B, TR
, *,f’ CSE4403 3.0 & CSE6002E - Soft Computing
' ﬁg Winter Semester, 2011

Tutorial - Genetic Algorithms in Plain English

Introduction

The aim of this tutorial is to explain genetic algorithms sufficiently for you to be able to use
them in your own projects. This is a stripped-down to-the-bare-essentials type of tutorial. I'm
not going to go into a great deal of depth and I'm not going to scare those of you with math
anxiety by throwing evil equations at you every few sentences. In fact, I'm not going to throw
any nasty equations at you at all! Not in this particular tutorial anyway... <smile>

This tutorial is designed to be read through twice... so don't worry if little of it makes sense the
first time you study it.

First, a Biology Lesson

Every organism has a set of rules, a blueprint so to speak, describing how that organism is built
up from the tiny building blocks of life. These rules are encoded in the genes of an organism,
which in turn are connected together into long strings called chromosomes. Each gene
represents a specific trait of the organism, like eye colour or hair colour, and has several
different settings. For example, the settings for a hair colour gene may be blonde, black or
auburn. These genes and their settings are usually referred to as an organism's genotype. The
physical expression of the genotype - the organism itself - is called the phenotype

When two organisms mate they share their genes. The resultant offspring may end up having
half the genes from one parent and half from the other. This process is called recombination.
Very occasionally a gene may be mutated. Normally this mutated gene will not affect the
development of the phenotype but very occasionally it will be expressed in the organism as a
completely new trait.

Life on earth has evolved to be as it is through the processes of natural selection,
recombination and mutation. To illustrate how these processes work together to produce the
diverse range of flora and fauna we share our planet with let me tell you a little story....

Once upon a time there lived a species of creatures called Hooters. Hooters had evolved entirely within the
darkened confines of a vast cave system hidden deep in the bowels of a mountain range. They'd had an easy
life, feeling and smelling around the damp cave walls for the algae they so loved to eat, oozing between rocks
and, at mating time, listening intently for the hoots of other Hooters. There were no predators in the caves, it
was just the Hooters, the algae and the occasional friendly slug, so the Hooters never had anything to fear
(except for maybe the occasional bad tempered Hooter). An underground river flowed through the cave system
and water continuously dripped down through the water table bringing with it the fresh nutrients the algae
thrived on so there was always plenty to eat and drink. However, although Hooters could feel and hear well
they never had any need for eyes in the pitch blackness of the caves and as a result were totally blind. This
never seemed to concern any of the Hooters though and they all had a whale of a time munching away and
hooting in the darkness.

Then one day an earthquake caused part of the cave system to collapse and for the first time in many millennia
the Hooters felt the warmth of sunlight upon their skin and the soft springiness of moss beneath their feet. A

few daring Hooters tasted the moss and found that it was even better eating than the cave algae.
"Ooooooooooh!" they hooted between mouthfuls of moss and promptly got gobbled up by the marauding
eagles who had flown in to see what all the commotion was about.

For a while it looked as though the Hooters may be hunted to extinction, for although they liked to eat the
moss they could never tell if an eagle was flying above. Not only that, they couldn't even tell if they were
concealed beneath a rock or not unless it was low enough to reach for with their feelers. Every day many
Hooters would stumble out from the caves with the sweet smell of moss in their nostrils only to be swiftly
carried away and eaten by an eagle. Their situation seemed grim indeed.

Fortunately, over the years, the population of Hooters had grown to be enormous in the safety of the caves and
enough of them were surviving to mate - after all, an eagle can only eat so much. One day, a brood of Hooters
was born that shared a mutated skin cell gene. This particular gene was responsible for the development of the
skin cells on their foreheads. During the development of the baby Hooters, when their skin cells grew from the
mutated gene instructions they were slightly light sensitive. Each new baby Hooter could sense if something
was blocking the light to its forehead or not. When these little baby Hooters grew up into bigger Hooters and
ventured into the light to eat the moss they could tell if something was swooping overhead or not. So these
Hooters grew up to have a slightly better chance of survival than their totally blind cousins. And because they
had a better chance of survival, they reproduced much more, therefore passing the new light sensitive skin cell
gene to their offspring. After a very short while the population became dominated by the Hooters with this
slight advantage.

Now let's zip a few thousand generations into the future. If you extrapolate this process over very many years
and involving lots of tiny mutations occurring in the skin cell genes it's easy to imagine a process where one
light sensitive cell may become a clump of light sensitive cells, and then how the interior cells of the clump may
mutate to harden into a tiny lens shaped area, which would help to gather the light and focus it into one place.
It's not too difficult to envision a mutation that gives rise to two of these light gathering areas thereby
bestowing binocular vision upon the Hooters. This would be a huge advantage over their Cyclopsian cousins as
the Hooters would now be able to judge distances accurately and have a greater field of view.

