We are limited to a maximum of seven subdivisions, and yet the advantages of
subdivisions for storage of independent aspects of information extends to many more
subdivisions. An architecture that could provide further use of subdivision within the
limitation is a hierarchically subdivided system. By keeping the branching ratio less
than seven, we would construct a network formed of small networks that are strongly
coupled, large networks that are weakly coupled, and still larger networks that are
more weakly coupled. At each level of organization the strength of the connections
within each subdivision must be strong enough compared to the connections be-
tween subdivisions to establish the integrity of the subdivision. Yet they must be weak
enough to allow for the influence of the other subdivisions.Our model of the brain is
no longer a model of interacting neurons, but rather of interacting units that at each
level of organization attain an additional degree of complexity.

The brain has been found to be subdivided in a hierarchical fashion, and at least
at the level of the major structures,this hierarchy does not have a high branching ra-
tio. The brain is formed from the cerebrum, the cerebellum and the brain stem. The
cerebrum is divided into two hemispheres. Each hemisphere is divided into four
lobes.Each lobe is further divided into smaller functional regions;however, there are
fewer than ten of these per lobe. The brain stem can also be subdivided into a hierar-
chy of functional regions. One could argue that the mapping of these structures re-
flects our own abilities caused by the 7+2 rule that lead us to divide the brain into
only a few parts when we study it. This, however, misses the point of our observa-
tions. Our conclusions predict the relative strength of interdependence of different
sections of the brain. This prediction would require additional systematic studies to
confirm.

As we emphasized in the introduction to this book, our approach is primarily a
statistical one. However, if the system we are investigating is composed out of only a
few distinct components,then the statistical approach must have limited ability to de-
scribeit.Whenthere are only afew components,each oneshould bespecifically designed
for the purpose to which it is assigned. A general statistical approach does not capture
their specific nature. This is the reason the preface recommends the need for comple-
mentary investigation of particular aspects of individual complex systems. Here, we
will continue to pursue other general principles through the statistical study of these
systems. It is natural to ask whether we can generalize the conclusions from the study
of neural networks to other complex systems. Several aspects of this question are dis-
cussed in the following section and others will arise in later chapters of this book.
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Subdivision as a General Phenomenon

In this section we pursue the question of the necessity of subdivision and substruc-
ture in complex systems. All of the examples of complex systems that we will discuss
in this text have the property that they are formed from substructures that extend to
essentially the same scale as the whole system. We will review them as they are intro-
duced more fully later in the text. Here we summarize some examples. The human
body has nine physiological systems further divided into organs. Proteins have sub-
structure formed of a-helices and p-sheets, and are often organized together with
other proteins in quaternary structures.Life on earth considered as a complex system
is divided among climates, ecosystems,habitats and species. Weather is formed out of
large-scale air and ocean currents,storms and regions of high and low pressure. In all
of these systems the largest scale of subdivision comprises fewer than 100 parts,and
more typically of order 10 parts of the whole system. Why should this be the case?

Our discussion of subdivision in this chapter has been based on the function of
the neural network as a memory. The importance of both combinatorial expansion of
composite states and the constraints upon them due to interactions between subnet-
works played a role. Similar considerations may apply in some of the other complex
systems. For example,in the immune system the importance of composite states is ap-
parent in the generation of a large variety of immune receptors by a process that com-
bines different segments of DNA.A related discussion of substructure in the context
of evolution will be included in Chapter 6.

In this section we adopt a different approach and relate substructure to the cate-
gories of complex systems that were articulated in Section 1.3. We argue qualitatively
that substructure is necessary for what we generally consider to be a complex system.
More specifically, we distinguish between a complex material and a complex organ-
ism. As defined in Section 1.3, a complex material is a system from which we can cut
a part without significantly affecting the rest of the system.A complex organism is a
system whose behavior depends on all of its parts and so is changed when a piece is
removed. We propose that complex organisms require substructure.

In a system formed out of many interacting elements,each element may interact
directly with a few or with many other elements.Our concern is to establish the con-
ditions that imply that the behavior of a particular element depends on various sets
of elements that comprise a significant fraction of the system. When this is true we
have a complex organism. Otherwise,parts of the system may be removed without af-
fecting the rest,and the system is a complex material or the system may even be a di-
visible thermodynamic system. The effective interaction between elements may be di-
rect, or may be indirect because it is mediated by other elements. However, even if
there isadirect interaction,ifit does not affect the behavior of the element we are con-
sidering, then this interaction is irrelevant as far as we are concerned.

