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Chapter 1

Introduction

With the current rate of scientific progress and rising costisealthcare Evidence-
Based MedicindEBM) is becoming increasingly important (Woolf, 2000). EB
is the notion that medical intervention should be based @nsfic evidence, thus
maintaining a high level of healthcare, justifying both thi&erventions being made
and their associated costs (Lucas and Abu-Hanna, 1999).raletige, EBM im-
plies the need for an integration of individual clinical extise and available ex-
ternal scientific evidence, where the preferences, desinesexpectations of the pa-
tient should be central to the decision-making processif@th et al., 2003). These
requirements make adequate decision-making during aligatient management
more and more difficult for the physician. Advances in (matjienformatics in
general, and artificial intelligence in particular, suggbat computers may help im-
prove healthcare quality (Hasman and Takeda, 2003).

At present, automated support of physicians during clirpeéient management
using mathematically sound techniques for representigraasoning with clinical
knowledge is possible. However, the use of these techniguéifficult in practice
since there are few guidelines that describe how to get flwmspecification of a
clinical problem to a system that solves the problem usimgtéithniques in ques-
tion. Furthermore, for real-world clinical problems it iard to obtain the required
medical knowledge and/or clinical data. The subject maitahis thesis is there-
fore to provide techniques that allow the solution of reaka problems in clinical
decision-making using mathematically sound techniques.

1.1 Medical informatics

The role of medical informatics for the improvement of hieedire quality has been
recognized as early as the 1950’s, when Ledley and Lusteskmied their classi-
cal paper on the formal concepts underlying medical reagofiiedley and Lusted,
1959). Medical informatics is a broad field, ranging fromIttezare ICT and elec-
tronic patient records to the development of electronideglines and clinical deci-
sion support systems (Shortliffe et al., 2001). In this ihesur interest is in the
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support of physicians during clinical patient managemé&tectronic guidelines are
evidently important in this respect since they provide anfairbasis for best-practice
medicine, and can be developed using guideline-repregamtanguages such as As-
bru, PROforma, and GLIF (Peleg et al., 2003). An alternatvgupporting clinicians

in their decision-making tasks is offered by decision-supgystems. In contrast to
guidelines, these systems offer support adapted to thedodil patient. Clinical de-
cision support systems (CDSSs) are definechaive knowledge systems which use
patient data to generate case-specific ad\aier (Wyatt and Spiegelhalter, 1990)).
A CDSS that makes extensive use of expert knowledge is allsnl @mexpert system
(Jackson, 1990), and we will use this term throughout.

1.2 Expert system development

As pointed out in (Patel et al., 2004), improving medicalcpicee by understanding
the thought processes that are involved in clinical reasphas been on the research
agenda for at least a century (Osler, 1906). An understgnafithese thought pro-
cesses is needed, since it is recognized that medical degisaking should rely
more on formal techniques instead of clinical intuition @d4eney, 1988; Lucas,
1995). The use of expert systems for clinical decision stppas become com-
monplace, with many potential benefits in terms of improywagient safety, quality
of care, and efficiency in health care delivery (Lucas anddearGaag, 1991; Coiera,
2003). Cognitive scientists have devoted much researchet@nalysis of problem
solving strategies that are used in humans (Newell and Sid®r2; Elstein et al.,
1978). Atrtificial intelligence researchers have used thpgeblem solving strategies
in the development of expert systems (Schreiber et al.,)2000

4—| Domain Experts |
Y +

| Knowledge Engineers| | Database |<_| Users |

+ A

| Knowledge Acquisition|<_| Learning Engine |

| Coherence Control | | Information Acquisition|<—| User Interface |

| Knowledge Base |_>| Inference Engine |_>| Explanation Facility |
A *
| Working Memory |<7 4—| Action Execution |

Figure 1.1: The information flow between expert system components.

Figure 1.1 depicts the components that make up an expeersyastd represents
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the information flow between expert system components (adafrom (Castillo

et al., 1997)). One of the distinguishing features of an exg@estem is that domain
knowledge, as represented in trwledge baseas separated from the problem sol-
ving strategies, as embodied by th&erence engin€Clancey, 1983). The knowledge
base is constructed from knowledge that is obtained fdomain expert®y know-
ledge engineerand/or from statistical data contained irdatabase The task of a
learning enginas to process the data and convert it into input to the knogdduhse.
The knowledge acquisitiomomponent combines the knowledge obtained from do-
main experts and statistical data. Consistency of the médaknowledge is enforced
by thecoherence contratomponent. Queries made by theersare kept inworking
memoryand are processed by thi#erence enginewhile the interaction between the
user and the expert system takes place visex interface Queries are processed
by aninformation acquisitiorcomponent, and transferred to working memory. The
inference engine processes the query, possibly takingrechy means of aaction
executioncomponent, and transferring the conclusions and exptamathereof, as
generated by aaxplanation facility to the user.

- 1. Select problem - 2. Select knowledge sources

\i
4. Choose development tool |- 3. Design expert system

Y
5. Construct expert system |«

}
| v

L 8. Maintain and update - 7. Refine and generalize

Y

6. Test expert system

Figure 1.2: The expert system life-cycle.

Expert system development consist of a number of steps,wikichown in
Fig. 1.2, and known as the expert system life-cycle (Weisk kanlikowski, 1984;
Castillo et al., 1997). As shown, the first step is to selechjpropriate problem.
This requires the identification of the task we wish to solseaell as the domain
we wish to solve for. This first step is crucial since it mayedetine the ultimate
failure or success of an expert system. Expert system dawvelot is a costly un-
dertaking that requires much effort by the domain expert e as the knowledge
engineer. Therefore, one would like to be confident thatesgsdeployment yields
benefits in terms of cost-reduction and/or quality-improeat. In other words, the
system should be cost-effective. Once the problem has leleoted, it becomes
necessary to identify the possible sources from which toiaedhe knowledge that
may aid in expert system construction. The available kndgdesources that can be
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distinguished arelomain literature expert knowledgeand statistical data When
adequate knowledge sources have been identified, we maggutadth the design
of the components that make up the expert system. Among tatbles, this requires
the design of the knowledge base and the selection of an i inference al-
gorithm. Once the expert system components have been ddsigiis necessary to
choose the development tool(s) that allow the construatfahe actual system. Con-
struction of the knowledge base is regarded to be the mdatulifactivity and vital
to any expert system for clinical decision support. Newdgss, other components
are equally important for obtaining a deployable systencelhe expert system has
been constructed, a constant process of testing, refinear@himaintenance ensures
the continued use and improvement of the resulting systeote bhat these steps
are not sequential, but rather follow what is known as theajife cycle of system
development (Boehm, 1988), where we have a continuous ofatkesign, deve-
lopment, operation and evaluation. In the context of exggstem construction, the
spiral life cycle is considered to be a model of the knowleelggineering process: as
construction progresses from an initial prototype to angasingly complete system,
the knowledge engineer’s understanding about the domairirendomain expert’s
understanding of knowledge engineering practice deepdiahdney and Laskey,
1996). For more details about expert system developmentefee to (Weiss and
Kulikowski, 1984; Turban, 1992; Castillo et al., 1997; Ssiber et al., 2000).

1.3 Traditional expert systems

Medical expert systems have been under development siaaatly 1960s (Warner
et al., 1961), but they gained in popularity with the develent of Mycin at Stan-
ford University in the mid 1970’s (Buchanan and Shortlifi€d84). Mycin is an
expert system that assists in the diagnosis and treatmeénfeatious diseases. It
was one of the first expert systems to demonstrate imprelesigks of performance,
and other medical expert systems soon followed. Exampk®©arcocin, a succes-
sor of Mycin that was used for protocol management in ongol@&hortliffe et al.,
1981), Internist-1, and its successor QMR, for diagnosisternal medicine (Miller
and Pople, 1982; Miller et al., 1986), Puff and Centaur fdedaining the presence
and severity of lung diseases (Aikins et al., 1983; Aikir333), CasNet/Glaucoma
for the diagnosis and treatment of glaucoma (Weiss et ar.8l9Kulikowski and
Weiss, 1982), PIP, a program that generates hypotheses disease processes in
patients with renal disease (Pauker et al., 1976), and Adradiagnosing acid-based
and electrolyte disorders (Patil, 1981).

The earliest expert systems were inherentlig-basedbut it was quickly recog-
nized that one cannot escape the need to represent knovdédgeincertain nature.
There are many examples of uncertain knowledge in the mlediaain, such as
symptoms thatnaybe caused by a specific disease, a test indicating that asdibea
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someprobability of being present, and th@ossibilitythat a patient may be cured if
a particular treatment is administered. Consequentlypuamethods for reasoning
under uncertainty have been developed. At that time, it M@imed that probabi-
lity theory was inadequate for representing uncertairggebol on the belief that the
assignment of probabilities to events requires infornmattat is not normally avai-
lable (McCarthy and Hayes, 1969). This belief was based efdfowing two ideas
(Jackson, 1990):

1. For along time, thérequentistinterpretation of probability theory, which dic-
tates that probabilities should be computed as the longetative frequencies
of events, has been dominant. This means that probabifitiest be derived
from empirical data, which is often scarce.

2. Probability theory requires the specification gbeat probability distribution
that determines the probability for each elementary evetité domain. Sys-
tems thahadbeen based on probability theory suffered from the factttiat
either made unrealistically strong independence assongptdr became in-
tractable as the number of domain variables increased ¥G97 3; Fryback,
1978).

The scarcity of empirical data, along with the fact that aédhagmber of pro-
babilities is needed to fully specify a joint probabilitysttibution, led to the initial
dismissal of probability theory. As a result, various hsticiapproaches were taken
to integrate probabilistic knowledge in medical expertteys. Examples of such
heuristic approaches are the certainty factor model, whiak used in Mycin, and
the scoring system that was employed in Internist-1 and QM®&vever, as time
progressed, it became evident that these approaches wérecadhen it came to
reasoning under uncertainty. This follows from the fact tteatain desirable proper-
ties a measure of belief should adhere to are not fulfillecckdenan and Nathwani,
1992a). It has been demonstrated, for instance, that pilidiabreasoning in sys-
tems that employ such approaches is unsound if particutdrhng independence
assumptions between domain variables fail to hold (Hoefital., 1986; Horvitz and
Heckerman, 1986; Lucas, 2001), and that illogical resuktsadtained, such as the
dependence of a diagnosis on the order in which findings a@eresh(Cheeseman,
1985).

1.4 Arational approach

In contrast to the ad hoc approaches discussed in the psesgmtion, there are ratio-
nal arguments for using probability theory to express uagdy. It has been shown
that the axioms of probability theory follow as a logical sequence from the basic
desiderata for any measure of belief (Cox, 1946; Jaynes3)2Grthermore, if one
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does not follow the rules of probability theory, then one iflimg to accept aDutch
book a bet which leads to a guaranteed loss (Kyburg and Smoldé#)1

One important development in the use of probability theartha basis for repre-
senting uncertainty has been the shift from the frequeintisipretation of probability
theory to thesubjectivistor Bayesiarinterpretation to probability theory (named after
reverend Thomas Bayes, the 19th century probability teBprvhich views proba-
bilities as a measure of belief. Under this interpretatiwa may use available domain
knowledge, together with available empirical data, in ordequantify our models.
This allows the use of domain experts as a source of infoomathen quantifying a
probabilistic model.

Work by Pearl and colleagues in the 1980s eventually led teaktthrough in the
use of probability theory as a formalism for reasoning unoteertainty (Pearl, 1988;
Lauritzen and Spiegelhalter, 1988). By taking into accaamiditional independence
between random variables, a joint probability distribntiman often be represented
more compactly as a product of local conditional probabiiistributions. This re-
presentation takes the form of a graph whose vertices startid random variables
that constitute the domain, and whose edges representifygandence structure that
holds between random variables. Pearl devised an algotfiatrallows for efficient
probabilistic inference when the resulting graph forms ltpee (a directed graph
that does not contain undirected cycles) (Kim and Pearl3)198

Bayesian networks and Markov networks are more general isodbere the
underlying graph is an acyclic and directed graph or an entBd graph respectively.
Even though reasoning under uncertainty (also known asapilitic inference) in
these more general models is NP-hard in the exact (Coop@g),18s well as the
approximate case (Dagum and Luby, 1993), over the yeargah deal of algorithms
have been developed that perform well in practice (e.gyrftzen and Spiegelhalter,
1988; Zhang and Poole, 1994))Together with the Bayesian interpretation of pro-
bability theory these models have proven to be a sound ardigabframework for
reasoning under uncertainty.

Although the described models allow for reasoning undeettaity, often the
focus lies not only on estimation of the posterior probapitif events, but also on
optimal decision-making. Decision theory (Wald, 1950) isaxiomatic theory of
decision-making, which uses probability theory to repnésacertainty, allows the
incorporation of interventions as made by a decision-ma&ed expresses prefe-
rences among outcomes in terms of utilities. The soundnigsotheory is mo-
tivated by the work of Von Neumann and Morgenstern, who héweva that, if a
decision-maker adheres to five rational principles, thesisitn-making reduces to
the maximization of expected utility (Von Neumann and Margtern, 1947). Early
examples of research that views the decision-theoreticoapp as normative for

LIt has been shown (Kong, 1991) that, already in the 1970setigelinkage analysis researchers
have solved special cases of probabilistic inference ireBiay networks (Elston and Stewart, 1971).
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(clinical) decision support are (Ben-Bassat et al., 1980ar@iak, 1983; Cooper,
1984; Spiegelhalter and Knill-Jones, 1984; Andreasseh,et@87). Influence dia-

grams (Howard and Matheson, 1984a) augment Bayesian networks deitision

variables and utility functions to allow f@lanning(finding optimal decision-making
strategies).

We collectively refer to models that utilize a graph in ortterepresent (stochas-
tic) independence agibabilistic graphical models In the context of expert sys-
tems for clinical decision support, a graphical model camdgarded as the know-
ledge base, while the inference engine is formed by a suitaliérence algorithm.
In this thesis, we will mainly focus on Bayesian networks arftlience diagrams.

1.5 Graphical model construction

In past years, much attention has been devoted to the devefdpof algorithms
that learn the structure and parameters of a graphical niameldata (Cooper and
Herskovits, 1992; Buntine, 1994; Heckerman et al., 1995)esE algorithms can
be distinguished intsearch-and-scordbased methods, which search the space of
graphs, and try to optimize some measure of structure ofityn{a.g., (Larrafiaga

et al., 1996; Chickering, 2002)), ammbnstraint-basednethods, which construct a
graph based on conditional independence tests (e.g.t¢Spiral., 1993; Cheng et al.,
2002)). Both the graph topology and the joint probabilitgtdbution of a graphical
model can be learnt from data, provided that the datasefffisiently large and of
acceptable quality.

An alternative to this data-driven approach is to acquireedge from domain
experts by means of protocol analysis and other knowledg#agion techniques
(Schreiber et al., 2000). This knowledge can subsequentlysbd to manually con-
struct a graphical model. NESTOR (Cooper, 1984), a systenthi® differential
diagnosis of seven diseases that cause hypercalcemia,nsasf the first systems
that has been developed using this approach. It uses a goapiring 100 vertices
and 200 edges in order to represent causal and probabiistiwledge. Pathfinder
(Heckerman and Nathwani, 1992a,b) is an early example adjghgeal model that is
successfully applied in clinical practice, and is used Far diagnosis of more than
60 lymph node diseases, based on more than 130 microscdpical; laboratory,
immunological, and molecular-biologic features. It hasdbeen demonstrated that
existing expert systems can be successfully translatedexpert systems that are
based on graphical models. For example, QMR-DT (Shwe et@91) is a decision-
theoretic reformulation of the Internist-1/QMR experttgys for diagnosis in internal
medicine, which we have already encountered in SectionThe structure of the bi-
partite graph allowed for the efficient diagnosis of muttigiseases, by means of the
quickscorealgorithm (Heckerman, 1989). Finally, detailed (anataf)iknowledge
can be captured in terms of a graphical model as has beemcorgly demonstrated
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by MUNIN (Olesen et al., 1989), a probabilistic network fbetdiagnosis of neuro-
muscular disorders.

Manual construction of a graphical model for clinical déemissupport requires
the specification of the independence structure betweeraiowariables as well
as the estimation of a large number of parameters, and iskwelln to be non-
trivial (Druzdzel et al., 1995; van der Gaag and Helsper220Clinical experts are
often unable to articulate the knowledge needed for coctstigy an expert system
(Johnson et al., 1981) and parameter estimation by expéftssfrom various kinds
of cognitive biases (Kahneman et al., 1982) as demonstfatéde medical domain
in (Berwick et al., 19815.

In practice, datasets for realistic domains can be smallcapdor quality, such
that learning a graphical model from data yields unsatisfsgcresults (Wu et al.,
2001; van Gerven and Lucas, 2004b). In those cases, the emigiming options
are either to learn a restricted model from data by makimgngtessumptions about
model structure (Friedman et al., 1997) or to construct tbdehby hand using avai-
lable expert knowledge.

1.6 Aim of this thesis

As described in Section 1.4, graphical models can serverazative models for deci-
sion making under uncertainty. Given that data is scarcenfony medical domains,
we are faced with either learning graphical models from bhatiasets, or manual
construction based on available expert knowledge. Theréear guidelines that take
into account all aspects of graphical model constructidBiven the complexity of
this task, often strong assumptions are made with respeketstructure and/or pa-
rameters of the graphical model, such as assuming mutukistreness of diseases
in Pathfinder and independence of findings given diseasesMR-QT. These as-
sumptions may not always be warranted for the problem at,heffetting both the
realism and usefulness of the resulting systems. As a rdsultgraphical models
for clinical decision support have seen a successful impigation in practice. The
main objective of this thesis is therefore:

To provide techniques for the construction of graphical eisdor clini-
cal decision support that are realistic enough to be appliegractice,
where the focus on real-world problems entails that the rha&leon-
structed from available expert knowledge or a limited amamirdata.

2The difficulty of acquiring accurate domain knowledge is coomly known as theknowledge-
acquisition bottleneckCullen and Bryman, 1988).

3See (Abramson and Ng, 1993; Pradhan et al., 1994; Mahonel asiety, 1996; Druzdzel et al.,
1999) for some exceptions.
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1.7 Thesis outline

In order to achieve the objective of Section 1.6, this thpsigeeds as follows.

Chapter 2

In Chapter 2, we deal with the necessary preliminaries. V¢erdee probability

theory and graph theory as the mathematical foundationgrégrhical models. Sub-
sequently, we focus on (inference in) probabilistic graphimodels and (solving)
influence diagrams.

Chapter 3

Construction of graphical models for clinical decision gog often proceeds in an
ad hoc fashion, which implies the need for a more principlegr@ach. In Chapter
3 we develop such an approach by making a connection betweeatescription of
clinical tasks in terms of problem solving and particulaoickes of Bayesian network
designs.

Chapter 4

The manual construction of a graphical model from avail&eert knowledge is a
difficult and time-consuming task. Therefore, any tool tlettuces model construc-
tion efforts is welcomed. In Chapter 4, we focus on causatpethdence models,
which use deterministic interaction functions in order éduce the number of pa-
rameters that need to be specified. We provide a qualitatislysis of the indepen-
dence of causal influence, which allows us to determine tladitgtive properties of
a causal independence model with a given interaction fonatiithout the need to
specify the probabilistic parameters in advance.

Chapter 5

Clinical decision support systems often require that agi@eimaking strategy is
represented as part of the system, and an important goal asttmatically find

an optimal strategy for decision problems that are chanaetd by uncertainty and
which evolve over time. Chapter 5 proceeds with the devetypmof a framework

for dynamic decision making under uncertainty and the cangson of a number of

algorithms that approximate optimal strategies. The use$s of the approach is
demonstrated with the solution of a dynamic decision prolle oncology.
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Chapter 6

In Chapter 6, we describe the construction and validatiom oéalistic dynamic

Bayesian network for clinical decision support, where weuBon prognosis of pa-
tients that suffer from a low-grade midgut carcinoid tumoidis model has been
created in collaboration with an expert physician at thenligands Cancer Institute,
and is one of the largest dynamic Bayesian networks forazindecision support to
date.

Chapter 7

Chapter 7 focuses on Bayesian networks that are used fouthege of probabilistic
classification and which are learned from a limited amourdaif. Three different
techniques are examined and validated using clinical data:

1. Themaximum mutual information algorithrwhich learns a probabilistic clas-
sifier based on information-theoretic principles.

2. Thedecomposed tensor classifigvhich uses a ranks tensor approximation
for the purpose of classification.

3. Thenoisy-threshold classifiewhich employs a particular causal independence
model as a probabilistic classifier.

Chapter 8

This thesis is concluded in Chapter 8 with a summary of thengific contributions,
a discussion of the strengths and limitations of the desdrilesearch, and a general
conclusion about the subject matter of this thesis.



Chapter 2

Preliminaries

In this chapter, we deal with the necessary preliminaries déscribe the mathemati-
cal foundations of graphical models and the algorithmsdhatused for probabilistic
inference and the solution of decision problems.

2.1 Probability theory

As discussed, probability theory is used in order to repreaaed reason with un-
certainty! The measurement of uncertainty proceeds by definisanaple space,
which includes the mutually exhaustive and collectiveljaxstive outcomes of an
experiment, and a collectiad of subsets of) that adheres to the following proper-
ties:

1. oe A
2. if Ay, Ay, ... € AthenJ;2, A; € A;
3. if A e AthenA ¢ A, whereA denotes the complement df

The setA is known as ar-field and its elements are calledents The aim is to
express the degree of uncertainty about events by meangrobability measure

Definition 2.1. A probability measuré’: A — [0,1] on (£2,.4), defining theproba-
bility space((2, A, P), is a function that satisfies the following axioms:

1. P(o)=0.
2. P(Q) =1.

3. For any infinite sequencel;, A,, ... € A, it holds that

(04) - rm
=1 =1

'For a more complete treatment of probability theory we refeGrimmett and Stirzaker, 1992).
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In general, we find it convenient to work with random variagbbehich describe
experimental outcome in terms of real numbers for some jittyaspace.

Definition 2.2. A random variableis a function X: 2 — R such that{w €
0: X(w) <z} € Aforeachz € R.

Sometimes, it is necessary to take time into account and terrdame how a
sequence of random variables evolves over time. We callsttigience aandom
process

Definition 2.3. Arandom proces¥ is a family{X (¢): ¢t € T'} of random variables
that take values if2x and are indexed by some sEt If T C N, then we call the
process aliscrete-time process

Each random variable has an associated distribution famcti

Definition 2.4. Thedistribution functionF': R — [0, 1] of a random variableX is
defined ad’'(z) = P(X < z).

In this thesis, we will mainly deal witldiscreterandom variables (whose values
are restricted to a countable subSet = {z1,...,x,} of R) and to a lesser degree
with continuousrandom variables (whose values are giveri)y Uppercase letters
X, Y, Z are used to denote random variables, and boldface uppéetEseX, Y, Z
are used to denote sets or vectors of random variables. Wewsease letters, y, z
to denote values that random variables may take on ang esézx, ..., z,) for an
element in the sample spa@g = Qx, x--- x Qx, foravectorX = (Xy,...,X,,)
of random variables. For a discrete random variable, we el@sprobability mass
functionas follows.