As you can see the processes of natural selection - survival of the fittest - and gene mutation
have very powerful roles to play in the evolution of an organism. But how does recombination
fit into the scheme of things? Well to show you that | need to tell about some other Hooters...

At around the same time the Hooters with the light sensitive cells were frolicking around in the moss and
teasing the eagles, another brood of Hooters had been born who shared a mutated gene that affected their
hooter. This mutation gave rise to a slightly bigger hooter than their cousins, and because it was bigger they
could now hoot over longer distances. This turned out to be useful in the rapidly diminishing population
because the Hooters with the bigger hooters could call out to potential mates situated far away. Not only that
but the female Hooters began to show a slight preference to males with larger hooters. The upshot of this of
course was that the better endowed males with larger hooters. The upshot of this of course was that
the better endowed Hooters stood a much better chance of mating than any not so well off Hooters.
Over a period of time, large hooters became prevalent in the population.

Then one fine day a female Hooter with the gene for light sensitive skin cells met a male Hooter with
the gene for producing huge hooters. They fell in love, and shortly afterwards produced a brood of
lovely baby Hooters. Now, because the babies chromosomes were a recombination of both parents
chromosomes, some of the babies shared both the special genes and grew up not only to have light
sensitive skin cells, but huge hooters too! These new offspring were extremely good at avoiding the
eagles and reproducing so the process of evolution began to favour them and once again this new
improved type of Hooter became dominant in the population.

And so on. And so on...

Genetic Algorithms are a way of solving problems by mimicking the same processes mother
nature uses. They use the same combination of selection, recombination and mutation to
evolve a solution to a problem. Neat huh? Turn the page to find out exactly how it's done.

CSE 4403 & CSE 6002E Soft Computing

The Genetic Algorithm - a brief overview

Before you can use a genetic algorithm to solve a problem, a way must be found of encoding
any potential solution to the problem. This could be as a string of real numbers or, as is more
typically the case, a binary bit string. | will refer to this bit string from now on as the
chromosome. A typical chromosome may look like this:

10010101110101001010011101101110111111101

(Don't worry if none of this is making sense to you at the moment, it will all start to become
clear shortly. For now, just relax and go with the flow.)

At the beginning of a run of a genetic algorithm a large population of random chromosomes is
created. Each one, when decoded will represent a different solution to the problem at hand.
Let's say there are N chromosomes in the initial population. Then, the following steps
are repeated until a solution is found

1. Test each chromosome to see how good it is at solving the problem at hand and assign
fitness score accordingly. The fitness score is a measure of how good that chromosome is at
solving the problem to hand.

2. Select two members from the current population. The chance of being selected is
proportional to the chromosomes fitness. Roulette wheel selection is a commonly used
method.

3. Dependent on the crossover rate crossover the bits from each chosen chromosome at
a randomly chosen point.

4. Step through the chosen chromosomes bits and flip dependent on the mutation rate.

5. Repeat step 2, 3, 4 until a new population of N members has been created.

Tell me about Roulette Wheel selection

This is a way of choosing members from the population of chromosomes in a way that is
proportional to their fitness. It does not guarantee that the fittest member goes through to the
next generation, merely that it has a very good chance of doing so. It works like this:

Imagine that the population’s total fitness score is represented by a pie chart, or roulette
wheel. Now you assign a slice of the wheel to each member of the population. The size of the
slice is proportional to that chromosomes fitness score. i.e. the fitter a member is the bigger
the slice of pie it gets. Now, to choose a chromosome all you have to do is spin the ball and grab
the chromosome at the point it stops.

What's the Crossover Rate?

This is simply the chance that two chromosomes will swap their bits. A good value for this is
around 0.7. Crossover is performed by selecting a random gene along the length of the
chromosomes and swapping all the genes after that point.

e.g. Given two chromosomes

10001001110010010
01010001001000011

Choose a random bit along the length, say at position 9, and swap all the bits after that point so

CSE 4403 & CSE 6002E Soft Computing 3

the above become:
10001001101000011
01010001010010010

What's the Mutation Rate?
This is the chance that a bit within a chromosome will be flipped (0 becomes 1, 1 becomes 0).
This is usually a very low value for binary encoded genes, say 0.001

So whenever chromosomes are chosen from the population the algorithm first checks to see if
crossover should be applied and then the algorithm iterates down the length of each
chromosome mutating the bits if applicable.