Let us start by considering generic interacting spin models such as the Ising
model (Section 1.6). When the interaction between spins is local, then the system is
generally a divisible thermodynamic system. When the interactions are long range,
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then,if there is a dominant ground state, we have a divisible thermodynamic system
analogous to a magnet. If there are competing ground states,the system behaves as a
spin glass or as an attractor neural network model with trained states. The neural net-
work is the most favorable for consideration as a complex system.

We classify a fully connected neural network with Hebbian imprinting as a com-
plex material rather than as a complex organism. This classification is based upon
evaluating the impact of removing, say, 10% of the neurons.Our main concern in de-
scribing a neural network is the storage and retrieval of patterns. If we have only a few
imprinted states, then separating the smaller part of the network does not affect the
ability of either the large or small parts to retrieve the patterns. This is characteristic
of a divisible system. If the number of stored patterns p is greater than the capacity of
the smaller part, by itself, but smaller than the capacity of the larger part (0.9c, N >
p >0.1a,N), then the smaller part will fail in retrieval and the larger part will be un-
affected. This is the regime of operation in which the network would be expected to
be used—the regime in which its storage capacity is utilized and the basins of attrac-
tion remain significant. The behavior is characteristic of a complex material. On the
other hand,if we are very close to the full capacity of the network (o, N >p >0.9a,N)
then both the large and small parts of the network will be affected by the removal of
the small part. We could consider this to be a regime in which the network has the be-
havior of a complex organism. However, this is the regime in which the basins of at-
traction of memories are significantly degraded,and any perturbation affects the per-
formance of the system. A better way to approach the classification problem is to
consider the number of states that can be stored before and after the separation. We
see that the storage capacity of the larger part of the system is weakly affected by the
removal of a small part, while the small part is strongly affected. Thus the fully con-
nected network should be classified as a complex material.

We classified the attractor network as a complex material on the basis of our in-
vestigations of its properties. However, the reason that the system is not a complex or-
ganism rests more generally on the existence of long- (infinite-) range interactions. If
a particular element of the system interacts with all other elements, it is difficult for
the removal of 10% of the system to affect its behavior significantly. Since there is
nothing that differentiates the part of the system that was removed from any other
part,the most that can be affected is 10% of the forces that act on the particular ele-
ment. This is not enough, under most circumstances, to affect its behavior.

We found that short-range or long-range interactions do not give rise to complex
organism behavior. Since an element cannot be affected by many other elements
directly, it makes sense for us to start with a model where the element is primarily af-
fected by only a few other elements that constitute its neighbors. This is the best that
can be achieved. Then,so that it will be affected by other elements, we arrange inter-
actions so that the neighborhood as a whole is affected by several other neighbor-
hoods, and so on in a hierarchical fashion. This is the motivation for substructure.

What happens if we cut out one subdivision of a subdivided network which has
only a few subdivisions, or a significant fraction of a subdivision? The stable states of
the network are composite states. If the interactions between subdivisions are too
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weak,then all composite states are stable and removal will affect nothing. The system
is a completely divisible system. If the interactions are too strong, then we are back to
the case of a fully connected network. However, in the intermediate regime deter-
mined in Section 5.4.5, the stability of the composite states depends on the interac-
tions between the subdivisions and the behavior of the large and small parts are both
affected. Why? The reason is that only some of the composite patterns are stable.
Which ones are stable depends on all of the subdivisions and their interactions. Thus,
in the intermediate regime of interactions,the system behaves as a complex organism.

We could further develop the complex organism behavior of a subdivided net-
work by recalling that the architecture is designed so that a particular aspect of the in-
formation is present in each subdivision. The loss of a subdivision would cause the
loss of this aspect of the information. While this is reasonable argument, it is not a
fundamental difference between a subdivided system and the fully connected net-
work. We could choose to map different aspects of the information onto different
parts of a fully connected network and arrive at the same conclusion. Even though this
is more natural for a subdivided system,it is not inherent in the subdivision itself and
therefore does not advance our general discussion.

An alternate way to consider the complex behavior of the subdivided network is
in terms of the growth in the number of stable states of the network. For a fully con-
nected network, the growth is linear. For a completely subdivided network, the
growth is exponential, reflecting the independence of subdivisions. In the intermedi-
ate regime of interconnection,the growth in the number of composite states requires
more detailed study and depends on the particular way in which the growth is per-
formed. This suggests a level of control of properties of the system by its structure that
we associate with a complex organism.