Definition 2.5. The probability mass functiorof a discrete random variableX
(loosely referred to as the probability distribution &) is the functionf: R — [0, 1]
such thatf (z) = P(X = x).

A joint probability distribution is then defined as follows.

Definition 2.6. The joint probability distribution (JPD) of a vector X =
(X1,...,X,) of discrete random variables is the functign R™ — [0, 1] such that
f(x) = P(X = x).

We abbreviateP(X = x) by P(x), and also write it aP(X; = z1,..., X, =

xn), Which is abbreviated by’(z1,...,x,). Themarginal probability distribution
for a random variableX; can be obtained from the JPD as follows:

P(XZ::L’Z): E P(a:l,...,xi_l,xi,xiﬂ,...,xn).
TlyeeyTi—1,Ti415--5Tn

If knowledge is obtained about the occurrence of some evemt this can modify
the probabilities that other events occur. This is captimethe notion ofconditional
probability.
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Definition 2.7. Let X and Y be two disjoint subsets of random variables with
P(y) > 0. Theconditional probability distributiofCPD) of X given thatY =y is
given by
P(x,y)

P(y)

which stands for the probability of observid=x given evidenc& =y.

PX=x|Y=y)=P(xl|y)=

Since conditional probabilities play a central role in theyBsian interpretation
of probability theory, they are used to define a joint prolighiistribution P(X,Y),
as in:
PX,)Y)=PX|Y)P(Y)=P(Y | X)P(X).

By rearranging terms, Bayes’ rule follows immediately frims definition:

PY | X)P(X)

P(X|Y) = =55

(2.1)

for P(Y) > 0. InterpretingX as a hypothesis an¥ as the available evidence,
Bayes’ rule allows us to update our prior beliefs ab&uts evidenceY becomes
available. For the Bayesian subjectivist, EqQ. (2.1) is anative rule for belief upda-
ting in the light of available evidence (Pearl, 1988)pdsteriorbelief in the hypothe-
sisP(X | Y) is obtained by multiplying therior belief in the hypothesi®(X) with
thelikelihood P(Y | X) of the hypothesis given the evidence and by normalizing this
quantity using thesvidenceP(Y).

2.2 Graph theory

Decision-theoretic models, as used in this thesis, relyilyean graph-theoretical
concepts. In this section we define the necessary concegtad#itional background
material, we refer the reader to (Diestel, 2000).

Definition 2.8. A graphis a pairG = (V, E), whereV is a finite set ohodesand
E CV x V aset ofedges We also usé&’(G) and E(G) to denote nodes and edges
of G.

We say that an edge isidirectedf {(v,v’), (v/,v)} C E(G), and we say that an
edge isdirectedif (v,v") € E(G) = (v/,v) ¢ E(G). We define the following sets
of nodes:

e We callvg(v) = {v' | {(v,v),(v,v)} C E(G)} the neighborsof v and
|va(v)| thedegreeof v.

e We callpg(v) = {v' | (v/,v) ¢ E(G),(v',v) € E(G)} thechildrenof v and
|pc(v)| the out-degreeof v.
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e We callrg(v) = {v' | (v',v) € E(G),(v',v) ¢ E(G)} the parentsof v and
|7c(v)| thein-degreeof v. Thefamily of v is given byfa, (v) = {v} Ung(v).

We also define the following node sequences.

Definition 2.9. A routein G, with lengthn — 1, is a sequences, ..., v, of nodes
such that(’L)Z',’L)Z'+1) S E(G) or (UZ‘+1,’U¢) S E(G) forl <i<n.

Definition 2.10. A route is called gathif (v;+1,v;) ¢ E(G) forl <i < n.

The ancestorsung(v) of a nodev are those nodes’ for which there is a path
betweem’ and v, and thedescendantge(v) of a nodev are those nodes’ for
which there is a path betweenand«’. We call a routevy, ... . , v, of distinct nodes
such thaw, = v, aloop, and a path, ..., v, of distinct nodes such that = v, a
cycle A chordof a loop is an edge between two nodes in a loop that is not icaata
in the loop. A graph igonnectedf there is a route from to ' for all v,v" € V(G)
with v # v/. A directed (undirected graph consists only of directed (undirected)
edges, and aacyclicgraph contains no (directed or undirected) cycles. Forexctid
graphG, we also use the termrcs A(G) to refer to edge€/(G). Some important
classes of graphs are the following.

Definition 2.11. Anacyclic directed graptADG) is a directed graph that is acyclic.

Definition 2.12. A treeis a connected acyclic undirected graph, where nodes of de-
gree one are calletkafsand non-leaf nodes are calledternal nodes

Definition 2.13. A rooted treds an acyclic directed graph with the edges pointing
away from a distinguished node, called tloet of the tree.

Definition 2.14. A polytreeis a directed acyclic graph that has no undirected cycles
when we drop the directions of the edges in the graph.

Definition 2.15. A moral graphG™ is the graph that is obtained from an acyclic
directed graph’z, by linking the parents of each node@hby edges, and by dropping
the orientation of arcs in the graph.

Definition 2.16. A triangulated graplis an undirected graph such that all loops of
length four or more have at least one chord.

Given an undirected grapHi, aclique of G is a set of node€ C V(G) that is
complete(all pairs of nodes irC are neighbors iz) andmaximal(C U {V'} with
V € V(G) \ Cis not complete). An important property of any triangulaggdph is
the following.

Definition 2.17. An ordering(Cy, ..., C,,) of the cliques in7 satisfies theunning
intersection propertyf C; N (C; U---UC;_;) C C; forall 1 < i < n where
1<j<i-1
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We may use the cliques of a graph in the definition of a secgndaaph as
follows.

Definition 2.18. A clique graphof a graphG with cliquesC = {C;,...,C,,} such
that V(G) = C, U--- U C,, is an undirected grapld’ with V/(G’) = C, such that
(CZ‘,C]‘) € E(G/) < C; N Cj %+ O,

For any triangulated graph, we may construct a clique graiwvk as gunction
tree (Jensen, 1988), which is defined as follows.

Definition 2.19. A junction trees a clique graph whose nodes and edges form a tree
that satisfies the running intersection property.

The junction tree is prominent in probabilistic inferenas,is demonstrated later on.

2.3 Bayesian networks and Markov networks

The connection between probability theory and graph thisamyade by using graphs
to represenfconditional) independenaelations between random variables (Dawid,
1979).

Definition 2.20. LetX be a set of random variables with JPB(X). LetU,Y,Z C
X be disjoint subsets aX. Then,U is said to beconditionally independentf Y
givenZ, denoted byU 1L p Y | Z, iff

PU|Y,Z)=P(U | Z)
wheneverP(Y,Z) > 0.
This independence relation can be characterized by axisunh, as the following:

1. Symmetry
UlpY|Ze<Y ULpU|Z

2. Decomposition
UlpYUVI|Z=UlpY|ZAULpV|Z

3. Weak Union
UlpYUV|Z=UlpY|ZUV

4. Contraction
UlLlpY|ZANULULUpV|YUZ=UlpYUV|Z

5. Intersection
UlpY |ZUVAULpV|ZUY =UlLpYUV |ZIff Vy: P(u) >0
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If the first four axioms are satisfied then the independenlzgioa is called ssemi-
graphoidand if the fifth condition is satisfied as well, then the indegence relation
is called agraphoid These axioms allow the derivation of other interestingrieas
such as the following.

Lemma21. UlLlpY |ZAUUZUpV|Y=UlpV|Z
Proof. We derive

UUZUpVI|Y = VUpUUZ|Y (symmetry
= V1UpU|YUZ (weakunioh
= UlLpV|YUZ (symmetry

and use this result to obtain

UlpY|ZAULpV|YUZ = UlLpYUV|Z (contraction
= UlpV|Z (decomposition

which concludes the proof. O

The semi-graphoid axioms have been proposed as basic tetimitidn of in-
formational dependency (Pearl and Paz, 1985) and althdwgkdami-graphoid ax-
ioms allow for the derivation of many other interesting ipdedence relations, Stu-
deny has shown that the independence relation is not firatébmatizable (Studeny,
1989, 1992).

One way to represent a set of independence relations is bypsrefaa graph
G. Let X denote a set of random variables. We assume that there is-@®-ane
correspondence between variableXirand nodes i/ (G), and writeG = (X, E)
when this correspondence is established. We use the notétio ; Y | Z to denote
the separationof U andY by Z in G, whereU, Y andZ are disjoint subsets &X.
The notion of separation depends on the type of the gfaplh GG is undirectedthen
separation is intuitively defined as the blocking of eaclh jpetweenU andY by Z.
In directedgraphs on the other hand, separation is referred tbsseparationwhich
is defined as follows.

Definition 2.21. Z d-separatedJ and Y, denoted byU 1l Y | Z, if for every
routeX,...,Y in G,withX € UandY €Y, there is a verte¥Z, such that

e there are no two arcs in the route that point towadlsand Z € Z, or

e there are two arcs in the route that point towardds and neitherZ nor any of
its descendants are A.

Let X denote a set of random variables diddY, Z disjoint subsets oK. We
say that a graplr, with V(G) = X, is adependency maf®-map) of P(X) iff

VU7Y7z:U_LLpY|Z:>UngY‘Z.
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Likewise, we say thafr is anindependency mafp-map) of P(X) iff
vU7Y,Z : U_U_pY | Z<:UngY ‘ Z.

Finally, if G is both a D-map and an I-map &f(X), then we say thats is aper-
fect mapof P(X). Most probability models have no perfect map represemtatio
However, we can use I-maps to represent independence statefor any probabi-
lity model. We say that an I-map minimalif with the removal of any edge from the
graph, the I-map property ceases to hold, i.e., the graphsepts the largest possible
number of independence statements. We now arrive at treioll) two definitions.

Definition 2.22. A Markov networkM = (G, ¥) is a pair, where is anundirected
graphwith nodes corresponding to a set of random varial¥esrepresenting a mi-
nimal I-map ofP(X), and¥ = {¢;(c;): C; € C} is a set of non-negative functions,
known agotentials defined for the cliques of G.

Definition 2.23. A Bayesian networl3 = (G, P) is a pair, whereG is anacyclic
directed graphwvith nodes corresponding to a set of random varialesepresenting
a minimal I-map ofP(X), and P = {P(z | 7m;): X € X} is a set of conditional
probability distributions, defined for random variabl&sin G.

Markov networks and Bayesian networks capture differetst geindependence
relations, leading to different representations of a JPigims of a product of local
factors. For a Markov network, with cliqués= {Cq,..., C,,}, the JPD factorizes
as follows:

P(x) = - H%(Cz) (2.2)

whereZ = >[I, ¢i(c;) is thepartition function which acts as a normalizing
constant. Unfortunately, it is difficult to quantify the patialsy; in terms of quanti-
ties that are meaningful for a domain expert. Only if the Marketwork isdecom-
posable(if G is triangulated) do we have a meaningful factorization (P4888).
Let (C4,...,C,,) denote an ordering of the cliques Gfthat satisfies the running
intersection property of Def. 2.17, and defie= C,N(C1U---UC;_1) andR,; =
C; \ R;. Then, a decomposable Markov network with= {P(r; | s;): C; € C}
can be factorized as

P(x) = [ P(xi | )
i=1

which allows a specification in terms of conditional proliigbidistributions. For a
Bayesian network, we immediately obtain such a meaningfaetpretation, since for
a set of random variableX = {X;, ..., X,,}, the JPD factorizes as:

n

P(x) =[] P(xi | m) (2.3)

i=1
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wherew; € Q. x,) denotes a realization of the parents.%f that is compatible
with x. For convenience, when dealing with a Bayesian netwo6rkP) for a set of
random variableX, we often omitG from our notation when clear from context,

and callP the JPD ofX.

2.4 Probabilistic inference

Probabilistic graphical models generally reduce the nunobéree parameters that
are needed to specify a JPD and allow for efficient probaigiliaference. Using
probabilistic inference, various queries may be answesadh as conditional and
marginal probabilities of a set of random variabls C X given evidencell C
X, UNnE = g, the maximum a posteriori (MAP) hypothesis, which is the tmos
probable instantiation of random variables given partiadlence: E ¢ X \ U, or
the most probable explanation (MPE), which is the most gtgbastantiation of
random variables given complete evidenke:= X \ U.

Over the years, variousxact and approximateinference methods have been
developed, where exact methods typically require the gsdplitture underlying a
graphical model to be sufficiently sparse. As mentioriesief propagation(Pearl,
1988) is exact only when the graph is a polytree. jumetion tree algorithm(Lau-
ritzen and Spiegelhalter, 1988), in contrast, allows fercbmputation of conditional
and marginal probabilities for arbitrary graphs. Firstuagtion tree and associated
potentials are constructed from a Bayesian netwotkP) for a set of random vari-
ablesX as in Algorithm 2.1.

Algorithm 2.1 Junction tree construction.
input: ADG G, conditional distributiong®, random variableX.
construct the moral grap™ from G (moralization)
construct a triangulated grajghi by adding edges t6" (triangulation)
construct a junction tre€ = (C, £) from G’ with cliquesC = {C4,...,Cn}
for X € X do
assignX to a cligueC € C that contains¥
end for
let X, denote the set of random variables assigne@ to
for i = 1tom do
defineyi(ci) = [Ixex, Pz | 7x)
end for
return T, ¥ = {¢;(c;): C; € C}

Inference proceeds by means of evidence absorption ancgeepassing in the
junction tree, and produces posteriors for random varsaXlg E, as is described by
Algorithm 2.2.

For exact algorithms, continuous distributions are oftestricted to be condi-
tional Gaussian distributions (Lauritzen and Wermuth, 98Although arbitrary
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Algorithm 2.2 Junction tree inference.

input: junction tre€eT’, set of potential¥, evidencee.
for i = 1tom do

absorb evidence by setting(c;) = 0 if ¢ is inconsistent witte
end for
construct separato; = C; N C; for all neighborsC; andC; in C
repeat

for i = 1tom do

for all neighborsC; € v(C;) do
if messages by(C;) \ {C;} have been received I}, then sendC; the message
Mij(sij) = 2 cinsy; Yi(€i) Tises Mii(ski)-
end for

end for
until all messages have been computed
for i = 1tom do

CalculateP(ci) = ’(/JCT, (Cl) Hk M;.; (Sik)
end for
for X e X\ Edo

computeP(z | e) = }_ \ 1,3 P(ck) for the smallest clique;, with X € Cy,
end for
return {P(xz | e): X € X\ E}

continuous distributions can be represented by means bhigges such amix-
tures of Gaussianghenoy, 2006) amixtures of truncated exponentiglSobb et al.,
2006), this is computationally more expensive. When extensse is being made of
arbitrary continuous distributions, or if the graph sturetbecomes too dense, then
one may resort to varioudeterministicor stochasticapproximate inference algo-
rithms. Examples of deterministic approximate inferenagthuds ardoopy belief
propagation(Murphy et al., 1999), which is the application of belief pagation to
acyclic directed graphs, andriational methodgJordan et al., 1999), which trans-
form a probabilistic model into a less complex model in oftdecompute bounds on
probabilities of interest. Examples of stochastic apprate inference methods are
importance samplingGeweke, 1989; Yuan and Druzdzel, 2005) &ildlbs sampling
(Geman and Geman, 1984; Pearl, 1987).

In case we are dealing with stochastic (decision) procesgesise a so-called
dynamic Bayesian network (DBN) in order to represent thep@nal structure of
the problem (Murphy, 2002) (as explained in detail in Chepteand 5). In this
case, probabilistic queries of interest maydoediction(computing posterior proba-
bilities of unobserved random variables at some future given evidencelfiltering
(computing posterior probabilities of unobserved randamables at the current time
given evidence)smoothingestimating posterior probabilities of unobserved random
variables at some past time given evidence)iterbi decodingcomputing the most
probable explanation at the current time given evidenckgse€ queries are answered
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by means of specialized inference algorithms such as thet exarface algorithm
(Murphy, 2002), which uses the junction tree algorithm asla@utine, or approx-
imate particle filtering which comprises the group of sequential Monte Carlo met-
hods for dynamic state estimation. Particle filtering in aND&mounts to sampling
particlesx’@) ..., x'™) with associated weighta), ... w" from a distribution
P(X(t) | X(t-1) = x,Y(t) = y) that represent our belief state abditt). Al-
gorithm 2.3 shows how a particle is sampled from this digtidn (adapted from
(Koller and Lerner, 2001)).

Algorithm 2.3 Particle sampling in a dynamic Bayesian network.
input: previous state, current observationg
w=1,x=0
let X7,..., X/ bean ancestral ordering such that parents occur befodrehil
fori=1tondo
setz € (1 (x;) compatible withx andx’
if X! ¢Y then
samplez; from P(X| | 7(X]) = z)
else
setz’, to its value iny
setw = w - P(z} | 7(X]) = z)
end if
end for
return (x’, w)

2.5 Influence diagrams

Although Bayesian networks allow for efficient probabitisnhference, their seman-
tics does not incorporate the notions of decision-making @mcome preference.
Influence diagrams (Howard and Matheson, 1984a) are desaxaetly for this pur-
pose and are convenient for the solution of (medical) dewigroblems (Owens et al.,
1997; Nease and Owens, 1997). Influence diagrams are de&rfelioavs.

Definition 2.24. Aninfluence diagranfiD) is a tuple(C, D, U, A, P) such thatG =
(N, A) is an ADG with nodeN = CuUD U {U} and arcsA, with

e C a set of random variables, which we refer tocdmnce variables
e D a set ofdecision variablesuch that

— each decision variabl® ¢ D can take on a value from a set of choices
Qp,

— there is a total ordering< of the decision variables implied by a path in
G that contains allD € D,
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disease

symptom finding

test treatment outcome

Y

U

Figure 2.1: An influence diagram for patient treatment, where obseevedsidom variables

are shaded and decision variables are represented by glastaBased on a symptom, we
may choose whether or not to test a patient. This can resalfimding that some disease is
present. Our treatment decision is based on the finding ijunotion with the symptom and

the previous test decision. The actual outcome is detedbgehe treatment together with
the state of disease. The test and treatment both have atggbcosts, and there is a utility
associated with each of the different outcomes, as caphyrétae utility functionU.

— if D’ < D thenn(D’) C n(D),
e U autility function U: Q) — R such thatp(U) = 2,
and whereP = {P(C | n(C))midC € C}.

Figure 2.1 shows an example of an influence diagram. Chambesn@epicted
as ellipses) represent the stochastic component of theImdéidéX,C) € A(G)
then the conditional probability distribution associatéth C' may be influenced by
X as in a Bayesian network. Decision nodeqdepicted as rectangles) represent
the actions that may be performed by a decision makeiX|IfD) € A(G) thenX
represents information that is available to the decisiokenarior to deciding upon
D. X is also known as amformational predecessand we normally depict only
those informational predecessors Bfthat are not yet informational predecessors
of decision nodedD)’ < D. The assumption that all past information is relevant to
decision-making is known as the forgettingprinciple. The utility nodel/ (also
known as value node and depicted as a diamond) representsilityeof being in
a certain state, as defined by configurations of chance ardiatewariables. If
(X,U) € A(G) thenX takes part in the specification bfsuch thatU: Q) — R.
It is assumed thal/ has no children in the graph. Formally, the g&ts not to be
interpreted as a set of conditional probability distribng, since chance nodes may
have decision nodes as parents, which do not normally haariased probability
distributions. EachP(C | 7(C)) is rather a family that specifies for each configu-
rationd € Qp a conditional probability distribution (Lauritzen and 88bn, 2001).
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We use the notation

P(C:D=d)= [] P(C|=(C) (2.4)
CceC

to represent the probability distribution @f given that the decision maker has Eet
equal tod (Cowell et al., 1999).

The ultimate goal of an influence diagram is to find the optideaision making
strategy for a given decision problem. stochastic policyfor decisionsD € D is
defined as a probability distributioR(D | w(D)) that maps configurations af( D)
to a distribution over alternatives fdv. If P(D | w(D)) is degenerate then we say
that the policy isdeterministic Let V denoteC U D. A strategyis a set of policies
A = {P(D | m(D)): D € D} which induces the following joint distribution over
the variables ifV:

Pa(V)=P(C: D) [] P(D | =(D)). (2.5)
DeD

Using this distribution we can compute the expected utiita strategyA as:
=Y PA(V)U(v). (2.6)

The aim of any rational decision maker is then to maximizeekgected utility by
finding an optimal strategy:

A* = arg max EU(A). (2.7)

Influence diagrams are not the only way to represent decgsiololems (notable
alternatives are@lecision treegQuinlan, 1986, 1992)yaluation networkg{Shenoy,
1996), andsequential decision diagran{€ovaliu and Oliver, 1995)) but the com-
pactness and intuitiveness with which (symmetric) denigimoblems are specified,
are desirable properties of the influence diagram formaliBmiza and Shenoy,
1999).

2.6 Solving an influence diagram

There are different ways to solve an influence diagram firaling the optimal stra-
tegy). The original solution method transforms an influed@gram into a corres-
ponding decision tree and then solves the correspondingidedree (Howard and
Matheson, 1984a). This solution method does not necegsagjliire a total ordering
of the decision nodes, although this results in enormousespequirements (Pearl,
1988). A popular algorithm for solving influence diagramssvpaesented in (OIm-
sted, 1983) and is based on the following four graph transtions:
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e Barren node removal
Chance or decision nodes that do not have children may bevesifoom the
graph.

e Arc reversal
The orientation of an arc between two chance na@desdC’ may be reversed
if there is no other directed path betwe€hand C’, by letting the parents
of C be inherited byC’ and vice versa, and by recomputing the conditional
probabilities forC' andC’ using Bayes' rule.

e Conditional expectatian
A chance node” that directly precede$/ may be removed by adding the
parents ofC to the parents ot/ and eliminatingC' by taking the conditional
expectation.

e Maximization
A decision nodeD that directly precede§ may be removed by maximizing
the expected utility, provided that barren nodes have bemoved and prede-
cessors ol are also predecessors bf

The algorithm is guaranteed to find the optimal action for fire decision node
after a finite number of transformations. A third solutionthoel is based on the
transformation of an influence diagram to a Bayesian netanckto use probabilistic
inference methods for evaluation (Cooper, 1988; ShachmgrPeot, 1992). Due to
this technique, we can represent decision-theoretic metguch as decisions and
utilities in a Bayesian network, even though this is not iy provided by the
semantics of Bayesian networks. We will make use of thislgen when we deal
with dynamic decision problems; i.e., when decision maleéxtends over longer
periods of time. Dynamic decision making is discussed iptliléen Chapter 5.