From Theory to Practice
To hammer home the theory you've just learnt let's look at a simple problem:

Given the digits 0 through 9 and the operators +, -, * and /, find a sequence that will
represent a given target number. The operators will be applied sequentially from left to right
as you read.

So, given the target number 23, the sequence 6+5*4/2+1 would be one possible solution.

If 75.5 is the chosen number then 5/2+9*7-5 would be a possible solution.

Please make sure you understand the problem before moving on. | know it's a little contrived
but I've used it because it's very simple.

Stage 1: Encoding

First we need to encode a possible solution as a string of bits... a chromosome. So how do we
do this? Well, first we need to represent all the different characters available to the solution...
that is 0 through 9 and +, -, * and /. This will represent a gene. Each chromosome will be made
up of several genes.

Four bits are required to represent the range of characters used:

: 0000

: 0001

: 0010

: 0011

: 0100

0101

: 0110

0111

: 1000

: 1001

: 1010

-:1011

*:1100

/: 1101

The above show all the different genes required to encode the problem as described. The
possible genes 1110 & 1111 will remain unused and will be ignored by the algorithm if
encountered.

+ OONODUDAWNRO

CSE 4403 & CSE 6002E Soft Computing

So now you can see that the solution mentioned above for 23, ' 6+5*4/2+1"' would be
represented by nine genes like so:
0110 10100101 1100 0100 1101 0010 1010 0001
6 + 5 * 4 / 2 + 1
These genes are all strung together to form the chromosome:

011010100101110001001101001010100001

A Quick Word about Decoding
Because the algorithm deals with random arrangements of bits it is often going to come across
a string of bits like this:

0010001010101110101101110010
Decoded, these bits represent:

0010 0010 1010 1110 1011 0111 0010

2 2 + nfa - 7 2
Which is meaningless in the context of this problem! Therefore, when decoding, the algorithm
will just ignore any genes which don’t conform to the expected pattern of: number -> operator
-> number -> operator ...and so on. With this in mind the above ‘nonsense’ chromosome is read
(and tested) as:

2+7

Stage 2: Deciding on a Fitness Function
This can be the most difficult part of the algorithm to figure out. It really depends on what
problem you are trying to solve but the general idea is to give a higher fitness score the closer a
chromosome comes to solving the problem. With regards to the simple project I'm describing
here, a fitness score can be assigned that's inversely proportional to the difference between the
solution and the value a decoded chromosome represents.

If we assume the target number for the remainder of the tutorial is 42, the chromosome
mentioned above

011010100101110001001101001010100001
has a fitness score of 1/(42-23) or 1/19.

As it stands, if a solution is found, a divide by zero error would occur as the fitness would be 1/

(42-42). This is not a problem however as we have found what we were looking for... a solution.
Therefore a test can be made for this occurrence and the algorithm halted accordingly.

Stage 3: Getting down to business
First, please read this tutorial again.

If you now feel you understand enough to solve this problem | would recommend trying to
code the genetic algorithm yourself. There is no better way of learning. If, however, you are still
confused, | have already prepared some simple code which you can find here. Please tinker
around with the mutation rate, crossover rate, size of chromosome etc to get a feel for how
each parameter effects the algorithm. Hopefully the code should be documented well enough
for you to follow what is going on! If not please email me and I'll try to improve the
commenting.

Note: The code given will parse a chromosome bit string into the values we have discussed and

CSE 4403 & CSE 6002E Soft Computing 5

it will attempt to find a solution which uses all the valid symbols it has found. Therefore if the
targetis 42, + 6 * 7 / 2 would not give a positive result even though the first four symbols("+ 6 *
7") do give a valid solution.

Last Words

| hope this tutorial has helped you get to grips with the basics of genetic algorithms. Please note
that | have only covered the very basics here. If you have found genetic algorithms interesting
then there is much more for you to learn. There are different selection techniques to use,
different crossover and mutation operators to try and more esoteric stuff like fitness sharing
and speciation to fool around with. All or some of these techniques will improve the
performance of your genetic algorithms considerably.

Stuff to Try
If you have succeeded in coding a genetic algorithm to solve the problem given in the tutorial,
try having a go at the following more difficult problem:

Given an area that has a number of non-overlapping disks scattered about its surface as
shown below left.

= TiddlyWinks | = TiddlyWinks x|
Generation: 0 Generation: 10378

OOO OO OOQ OQ

O
O
OQOOQ

OOQO O O OO

OQOOO

'R - Reset Enter - Start/Stop R -Reset Enter - Start/Stop

Use a genetic algorithm to find the disk of largest radius which may be placed amongst these
disks without overlapping any of them. See figure above right.

CSE 4403 & CSE 6002E Soft Computing 6