We have been considering the influence of elements of an Ising model upon each
other. There is an important case that we have not included that could be represented
by a feedforward network or by an Ising model sensitive to boundary conditions. In
such systems,the influence of one neuron is transferred by a sequence of steps to other
neurons down a chain of influence. We could consider an extreme case in which there
is a long sequence of elements each affecting the subsequent one in the chain.
Removing any of the elements of this sequence would break the chain of influence and
all of the downstream elements would be affected. As a complex system that cannot
be separated,this violates our claim that substructure is necessary or necessarily lim-
ited to only a few elements.

This counterexample has some validity; however, the argument is not as simple
as it might appear. There are two general cases. Either each of the elements in the chain
of influence serves only as a conduit for the information, in which case the nature of
its influence is minimal, or, alternatively, each element modifies the information be-
ing transmitted, in which case generally the influence of the input dies rapidly with
distance and only a few previous elements in the sequence are important for any par-
ticular element. The former case is like a pipe. All the segments of the pipe are essen-
tial for the transmission of the fluid, but they do not affect its nature. From the point
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of view of describing the behavior of complex systems,a conduit performs only a sin-
gle function and therefore may be described using a single (or even no) variables.On
the other hand, when each element affects the information, then we are back to the
circumstance we have considered previously, and substructure is necessary. The rea-
son that the influence dies with distance along the chain can be understood by con-
sidering a sequence of filters. Unless the filters are matched,then even a few filters will
block all transmission.

We can revive the counterexample by considering a system whose elements rep-
resent a long sequence of logical instructions such as might be found in a computer
program. Here we are faced with a problem of interpretation. If the system always rep-
resents only one particular program, then it is similar to a conduit. If the program
changes, then we must consider the mechanism by which it is changed as part of the
system. Nevertheless,the recognition that a narrowly construed sequence of instruc-
tions does represent an exception to the 7+2 rule about substructure can play a role
in our understanding of the behavior of complex systems.

The discussion of substructure may be further generalized by considering ele-
mentary building blocks that are more complex than binary variables. Our objective
is to argue that even when the building blocks are highly complex,the generalized 7+2
rule that requires substructure applies without essential modification. It applies
therefore to complex systems formed from abstract or realistic neurons or to complex
social systems of human beings. Our discussion has already, in a limited sense, con-
sidered elements of varied complexity, because subnetworks may contain different
numbers of neurons. Our conclusion about the number of allowed subdivisions
(seven) was independent of the number of neurons in the subdivision. Why should
this be true?

We might imagine that a particular element with a greater complexity can be af-
fected in one way by some elements and in another way by other elements. This would
enable the whole complex system to be composed of a number of subdivisions equal
to the number of aspects of the element that can be affected.Or we could even allow
seven subdivisions for each aspect of the element. Then the number of subdivisions
could be the product of seven times the number of aspects of an element. For exam-
ple, when we think of human physiology, a cell requires both oxygen and sugars for
energy production. Why couldn’t we construct a system that is composed of seven
subdivisions that are involved in providing oxygen and seven subdivisions that are in-
volved in providing sugar, with a result that we have a system of fourteen subdivisions
that is still a complex system. We could argue that the oxygen system and the sugar
system are new subsystems that are described by the model. However, since there ap-
pears to be no limit to the number of aspects of an element,there should be no char-
acteristic limit to the number of relevant subsystems. Make a list of all of the differ-
ent chemicals required by a cell and generate a separate system for each one.

This argument,however, does not withstand detailed scrutiny. The central point
is illustrated by considering a system formed out of elements each of which consists
of two binary variables called Top and BoTTOM. Each of the binary variables is part
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of a neural network that is composed out of seven subdivisions. How many subdivi-
sions would there be altogether? The simplest case would be if there were fourteen
subdivisions seven of which contain all of the Top variables and seven of which con-
tain all of the BoTTOM Variables. Many other possibilities could be imagined. From
the point of view of a complex system,however, as long as the two binary variables at
each element behave independently, we could separately consider one set of seven
subdivisions by themselves and the other seven subdivisions by themselves. They are
completely decoupled. The physical proximity of the two binary variables as part of
the same element does not affect the essential independence of the decoupled systems.
As soon as there is a coupling between them we are back to where we star ted from,
with interacting binary variables. Thus, increasing the complexity of the elements
from which the complex system is composed does not appear to be able to change
qualitatively the requirements of substructure found for the neural network model.