Chapter 3

Clinical Decision Support
with Bayesian Networks

In the last decades, many techniques have been developedatinaserve as the
basis for automated clinical decision support. Some exasnpf these techniques
are frame-based systems (Miller and Pople, 1982; Aikin83)1%ule-based systems
(Buchanan and Shortliffe, 1984), and probabilistic methi€ooper, 1984; Spiegel-
halter and Knill-Jones, 1984). In the latter category, By networks (also called
belief networks) (Pearl, 1988) have become a popular taohédomated clinical
decision support since they allow for the explicit repreéatton of domain know-
ledge and sound probabilistic inference. Developing a Bayenetwork as part of a
system that supports clinical tasks such as diagnosis atment selection, implies
bridging the gap between an informal description of theicdihtask and its actual
implementation in terms of a Bayesian network. It has beeogeized before in the
knowledge acquisition and modeling research communityiths often only feasi-
ble to bridge this gap in small steps, for example by usingrinediate, semi-formal
representations that somehow capture the essence of khie tas modeled. This is
what is being offered by the idea of representing the clirdegision making process
in terms of problem solving methods. However, to date, nothms known about
how problem solving methods that capture clinical taskatedio concrete implemen-
tations in terms of Bayesian networks.

In this chapter, we address the problem of how to get from tcpiéar informally
described clinical decision making task to the construBagesian network that sup-
ports that task. We commence by providing abstract degmmgpf some important
tasks in clinical decision support in Section 3.1, and show logical, Bayesian, and
decision theoretic formulations of clinical decision sapprelate to these abstract
descriptions. Subsequently, we show in Section 3.2 how ésergptions translate
into concrete Bayesian network designs, where the imphicatof some common
design assumptions will be discussed. In Section 3.3, wriglssconcrete aspects of
Bayesian network development that can be of practical uskeet&nowledge engi-
neer.
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3.1 Clinical problem solving

Insight into the nature of clinical decision making is, ahdusld be, the starting point
for the construction of models aimed at supporting the taskdved in it. We start

by adopting the view that clinical decision making can becdbsd as a type of
problem solving in a way related to previous work done in thevidledge modeling

community (e.g. (Schreiber et al., 2000)).

3.1.1 Problem solving methods

All activities in clinical decision making can be describedierms of problem sol-

ving, where solving a problem is described in terms of dosaimodels, knowledge
sources, and relationships between models and knowledgeeso This yields an

abstract view of clinical decision making, which then carelsborated on at a more
detailed level, e.g., in terms of an underlying langudgsuch as predicate logic,
probability theory, or decision theory. We define a domaidistourse as follows.

Definition 3.1. Let ® = (U, A, O) be adomainof discourse, with the séf con-
taining unobservableelements, the sed containingactionelements, and the sét
containingobservableelements, where the sets are pairwise disjoint.

The setl/ contains the domain concepts that cannot be observed bytan ex
nal observer. E.g., the tumor size in a cancer patient is abservable element.
The setA contains the actions that can be performed by a decision nmsikeh as
chemotherapy or surgery for a patient. The@etontains the domain concepts that
can be observed by an external observer, such as patiergrgéind assumed that the
problem to be solved is given bypmoblem descriptionwhich is defined as follows.

Definition 3.2. Let M define anodelover a domainb and a set oproblem solutions
32, both in some language. A problem descriptiofis defined as a tuple

D= (9,X,M,a,0)
with a C A the set of actions and C O the set of observations.

The setX represents the set of problem solutions, which may be elsmen
®, or more abstract elements defined for the problem at hand. example, in
a diagnostic problem, the set of problem solutions may bes#ieof unobserv-
able disorders, such thai = U/, or a set of disorder classes, suchXas=
{benign-disease, malignant-disease}. The seta represents the set of actions that
are selected by an external decision maker. This compris@sdztions that have
been performed in the past and actions that still need to erpeed in the future.
The sefo represents the set of observations that are actually cdxséov a particular
problem instance.
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Problem solving in a particular domain may, or may not, iseoéxplicit reaso-
ning about time. This is the reason why in the following aidigion is made between
non-temporajproblem solving, where the temporal nature of the cliniagktat hand
is not explicitly taken into account, artemporal problem solving, where we do
explicitly take into account the notion of time. In case of@fiemporal problem
description, we make use of a non-temporal model, whereaasa of a temporal
problem description, we make use of a temporal model wheneadoelements in
® are assumed to be indexed by time. Non-temporal probleningpls defined as
follows.

Definition 3.3. A (non-temporal) problem solutioof a non-temporal problem de-
scriptionD = (¥, X, M, a,0) is defined as a se&tC ¥, such that

MUaUsEyo

for a (non-temporal) problem solving relati¢hy.

This means that the observatioascan be explained in terms of a modét
together with selected actiorss and the solutiors. What this particular type of
problem solving does, is determined by the content of thetaorporal problem
solving relation= . Temporal problem solving is defined similarly, as follows.

Definition 3.4. A (temporal) problem solutiof a temporal problem description
D = (9,3, M,a,o) is defined as a setC ¥, such that

MUaUsEro

for a (temporal) problem solving relatigar.

In the following, we usé= to denote either a non-temporal or temporal problem
solving relation. In general, it should hold th&t UaUs U o ¥ 1, meaning that the
model is consistent with actions, solutions, and obseymati

For clinical problem solving, we consider the relation be#w patient and physi-
cian. In this caseM can be distinguished into patient modelM™, which de-
scribes how the patient responds to decisions made by theqguny, and ghysician
model M?, which describes how decision making by the physician isi@rfted by
observations about the patient. The problem solution is tunsidered to be the
physician’s response for a particular problem descriptanich includes the model
M = M™ U M?, observations that represents observations about the patient’s
state, and interventionsthat are explicitly chosen by the physician. The distinctio
between patient and physician is refined by organizing adinconcepts in the do-
main of discourseb, that are used in the definition of modeld, into the following
categories (Weiss et al., 1978a):
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Risk factors (etiology, epidemiology, patient characteristics)

Pathogenesis (concepts linking risk factors and disorders)
Patient Disorders (cause, localization, complications)
Pathophysiology (concepts linking disorders and findings)
Findings (clinical signs, test results, subjective symptoms)
Tests (physical examination, laboratory tests)

Physician { Treatments (drug therapy, surgery, radiotherapy, psychotherapy).

In the context of clinical problem solving, pathogenetid grathophysiological
concepts are assumed to be unobservable by the physicigordeis are assumed
to be particular pathophysiological concepts and form &iabease, since prior to
diagnosis, disorders are unknown to the physician, whea#tes diagnosis it may
be the case that disorders become observed. The actionsathéie performed by
the physician are given by tests, which may be used to gaif@mation, and treat-
ments, which may be used to influence the pathophysiologicaless. Risk factors
and findings are assumed to be observable by the physiciathemiformation they
provide can be used as the basis for clinical problem soluimgase of temporal cli-
nical problem solving, clinical concepts are indexed byesnm7 C R. A problem
solutions € X may be a physician’s conclusion about the patient’s stateptien
the solution involves decision making since most physgiagree that the majority
of clinical questions for which support is needed deal witratthe physician should
doinstead of what the physician sholddow(Shortliffe et al., 2001). Under the latter
interpretation, a clinical problem description can be \g@evas acontrol problem re-
quiring optimal manipulation of a (stochastic) process gxternal decision maker.
Figure 3.1 depicts this representation of clinical probksiving.

patient patient
Risk factors h Risk factors
Pathogenesis Pathogenesis
Disorders M™ Disorders
Pathophysiology Pathophysiology
Findings ) Findings
Tests :‘
_____________ M9
” Treatments
physician

Figure 3.1: Clinical problem solving as a control problem, where thegitian’s decisions
are based on the current patient state and the past patéat(as indicated by the dashed
line). The decisions in turn influence the patient’s futueges

In this chapter, we focus on problem solving for the primaagks in clini-
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cal patient management, which are taken todimgnosis test selectionprogno-
sis, treatment selectignand monitoring For these clinical tasks, we formulate
non-temporal and temporal problem solving variants whieeedescribed categories
form the domain of discours@. In case of temporal problem solving, we use
t. € T to represent theresent H = {t: t < t.,t € T} to represent the past, and
G = {t: t > t.,t € T} to represent théuture H* andG™ are used to represent
the past and futurancluding the present time.. Table 3.1 provides for an overview
of the choices of/, A, andO that are typically made for the various clinical tasks in
case of a temporal problem description. For a hon-tempaoddll@m description, we
use the same structure save the fact that time is omittedtfierdescription.

Table 3.1: Choices o4, A, and© for a temporal problem description of a clinical task.

Task Design choices

u Pathogenesis u Pathophysiology U Disorders) xH*
éTests U Treatments) xH
(Risk factors u Findings) xHT
Pathogenesis u Pathophysiology U Disorders) xHT
Testsu Treatments) xH
Risk factors u Findings u Disorders) xH*
Pathophysiology x H+
Testsu Treatments) xT
éRisk factors U Findings u Disorders) xHT
Pathophysiology x H
Testsu Treatments) xH
éRisk factors U Findings u Disorders) xH*t

N

Diagnosis

Test selection

Prognosis

Treatment selection
Monitoring

ICEPSEENIECER SEN SR SN RCER S
NN N[N N N In N N {ine N

We now turn our attention to a description of the variousicéihtasks.

Diagnosis

Diagnosisrefers to the explanation of observations in terms of uncdde disor-
ders. Since we do not need to model decision making explifotl pure diagnosis,
we may restrict ourselves to a patient modél, which models the relation between
disorders and observations, possibly influenced by selemtéons. The problem
solving relationF uses observations C O (and possibly actiona C A when-
ever they induce changes in how disorders relate to obgemgatin order to predict
disorderss C X from which the patient is suffering. In case wbn-temporaldi-
agnosis, it is assumed that the set of solutions is definéd @sbisorders. In case
of temporaldiagnosis, the set of solutions is defineddas Disorders x HT. Note
that actions are confined to the strict past, since currdigrecdo not have an im-
mediate effect on the diagnosis. The definition>béllows the expression afhen
disorders have developed, but often our interest umentdisorders only, such that
Y. C Disorders x {t.}.
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Test selection

Test selectiorstands for the selection of tests by the physician for theqae of
information gathering. The modéH consists of a physician modgh¢ that dictates
which tests to choose in a given situation, and possibly imatodel M™ which
allows for the representation of how unobserved quantéféect decision making.
The problem solving relatiol uses observations C O (and possibly actiona C
A) in order to select tests iH that maximize the information gained and minimize
patient risk. Fomon-temporaltest selection, the set of solutions is given yC
Tests. Note that disorders can be part of either the unobservabikecobservable
variables, depending on whether testing is performed fptirpose of diagnosis (in
which case the disorder is unknown) or for the purpose ofrreat (in which case
the disorder is typically known). Fdemporaltest selection, the set of solutions is
given byY C Tests x GT. We remark that for a diagnostrocessdiagnosis and test
selection is interleaved, since diagnosis depends on themation that is unveiled
by selected tests. The same holds for the treatment prostese treatment and
testing depend on one another.

Prognosis

Prognosisstands for the prediction of a prognostic outcome for a patigven ob-
servations, performed actions, and projected actions.nideel M should contain
the patient modeM™, which describes projected patient response, and may addi-
tionally contain the physician mode¥1?, which describes projected interventions
by the physician. The problem solving relatisruses observations C O together
with performed actions and projected actiens. A in order to assign the patient to
a prognostic solution ifC. Prognosis is typically performed in the situation where
the disorder from which a patient is suffering is known, aine $et of solutions
may either be defined in terms of abstract concepts such disyepgjusted life ex-
pectancy or concrete concepts such as health status, tizepretc. Fortemporal
prognosis, the set of solution’d may again be defined in terms of abstract or con-
crete concepts that are indexed by time, such as patienvaunv the coming five
years, or tumor remission in the next year. Note that th@adetA also contains
future actions since this allows the physician to insist gmaected treatment. This
is to be contrasted with the physician moded?, which represents future decision
making as a whole and may depend on future (yet to be madejvaltises.

Treatment selection

Treatment selectiostands for the selection of actions by the physician for e p
pose of influencing the pathophysiological process. It tsmach different from test
selection since the only change is the purpose of the taskelyacontrol instead of
information gathering. The modelt therefore consists of a physician model?
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that dictates which treatments to choose in a given sitnatiad possibly a patient
model M™ which allows for the representation of how unobserved qtiesitaffect
decision making. The problem solving relatieruses observatiors C O (and pos-
sibly actionsa C .4) in order to select treatments from the set of possiblenreats
3., where the selected treatments should maximize patierfib@md minimize pa-
tient risk. It is assumed that during treatment, disordeeskaown, as is shown in
Table 3.1. Fonon-temporatreatment selection we use solutions_ Treatments and
for temporaltreatment selection we use solutionsC Treatments x G'F.

Monitoring

Monitoring stands for the prediction of the current pathophysioldgstaie based on
observations and actions. The prediction requires a pgatiedel M™ and a problem
solving relation= which uses observations C O (and possibly actiona C A) in
order to predict the current (unobservable) pathophygicéd state of the patient.
In case ofmon-temporalmonitoring, we have solutions C Pathophysiology, and in
case oftemporalmonitoring, we have solutions C Pathophysiology x {t.}.

We have described the various clinical tasks in terms ofratishon-temporal
and temporal problem solving, independent of the language hand. In the fol-
lowing, we describe logical, probabilistic, and decistbeoretic problem solving
respectively, and also discuss what, according to thesepirtations, constitutes a
good problem solution.

3.1.2 Logical problem solving

In logical problem solving, we use standard first-order e logic as our language
L. In order to make the notion of logical problem solving mooaerete, we focus
on a logical formulation of non-temporal diagnosis, cabéxductive diagnosis

In abductive diagnosis (Console et al., 1989, 1991), we wsii#n a domain® =
(U, A,O) with Y = Disorders, A = &, andO C Findings; sets are interpreted
logically as conjunctions of their elements. Here, disosdare given by so-called
defect literalsd and findings are given by so-calldohding literals f. The non-
temporal problem description is given By = (®, 3, M™, &, 0), where the set of
solutions is given by = I/ and the patient mode\1™ is a set of logical implications
of the form:

AN Ndy —d, dy AN Ndpyy — f

linking defects with defects and defects with findings retipely. Selected actions
are not taken into account, and observatiorege assumed to be given by the union
of present and absent findings:

ot C {f €Findings: f is a positive litera}
o~ C {~f eFindings: f ¢ o™, f is a positive litera}
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An abductive diagnosisf D is defined as a set of defeats >, such that:
1. M7 Us E ot (covering condition)
2. M} UsUo™ 7 L (consistency condition)

Hence, in abductive diagnosis, the hypothesisust predict all present findings and
should not predict any absent finding. Therefore, we havenateimporal problem
solving relation of the following form:

MR UaUsEyo & MREUsFom A MR UsUo™ I L

wheres is a possible problem solution.

From a logical point of view, any problem solution that isided using logical
deduction ioptimalin the sense that solutions are indistinguishable. Oftewgler,
in a particular logical framework, extra optimality crierare added that allow the
selection of an optimal solution from a set of possible soh# (e.g. (Lucas, 1998)).
In abductive diagnosis, we often require that the soluttominimal with respect to
set inclusion. For example, suppose we have a model

d1_>f7 d2_>f7 dl/\d2_>f

Then, upon observing, we deduce thai; andd, are optimal problem solutions,
whereasi; A ds is not.

Although logical approaches to clinical problem solvingtsas abductive diag-
nosis have proven successful, there are also problems vdgdal problem solving
cannot handle. In particular, the resulting optimal prablgolutions may lead to
non-optimal behavior. For example, it may well be the caaédh observed finding
f provides much stronger evidence 6 than ford;, which may lead us to favor
do overdy, which is not easily expressed in a logical framework. Bayeproblem
solving, as discussed in the following section, solvesphidlem by expressing pre-
ferences for optimal solution, in terms of a measure of belie

3.1.3 Bayesian problem solving

In Bayesian problem solving, the languafés chosen to be probability theory. We
start with a problem descriptioR = (®, 3, M, a, o) where® contains assignments
to random variables of the fordl =z for non-temporal problems, and assignments
to random processes of the fori(t) = « for temporal problems. The modé
represents a probability model that allows the associaifcam posterior probability
P(s | a,0) € [0,1] with any problem solutiors C X, expressing our degree of
belief ins givenactionsa and observations. Then, to say that a problem solution is
possible, is equivalent to stating th@ts | a,o) > 0.

Bayesian problem solving gives us a stronger optimalityedon than logical
problem solving. In a truly Bayesian setting, we would espra problem solution
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as a posterior distribution over C X, but if we are forced to choose a particular
solutions C X then Bayesian problem solving dictates that we should usenibst
probable explanation (MPE) (or maximum a posteriori (MARpdthesis in case of
incomplete evidence) as our optimal problem solution. TH#E\riterion states that
out of all the world models consistent with the evidence, weutd choose the one
with highest overall probability (Pearl, 1988):

s* = argmax P(s | a,0).
S
Using the MPE criterion, we define an optimal problem soluts follows:
MUaUsFo&s=s"

wheres* is an MPE problem solution. For the example of Section 3\d&would
choose the configuration &f = {D; = d;, Dy = da} for which P(s | f) is maxi-
mal. Note that the minimality criterion, which was used asadditional constraint
in Section 3.1.2, is implied by Bayesian problem solvingesiiit follows from the
rules of probability theory thaP(x | y) > P(x' | y) if x C x/. Still, Bayesian
problem solving may lead to non-optimal behavior in case mresesses payoff in-
formation for the different solutions. For example, if maghosingD,, leads to more
negative consequences than misdiagnogingsuch as higher death risk), we may
still be inclined to diagnosés,, even if it holds that?(D; =yes D, =no | f) >
P(Dy=no, Dy =yes| f). We handle this with decision-theoretic problem solving,
as discussed in the next section.

3.1.4 Decision-theoretic problem solving

Decision-theoretic problem solving, where the languége decision-theory, sub-
sumes Bayesian problem solving and dictates that, in treepoe of payoff informa-
tion, an optimal problem solution is given by the maximumemted utility (MEU)
criterion (Von Neumann and Morgenstern, 1947). The MEl&donh represents pay-
off information in the form of utilitiesU (x) that express the reward gained (or cost
experienced) for different solutions, and states that &st golution is the one which
maximizes reward (or minimizes cost):

s* = arg msaxzx: U(x)P(x | a,0).

for x compatible witha, o, ands. Using the MEU criterion, we define an optimal
problem solution as follows:

MUaUskFo&es=s"
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wheres* is a MEU problem solution. Returning to the diseases and rgediof
Section 3.1.2, suppose we have

P(Dy=yes Dy=no| f)
P(Dy=no, Dy=yes| f)

099 U(Dy=yesDy=no) =1
0.01 U(Dy=no,Dy=yesy = 100

Then, we would choosé, as our diagnosis, even though it is not the MPE problem
solution. Note that in case we have no payoff informationfartilities are equal
for all solutions then decision-theoretic problem solviregluces to Bayesian pro-
blem solving. If, additionally, uncertainty does not plasoke then decision-theoretic
problem solving reduces to logical problem solving.

3.2 Bayesian network designs for clinical tasks

In Section 3.1, we have shown how clinical tasks can be sakggty different pro-
blem solving strategies, but we have not yet addressed tipegies of the modeM
that is used for problem solving. In this section, we willdgeoon decision-theoretic
problem solving (with Bayesian and logical problem solvagyspecial cases), and
show howM can be described in terms of particular Bayesian networigdesAs
before, we distinguish non-temporal and temporal probleivirsy.

3.2.1 Non-temporal problem solving with Bayesian networks

Let X be a set of random variables, representing relevant donaiables: A
Bayesian networKG, P) consists of an acyclic directed graphthat represents the
independence structure between domain variables andtajoipability distribution
(JPD)P for random variables iX. A Bayesian network can often represent the JPD
compactly, sincés factorizes the JPD according to:

P(X) = [] P(X | 7(x)) (3.)
XeX

wheren(X) denotes the parents of in G. This factorization generally reduces
the number of parameters that need to be estimated and ditowsore efficient
probabilistic inference.

If a Bayesian network is used for the purpose of non-tempmaiblem solving,
then the aim is to define a JPD for variablesXnC ¢/ U A U O U %, where pro-
babilistic independence between domain variables is nredd®} the absence of arcs
in G. The design of a Bayesian network is then determined in pa(tLpthe na-
ture of the clinical task, (2) the selected clinical catégmrand (3) independence
relations between clinical categories that are assumealtb bror example, if the

!Decisions and utility functions can be transformed intcd@m variables when required (Cooper,
1988; Shachter and Peot, 1992).
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task is (non-temporal) test selection, then we need to septeat least the solutions
> C Tests and a physician modeW1® which specifies how tests are selected. More
complex designs may distinguish more clinical categoiexrporate more domain
variables, and/or use less restrictive independence ggguns at the level of clinical
categories and/or domain variables. For a real-world @dinproblem, choosing the
right design requires finding a balance between many contstravhich allows for
the easy specification of few parameters at the expense aflrerpressiveness, and
few constraints, which allows for an expressive model atekgense of the more
difficult specification of many parameters.

A rigorous restriction is to disregard hidden variables antions and to focus
solely on how a solutior$ is influenced by a set of observatiofs There are two
common approaches to the implementation of this restrictis shown in Figs. 3.2
and 3.3.

Figure 3.2: A discriminative model.

The discriminative model in Fig. 3.2 predicts the staté directly from the states
of O = {Oy,...,0,} through the associated conditional probability distiinut
P(S | O). For discrete random variables, the number of parametatsnéed to
be estimated for this model, equé|S:s| — 1) - [\, |0, . This normally remains
prohibitive in practice, since the number of observatiensnd/or the state-spaces
Qp, andQ2g can be large. One way to solve this problem, is to constraridim of
P(S | O). If, for instance, it is assumed that the influences of olz&msO; on
the outcomeS combine linearly, then we can use a special form such as ftreao
regression model:

eajl (01)+"'+a]’n(0n)

z;n—l eak1(01)++akn(on) *

P(S=5;]0=0)=

For continuous observations with;(o;) = «;; - 0; and a binary valued outcome
variableS, this model reduces to the well-known logistic regressiadet, which is
used extensively in medicine. Another approach that caimstthe form of?(S | O)
would be to assume that observations act independently antdine deterministi-
cally, as is the topic of Chapter 4.

The generative model of Fig. 3.3 takes a different approadiead of constrai-
ning the form of P(S | O), it uses Bayes’ theorem together with additional indepen-
dence assumptions, in order to make the computatiaR(6f | O) feasible. Recall
that according to Bayes’ theorem, it holds that

P(S5|0)x P(S)P(O]S).
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Figure 3.3: A generative model.

By introducing the assumption that observatieghsD’ € O, O # O’ are conditio-
nally independent given the outcome, we arrive at the géamermodel of Fig. 3.3,
with associated conditional probability distribution

P(S10)x P(S) [[ P(O]S). (3.2)
0e€0

Since the generative model assumes independence of diises\given the outcome,

it is known as thenaive Bayes model. It has the advantage that it only requires the
estimation of Qs — 14> 5o (10| —1)-|Q2s| parameters. De Dombal’s system for
the diagnosis of acute abdominal pain employed the naive8model and was one

of the first successful implementations of Bayesian prdivaliheory in medicine

(de Dombal et al., 1972).

Figure 3.4: The QMR-DT system is a bipartite graph, modeling the astiocidoetween
disordersD; and findingsF;.

A generalization of the naive Bayes model to multiple classables has been
used in the definition of QMR-DT (Shwe et al., 1991). It is a Bsign reformulation
of the Internist-1/QMR expert-system for differential gisis in internal medicine
(Miller and Pople, 1982; Miller et al., 1986) and is shown ig B.4. The graph is
constrained to be a bipartite graph relating disordgrésuch that: = Disorders) and
findings F; (such thatD = Findings). Note that additional independence assumptions
are defined at the level of clinical categories, since QMR&33%umes that findings
are conditionally independent given the disorders, asemtive Bayes model.

Promedas (Kappen and Neijt, 2002) covers a large diagnesgtertoire of inter-
nal medicine and extends the QMR-DT architecture by definsigfactors?;, that
condition the occurrence of disorders (such at Risk factors U Findings). Addi-
tionally, disorders may condition other disorders sin@dbcurrence of one disorder
may influence the occurrence of another disorder. Note tiditianal independence
assumptions are again defined at the level of clinical caitegjcsince risk factors are
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Figure 3.5: Promedas models associations between tigksdisordersD;, and findingsF;.

marginally independent and findings are conditionally pefedent given the disor-
ders (Fig. 3.5).

Figure 3.6: Pathfinder consists of a disorder nalecontaining over 60 mutually-exclusive
disorders that condition findings,, . . ., F;,, with m > 130.

The assumption of independence between observations tiieenutcome that
is made by the above structures is often unrealistic and raliegnative structures
therefore focus on lifting the independence assumptiorthehaive Bayes model
(Spiegelhalter and Knill-Jones, 1984). Pathfinder was dmiesofirst large graphical
models for medical decision support (Heckerman and Nathw&92a,b) and does
not consider findings to be conditionally independent gitles disorder, although
it does assume that disorders are mutually exclusive (F&). Pathfinder is used
for the diagnosis of more than 60 lymph node disorders, usioge than 130 mi-
croscopic, clinical, laboratory, immunological, and nwlkar-biologic features. Its
commercialization, known as IntelliPath, has been usedhygipians, both in prac-
tice and in education (Heckerman, 1990).

Even though Bayesian networks that are based on restrittettuises may per-
form well in clinical tasks such as differential diagnogtsy often make unrealistic
assumptions which affects both the accuracy of computetépos probability dis-
tributions and the ability to understand how random vaeaslihteract in the domain.
The developers of QMR-DT remark, for instance, that pertoroe suffered from
the lack of anatomical knowledge, the absence of the repiasen of intermedi-
ate pathophysiological states, and the lack of dependeheiveen diseases (Shwe
et al., 1991). In practice, one often needs detailed infiomabout the causal me-
chanisms that are responsible for observed findings. Thefuseisality as a guiding
principle when building a Bayesian network for clinical dgon support is advan-
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tageous, since knowledge concerning pathophysiology laméftect of treatment is
normally described in the medical literature in terms ofssmuand effects (Lucas,
1995). This has been used as a modeling strategy in some ehthemedical ex-
pert systems (Kulikowski and Weiss, 1982; Patil et al., 198iler and Pople, 1982;
Pople, 1982), and a number of Bayesian networks have rgdesth developed that
capture the causal structure of restricted medical dontaimarious degrees of rea-
lism (e.g., (Andreassen et al., 1987; Diez et al., 1997;rKhtet al., 1997; Wasyluk
etal., 2001; Lacave and Diez, 2003; van der Gaag et al.,)p0D&usal models allow
for an accurate representation of domain knowledge, andfatslitate the explana-
tion of drawn conclusions, which may increase the acceptahdecision support in
medicine, both by the physician and by the patient (Teactdadltliffe, 1984; Suer-
mondt and Cooper, 1993; Lacave and Diez, 2002). As our sgau about decision-
theoretic problem solving suggests, even if systems su@ivR-DT would be capa-
ble of estimating the posterior probability of disease gifiadings with a reasonable
accuracy, then, in general, this is insufficient for guidireatment, since clinical de-
cision support often requires the suggestion of apprap@ation (Long, 1996). In
other words, automatically obtaining a differential diagis is beneficial in the sense
that the physician is less likely to misdiagnose, but dog¢saleays give insight into
the optimal treatment given the differential diagnosisné it is often necessary to
represent decision-making as well.
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Figure 3.7: A causal model for prognosis of non-Hodgkin lymphoma.
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The Bayesian network in Fig. 3.7 is an example of a non-teaifayesian net-
work for prognosis of non-Hodgkin lymphoma that incorpesatausal knowledge,
with arc orientation denoting the flow from causes to effdtiscas et al., 1998).

It depicts for instance thajeneral-health-status is influenced byage and shows
thatbulky disease is determined byge, the tumor’sclinical-stage, and the tumor’s
histological-classification. It also incorporates decision making through the repre-
sentation of the influence of treatment variabte&t-schedule (chemotherapy and
radiotherapy schedule) arstirgery on prognosis. Note that the Bayesian network
does not represent the decision making strategy throughdelmd?, but rather re-
quires the physician to impose a strategy through the $steof actions in4. A
prognosis is performed by selecting actions and obsengtighich gives a posterior
distribution on the outcom®-year resuilt.

3.2.2 Temporal problem solving with Bayesian networks

If time is involved, domain variables are taken to be randoot@sses, wher# (t)

denotes a random proce&sat timet € 7. A Bayesian networKG, P) defined for
a setX of random processes, is calledignamic Bayesian network (DBNyhereGG

factorizes the JPD according to:

PX)= [[ PX@® |I=(X(®). (3.3)
X(t)exX

Since a DBN may be defined for a possibly infinite sequencenwési € 7', of-
ten, a number of standard assumptions are made. It is natuassume that influ-
ences between random processes cannot be oriented agaimstaw of time; i.e.,
(X(t),Y(u) ¢ AG) if u < twith ¢t,u € T. We also find it useful to focus on
discrete time{tg,t1,...,tn} C Ré{ with ¢;4.1 > t; for 0 < i < h, representing
the decision moments for the clinical task. Hetgdenotes thenitial time, such
as for instance the time of birth or the time of admission e tlospital, and;,
denotes a (possibly countably infiniteprizon which can be a fixed period (e.g.,
five years after admission) or an as yet undefined time of déartimally represen-
ting an infinite-horizon process). We also define a fikgdrval §; = ¢;,.1 — ¢; for
t;,t;11 € T, which is chosen for the problem at hand. For example, in chs®ni-
toring this period could be measured in seconds, hours,lmapat even years. Given
an infinite-horizon process, specification of a discraetetiDBN may still be pro-
hibitive. In order to allow for a compact specification thidaving assumptions are
commonly made:

e The DBN is(first-order) Markovian
X(t+1) LpX(t—1) | X(1)

such that the future is independent of the past given theeptes
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e The DBN istime-invariant
— The same independence relations hold at each point in time:
Ut) LpV(u) | W(s) < U(t+c) LpV(u+c) | W(s+c)
forU,V, W C X andt, u, s, t+c,u+c, s+c € T. |.e., domain structure

is fixed.

— The model ishomogeneoysuch that
P(U(t+c) | V(t) = P(U{ +¢) | V(t))

for U,V C X andt,t',t +¢,t' +c € T. l.e., transition probabilities are
fixed.

Given these assumptions, the control structure of Fig.&1lbe completely specified
by means of grior model 5, representing the situatioR(X(¢()), and atransition
modelB;, representing the change in st&é€X(¢) | X(¢-1)) fort > to,t € T, that
takes place by moving forward in discrete time until the bamit;, is reached. The
pair (By, B;) is often used in the formulation of a dynamic Bayesian netwbDrean
and Kanazawa, 1989).

" health L»{ health | | health !

_____ I _————

:/disease\:—>{ disease :/disease :/disease :—>| disease
(@) (b) (©)

Figure 3.8: Three transition models foralth anddisease, where dashed objects represent the
situation at timg — 1, and solid objects represent the situation at ttm8olid arcs between
objects denote possible dependence between the randablearihat constitute the objects,
and the absence of arcs denotes a statement of (conditindefjendence.

AN

There are multiple ways to indicate (in)dependence betwesgiom variables for
a transition model. Consider for instance the wmaglth is influenced by alisease
in Fig. 3.8. Figure 3.8 (a) depicts an immediate influenceliséase on health,
which has the advantage thaalth can be predicted from the disease status, without
taking into account temporal interactions. Figure 3.8 @pidts a lagged influence
of disease on health. This has the advantage that futimealth is predicted from the
current disease status, which can be more natural to thegmys Figure 3.8 (c)
depicts the combined influence of palitease and presentiisease on health, and
provides the most precise representation.
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Example 3.1. Suppose that the disease is present at tirheand absent at time
t. In case of Fig. 3.8 (a) we computg,(health(t) | disease(t) = absent
health(¢-1)), whereas for Fig. 3.8 (b) we compuf@ (health(¢) | disease(t-1) =
presenthealth(¢-1)). It is likely that the model of Fig. 3.8 (a) overestimates gati
health since is does not take into account that the patiesistiladiseased at the pre-
vious point in time, whereas it is likely that the model of F&8 (a) underestimates
patient health since is does not take into account that thenpas cured at this point
in time. In contrast, Fig. 3.8 (c) may take these effects axtoount, by represen-
ting P.(health(t) | disease(t),disease(t-1),health(¢-1)) as a weighted average of
P, andP,. Note that, if disease progression is sufficiently slownttiee quality of
the approximations would increase@slecreases.

Once a transition model is completed, the prior model needset specified.
In the prior model, we use variables(0) for all variablesX (¢) in the transition
model. Furthermore, since direct influences should holdhedrtitial time as well,
arcs (X (0),Y(0)) are added to the prior model for each &X(¢),Y (¢)) in the
transition model. Finally, for each variablé that has an ar¢X (¢-1), Y (¢)) in the
transition model, we determine whether there are variablés), ..., Z;(0) in the
prior model that condition the distribution faf(0). The arcZ;(0),Y (0)) do not
necessarily reflect causation but rather associationseleetwandom variables that
have arisen due to causal interactions in the past. AlgoriBal summarizes the
strategy for constructing a prior model.

Algorithm 3.1 Construction of a prior model.

1. Add a variableX (0) to the prior modelB, for each variableX (¢) in the transition
modelB,.

2. Add an ard X (0),Y (0)) to the prior modeB3, for each ard X (¢),Y(¢)) in the tran-
sition models;.

3. For all variabled” with arcs(X (¢-1), Y (¢)) in the transition modeB, such thatX #
Y, determine if there are variabl&s(0) in the prior model3, that condition the prior
distribution ofY(0) and add arc$Z;(0), Y (0)) to Bo.

The temporal nature of a problem is often essential to @iniecision-making
(Augusto, 2005). During diagnosis, to know the temporaleorand duration of
symptoms can influence the diagnostic conclusions, thetgmteof treatments or
tests may depend on the time at which the selection is madmgdorognosis, the
disease dynamics is described as the unfolding of eventdiowe, and during mon-
itoring, we need to track the patient’s pathophysiologatatus over time. The bene-
fits of temporal modeling of clinical problems have beconeaciin practice, as il-
lustrated by the work of Long (Long, 1996), who used a reprizdg®n based on
Bayesian networks and time intervals (Allen, 1984) for diaging heart disease,
which eliminated errors that were made by a non-temporalaindgimilarly, it was
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found in (Charitos et al., 2005) that a redefinition of a stBiyesian network for the
diagnosis of ventilator-associated pneumonia (VAP) im&of a dynamic Bayesian
network that allows for temporal reasoning, increasedribatic performance. Some
other examples of dynamic Bayesian networks in medicinepegsented in Refs.
(Dagum and Galper, 1993; Andreassen et al., 1994; Hernaralg £996).
Once the Bayesian network design has been chosen, we preibetie actual

construction of the Bayesian network. In the next sectiomdescribe how Bayesian
networks for clinical decision support are constructedrarcpice.

3.3 Bayesian network construction

Bayesian network construction may be distinguished inttalsée definition, struc-
ture specification, factor association, and parametemasitin. In this section, these
basic steps will be discussed.

3.3.1 Variable definition

Variable definition refers to the identification of domairrighles, and the determi-
nation of theirname category type andstates The name of a variable should be
unambiguous, intuitive to the domain expert(s), and confiog to domain termi-
nology. The category of the variable can be distinguishéadl ¢ghance, decision, or
utility. The type of the variable is either discrete or canthus, and if it is discrete,
then the mutually exclusive states of the variable shoulddtermined. With respect
to determining which variables are relevant, it is usefubte into account a number
of heuristics. Itis good practice to start with a simpleialitnodel and to refine it by
gradually introducing additional variables in order of ionfance until the model is
accurate enough. Too complex models will result in the egion of huge numbers
of probabilities during parameter estimation and oftencabess how the model ope-
rates (Druzdzel et al., 1999). One way to quickly zoom in demant variables is the
overkill test(Abramson and Ng, 1993), which aims to identify questiorat #ould
get the expert to provide all relevant information and sepgrall irrelevant informa-
tion. Once variables and states are identified, they shaadd theclarity test i.e.,

it should be explicitly questioned whether the definitiorprscise enough to allow
for later estimation of (conditional) probabilities (Ddeel et al., 1999). One way
to ensure the definition of quantifiable variables is to useepts that follow formal
domain standards.

As the number of domain variables grows, the graphical msttelcture can
become overwhelmingly complex. This problem has been razed by the re-
search community and various approaches have been useduerthis comple-
xity. Object-oriented Bayesian networ(@OBNSs) (Koller and Pfeffer, 1997) use an
object-oriented approach analogous to the object-oideapproach in software en-
gineering. An object in a Bayesian network is associatett wihetwork fragment
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that represents a collection of attributes that may therasdbe defined in terms of
such fragments. A class in a Bayesian network is then simfriggment that is not
associated with an object. This object-oriented approastskveral advantages:

e Generalization Classes allow network fragments to be reused for multiple
objects.

e Encapsulation The internal details of a class are encapsulated withih tha
class.

e Reusability The inheritance hierarchy over classes provides for anherar-
chy over objects that supports reusability.

e Modularization The ability to enclose objects within objects allows foraatp
of hierarchy over objects.

Similar ideas of object-orientation can be found in the worknetwork fragments
as defined by Laskey and Mahoney (Laskey and Mahoney, 199@g. didference
between OOBNs and network fragments is the way in which thebooation of
Bayesian network structures is handled. In the former Gassmdom variable always
belongs to one particular object, and objects are combigadkefining interfaces to
variables internal to an object. In the latter case, a ranglariable may belong
to multiple network fragments, where fragments are contbing defining suitable
combination functions that combine the distributions fandom variables that be-
long to multiple fragments. The idea of modularization hs® deen exploited in
work on hierarchical model-based diagnosis (Srinivas4)19Blere, a top-down ap-
proach of model construction is advocated where increbsithgtailed subsystems
are added to a hierarchical structure. This makes it pasgilfbbcus on the global as-
pects of model architecture in early stages of model cootstrudeferring the mode-
ling of details to later stages. In our research, we havedalnject-oriented Bayesian
networks particularly useful in order to structure our dommaodels, as demonstrated
by Fig. A.2 in Appendix A.

3.3.2 Structure specification

The construction of a Bayesian network for clinical deaissupport is a difficult
undertaking, and the most important directive iskeep it simple Simple models
can gradually be extended to more complex models by additagl tiesmall domain
fragments and evaluating the functionality of this fragimestarting with complex
models on the other hand makes it virtually impossible tduata functionality, since
distant variables may interact in a complex way. A usefuttisig. point when con-
structing a model for clinical decision support, is to firshstruct the patient model,
which represents disease progressigimout interventionsand to subsequently con-
struct the physician model, which represents the interwestmade by the decision
maker.
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If a DBN is used, then we also distinguish the prior model aaddition model,
and need to choose an initial time, an interval, and a horiaotthe model. These
choices should be motivated both by the properties of theadloifi.e., we need to
be able to model the processes on the time-scale in which eviei@rested) and by
considerations with regard to available domain knowledge, @omain experts need
to be able to express the knowledge that is required to speéngfmodel).

Refining a patient model M™

One way to refine the structure of a patient model is by meaegtehsionwhich is
the notion that we (partially) explain the influence of a ahte X on another variable
Y by introducing an intermediate variable such that( X, Z) and (Z,Y") are arcs
in the graph (Fig. 3.9). For instance, suppose that the sksem are dealing with
in Fig. 3.8 is acquired immuno-deficiency syndrome (AIDShem, assuming that
health does not influence the disease, we might introdugaumonia as a compli-
cation, that partially explains the influence betwe&ls andhealth. If the influence
is totally explained, then the original direct influence gllobe removed from the
model. If the influence of multiple direct parerXsof Y onY are totally explained
by Z then extension is also known as parent divorcing (Oleseh, ét%89).
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Figure 3.9: Model refinement by means of extension, where the arc betaieéeandhealth
may be removed ifineumonia fully explains their dependence.

Another way to refine the model is by meansdetompositionwhich is the no-
tion that we decompose a variableinto constituentsXy, ..., X,,. For instance, the
complicationpneumonia of Fig. 3.9 could be decomposed into the varialhisobe
andlocation, since the cause of infection (microbe), as well as the iogaif infec-
tion in the lungs, are important components of pneumonig. (FiL0).

A third way to refine a model istate revelationwhich adds observable vari-
ablesO € O to the model, that (partially) reveals the state of unolmsalesvariables.
Consider for instance the further refinemenpogéumonia in Fig. 3.11.

Extension, decomposition, and state revelation are mesttwhcrementally add
random variables to the model. Once sufficient detail has lagleled, it becomes
useful to focus ortontext-specific independencigmt may hold between the states
of random variables (Boutilier et al., 1996b).
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Figure 3.11: Pneumonia is characterized by the unobservable variatdese andiocation,
but the state may be partially revealed by analyzisguaim sample.

Definition 3.5. LetU,V, W C X be disjoint subsets of a set of random variables
X, and let¢ be a Boolean formula over variables W, where literals are of the
form (W =w) or =(W =w). Then,U is said to becontextually independerf V
givenW and ¢, denoted byU 1L p V | W ¢, iff

P(U|V,W,¢)=P(U|W,0¢)

wheneverP(V, W, ¢) > 0.

Figure 3.12: A probability tree forP(Y | U, V, W, Z) with probabilitiespy, . . . , ps.

As an example of context-specific independence, considecahditional pro-
bability distribution of P(Y | U, V, W, Z). If variables are binary then we need to
specify 25 conditional probabilities. However, it may well be the cdisat a con-
siderable amount of structure is present in the table, whath be represented in
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terms of a probability tree (Fig. 3.12) that expresses thieviing context-specific
independencies:

L d YJ—LP{V7W} | {U,Z},u/\z
o« Y ULp{W,Z}| {U,V}h~unv
o Y UpZ|{UV,W}-uA-vAw

Using these context-specific independencies, we need tihgjpast the six proba-
bilities shown in Fig. 3.12, which is a substantial improwst Context-specific
independence can be represented within a Bayesian netwankehns of a recur-
sive decomposition using multiplexer nodes (Boutilierlet E996b) or by means of
an additive factorization that employs hidden variablean(®&erven, 2006). These
representations not only allow for a more compact spedibicdiut additionally for
more efficient probabilistic inference.

Model refinement should always be well-motivated, wher@&wvaasons are (1)
when the refinement has a significant impact on the postersbritaitions of our
query variable(s), (2) when the refinement alters modetsitra in such a way that
it increases model intelligibility, or (3) when the refineméads to a more compact
factorization of the JPD. Algorithm 3.2 summarizes thetstyg for constructing a
transition model.

Algorithm 3.2 Construction of a Bayesian network.
1. Start with a basic model that includes the desired salatioX.

2. Try to refine the model by decomposing a varialilénto constituentsy,, ..., X,,.

3. Tryto extend the model by adding a variaBlesuch that for allX € X, arcs(X,Y) €
A(G) are (partially) explained byX, Z) and(Z,Y) in A(G).

4. Try to add observable variablésc O to the model that (partially) reveal the state of
unobserved variables i U U.

5. While the model is incomplete, return to step 2.

6. Trytoreduce the number of free parameters by taking gbsfeecific independencies
into account.

Specifying a physician model\M?

Once a patient model has been completed, we proceed witpéo#isation of deci-
sion making by the physician. The construction of a physicreodel should always
start with the definition of the treatment protocol that isdig clinical practice. The
treatment protocol describes exactly which treatment @ieg in which situation,
and if dependencies between treatments exist. Treatmeytderepresented in two
alternative ways:
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e One random variable for each treatméntwhere() x represents the different
possibilities for.X, and whereX is conditioned on all its required precondi-
tions.

e One random variabl&, whose states represent pthssiblemutually exclu-
sive treatment combinations, and whe¥eis conditioned on all the required
preconditions of every treatment combination.

For example, for pneumonia, we may choose to represent ewitiiotic as a
separate random variable, or to represent each possilidéotintcombination as that
state of a random variable. Assuming that we decide for teolation, disregarding
patient characteristics, a protocol may be determined &gtitucture in Fig. 3.13.

microbe health location

antibiotics

Figure 3.13: Representation of a protocol for treatment of pneumonia.

Itis assumed in the above that the statemiafobe, health, andlocation are fully
observable, since otherwise, the protocol is representedsktochastic policy, which
may lead to arbitrarily poor results (Singh et al., 1994).thi state of a relevant
variable is unobservable then we condition instead on éatliobservations of these
states; in our case, by explicitly representing ¢hetum history, as in Fig. 3.14.

( sputum ] ( health ]
_________ 1 '

! sputum history :4>(sputum history)—» antibiotics

Figure 3.14: An alternative representation of a protocol for treatmdmr@umonia.

For more elaborate treatments, such as the prolonged adration of medica-
tion, modeling of the protocol can quickly become more carplFor example, if
treatments can only be started when other treatments hded, fehen this failure
should be represented explicitly in the model, and if treatts can only be given
for a maximum amount of time, then the treatment history khbacome part of the
model.

The effect of treatment can often be distinguished into atipeseffect on the
target of treatment, and a negative effect on patient heBltjure 3.15 depicts these
effects for antibiotics treatment. Once disease prograssirepresented in enough
detail by the patient model, and the treatment protocol gurad by the physician
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| antibiotics | >~ microbe

" health | =  health

Figure 3.15: Positive and negative effects of antibiotics treatment.

model, we have completed the specification of a Bayesianamnktstructure for cli-
nical decision support.

3.3.3 Factor association

Factor association refers to the association of a factdr @ath random variable that
defines the functional form of how the outcome of the randorialsée depends on its
parent variables. This is an important step since it detegmihe number of parame-
ters that need to be estimated subsequently. We restridigbession to discrete ran-
dom variables and assume that continuous quantities harediscretized a priori.
For discrete random variables, a factor can be thought of(esralitional) probabi-
lity table (CPT), which is a mapping: Qy xx — [0,1] suchthad_, ~(y,x) =1,
for a random variabl@ and a (possibly empty) set of pareiXs

( /\
M;

AN J/

Figure 3.16: A causal interaction model, where causgs1 < j < n may take part in mul-
tiple mechanisms that lead to the effect. Each mechabhiml < ¢ < k has an associated
intermediate variabl&;, that partially determines the effektthrough a deterministic func-
tion f: Ox — Qg. In an object-oriented approach, the internal details @f heechanisms
interact to produce the effect can be private to an objechéafaken for other objects.

One way to reduce the size of this mapping is to determine haseas (parent
variables) interact in order to produce the effect (childafsle). Meek and Hecker-
man formalized this idea in terms o&usal interaction model@eek and Hecker-
man, 1997), where a cause may be associated with severahnigeis and multiple
causes may be associated with a single mechanism, and ahdti@rministically
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using a deterministic interaction functigh(Fig. 3.16). Although causal interaction
models allow arbitrarily complex mechanisms and inteaacfiunctions, the most
widely employed causal interaction models aaeisal independence modelshich
assume that mechanisnM; are given by the intermediate variablég, and for

which it holds that: .
Pe|c) = Z I_IP(:IJZ | ¢)
x: f(x)=ei=1

The theory of causal independence adopts specific indepeadessumptions to
model the interactions between a set of cause variablesraeffext variable, and
using this approach, the number of parameters that need ¢stlmeated decreases
from exponential to linear in the number of variables. Thestnidely employed
causal independence model is timsy-maxmodel, which specializes to tm®isy-or
model for binary random variables (Good, 1983; Pearl, 1988rion, 1989; Diez,
1993). This model expresses that the presence of one or rmose¥’,...,C,, is
sufficient to give rise to the occurrence of an effégtand has been used for instance
in the QMR-DT system, and the Promedas system. As an exarmglenoisy-or
model, consider a diseagethat may have multiple caus€s= {C1,...,C,}, and
where state spaces are given{lsue, false}. Then

P(D =true| C) =1 - [[ P(X; = false | Cy)
=1

and requires the specificationdi instead oR” free parameters. Since itis often as-
sumed that absent causes do not contribute to the effechtama further reduction
to justn free parameters. Another frequently used Cl model isttisy-andmodel;

it expresses that all causes must be present in order toige/¢orthe effect. It has,
for example, been used to model the joint effect of antibfotin bacteria causing
ventilator-associated pneumonia in patients (Lucas €2@00).

3.3.4 Parameter estimation

Once factors have been attached, the final task is to estthefmrameters that com-
plete the distributions. One way to estimate parameters lisarn them from data.
However, in practice, datasets can be too small or of too goality to yield ac-
curate estimates for the desired quantities (Korver andagut993; Jensen, 1995).
Small datasets can be a consequence of the prohibitive abetstaining the data,
undisclosed data due to data privacy issues,data-poor domaina domain whose
properties forbid the accumulation of enough data. Thisnpheenon can be ob-
served, for instance, when the prevalence of a disease @fmig to model is low.
Data quality may be compromised in a number of ways such asngisalues, mea-
surement errors, selection effects, and data which is miefpiendently sampled and
identically distributed (i.i.d). An example of a violatiarf the i.i.d. assumption can
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be found in (Lucas, 2004), where the evolution of a treatnpeotocol introduces a
systematic bias in the data.

An alternative way to estimate parameters when data isrigakito acquire them
from available domain literature. Although much probaiiti information can be
obtained in this way, often the information is incompletey&izel et al., 1995). For
example, although the probability of a symptom in the presesf a disease is often
mentioned, the probability of a symptom in the absence ofaadie is not.

Finally, parameters may be estimated by eliciting them fexperts. This is a
subject that should be treated with care, where both stafigiSavage, 1971) and
psychological aspects (Kahneman et al., 1982; Baron, 1€882))Id be taken into ac-
count. The subject of probability elicitation is treateddetail in (O’'Hagan et al.,
2006; Jenkinson, 2005). In the context of expert systensgareh has focused on
the fast elicitation of many probabilities. Referenceddts, for instance, are very
time consuming and less appropriate due to the large nunfilparameters involved
(van der Gaag et al., 1999). A good strategy seems to be thbigethuse of lin-
guistic and numerical anchors (Renooij and Witteman, 196®)he assessment of
probabilities (Fig. 3.17).

ce[\rtain —100
(almost)

probable ——85
expected — 75
fifty-fity = ——50
uncertain ——25
improbable—— 15
almost

ﬁmpos iIble —— 0

Figure 3.17: Assessment of probabilities by means of linguistic and micakanchoring.

Other approaches to parameter estimation are the estimafialistributions
based on qualitative constraints (Feelders and van der,@@8a86) or the completion
of partially specified models based on maximum entropy asgus(Wiegerinck and
Heskes, 2001; Wiegerinck, 2005). A modeling strategy teahiich used in prac-
tice is to build the structural part of the underlying gragghimodel based on expert
knowledge and domain literature, whereas parameters aneagsd from statistical
data (Druzdzel and Diez, 2003).

With respect to decision making, we need to model how datssiofluence do-
main variables (being part 0¥1™), as well as how the decision making strategy is
influenced by domain variables (being part/of®). The strategy is often given by
some deterministic policy as is dictated for instance byinsdjuidelines. Stochas-
ticity in the policy can be useful in some cases, such as whetirhe of treatment is
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uncertain, when we choose randomly between treatmentsakathe same expected
utility, or when conditioning variables remain unmodel#dutilities that capture out-
come preference need to be assessed then we may resortdiomecialytical tech-
nigues such adirect scalingand thestandard reference gamb(&ox et al., 1988).
The robustness of the assessed probabilities and utidtiede determined by means
of sensitivity analysigMorgan and Henrion, 1990), which amounts to the systematic
variation of probabilities and an analysis of its effectdsidiscussed in the context
of Bayesian networks in (Coupé et al., 1999).

3.4 Summary

Bayesian network construction for clinical decision supp®a difficult task, espe-
cially if causality, decision making, and the dynamics ofralglem need to be taken
into account. To date, guidelines for the construction chdBayesian networks have
remained scarce, and the aim of this chapter is to contriloutieese guidelines. We
have described clinical tasks in terms of problem solvinghoes and discussed the
different design choices that can be made for Bayesian mk$ntbat are used for
clinical decision support. Subsequently, we have discufise steps that need to be
taken when constructing realistic Bayesian networks thpture disease dynamics in
terms of a patient model and a treatment protocol in terms@fament model. It is
hoped that this work aids the knowledge engineer who is fagtdthe construction
of a Bayesian network for clinical decision support.






Chapter 4

A Qualitative Characterization
of Causal Independence

In designing Bayesian networks, developers try to createliadirected graphs
that are as sparse as possible, as the size of a conditiatmlplity table is expo-
nential in the number of associated variables. Creatingsspgraphs not only saves
space, but may also speed up probabilistic inference. ttinfately, the creation of
sparse graphs for a given problem may not always be possiidsvever, by im-
posing extra independence assumptions, supplementesgiypsons of functional
dependence, it may be possible to reduce the number of ammadiprobabilities that
need to be assessed. The theorgaiisal independende especially suited for this
purpose (Heckerman and Breese, 1996).

The theory of causal independence adopts specific indepeadessumptions to
model the interactions between a set of cause variablesraaflext variable; using
this approach, the number of parameters that need to beatstindecreases from
exponential to linear in the number of variables. The noi&r@odel, that expresses
that the presence of one or more causes is sufficient to gieetoi the occurrence
of the effect, is an example of a causal independence modeigiwidely used in
practice (Good, 1983; Henrion, 1989; Diez, 1993). It hamnhesed in the QMR-DT
system, which includes knowledge of approximately 600adies and approximately
4000 findings (Shwe et al., 1991), the Promedas system, veimes to cover a large
diagnostic repertoire of internal medicine (Kappen andtN2002), and in DIAVAL,
an expert system for electrocardiography that uses a derai@n of the noisy OR
for non-binary random variables (Diez et al., 1997). Arotifrequently used causal
independence model is the noisy AND model; it expressesalhaauses must be
present in order to give rise to the effect. It has, for exanpken used to model
the joint effect of antibiotics on bacteria causing vemtiteassociated pneumonia in
patients (Lucas et al., 2000).

The noisy OR and noisy AND models are special cases of causependence
models based on Boolean functions; any ofthepossiblen-ary Boolean functions

This chapter is based on (van Gerven et al., 2005, 2006c).
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can be used to model deterministic interactions betweesecand effect variables.
Given the favorable properties of causal independence Imate unfortunate that
only very few of these are used in practice: only the mentdameisy OR and noisy
AND are popular amongst developers. This is caused by theHatit is often un-
clear with what behavior a particular causal independengdeins endowed when
choosing a particular Boolean function. In (Lucas, 2008 pinoblem was addressed
by exploiting qualitative probabilistic networKQPN) theory to characterize the be-
havior of causal independence models in termaftiencesandsynergiegWellman,
1990). Such a qualitative characterization may then be medtevith the behavior
that is dictated by the domain, as suggested in Figure 4.4 gUhlitative pattern as-
sociated with a particular causal independence modelnsetgraqualitative causal
pattern

Causal Derived Required .
L match? L Domain
Independende—»| qualitative |<«——| qualitative
. . . . Knowledge
Model interactions interactions
Figure 4.1: Comparing the observed qualitative behavior of a causapeddence model
with the desired qualitative behavior as specified by a dorespert.

P

The idea that QPN theory might be suitable for analyzing #teakior of causal
independence models was recognized by Wellman, who stags't.prototypical
patterns of systematic interaction might alleviate thedeur of specifying qualitative
synergies”’and” ...we should expect non-ambiguous synergy results fronoea
cal models because any representation that specifies-amy influence in terms
of O(n) parameters must employ some systematic assumption alieraciions”
(Wellman, 1990). However, (Lucas, 2005) offers the firsteymtic approach to
analyzing causal independence models in terms of QPN théldris was done in
particular for decomposable causal independence modelscausal independence
models which are characterized in terms of binary functiohbere are 16 binary
Boolean functions, which can be used to compose a subsetof Boolean func-
tion, and which can be classified in terms of presence or absafithe properties of
associativityandcommutativity The previously discussed noisy-OR model is based
on the Boolean OR, which is both commutative and associatilthough this offers
an analysis of a useful subset of Boolean functions, a gedeagacterization of the
behavior of Boolean functions is not provided by Ref. (Lyc05).

This chapter offers a substantial generalization of preshpopublished results as
it develops a general theory of qualitative causal pattefhs theory identifies:

1. The qualitative behavior that holds for a given causatjpethdence model.

2. Properties of causal independence models that hold gigemlitative specifi-
cation.
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The theory developed in this chapter is useful in Bayesiawaoré design, as it pro-
vides a tool for matching desired qualitative behavior afszd independence models
with the appropriate structural and quantitative pararsetd-urthermore, a more
widespread use of causal independence models in Bayediaorke will facilitate
the intelligibility of network behavior, allow the constiion of denser networks and
ease the estimation of network parameters.

The structure of this chapter is as follows. In Section 4.reuéew some neces-
sary preliminaries, drawing upon Bayesian network, caimsipendence and QPN
theory. Subsequently, we study some general propertiesusit independence mo-
dels in Section 4.2. These properties are then used tofigéimti qualitative behavior
for different Boolean functions in Section 4.3. Finally,$®ction 4.4 we round off
with a discussion of the obtained results.

4.1 Preliminaries

In this section we will subsequently discuss Bayesian nedsyaausal independence
models, the running example of this chapter, and QPN thediyoughout, it is
assumed that all random variables are binary. We will ide denoteX = T
(logical truth) andz to denoteX = L (logical falsehood). If the value of variablé

is either true of false, but unspecified, then this is indidaty X = z, or simply by
xZ.

4.1.1 Causal Independence Models

Causal independence is the notion that causes are indeygndentributing to the
occurrence of an effect through some pattern of interactiepresented as a set of
local conditional probability distributions of a Bayesiaptwork (Heckerman and
Breese, 1996). The associated Bayesian network structukepicted in Figure 4.2,
where variable€”;, indicate cause variabled/;, intermediate variables anfl is an
effect variable. LeB = {1, T}. We usec € B", possibly with a subscript, to
denote an element @™ for vectorsC = (C4,...,C,); similarly, we usem € B"
for elements ofM = (My,...,M,). These are calledonfigurations To reduce
the use of numeric indices, we associate with each causgbla€i’ an intermediate
variable M. The notion of causal independence is captured by the esqeint that
an intermediate variabl®/~ € M is dependent of cause varialileand independent
of the other cause variabl€3\ {C'}. According to the independence structure shown
in Figure 4.2, it holds that:

Ple|c) = ) Ple|m)P(m|c)

= > Ple|m) ] P(ii | &) (4.1)
m 1

1=
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An intermediate variablé/- can be interpreted as modulating the contribution of
a cause’' to the effectE and often specific assumptions are made about this con-
tribution. Here we formalize this by the notions @fnsequentialityand accounta-
bility. Consequentiality states that the truth of a cause variableases our belief
that the associated intermediate variable is true as welimglly, we require that
P(m¢ | ¢) > 0. Accountability states that the truth of an intermediatealsde
must imply the truth of its associated cause variable; filym& (mc | ¢) = 0. The
conditional probability distributionP(E | M) used in Eq. (4.1) is assumed to be
deterministic in causal independence models, and, thas)e#aken as representing
afunctionf: B" — B, such thatP(e | m) = 1if f(m) = T andP(e | m) =0
otherwise. A causal independence model, or CI model, is refimedd formally as
follows:

Definition 4.1. A causal independence models a tuple(C, M, E, f,P), where
C is a set ofcause variablesM is a set ofintermediate variablesE is an effect
variable f is aninteraction functionandP is a set{P(M¢ | C) | C € C} of
parameters, withi/o € M, for eachC € C and vice versa, such that:

Pelc) = Z 1_[P7m|cZ (4.2)

flm)=e i=1

By f(m) = e is denoted the situation where boffm) = T andE = T hold.
The probabilityP(m¢ | ¢) will often be abbreviated t&(m | ¢). In literature diffe-
rent interpretations of causal independence exist, ofteing the form of restrictions
on an interaction functiorf that underlies the model (Cozman, 2004; Heckerman
and Breese, 1996). Here, we assume that an interactioridargzn be any Boolean
function f : B" — B.

Figure 4.2: Causal independence model.

A causal independence model= (C,M, E, f,P) can act as the basis for the
specification of a Bayesian netwotk = (G, P), with ADG G = (V,E), as de-
picted in Figure 4.2, and joint probability distributia®, whereG respects all the
dependences represented by the joint probability digtabuP. The vertices in7
are given by

V=CUMU({E}
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such that the se®€, M and{ E'} are disjoint, and the arcs i@ are given by

In addition to the parametetB(M - | C) and the interaction functiorf, we also
need to specify a prior joint probability distributiad?(C) to obtain a complete spe-
cification of the Bayesian netwotR.

In the sequel, we will often use the notatiBrif] to refer to the probability dis-
tribution P(E | c); in this chapter it is assumed that both consequentiality s
countability hold. We can alternatively write Eq. (4.2) onsewhat generalized form
as:

(e c) Zf Pm|c)=3 f(m)[[P(ni|&), (4.3
m =1

where we make use of the analogy between Boolean algebrardindry arithmetic
by interpretingl asO and T asl, i.e., if f(m) = L this is interpreted ag(m) = 0,
and asf(m) = 1 otherwise (Birkhoff and Mac Lane, 1997). We will sometimes
employ functionsf that are not Boolean; even then Eq. (4.3) still applies, wher
P[f] (e | c¢) can be interpreted as the conditional expectatiori givenc. If fis a
constant and there are no cause variatilébenP|[f]| = f.

VPR
lliness Treatment 1 Treatment 2
(1) (1) (1)

Effectiveness 1
(E1)

Body failure Effectiveness 2
(B) (E2)

Survival

\ (5) )

Figure 4.3: A prognostic model of survival in serious illness, modelthg interaction be-
tween two drugs, expressed as a causal independence model.

As an example of a realistic causal independence model titldtewused to il-
lustrate the theory developed in this chapter, considecdiieal independence model
shown in Figure 4.3 that represents a piece of medical kruyelevith respect to the
prognosis of &erious illnesg/), such as malignant hypertension due to chronic kid-
ney infection, infectious hypertension for short, whictha&ndled by two alternative
treatmentsl’, an antihypertensive drug, add, rifampin (an antibiotic): The seri-
ousness of the infectious hypertension is reflected by ttiettiat we are interested

1The choice of these drugs was inspired by the death of SlebbtiSevic. It is hypothesized
that his death was due to the combined effect of an antihgpsitte drug, which was meant to re-
duce the height of his blood pressure, and the antibiotemin, which counteracted the effect of the
antihypertensive drug. Here, we abstract from the courseaits.
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in thesurvival(S) (e.g., within the next 5 years) of a patient with this illee$he re-
sulting causal independence model is shown in Figure 4.8 vahableB stands for
body failuredue to the illnessE; stands for theffectivenessf treatmentl’; and Fs

for the effectiveness of treatmet. If body failure occurs and the disease cause is
eradicated, it is assumed that the patient will survive. B\, if both treatment®;
andT; are effective then the patient will not survive due to theesgistic interaction
between the two treatments (rifampin in conjunction with amtihypertensive drug).
This can be expressed by means of a Boolean fundgtidefined by the following
Boolean expression:

§ = (—\Z; A=é1 A —|é2) V (él A —\é2) V (—|é1 A é2) (4.4)

(survival is equivalent to the absence of body failure odexation of the disease due
either treatmen or 75, but not both). In the sequel, we will use Boolean functions
and Boolean expressions interchangeably. The qualitag¥avior that arises from
this choice should then be in accordance with the domain letdye as stated above.

According to what has been said above, the Bayesian netwodehis an exam-
ple of a Cl model. It will be called thprognostic modein the following. Here, the
variablesI, T} andT; act as cause variables afd E; and E, are the intermediate
variables. For example, we have thiat= M;.

There are two main tasks in building a Cl model. The first isetedmine the
underlying interaction functiorf, in the example a Boolean function that is assumed
to model the interaction between the factors Body Faill#g Effectiveness 1K)
and Effectiveness 2H,) with respect to Survivaly), where S is the effect vari-
able. The second task is to estimate the paramétéfs | 1), P(E; | T1) and
P(E, | T»). Notice that just three conditional probabilities need ¢oelstimated, as
P(m¢ | ¢) is assumed to be zero for each cause varighleExamples of causal
independence models that model other real-world problemdseaploy alternative
interaction functions can be found in (Lucas, 2005).

4.1.2 Qualitative Probabilistic Networks

Recall that the aim of the research underlying this chaptertevdevelop a theory that
is able to assist Bayesian network developers in quangfayesian networks using
gualitative knowledge from a problem domain. Qualitativelyabilistic networks
are at the core of this theory. We will, therefore, briefly soamize the theory of
qualitative probabilistic networks.

Qualitative probabilistic networks (QPNs) were introddity Wellman as a qua-
litative abstraction of ordinary Bayesian networks (Welhm 1990). The relation-
ships between variables are described by the conceptigncesandsynergiesin
the following, let(G, P) be a Bayesian network, let, B, C' € X be binary random
variables and letA, C') and(B, C) be arcs inG.
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A qualitative influence expresses how the value of one viiatfluences the
probability of observing values for another variable.

Definition 4.2. LetX denoters(C) \ { A}. We say that there ispositive qualitative
influenceof A onC, written asdé 4. = +, if

da—c(x) = P(c|a,x) — P(c|a,x) >0

regardless of the configuratiat, with a strict inequality for at least one configuration
x. Negative(d4—.c = —) and zeroqualitative influencesé(s_.c = 0) are defined
analogously, replacing> by < and= respectively. If there are valuesandx’, such
that

P(c|a,x)— P(c|a,x)>0andP(c|a,x')— P(c|a,x') <0

then we say that the qualitative influencenign-monotonic denoted by .c =

~. If none of these cases hold, i.e., when there is incompidtemation about
the probability distribution, then we say that the qualitatinfluence ismbiguous
written asd4_.c = 7.

Example 4.1. In order to illustrate the qualitative concepts we assumdhi® mo-
ment that the exact probabilities associated with the pstimmodel are known. We
assumeP (b | i) = 0.9, P(e; | t1) = 0.3 andP(ez | t2) = 0.6. Hence, it is very
likely that a serious illness gives rise to body failure, asccurs in 90% of cases,
treatmentl is effective in 30% of the patients and treatm&htis effective in 60%
of the patients. What then, we might ask, is the qualitathvfuence of a serious
illness on the survival? This is computed as follows, whieeeBoolean functiorf is
defined by the Boolean expression (4.4):

5[%5({5172?2}) = P[f](s | i>£17£2)_P[f](8 |77£1>£2)
= P(e | t1)P(ey | t2)(P(b ] i) — P(b 7).
It follows that 5[_)5({t1,t2}) = —0.252, (5[_>5({t_1,t2}) = —0.36,

dr—s({t1,t2}) = —0.63 andd;_s({t1,t2}) = —0.9. In accordance with our ex-
pectations, serious illness appears to have a negativeituon survival.

An additive synergy expresses how the interaction betwaenvariables influ-
ences the probability of observing values for a third vdeab

Definition 4.3. LetX denoter(C)\ {4, B}. We say that there ispositive additive
synergyof A and B on C', written asé(4 g)—.c = +, if

6(A7B)—>C(X) :P(C|(I,b,X)+P(C | C_L,l_),X) —P(C|(_I,b,X) _P(C | CL,B,X) >0

regardless of the configuratior, with a strict inequality for at least one configura-
tion x. Negative, zero, non-monotonic and ambiguous additivergjgs are defined
analogous to qualitative influences.
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Example 4.2. With regard to the prognostic model, we might be interestethe
additive synergy between serious illness and treatriigmith respect to survival.
This is computed as follows, where again we employ Boolegnession (4.4):

Smy—s({f2}) = P

= P(ez | t2)(P(b|i)—1)(P(er | t1) — 1).

It follows thatd(; 1,)—s({t2}) = 0.108 andd(; 7,y_.s({t2}) = 0.27 such that illness
I and treatment’; have a positive additive synergy with respect to survival.

A product synergy expresses how upon observation of a conehilehof two ver-
tices, observing the value of one parent vertex influenaepitbbability of observing
a value for the other parent vertex. The original definitiba product synergy is as
follows (Henrion and Druzdzel, 1991).

Definition 4.4. LetX denoter(C)\ {A, B}. We say that there isositive product
synergyof A and B with regard to the valueé of variableC', written asé(éA By—C =
+, if

5(6A,B)—>C(X) = P(é | a, b,X)P(é ’ EL,B,X) - P(é ‘ a, b,X)P(é ’ a, b,X) >0

regardless of the configuratiat, with a strict inequality for at least one configuration
x. Itis assumed that the valueof variable C is either true or false. Negative, zero,
non-monotonic and ambiguous product synergies are agdinattanalogous to the
corresponding types of qualitative influences.

Example 4.3. With regard to the prognostic model, the product synergyveeh
treatments/; and7s; in the case of survival, is computed as follows.

8 m)—s({i}) = PUI(s |2, t1,82) - PLf](s
Plf1(s | 4,1, t2) - Pf](s
= —P(61 | tl)P(eg | tg)

It follows that 5(5T1_,T_2)—>5({7}) = 5(ST1,T2)—§S({i}) = 0.18 suph that trgatmenfﬁl
andT; have a positive product synergy with respect to survivals phsitive product
synergy arises due to the fact that in the case of survivapattient, it is more likely
that one of both treatments is given. The presence of Bpnd7, and the absence
of bothT; andT; will lead to patient death.

The following lemma states that for binary random varialtles product synergy
whenC' = 1 is partially determined by the associated additive synergy
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Lemma 4.1. For binary random variables, the product synergy whén= _L is
determined by the product synergy wheén= T and the additive synergy through
the following equality:

Proof.

5(EA,B)—>C(X) = P(é ‘ a, 67 X)P(é | a,b, X) - P(é ‘ a,l_),x)P(E ‘ a, b,X)

= (1-P(c|a,b,x))(1—P(c|a,b,x))—
(1= P(c| a,b,x)(1 - P(c|a,b,x))
= (P(c|a,b,x)P(c|a,bx)—P(c|a,bx)P(c|a,b,x))—
(P(c | @, b,x) + P(c| a,b,x) — P(c| a,b,x) — P(c| &,b,x))
= 0(a,p)—c(X) = 6(a,B)—c(x),
which completes the proof. O

Modifications to the definition of a product synergy have beeade after the
observation that Def. 4.4 is incomplete when parent vestin& are uninstantiated
(Druzdzel and Henrion, 1993b,a). In other words,

VulP(e | a,b,x)P(é | a,5,%) = P(é | a,b,x)P(¢ | a,b,x) <0

P(¢|a,b)P(¢|a,b) — P(¢|a,b)P(¢|a,b) <0].

This so-called type Il product synergy can be formalizedeinmis of the more
intuitive notion of anintercausal influenc¢Renooij, 2001).

Definition 4.5. Let X denoterg(B) U g (C) \ {A}. Then a variableA exhibits a
positive intercausal influenan B with regard to the valué if
P |a,é,x)—P(b|a,éx) >0,

regardless of the configuratior. Negative, zero, non-monotonic and ambiguous
intercausal influences are again defined analogous to theesponding types of qua-
litative influences.

For causal independence models, intercausal influenceslzethe dependence
between two causes andC’ when the value of the effect variable is observed. We,
therefore, compute

P(d e é,c0) — P(d | ¢,é,co) (4.5)

for all valuesc, of the cause€, = C\ {C,C’}. Using Bayes’ rule we obtain the
equal expression

P(é | G C,>CQ)P(C/ | G 02) _ P(é | c, C,>C2)P(C, | 2 C2) (4.6)
| . .

P(e|c c2) P(e]c co)



62 A Qualitative Characterization of Causal Independence

Note thatP (¢ | ¢,c2) = P(¢' | ¢,¢2) = P(¢), as cause variables are independent.
This leads to the following expression, whose sign equalsahFormula (4.6):

P(é | C, C2)P(é | Gy CI7C2) - P(é | ) C2)P(é | c, C,>C2)'

Rewriting P(é | ¢,co) asP(é | ¢, ,ea)P(d)+P(é | é,,c0)P(d) andP(é | ¢, c2)
asP(é|c,d,co)P(d)+ P(é] ¢, @, ca)P(¢), we obtain:

P(é | Cy clac2)P(é ‘ C, E,,Cg) - P(é | C, CI7C2)P(é ‘ 676/7(:2)

which is the definition of the product synergy, specializeccausal independence
models. Hence, for causal independence models over bimaigbles the product
synergy and intercausal influences are equivalent.

So far, we have assumed that the paramefrsa¢ | ¢) are known when quali-
tative properties are computed. However, the goal of thaptdr is to qualitatively
characterize causal independence models with varyingaictien functions. There-
fore, we abstract away from the parameters and derive tHeajive properties solely
by taking into account the properties of a causal indeperel@model’s interaction
function. In the next section, we infer some general progemf causal indepen-
dence models.

4.2 Properties of causal independence models

In this section, we will investigate general propertiestad probability distribution
P[f], where it is assumed thdt is a Boolean function. We will make use of the
analogy between Boolean algebra and ordinary arithmetintbypreting L as0 and

T asl in an arithmetic context (Birkhoff and Mac Lane, 1997), iderto allow for

a compact notation.

4.2.1 General properties

Lemma 4.2 states thdt[f] is bounded byf = L and f = T, which is a basic result
due to the first axiom of probability theory.

Lemma4.2.0 = P[L] < P[f] <P[T] = L.
The probabilityP [~ f] is determined through the following lemma.
Lemma4.3.P[~f] =1—P[f].

Proof.

P=fl(elc) = > (1-f(m)P(m|c)=) P(m|c)—) f(m)P(m]c)

m m m

which is equivalent td — P[f] (e | ). O



4.2 Properties of causal independence models 63

Sometimes, we will add two Boolean functions or compute tifferénce be-
tween two Boolean functions within a Cl model. In that casemina 4.2 does not
hold and the expression is not a proper probability distidouanymore, butanbe
interpreted as a conditional expectation.

Lemma4.4.Plaf + bf'] = aP[f] + bP[f'] for constants: andb.
Proof. This follows from the linearity property of conditional exgtation. O
P[f] can be bounded from below and above through the followinguaéties.

Corollary 1. P[f A f'] < P[f] < P[f V ] < P[f] + P[f'].

Proof.
PIfAFIele) = Xmf(m)f'(m)P(m|c)

< 2w f(m)P(m|c)
= Plfl(e]c)
< 2m(f(m) + f'(m) — f(m)f'(m)) P(m | c)
= PIfVfielc)
< Ym(f(m) + f'(m))P(m | c)
= Pfl(e|c)+PLf](e]c)

which completes the proof. O

4.2.2 Analytical tools

Next, we introduce a number of analytical tools that will ls=d in the subsequent
sections.

Definition 4.6. Let f : B™ — B be a Boolean function. Then, tharry of f, denoted
by fx,—z,, is defined as the functiofi,—;, : B"~! — B, such that

Ixi=a;(F1, 0 851, 85415, B0) = (R0, 8521, 85, Tj115 -, ).
Central to the analysis is the notion of a partial ordeon configurations oC and
M.

Definition 4.7. Letm = (1, ...,7y,),c = (¢1,...,¢,) € B™ be Booleam-tuples.
It holds thatm < ciff m; < ¢; forall ¢, 1 < i < n, wherel < T. The relation
m < c holds iffm < c andm # ¢ and the relatior>> is defined analogously.

Note that for any two tuplesn andc it holds that eitheim < ¢, m > ¢, m =c¢
or d¢: o < ¢ A 3dor: e > &L If the latter holds then we say thah and
c areincomparable By means of this ordering we are in a position to compare
configurationan of the intermediate variablegl with configurations: of the cause
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variablesC. In other words, we can compare intermediate states witbatatiates.

We have chosen for this partial order instead of for a lexiaphic order, as the order
of the cause and intermediate variables is not always impbrtBy means of the
partial order we can prove the following lemmas.

Lemma4.5 m=c= P(m|c) > 0.

Proof. If m = ¢, then

P(m|c) HPmc\c P(mc | &)™ HPmc\c
cec cec
due to the assumptions thB{m¢ | ¢) > 0 andP(m¢ | ¢) = 0. O

Lemma 4.5 states that the probability that an intermedittte $s equal to the
causal state is always larger than zero. Hence, the caasaladivays conveys infor-
mation about the actual state of the intermediate variables

Lemma4.6. P(m |c) >0 = c>m.

Proof. If ¢ 2 m then there is some cause variable= | and intermediate variable
Mec = T. SinceP(m¢ | ¢) = 0it holds thatP(m¢ | ¢) = 0. O

Lemma 4.6 follows from the notion of accountability and etathat the truth of
an intermediate variable always implies the truth of itoagded cause variable. It
is an important lemma, as it essentially shows that we caorégall configurations
m that are not smaller than or equal, or incomparable, to angieafigurationc.

The following lemmas demonstrate how a choice of the pararm@tfluences the
value of P(m | c).

Lemma4.7.VoP(mc | ¢) = 1 = VmxcP(m | ¢) = 0 for arbitrary c.
Proof. ChooseP(m¢ | ¢) = 1 for eachC € C. If m = ¢, thenP(m | ¢) = 1, and
necessarily’(m | ¢) = 0 form # c. O

Lemma 4.7 states that if the causal relationship betweeteihges” the interme-
diatesM( is deterministic, it is not allowed that the values of caumabintermediate
variables differ, which is as expected.

Lemma4.8. Vo P(mc | ¢) < 1= Vm<cP(m | c¢) > 0 for arbitrary c.

Proof. Sincem < c we have that for each cause variablesuch that\/~ = T also
C = T and for eachC such thatM~ = L itis the case that eith&r = L orC' = T.
Therefore, we may write

Pm|c)= ] P(mc | )™ P(mc | ¢)t-me)e
ceC

sinceP(m¢ | ¢) = 0 by assumption. Since it is also assumed that P(m¢ | ¢) <
1, we haveP(m¢ | ¢) > 0 andP(m¢ | ¢) > 0, which proves the proposition. [
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Lemma 4.8 states that if there is an uncertain causal rekdtip between every
causeC and its associated intermediate variabfg, then it follows that each inter-
mediate state whose true variables form a subset of the &usecvariables, has a
non-zero probability of occurring.

As the qualitative behavior of a Cl model is completely deii@ed by its inter-
action function, in the following we will frequently invagate how these functions
behave. This analysis will frequently go beyond pure Baolesctions, as some of
the interaction patterns are the result of adding and scttivigaBoolean functions.
Considerable insight into the interaction patterns is ioleth by looking at the func-
tion values (positive, negative or zero) of the resultingchion for configurations
smaller than a given configuration. For this, introductiéa special notation will be
convenient, as given by the following definition.

Definition 4.8. Letq : B™ — W be afunction, wher®/ = {-b,...,0,...,b} C Z,
theng is said to havenitial non-negative function valuggenoted b)Vqu, if

TG [lg(m) € {1,... b} A Vem [g(m’) € {0,... ] .

Similarly, ¢ is said to havenitial non-positive function valueslenoted by, if V_+q
holds.

Thus,VqJr means that the function value gfis positivefor some valuam, and
takes non-negative values for any vaimé lower in the ordering<. The meaning of
V, is analogous.

As an example, consider a functignthat indicates quality of life, where the
variables ‘happiness’ and ‘beauty’, abbreviatedHoand B, are used as summary
variables. It is defined as follows. Witf{h,b) = 1 is indicated maximal quality of
life; for all (h,b) < (h,b), for example(h,b) < (h,b), unsatisfactory quality of life
is quantified byy(ﬁ, 5) = 0. Thus, for this quality of life functioﬂ/;;r holds whereas
V,” does not. The propertids;r andV,~ of a functiong will be important tools for
the qualitative analysis of Cl models.

4.3 Qualitative properties of Cl models

In this section, it is assumed that a Boolean interactiowtian underlying a causal
independence model is given; we then identify the signs afitgive influences
(Section 4.3.1), additive synergies (Section 4.3.2) aratlyct synergies (Section
4.3.3). These results can be used to identify Boolean fomstihat respect a parti-
cular qualitative characterization. Note that we can asstiat the causes are direct
parents ofF as the intermediate variables are marginalized out of tla éomputa-
tion of P[f] (e | c¢) (cf. Eq. (4.2)). For our analysis, we assume some fixed Cl inode
over a selC of n cause variables, in which we focus on the interaction betvaife
ferent cause variables andC’ and the effect variabl&, where we abbreviatd/-
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by M and M by M’. Throughout this chapter we will udd; to denoteM \ {M }
andM; to denoteM \ {M, M'}. Likewise, we will useC; to denoteC \ {C'} and
C, to denoteC \ {C, C'}.

4.3.1 Qualitative Influences

Let 5c—. g[f] denotedc_, g where f is the interaction function of the corresponding
Cl model. A qualitative influencéc_ g[f] between a caus€ and effectt denotes
how the observation of' influences the observation of the effect The sign of a
gualitative influence for a Cl model mediated by a functjois then determined by
the sign of

do—glfl(e1) = P[fl(e | ¢;c1) = Pfl(e ] ¢ c1). (4.7)

The analysis of qualitative influences requires that weteathe contribution of par-
ticular cause variableS with respect to the effedt. By writing

Plfl(e| éc1) = Zf P(m | c)

= (ml &)P[fml(e | €1) + (1 = P(m | &))P[fml(e | c1)
= Plfm](e|c1) + P(m [ &)Plg](e | c1) (4.8)

whereg denotes thelifference functiory,, — f, we obtain this isolation of’ from
the remainder of the cause variables. Sometimes, we wistdoto the variablé\/
over which we vary the interaction functigh and then the notatiog, is used. Note
that it holds for the difference function thatm;) € {—1,0,1}. If we substitute
Eq. (4.8) into (4.7) we obtain the following equation for thign of a qualitative
influence in Cl models:

So—lfl(cr) = (P(m | ¢) — P(m|¢))-Plgl(e | c1).

Under the assumption th&(m | ¢) > P(m | ¢), which always holds under the
assumption of accountability, i.e2(m | ¢) = 0 (cf. Section 4.1.1), we may write

dc—plf](c1) o< Plgl(e | e1). (4.9)

We use Def .4.7 and its associated lemmas to derive somerpespaf qualitative
influences in causal independence models. We can write

Plgl(e | c1) Zg m;)P(m; | c1),

where the configuratiom; ranges over all elements &"~!. Let these configu-
rationsm; be represented byn’, for i = 1,...,2""1, and ordered such that if
m! < mJ theni < j. The configurations; of C; may also be any element Bf—*



4.3 Qualitative properties of Cl models 67

and we assume that they are ordered likewise suclethatm? fori = 1,..., 2771
From Lemma 4.6 it follows that for each configuration
Pglte [e1) = > g(my)P(my | cy). (4.10)
m;<cj

Therefore, we need only take into account intermediatestidiat precede a causal
state in the ordering. Based on this ordering we derive thpasties of qualitative
influences in causal independence models. We will state thegerties compactly
in terms of the difference function

Proposition 4.1. ¢ p[f] =0< g = 0.
Proof. Using Eqg. (4.10), we prove by induction thatRfg](e | cf) = 0 then
g(m¥) =0,fork=1,..., 2" %

Basis.Let k = 1. ThenP[g](e | c¥) = g(m}) - P(m¥ | c¥). SinceP(m1 | ¢}) > 0
by Lemma 4.5, it must be the case théin}) = 0 if P[g](e | cl) = 0.

Inductive hypothesis. Fori = 1,...,k, it holds that fromP[g](e | ¢!) = 0 it
follows thatg(m?) = 0, and vice versa.

Induction step. From the inductive hypothesis, it follows that:

Plgl(e [ cf™) = > g(mi)P(mj | c{™) = g(m| ™) P(m{*" | ).
1<i<k+1

As P(m}™! | 1) > 0 it follows that g(m5 ™) = 0if Plg](e | c¥™) = 0, and
vice versa. Buttheg(m{) = 0, fori =1,...,2" 1. O

In order to distinguish the different signs of qualitativéluences it is necessary
to know when positive and negative contributions are pdssibprinciple. We first
state an elementary relationship between positive andtimegzontributions to the
sign of a qualitative influence.

Lemma 4.9. 50_,E[f](cl) >0« 5C_>E[—|f](cl) < 0.

Proof. Using the result of Lemma 4.3, we derive
do—plfl(c) >0 < Plful(e]ec1) =Plfalle]e1) >0
& (1=Plfml(e]c1)) = (1 =Plfm](e | 1)) <0
& Pl=ful(e]c1) —Plofm](e|c1) <0
< dc—pg[f](c1) <0

which completes the proof. O
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Exploring the initial function values of the difference fiion g, as defined above
in Def. 4.8, yields further insight into the properties ofajtative influences. Note
that we use the definition here by takibg- 1.

Lemma 4.10 lists a sufficient condition for observing a pesitvalue of

dc—elfl(c1).

Lemma 4.10. For every Cl model with interaction functiofit holds that
Vg+ = E|C1 : 50_,E[f](cl) >0
Proof. Recall from Def. 4.8 that it holds that

V" =3m, s g(my) =1 /\Vm/1<mlg(m'l) € {0,1}.

Choosingc; = m; we obtainP[g](e | ¢1) = Zm’lﬁm g(m})P(m/ | c;) according
to Eq. (4.10). Since for eaalm) < ¢; it holds thatg(m]) € {0,1} andg(m;) =1
with P(m; | ¢;) > 0 we have proved the lemma. O

We present a similar result for negative values@f, p[f](c1).

Lemma 4.11. For every Cl model with interaction functiofit holds that
Vg_ = 3¢, : dc—plfl(c1) < 0.

Proof. Recall thatV” = 3y, : g(m1) = —1AVyy <, 9(m7) € {—1,0}. Ifwe use
—f in Lemma 4.10 and the correspondencg, (m;) — - f5(m;) =1 < g(m;) =
—1 then we obtain

Elml : g(ml) =-1 /\Vm/1<mlg(m’1) S {—1,0} = E|C1 : 50_,E[—|f](c1) > 0.

From Lemma 4.9 it follows thaic_.g[—f](c1) > 0 < do—p[~—f](c1) < 0 =
dc—ke[f](c1) < 0, which proves the proposition. O

The reason why we can find a positive (or negative) valug-ofz [ f](c; ) follows
from the fact that we may choose a configuratignthat renders all configurations
m; that are larger than or incomparable with irrelevant. This is visualized in
Figure 4.4.

If we consider the functiong,,, and f7 then one of four different situations may
arise. First, if neitheﬂ/;r nor V= hold then the inductive argument of Lemma 4.1
holds andic . z[f] = 0. Second, if bott/;* andV,~ hold, then we have two incom-
parable configurationsn; andm/ that renderic_. g[f](c) positive and negative,
respectively. This leads to the following proposition.

Proposition 4.2. V,;F AV,” = dc—g[f] =~ .

Proof. This follows from Lemma 4.10 and Lemma 4.11. O
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I C1
i S —r— — — ]
! [ —r—

Figure 4.4: The horizontal bars represent the outcomefigrand f;, respectively for those
configurations fromm1 to m%"H of M; that are comparable te,. A black bar denotes
that the output is true whereas a white bar denotes that tfpeiois false. The vertical line
represents a configuratien of C,. Due to a choice foe; the onlyreachableconfigurations
are contained within the dashed region, which must lead twsiiype sign off,, — f.

Third, if Vg+ holds andV,~ does not hold then there is a positive value of
dc—k[f](c1) for some configuratior; of C; such thatic_, g[f] is either+ or ~.
Under a specific condition we can infer that the sign must Is#ige.

Proposition 4.3. If V,* and -3y, : g(m1) = —1thendc_ g[f] = +.

Proof. The proposition follows from the observations that. z[f](c) > 0 for some
c and no negative contribution to the sign of the qualitativiluience. O

Ref. (Lucas, 2005) includes tables for Boolean functiorfindd in terms of the
16 binary Boolean functions. We use these results in thevidhlg example.

Example 4.4. For both the AND and the OR operator, we have.g|[f] = + since
for both operators it holds that the difference functips f,, — f is non-negative
and positive for at least ona;, which implies that the conditions of Proposition 4.3
hold.

If the conditions of Proposition 4.3 do not hold then we knawd fact that the
sign is ambiguous, since it can be either non-monotonic sitige if the parameters
are unknown.

Proposition 4.4. 1f V¥ and3,,, : g(m;) = —1thendc_.g[f] = 7.

In order to prove Proposition 4.4, we need to prove thaﬂ/},’ir and
Im, : fm(m1) < fm(m;) then we can find parameters such that, z[f] =~ and
other parameters such thgi_. [ f] = +. The non-monotonic case is easily proven
by the following lemma.

Lemma 4.12.If 3y, : g(my) = 1 A 3y : g(m}) = —1 then we can choose para-
meters suchic_.g[f] =~.

Proof. From Lemma 4.7 it follows that we can choose parameters shah t
Sc—plfl(c1) = g(my) = 1 anddc—g[f](c})) = g(m}) = —1. -
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Itis more complex to prove that we can also find parametets hatoc_. z[f] =
+. The proof relies on the fact that we can always find parammetech that the
negative contribution remains smaller than the positiverdaution to the sign of the
qualitative influence.

Lemma 4.13. If V,* and 3y, : g(m;) = —1 then we can find parameters such that
dc—plfl =+

Proof. It suffices to prove that.éc—g[f](c) > 0 for some choice of the para-
meters. We know that there must be some configurationwith g(m;) = 1
and for all configurationgn < m,; it holds thatg(m/) € {0,1}. We assume
that Vi «m, 9(mY) = 0 and Vv, »m, 9(m’ ) = —1, which minimizesP[g](e | c1).
The incomparable configurations must be either zero oripegivtherwise a non-
monotonic qualitative influence is implied) such that theaanot contribute nega-
tively. We therefore obtain:

Plgl(e | c1) > [] P(me | &)™P(me | &)™ — > P(m] |c1). (4.11)

CceCy m)>m;

By choosingP(mc | ¢) = 1 for eachC' such thatM = T, we obtain
Plglte [cr) =[] Pme | &)™ -
CeCy
Z H P(mc | é)(l_mC)m'cP(mc | é)(l—mc)(l—mfc)

m| >m; CeCy

due to the fact that i/ = L thenM/ =T or M/, = L. Given that for eachn/
there must exist at least one cauSgy,,) with u: B*~" — {1,...,n}, such that
M, =T andM, =L, we obtain

u(m?) u(mj)

Plgl(e [ e1) = [] Pimc [ = Y Pmyamy) | uim) -
CeCy m) >m;

By distinguishing present and absent causes, we may write

Plgle [ e1) = J] POnc [ )™= 3" P(mymy) | Cupmy))

CeCy m’1>m1

¢ / 1-¢

A key step is to distinguisit’; into C,, = {0 | C € C1, Yt o, C 7 Cu, )} and
Cp = {c |C€ClFmom, : C = Ou(m@} , such that

Plgl(e | c1) > H P(mc | ¢)(1-mo)e H P(mer | ¢)1-Mene
CeCa C'eCy

> Py | Cugmy)) 0 -0

m) >my

1=Cugmt)
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By choosing parameteR(m¢ | c) = ¢ for eachC € C, such thatM/» = L and
P(Muy(m}) | Cum))) = p for all m} > m;y, we obtain

Plgl(e | c1) = H gl1—me)e H (1 — p)—mer)e Z pluemt) ! Cuemy)

CeC,q C’eCy m)>m;

Let w be the cardinality ofm} | m} € B"~!,m| > m,;}. As there are at most
n — 1 cause variables i€, we obtain:

Plgl(e | e1) > ¢"(1 —p)" —wp

wherew is the cardinality of{m} | m}j € B" ' m| > m;}. It follows from
Bernoullls inequality thaP[g](e | c¢1) > ¢"(1 — np) — wp, such that by choosing
p < m, we have ensured th&g](e | c¢1) > 0. As there must be at least one
conflguratlon ofC; for whichP[g](e | ¢1) # 0, we have proved the proposition]

Finally, if V= holds andv;r does not hold then there is a negative value of
dc—g[f](c1) for some configuratior; of C; such thatc_.z[f] is either— or ~.
Analogous to positive qualitative influences, under a gpecondition we can infer
that the sign must be negative.

Proposition 4.5. If V,” and—3y,, : g(m;) = 1 thenéc_.g[f] = —.
Proof. Analogous to the proof of Proposition 4.3. O

Symmetrically to positive qualitative influences, if thisndition does not hold
then we know for a fact that the sign is ambiguous since it careither non-
monotonic or negative if the parameters are unknown.

Proposition 4.6. If V,;~ and 3y, : g(m;) = 1 thendc—g[f] =7.

The proof that parameters can always be found to generattiveegr non-
monotonic qualitative influences proceeds in the same wadliasor the positive
qualitative influences.

In the above, we have shown how properties of the interadtioaotion f influ-
ence the qualitative properties of causal independenceeisiolt is straightforward
to recast properties of the difference functipm terms of properties of the interac-
tion function f due to the identityy = f,, — f= as is demonstrated by means of the
prognostic model.

Example 4.5. We first consider the qualitative influence obn S. In order to iden-
tify the qualitative behavior, we need to investigate theies f;, and f;. If we restrict
BtoT (i.e.,b), we have

fb = (—|b A —E1 A —\EQ) V (El A —\EQ) V (_'El A E2)
= (EvA—E2) V (REL A E))
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In a similar vein we can reducg, to —~(E; A E»). It follows that forg we havé

( )
gler,e2) = fyler,e2) — fyler,e2) = (e1 A —ea) V (me1 Aez) — —(er Aez)) =0
gler, ) = foler,€2) — fr(er,€2) = (e1 A —é2) V (me1 Néa) ——(ex Nég)) =0
g(er,e2) = fi(€1,e2) — fy(e1,e2) = (€1 A —ea) V (m€1 Aez) — —(€1 Aeg)) =0
g(er,€2) = foler, &) — fz(€1,€2) = (€1 A ~ez) V (me1 A éz) — ~(é1 A ep)) = —1

It follows that Proposition 4.5 holds, such thiat.s[f] = —. This negative influence
of the serious illness on prognosis is in accordance witlptbeiously stated domain
knowledge. We proceed in a similar way for the qualitativituiences ofl; on S and
obtain the following results. For the qualitative influeraf€l’; on .S we havef., =
—Fy and fz;, = (-B A —E») V Es. It follows that forg we have thay(i, ez) = 0,
g(i,€2) =1, g(z,e2) = —1 andg(i,e2) = 0. As (i, €2) and(z, ez) are incomparable
and have opposing signs, it follows that _,s[f] =~ according to Proposition 4.2.
We remark thabr, .s[f] =~ by symmetry. The qualitative influences are depicted
in Figure 4.5.

I: illness T,: treatment 1 T5: treatment 2

-
~ ~

Y Y
[ S survival ]

Figure 4.5: Qualitative influences with respect to patient survival.

Previously, we have shown how properties of the interadtiotion f influence
the qualitative properties of causal independence moddéxt, we show that, by
means of the propositions and lemmas that have been devireedan also imme-
diately infer properties of interaction functions that slitbhold when a qualitative
influence is known. First, observe that, based on the lemmégpm@positions above

(Voh A=3m, s g(my) = =1) vV (V;F A3, glmy) = 1) v
(V A=3m, i gmy)=1) Vv (Vg_/\EIml:g(ml)zl) vV (g=0)

covers all possible cases. The first two conjunctions indisginction handle the
positive qualitative influences (due to Proposition 4.3 aathma 4.13). The third
and fourth conjunctions in this disjunction handle the riggaqualitative influences
(by symmetry), and the last conjunction is a necessary afiitdisnt condition for

observing a zero qualitative influence (due to Propositidj. 4rhe second and fourth
conjunctions are conditions that may lead to non-monotguiglitative influences,
and whose disjunction is equivalentdg,, : g(m;) = =1 A3, : g(m;) = 1. The

properties of interaction functions given a qualitativitiance are listed in Table 4.1.

2Recall that in an arithmetic context, we interpriets 1 andL as 0.
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Table 4.1: Properties of interaction functions given a qualitativiuence.
Qualitative Influence \ Property of the Interaction Function

0 g=
+ 7%
_ v,
~ Im, 1 g(m1) = 1A 3yt g(m)) = -1

Example 4.6. Suppose we knew the qualitative influences but not the uyidgrl
interaction function for the prognostic model of Sectiofi.4. According to Table
4.1 we have:

V-

5I—>S[f] == = 9B

or—slfl=~ = Fm, 1 gp (m1) =1A3y : gg,(m
[f = Im, 1 gr(m1) = 1A 3y 1 g, (M

wheregp = fy — f5, 9, = fe, — [, andgg, = fe, — f,- The results are indeed

properties of the interaction function of the prognosticdelp as represented by the

Boolean expression (4.4). The first qualitative influenceladgfor example, preclude
choosing the AND and OR interaction functions, as both desabsfy propertyy/, ..

4.3.2 Additive Synergies

Additive synergies express how two cause varialileandC’ from the set of cause
variablesC jointly influence the probability of observing the effe€t Recall that
the remaining cause variables are denote€by= C \ {C, C’}. Using the general
definition of additive synergy from QPN theory, the additssnergyd c.c)—g|f]
betweenC' andC’ given interaction functiorf is determined by

dcon—elfllcs) = Plfle]c,c,e2) +P[fl(e| &, ca) —
Plfl(e | ¢, co) — P[fl(e] ¢, @, c2). (4.12)

The analysis requires an isolation of cause variablesdC’. We apply the decom-
position (4.8) twice and obtain:

Plfl(e|é,¢,c2) = P(m|&)P(m" [ &)Ph](e | c2) + Plfmuavl(e] c2) +
P(m | &)Pfimm — fmml(e | c2) +
P(m' | é/)P[fm7m/ — fm,m/](e | Cg), (4.13)

where the functiorh : B2 — {2, —1,0,1,2} is defined as

h(my) = fo e (M2) + frm (M2) — fi o (M2) — firnm (M2). (4.14)
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The functionh is also sometimes indicated Iy, ;. By inserting Eq. (4.13) into
(4.12) we obtain

dcon—elfl(e) = (P(m | c) = P(m | €)) (P(m" | ') = P(m | &))P[h](e | c2).

Under the assumptions th&(m | ¢) > P(m | ¢) andP(m’ | ¢) > P(m’ | @),
which holds under the assumption of accountability, we matew

Sc,cry—elfl(c2) o< Plh](e | c2).

We take a similar approach as for qualitative influences aedam ordering on con-
figurations ofMs andC, which now range fromm; to my.-2 and frome; to con—2
respectively.

The structure of the expression for qualitative influenasd additive synergies
is essentially the same, where the only difference is thasuve over2"—2 instead
of 2"~ configurations ang is replaced by:. If we consider the proofs of Lemmas
4.9-4.13 and Propositions 4.1-4.6 in the previous sectien we find that none,
with the exception of Lemma 4.13, are dependent upon thesdifferences. Due to
the analogy between qualitative influences and additiversyes, we state the results
in terms of the difference functioh without proof.

A necessary and sufficient condition for observing a zerati@ddsynergy is ea-
sily found.

Proposition 4.7. 6(¢.cry—glf] =0 < h = 0.

Again, interaction functiong and their negations f lead to opposite contribu-
tions to the qualitative sign.

Lemma 4.14. ¢ cry—g(c2) > 0 < 6 .on—p[~f](c2) <O.

We next investigate the implications of function valueshs functionh, as de-
fined above in Eq. (4.14), using Def. 4.8, for the qualitapveperties. Here we take
b = 2. An analysis of positive and negative contributions to tiga ®f the additive
synergy is given by Lemmas 4.15 and 4.16.

Lemma 4.15. For every Cl model with interaction functiofit holds that
ViF = e, dc,cn—plfl(c2) > 0.
Lemma 4.16. For every Cl model with interaction functiofit holds that
V,m = de, : b, (c2)[f] < 0.
Non-monotonic additive synergies are identified by Prapmsi4.8.

Proposition 4.8. V,* AV, = §c.on—glf] =~
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Positive additive synergies are identified by Propositighahd ambiguous ad-
ditive synergies (either non-monotonic or positive siga® identified by 4.10. We
can always choose parameters such that this ambiguous/adgihergy reduces to a
non-monotonic or positive additive synergy. The proof mikr to the proof in case
of qualitative influences and is omitted here.

Proposition 4.9. If V" andVp,,h(m;) € {0,1,2} thendc o p[f] = +.
Proposition 4.10. If V," and 3, : h(ms) € {2, —1} thend(c o p[f] =

Symmetric results are obtained for negative additive syiaerin Proposition
4.11, where Proposition 4.12 identifies ambiguous addgiuwgergies which can be
either non-monotonic or negative, depending on the paenset

Proposition 4.11.If V,~ andVy,h(mz) € {-2,~1,0} thendc.cn—glf] = —.
Proposition 4.12.1f V,~ and 3, : h(mgz) € {1,2} thend ¢ cr)—p[f] =7
We use the results of Ref. (Lucas, 2005) to verify some of esults.

Example 4.7. For the AND operator, we havgc ). p[f] = + since the difference
functionh(ms) = fr (M) + frmy (M2) — fr py (M2) — fry 5y (M2) Must be non-
negative and positive for at least one configuratiomnf On the other hand, for the
OR operator we havé ¢ o _.g[f] = — sinceh is non-positive and negative for at
least one configuration ah,.

We can recast properties of the difference funcfidn terms of properties of the
interaction functiory as we have the identity = f,,, ./ + fm m — fa,m/ — frn,m . WE
illustrate the results concerning additive synergies bamseof the running example,
shown in Figure 4.3.

Example 4.8. With regard to the additive synergy between the treatménends,
we havefe, ., = L, fe 6, = "B andfz, ¢y = fe,eo = T. We then have(b) =
—2 andh(b) = —1 such thatd(r, 1,)—s[f] = — according to Proposition 4.11.
This agrees with the observation that the administratioonef of both treatments is
optimal, whereas administration of both treatments yieldsiboptimal result. With
regard to the additive synergy betweandT}, we havefy., = —Es, f-, = T,
foey = B2 andfye = Eo. We then have thai(ez) = 0 andh(ez) = 1 such that
d(1,m)—slf] = + according to Proposition 4.9. We also havyer,)_.s[f] = + by
symmetry. This is in agreement with the fact that when arneat is administered
to an ill person, or when no treatment is administered in tteenace of the illness
improves survival in comparison to when a non-ill persomegated or when treatment
is not given to an ill person. The additive synergies areategdiin Figure 4.6.
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+ -
( I: illness f---H Ty:treatmentl }---- Tu:treatment?2 )

\
[ S': survival ]

Figure 4.6: Additive synergies with respect to patient survival.

So far, we have only considered the qualitative behavior givan interaction
function. Again, we infer properties of interaction furets that should hold when
an additive synergy is known. These properties are showrabieT4.2 and have
straightforward derivations due to the correspondencedesi qualitative influences
and additive synergies. An example is again provided byidenag the qualitative
properties of the prognostic model.

Table 4.2: Properties of interaction functions given an additive sgge

Additive Synergy \ Property of the Interaction Function
0 h =0
+ 175
_ Vh_
~ Fm, ¢ h(m2) € {1,2} A3y, h(my) € {2, -1}

Example 4.9. Suppose we knew the additive synergies but not the undgriyier-
action function for the prognostic model. According to E#8l12 we have

5(T1,T2)—>S[f] = - = Vh_El,EQ
wherehg, g, = fei e + fe1,60 — fe1,e0 — fe1,e- ThiSis indeed a property of Boolean
expression (4.4) that represents the prognostic model agdom verified. This con-

straint would, for example, exclude the AND Boolean funatias it does not satisfy
propertyV,
1

Eo '

4.3.3 Product Synergies

Product synergies describe the created dependence betwearauses when the
value of the effect variable is observed. The 35@@0,)_@[]‘] of a product synergy

betweenC' and C’ with respect toé when f is the chosen interaction function, is
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determined by

Sy plfl(ea) = PIfIE]|c,d c)P[fl(e ], o) —

This can be rewritten foE! = T (presence of the effect has been observed) to:
Scon—plfl(ea) = P(m|c)P(m'|)(Phl(e | c2)Pfmml(e] e2) —
P[fm,m' - fm,m/](e | C2)P[fm,m/ - fm,m'](e | C2))>

where agairh = fp,  + frm — fim — fm,m. Under our standard assumption
of accountability, this yields:

5(60,6”)—>E‘[f](c2) o< P[h](e | 2)P[fimm](e | c2) —
P[fm,m’ - fm,m'](e | Cz)P[fm,m' - fm,m'](e | 02)-
This can be alternatively written as:
(c.on—plfl(ca) oo Plfymwl(e ] e2)Pfmmle]| ca) —
Plfmm](e | c2)Plfmm](e | c2).
Using the distributive law of arithmetic, we obtain:
0c,on—rlfl(c2) o Plfmml(e | c2)P[famml(e | e2) —
Plfmm](e | c2)Plfmm](e | c2)
= (O fnw(ma) P(ms | c5)) (Z Frnme (m2) P(my | €3)) —

(Z fm,m'(m2) msy | 02 me m’ m2 m2 | 02))

= Z r(mg, m))P(mjy | Cz)P(mz | c2)

my,m),
where the function : B2 x B2 — {—1,0,1} is defined as follows:
r(mag, mb) = frm (M2) fimm (Mh) — fiam (M2) frm (m5). (4.15)

We will also sometimes use the notatioy 5. From the expression above, it follows
that the behavior of the product synergy is determined byuhetionr.

It appears that it suffices to carry out the analysisFoe T (the effect has been
observed to be present), as application of the followingntenmenders the analysis
of the qualitative behavior of the product synergy for= 1 (absence of the effect
has been observed) a straightforward exercise.
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Lemma 4.17. 6, oy, g[~f] = 0(c oy 1 f]-

Proof.
Sc,on—plmflle2) o< Pl=fmm](e | c2)P[=fmm](e | c2) —
Pl finml(e | c2)P[fmm](e | c2)
= (1 =Plfmm](e]c2)) = Plfaml(e|c2)) -
(1 =Plfam](e | c2))(1 = Plfmm](e | c2))
= Plfmm](€] c2)Plfmm](e | c2) —
Pl )(€ | €2)Plfma](@ | c2)
o Oc,on—relfl(e)
which completes the proof. O

Hence, if 5(60 C,)_)E[ - f](cz) has a particular sign for configuratiaty then
5(5070,)_>E[f](cQ) will have the same sign. Therefore, the sign of the produet sy
nergy forE = T with interaction function-f will be the same as that far = 1
with interaction functionf. Due to this relationship between the signs of the product
synergy forE = T and F = 1, we will only consider the case wheig = T.
Recall that by Lemma 4.1, we have the following interestiagtionship between
product synergies and additive synergies, which offersltmmnative way to com-
pute the product synergjc’c,)_) [f1(c2), based on the associated additive synergy

d(c,cn—klf](c2) and the associated product syneﬁgélﬁc,)_)E[f](cz):

5(50,0/)—>E[f](c2) = 5(60,0/)—>E[f](c2) - ‘5(0,0/)—>E[f](c2)'

Lemma 4.1 is useful for constructing tables of signs foripaldr Boolean functions,
as it saves constructing one of these tables.

Example 4.10. Ref. (Lucas, 2005) includes tables for Boolean functiorfandd in
terms of the 16 binary Boolean functions. Consider the ANBrator,A; its additive
synergy is equal t6(¢,c—g[A] = +, whereas its product synergy fér = T is
equal to&fac,)_)E[/\] = 0. Lemma 4.1 tells us that the product synergy o= |

is equal toé(éac/)_)E[f] = —, which is indeed the value for the product synergy for
E = 1 inTable 12 in (Lucas, 2005).

In the following, we derive sufficient conditions for obseny particular qualita-
tive behavior in terms of product synergies.

Proposition 4.13. 5(6070,)_>E[f] = 0 if it holds that

iz, [ (Frm (M2) A fin v (M) (fizme (002) A fo i (m5))] -
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Proof. Note that if the premise holds, then, according to Def. 4fith@ functionr,
we have that(mg, m5) = 0, for eachmy, m), and thusi(,, C,)_>E[f] = 0. O

A special case of this proposition, is the following conufiti
(fm,m/ =1V fm,m’ = J—) A (fm,m/ =1V fm,m/ = J—)a

i.e., if at least one Boolean function at both sides of theatieg of Def. 4.15 is equal
to falsum, then a zero product synergy results.
We again determine conditions under whﬁf@ C/)—>E[f](c2) is positive or ne-

gative. Similar to previous sections, we use the notatigrisand V,~, this time in
terms of the function defined above; for examplé™ means that

Fmo,m), [[r(mg,mé) = 1] AVmj < my, m)) < mj [T(mg,mg’) € {0, 1}”
Lemma 4.18. For every Cl model with interaction functiohwe have

Proof. Simply note that if » is initially non-negative, we have a positive
8(c,cn—rplf](c2) for at least one value; by definition. O

An example of a positive value mﬂ"(”C C,)_>E[f](cz) is demonstrated in Figure
4.7.

C2
frm — —
fm,m’ N T— — — — ]
fm,m’ : — — ]
fm,m’ :' — —

Figure 4.7: Similar to Figure 4.4, the horizontal bars represent theaue for f,,, ., fm,m.

. . n—2 . .
fm.m and f,, 7 for configurationanl tom3" ~ of M. The vertical line represents a con-
figurationc, of C,. Due to a choice foe, the onlyreachableconfigurations are contained
within the dashed region, which must lead to a positive sfg&fac,)%E[f](cQ).

A similar result holds for negative values &, ), [f](c2).
Lemma 4.19. For every Cl model with interaction functiohwe have
Vim = 3e, : 0o, cn—plfl(c2) <0.
Proof. Analogous to the proof of Lemma 4.18. O

Proposition 4.14. If both V" and V= hold thendf., o1y p[f] = ~.
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Proof. This follows from the definition of a non-monotonic produghergy. O

It also follows directly from Lemmas 4.18 and 4.19 thajf holds andV,~ does
not hold, then the sign of the product synergy is either p@sibr non-monotonic.
Conversely, if,~ holds andV," does not hold, then it follows that the sign of the
product synergy is either negative or non-monotonic. ThHewidng two propositions
identify under which conditions the sign of a product sygeésgknown to be positive
or negative, respectively.

Proposition 4.15. If 3, ryy, ¢ 7(m2, m3) = 1 andVyy,, m [r(m2, m3) > 0] then it
holds thatd{, -, slfl1=+.

Proof. This is just the general case of Lemma 4.18, where we ensatehé con-
ditions listed for configurationsn) < ms, mfj’ < mj such that(m4, mj’) > 0
not only hold for configurations smaller thany, m), but for all configurations
mj # my, mj’ # mj. 0

Proposition 4.16. If 35, 1y, @ (M2, m5) = —1 andVyy,, m, [r(m2, mj) < 0] then
it holds thatd(c, ), glfl=—.

Proof. This is the generalized case of Lemma 4.19. O

The cases that are not covered by the above propositiondevidhtegorized as
ambiguous.

Proposition 4.17. If none of Propositions 4.13-4.16 hold théf, C’)—»E[f] =7

Proposition 4.17 collects those cases for which no sufficenditions for ob-
serving a particular sign of a product synergy have beewetériln such cases, the
sign can still be positive, negative or non-monotonic, telpgy on the parameters
and depending on the structure of the interaction functlois important to realize
that due to Lemma 4.17, the above results equally hold foc#ise whereZ = |
whenever we replace each occurrence ofy —f.

We illustrate the results concerning product synergietdgameans of the prog-
nostic model, depicted in Figure 4.3.

Example 4.11. We first focus on the case where we hypothesize that the patikn
survive, i.e.,S = T. With regard to the product synergy between treatmgéhtand
Ty, we have thatf,, ., = L, fe, 6, = "B’ and fe, ¢, = fe,,e, = 1. Condition 3
of Proposition 4.16 is satisfied sine¢B, B’) = —1 for each value ofB, B’, and
thuséfT1 Ty)— s[f] = —. This agrees with the observation that we expect that one of
both treatments was administered given that we observerpatirvival. With regard

to the product synergy betwednand 7}, we have thatfy,., = —Es, fz., = T,

foe, = B2 and fre, = Ej). Condition 1 of Proposition 4.15 is satisfied since
r(es, €,) = 1, whereas(E», E4) = 0 for any value ofEs, E, with the exception
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of By = L andEj = 1; thusdf; 1,y glf] = +. Hence, itis likely that treatment
Ty is administered given disease progression and patienivaband that treatment
T is not administered given no progression and patient sairvilt is less likely
that treatmenf; is administered given no progression and patient survivdlthat
treatmentl is not administered given disease progression and patievival. The
same holds for the product synergy betwdesnd T, by symmetry. The results are
summarized by Figure 4.8.

+
r—-r—-r—~—"~>"~>"~>"~"~>"~>"~>"~" -~~~ -~~~ T T oo o - —--- == ml
I I
y + . - .
I: illness ---+ Ti:treatmentl }---4 T5: treatment 2
\ Y Y
[ s:survival=T ]

Figure 4.8: Product synergies with respect to patient survival.

As has been proved in Lemma 4.17, we can use also the derigpdsgitions for
E = 1 by replacingf with —f. With regard to the product synergy betweBnand
Ty, we have that-fe, ¢, = T, = fe,.6, = B and—fz, ., = —fc, 6, = L. Condition
3 of Proposition 4.15 is satisfied, sincéB, B') = B, thusé(gThTQ)_)S[f] = +.
With regard to the product synergy betwekmandT;, we have that-f, ., = E»,
_‘fl_%él =1, —\fael = Fy andﬂfb@ = —|Eé, thUST(EQ,Eé) = —(EQ AN —|Eé) We
classify the product synergy ﬁé,’Tl)_)S[f] = —. The same holds for the product
synergy betweeih and7s by symmetry. The results are summarized by Figure 4.9.

r—-r—-r—~—"~>"~>"~>"~"~>"~>"~>"~" -~~~ -~~~ T T oo o - —--- == ml
I I
. - . + .
I: illness -—--+ Tj:treatmentl }---- T5: treatment 2
\ Y \
[ 5. survival= L ]

Figure 4.9: Product synergies with respect to patient death.

Again, we look at the converse analysis from qualitativecgmation to con-
straints on interaction functions using the propositioms lammas that have been de-
rived. Properties of product synergies with the effect olegto be present{ = T)
are shown in Table 4.3 and are derived by negating the piepddr opposite signs
whenE = T. For example, sinc&, " with £ = T implies that there is a con-
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figurationco of cause variables such t%,C/)—»E[ﬁ(C?) > 0 (Lemma 4.18), we
know that—V,* must hold for negative product synergies with= T. Likewise,
-V~ must hold for positive product synergies with= T. For the same reason,
=V, = A =V~ must hold for zero product synergies with= T. For non-monotonic
product synergies it holds that Propositions 4.15 and 4.dét lmoth be false. Since,
according to Proposition 4.13, it cannot be the casethgty,, [r(ms2, mj) = 0], it
must hold that botBly, 1, : 7(m2, m3) = 1and3py, yy, : 7(m2, m;) = —1. Prop-
erties of product synergies withh = 1 are obtained using Lemma 4.17 by replacing
the functionr with the function

f(m% m,2) = _'fm,m’(m2)_'fmfn/(m,2) - _'fm,m’(mQ)_'fmfn/(m,Q)'

Table 4.3: Properties of interaction functions given a product sypéog £ = T.

Product Synergy \ Property of the Interaction Function
0 VEAVS
+ -V,
_ ~VF
~ mo,my © T(M2,my) = 1A 3y, gy ¢ 7(m2, my) = —1

In order to demonstrate this converse analysis, we lookeaptbduct synergy
between treatments;, and7s of the prognostic model.

Example 4.12. Suppose we knew the product synergies but not the undeiilyieg
action function for the prognostic model. For the productesgy between treatment
Ty andT; with the effect assumed to be preseht£ T), we have

5(6T1,T2)—>S[f] =- = ﬁVrJZﬂl,EQ

whereas its product synergy for the effect assumed to benaflse= L) is given by

5(ET1,T2)_>s[f]:+ = _"/F;LEQ

Note that here we use the complementary functipng,. Again, it may be verified
that these are properties of the Boolean expression (dattutiderlies the prognostic
model. For example, these properties are not satisfied b2 function, which,
therefore, cannot be selected as a basis for a prognostielitinad satisfies the given
gualitative constraints.

4.4 Summary

In this chapter, causal independence models that emplojeBoanteraction func-
tions have been analyzed. In contrast to previous work, dsu2005), the chapter
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offers a characterization of causal independence modsédian Boolean functions
in general, and it can, thus, be used as a foundation for thlysas of any of such
causal independence models. It was shown that QPN theorgecapplied to these
models in order to characterize model behavior in termsfafénces and synergies.
By making use of difference functions and an order on Booteples we were able
to derive both the conditions under which positive, negatzero, non-monotonic
and ambiguous signs for qualitative influences, additiveersyies and product syner-
gies are observed and the constraints these signs impolse onderlying interaction
functions.

In conclusion, we believe that the theory can aid in Bayesitwork construc-
tion, where the prognostic model served as an example &irdite the usefulness of
the theory in practice. If the causal independence assansptiold then the appro-
priateness of an interaction function can be determinetowitthe need to specify
the parameters in advance and properties of the interafttrartion can be derived
from a qualitative specification.






Chapter 5

Dynamic Decision Making
with DLIMIDs

According to the norms dictated by utility theory, ratior#ihical decision ma-
king implies the maximization of patient benefit, while sitaneously minimizing
the cost of treatment (Von Neumann and Morgenstern, 194@j.inStance, in our
research, we have focused on finding treatment strategidsgh-grade carcinoid
tumors; an aggressive type of neuroendocrine tumor (Zbetshand Taal, 2005).
For these tumors, it is of the utmost importance that chearaply is administered
at the right moments in time. Treating a patient too earlyporlong, may cause an
unnecessary deterioration in general health status, whéreating a patient too late,
or too short, may fail to stop or reverse tumor progressioalviBg suchdynamic
decision problemgMagni and Bellazzi, 1997) is a difficult task, since it remsi the
physician to take appropriate action at each point in tirgdaking into account the
patient’s history, in a world that is characterized by uteiety.

The selection of strategies that lead to optimal patierdttnent has received
considerable attention from both the Operations ReseardtAdificial Intelligence
communities, where it is known asochastic controhndplanningrespectively. In
recent years, emphasis has been placed on the similantieditierences between
stochastic control andecision-theoreti@lanning, where probability theory and util-
ity theory are used to represent decision-making underrtaingy (Dean and Well-
mann, 1991; Boutilier et al., 1996a). In this work, we intwod dynamic limited-
memory influence diagran{®LIMIDs) which inherit characteristics from both ap-
proaches to decision making under uncertainty. They carefesented compactly
as atemporal limited-memory influence diagrgfLIMID) and allow the modeling
of dynamic decision problems that are only partially obable and may go on for
an unbounded amount of time. We also introduce a number ofitlighs that ap-
proximate the optimal strategy for dynamic decision protd¢hat are modeled as a
DLIMID. This is demonstrated by a DLIMID that models highagte carcinoid tumor

This chapter is based on (van Gerven et al., 2006a; van GaneDiez, 2006; van Gerven et al.,
2006h).
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pathophysiology and has been constructed in collaboratitnan expert physician
at the Netherlands Cancer Institute (NKI).

This chapter proceeds as follows. In Section 5.1, we desthi& perspectives on
dynamic decision making that are offered by stochasticrobahd decision-theoretic
planning, in order to make clear the differences and siitidar between the two
approaches. DLIMIDs and algorithms that approximate ogltstrategies are defined
in Sections 5.2 and 5.3 respectively. Section 5.4 desctiesonstruction of the
oncological model, and Section 5.5 describes experimeatallts concerning the
strategies found for the model, using the described algogt We end with some
concluding remarks in Section 5.6.

5.1 Perspectives on dynamic decision making

Stochastic control and decision-theoretic planning bdfér @ different approach to
dynamic decision making. Stochastic control is often realiby means dflarkov
decision processesvhereas decision-theoretic planning is often realizeanleans

of (dynamic) influence diagramsn this section we describe both approaches, their
solution strategies, and their respective strengths amdnesses.

5.1.1 Markov decision processes

One way to model dynamic decision problems is by means ofthery ofMarkov
decision processgdDPs) (Howard, 1960). MDPs are extensiondviarkov chaing
defined as follows (Grimmett and Stirzaker, 1992).

Definition 5.1. Let S be adiscrete-time random proceghat is, a family of random
variables {S(t): t € T} that take values fromf2g and are indexed by some set
T = {0,...,N}, whereN denotes théiorizon A Markov chainis a discrete-time
process that satisfies tiarkov condition

P(S(n)=sp|S(1)=s1,...,5(n—1)=sp—1) = P(S(n)=s, | S(n —1)=5,_1)
forn >1andsy,...,s, € Qg.

The Markov condition ensures that the future state is indéget of the past
state given the current state of a random process. A Markoisida process ex-
tends a Markov chain by allowingctionsandrewardsto incorporate both choice
and motivation (Fig. 5.1).

Definition 5.2. A Markov decision procesdMDP) is a tuple(S, A, P, R), whereS

is the state spaced is the action spacel (s’ | s, a) is the probability that the system
ends up in state’ at timet + 1, given that actioru was performed in state at time
t,andR(s, a) € R is the reward for taking an action in states.
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Figure 5.1: A Markov decision process, where shading indicates obbéityeof the state.

Markov decision processes have proven very useful for effsttiveness analy-
sis in medicine (Sonnenberg and Beck, 1993; Kuntz and Ws8ims2001). The goal
of a rational decision maker is to maximize expected reward

E (Z ’th(st,at)>

teT

where~ € [0,1] is adiscount factor Usuallyy < 1, which implies that delayed
rewards are less valuable to the decision maker. The expesteard is maximized
by choosing an optimal sequence of actions fot &l T, as represented byplicy
m: S — A, which maps states to actions at each decision momentI”. This
mapping can be eithestochasti¢ allowing for randomness in the actions, aeter-
ministic, defining a fixed mapping between states and actions. If thexisetl” is
finite then we speak of finite-horizonMDP and if it is infinite then we speak of an
infinite-horizonMDP.

An important result is that for infinite-horizon MDPs, thetiopal policy is sta-
tionary (independent of) and deterministic, whereas for finite-horizon MDPs the
optimal policy is typically non-stationary (Howard, 1960)et V; .(s) denote the
expected value of starting in statewhen there are still steps to go, while executing
policy . In the finite-horizon case, the expected value that is gaiyeusing the
optimal policy=*, is given by the Bellman equations:

Viex1(s) = max{R(s,a)}

acA
- = P(s Vs 4—1(8 t>1
Vi 1(8) 1;133\({]%(3,@)—1—7% (s" | a,s)Vrey 1(8)}, >

with 7* = {#}: t € T'}. In the infinite-horizon case, we simply have

Vs (s) = max {R(s, a) +y Z P(s' | a,s)Vps (8’)}

ac
s'eS

since both policy and expected reward are independentrohding (approximations
to) optimal policies for MDPs is relatively straightforvearin the finite-horizon case,
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the standard method is to perform a backward recursion oBéfienan equations,
whereas in the infinite-horizon case, we may use techniquels asvalue iteration
(Bellman, 1957) opolicy iteration(Howard, 1960).

Figure 5.2: A partially-observable Markov decision process, wheredsi@indicates ob-
servability.

MDPs assume that the state of the process is completelyvaiider In practice,
however, we often have incomplete state information. Fetaimce, in medicine,
progression of a disease can often only be determined bywaide symptoms or
laboratory findings. This brings us into the realmpafrtially observable Markov
decision processd@strom, 1965; Monahan, 1982), as shown in Fig. 5.2.

Definition 5.3. A partially observable Markov decision procéBOMDP) is a tuple
(S,A,0,P,R,Q), such thatS, A, P, R) defines a Markov decision proceg3js a
finite set ofobservationsandQ(o | a, s) is the probability of observing given that
we landed in state at timet + 1, while performing actior at timet.

In order to make optimal decisions, POMDPs take into accalijtast observa-
tions by maintaining delief statewith respect to the (hidden) state of the process
(Smallwood and Sondik, 1973). Léts) denote the current belief of the decision-
maker that the process is in stateGivenb(s), an observatiom and executed action
a, we estimate the next belief state from Bayes’ rule as:

W(s') =a-Qo|a,s)> P(s'| a,s)b(s) (5.1)

seS

where« is a normalizing constant. We define tetate estimator P(V' | a,b,0),
which assigns a probability of one to the belief state thadbrapatible with Eq. (5.1)
and zero to all other belief states. The corresponding Bellequation for infinite-
horizon POMDPs is then given by:

Virs (b) = max {R(b, a)+7 ) PO | a,b)Vy (b’)}

ac
b/

where

R(b,a) =) _b(s)R(s,a)

seS
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and
P | a,b)=>_ Pt | a,b,0)P(0 | a,b),
ocO
with state estimatoP (b’ | a,b,0), andP(o | a,b) = > .5 Q(0 | a, s)b(s).

By reformulating the POMDP in terms of an MDP in belief spa&st(om, 1965;
Smallwood and Sondik, 1978), the POMDP can be solved by aygpljynamic pro-
gramming techniques to the corresponding MDP. The difficidt however, that a
belief is a point in the:-dimensional simplex, whene is the number of states. This
implies an infinite number of belief states, and requiresctirestruction of a policy
that maps this infinite number of states to actions. It haa bhewn that, in the finite-
horizon case, the optimal value function is piecewisedirend convex (Smallwood
and Sondik, 1973), thus requiring only a finite mapping afatibns to actions. In
the infinite-horizon case, however, the optimal value fiamcho longer consists of a
finite number of linear elements, although it can be apprakau arbitrarily closely
by a finite horizon-value function (Smallwood and Sondik78P This being said,
even approximating the optimal strategy to a sufficient eegs computationally
very costly (Papadimitriou and Tsitsiklis, 1987; Lusenalet2001), and finding op-
timal strategies is feasible only for small decision profide(Boutilier et al., 1996a).
Another problem associated with the use of (partially-olegle) Markov decision
processes for modeling dynamic decision problems, is ttiglfiat the state space
quickly becomes unmanageably large for realistically&idecision problems. This
leads to problems, both during specification of the decipratess (Magni and Bel-
lazzi, 1997), as well as at computation time (Boutilier et #096a).

5.1.2 Dynamic influence diagrams

An alternative point of departure for modeling the types e€idion problems de-
scribed above is by means of dynamic influence diagrams @ra@mmd Shachter,
1990). They extend standard influence diagrams (Howard aattiédon, 1984b) in
order to represent finite-horizon decision processes, bgrdposing the global util-
ity function into a set of local utility functions. Aynamic influence diagrafdiD)
isatuple(C,D,U, A, P), whereN = CUDUU is a set of nodes that is partitioned
into chance variablesC, decision variabled, andutility functionsU, A is a set of
arcs such that? = (N, A) forms an acyclic directed graph (ADG), aftis a family
of probability distributions. When a DID is used to model andgnic decision prob-
lem, chance variables, decision variables and utility fiems are indexed by times
teT.

Chance variables (graphically depicted by circles), angloan variables that re-
present the stochastic component of the model. Decisidablas (graphically de-
picted by squares), are ordinary variables that repreberddtions that may be per-
formed by a decision maker. Utility functions (graphicatlgpicted by diamonds),
represent the utility of being in a certain state, as definecbmfigurations of chance
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and decision variables. The gragh= (N, A) represents the qualitative structure of
the decision problem. The meaning of an gkt Y') € A is determined by the type
of Y. If Y € Cthen the conditional probability distribution associawéth Y is con-
ditioned by X. If Y € D then X represents information that is available to the deci-
sion maker prior to deciding updri; we call the parents(Y) = {X: (X,Y) € A}

of decisionY its informational predecessard\Ve also require that there exists a di-
rected path between all decisiohse D in G, which represents the order in which
decisions are made. Decisions that are made later in timé ahwuays inherit the
informational predecessors of decision that are madeseanltime, which is known
as theno-forgettingprinciple. If Y € U then X takes part in the specification of the
utility function Y such that”: Q.- — R. Utility functions must either have a sub-
set of the chance and decision variables, or other utilinctions, as their parents.
In the latter case, we call the utility functidii a super-value nodewhere we re-
quire that the global utility function is decomposed inteadf local utility functions
which combine additively:

Uz, oan) = > ).
=1

The family of probability distributions” is a se{ P(C' | (C)): C' € C}, such that
we have for each configuratiah € Qp a distribution:

P(C:d) = [] P(C|=(C)) (5.2)
CceC

that represents the distribution ov@rwhen the decision maker has 3a8tequal to
d (Cowell et al., 1999). Hence&; is not conditioned o, but rather parameterized
by D.! Figure 5.3 shows an example of a DID for three consecutive-sfites.
A stochastic policyfor decisionsD € D is a distributionP(D | «(D)) that maps
configurations ofr(D) to a distribution over alternatives fdp. If P(D | n(D))
is degenerate (i.e. consisting of ones and zeros only) tleesay that the policy is
deterministic. LelV denoteCUD. A strategyisa setA = {P(D | n(D)): D € D}
of policies that induces the following joint distributiower the variables iV

Pa(V)=P(C:D) [[ P(D | =(D)). (5.3)
DeD

We may then compute the expected utility of a stratAggs:

EU(A) =Y PA(WU(v). (5.4)

The aim of any rational decision maker is then to maximizeetkgected utility by
finding an optimal strategi\* = arg maxa EU(A).

1This is equivalent to Pearlo operator (Pearl, 2000).
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-(3)

Figure 5.3: A dynamic influence diagram. The dashed arcs emphasize theteti path
between decision nodes, which stands for the decision sequ#f a node is an informational
predecessors of a decision node, then its use as an infomahpredecessor for decision
nodes occurring later in the sequence, is left implicit ia dingram. The super-value node
combines the local utility functions.

In order to solve a DID, we can resort to a graph reductionrélguo that corre-
sponds to the dynamic programming technique used to solie-fiorizon Markov
decision processes (Tatman and Shachter, 1990). Therbaveyer, some salient
differences between DIDs and Markov decision processee. mdn advantage of
(dynamic) influence diagrams over Markov decision proce$sehe fact that they
make use of a factorization of the state-space defined byaitigles in the domain.
This often allows for more efficient probabilistic inferendhe estimation of fewer
parameters, and a more meaningful specification in termaw$eseffect relations
(Druzdzel, 1997; Owens et al., 1997). A second differendbasway in which par-
tial observability is handled in DIDs. As described, optirpalicies for POMDPs
are found by solving an MDP in belief space. DIDs follow areatttive strategy,
where each decision variable is conditioned by all pastwhsens. Since a belief
state follows uniquely from an initial belief state togatheth a sequence of observa-
tions, the approaches give equivalent results. Howevésbéplace the problem of
making optimal decisions for an infinite number of belieta$a by making optimal
decisions for each possible configuration of past obs@mnstiSince this becomes in-
feasible for long decision processes, DIDs are limited twtsfinite-horizon decision
processes.

One way to manage a factorized representation of infinitezebio Markov deci-
sion processes is to specify the state transition matringgioom timet to timet+1,
in terms of an influence diagram-like structure. For exampliuence viewsas in-
troduced by Leong as part of her DynaMol framework for dyradgcision analysis
(Leong, 1994; Cao et al., 1998), provide, for each possitl®m, a factorized re-
presentation of the transition matrix. Since the influenieendistinguishes between
state variableswhich explicitly denote the informational predecessdra decision
node, ancevent variableswhich play a supporting role in the representation of the
transition matrix, the computational burden of solving aawyic decision problem
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can be reduced (Magni and Bellazzi, 1997). Magni et al. haraahstrated that
influence views are suitable for the modeling of realistioaiyic decision problems
in medicine (Magni, 1998; Magni et al., 2000). The solutidnaodynamic deci-
sion problem by means of influence views proceeds by tramsfior the factorized
representation into a normal MDP and applying value iteratiConsequently, the
technique is restricted to completely observable MDPs.milar approach was ad-
vocated by Boutilier et al. (Boutilier et al., 1996a), whatfarized stationary and
completely observable MDPs in terms of a so-cald-stage temporal Bayes net
(2TBN) (Dean and Kanazawa, 1989). This leads not only togyaimepresentational
efficiency, but also allows for the efficient computation raftsition probabilities by
means of probabilistic inference over the factorized repnéation. Boutilier and
Poole have used this same factorized representation im tvdslve POMDPS in
terms of a factorized MDP in belief space (Boutilier and Rpdl996), and approx-
imate solution techniques have been developed for theseriteed representations
(Guestrin et al., 2001). The use of POMDPs as factorized MbPeglief space for
clinical decision making has been discussed in (Peek, 1888)has been applied to
the treatment of ischemic heart disease in (Hauskrecht easeF; 2000).

5.1.3 LIMIDs

In this chapter, instead of representing a POMDP as a faetbiMDP in belief space,
we take influence diagrams as our point of departure. We itbesan alternative re-
presentation that crucially depends on the limited-menasgumption that strategies
based on a limited amount of memory for each decision willlide g0 approximate
the optimal strategyLimited-memory influence diagranfisiMIDs) (Lauritzen and
Nilsson, 2001) incorporate this assumption, and are otiserdefined analogous to
DIDs.2 The limited-memory assumption allows us to drop the requénet that a
complete order is defined over decisions, thereby incrgasbia variety of decision
problems that can be handled (Fig. 5.4).

Dy

@—> D2
Figure 5.4: A LIMID allows the decisionsD; and D, to be made in parallel and with
differentinformational predecessors, thereby incraatie variety of decision problems that
can be handled.

The algorithm that approximates the optimal strategy in LD&| as described in
(Lauritzen and Nilsson, 2001), is much more efficient thanalgorithms that find

2A dynamic influence diagram is just the special case of a LINHBX takes all past observations
into account.
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the optimal strategy in standard influence diagrams. Therlkeep track of all past
observations, which becomes infeasible when many (subséqdecisions need to
be made. However, in case of infinite-horizon decision psses, finding approxi-
mately optimal strategies in LIMIDs becomes infeasible &8 vgince decisions are
represented explicitly at each point in time.

5.2 Dynamic limited-memory influence diagrams

In order to enable the representation of infinite-horizorMB®s in terms of LIM-
IDS, we define dynamic LIMIDs, that can be represented cothpay means of
temporal LIMIDS. In Section 5.3, we introduce a number obaignms that approx-
imate the optimal strategy for a dynamic LIMID.

5.2.1 Constructing DLIMIDs

A dynamic LIMID(DLIMID) is defined as a LIMID(C, D, U, A, P), that models a
dynamic decision problem, such that chance variablessideciariables, or utility
functions at time can only depend on other chance variables or decision Vasial
timesK; = {t—K,...,t}. Hence, a DLIMID is a factorized representation dfah
order POMDP. If a DLIMID is explicitly defined at timekK, = {0,..., K — 1} and
has fixed structure and parameters fortadl {K,..., N}, whereN is the horizon,
then a DLIMID can be represented more compactly dsnaporal LIMID. In the
following, we omit time indices when clear from context.

Definition 5.4. A temporal LIMID (TLIMID) is a pair of LIMIDs (Lo, £;) that re-
spects the following conditions:

e Theprior modelly = (Cy, Do, Uy, Ay, Fy) is defined for time¥, where for
allarcs (X (u),Y (v)) € Ay it holds thatu < v, and

Py = {P(X | n(X)): X € No}
with Ny = Cy U Dy U Uy.

e Thetransition model’, = (C;, Dy, Uy, Ay, P,) is defined for time¥; where
for all arcs (X (u), Y (v)) € Ay it holds thatu < v andv = ¢, and

P, = {P(X | 7(X)): X € N,}.
withN; = C; U D; U Uy,

A TLIMID allows for the representation of (infinite-horizpPOMDPs. The prior
model is used to represent the initial distributi®iCy: Dy) and utility functions
U € Uy at the firstK time slices. The transition model is not yet bound to any
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specifict, but if bound to some € {K, ..., N}, then it is used to represent the con-
ditional distributionP(C;: D;_g,...,D;) and utility functionsU € U, for some

t > N. The graphG = (N¢, A;) does not depend an and normally it is assumed
that P, does not depend aneither. This is not a strict requirement however, which
allows the representation of non-stationary POMDPs wheykgbility distributions
are a function of. Figure 5.5 shows an example of a TLIMID as a factorized repre
sentation of & -th order POMDP.

o] [2] [o] [2]

~K t-K4+1  t-2  t-1
Ly

Figure 5.5: Representation of & -th order POMDP by a TLIMID, where chance nodes
are shown as circles, decision nodes as squares and utlitysnas diamonds. The prior
model L, depicts the situation for the initidt” time points, whereas the transition modgl
depicts how the situation at a timelepends on the previous time points. In this particular
case, we have a model where the decidibhas no effect in the prior model, whereas in the
transition model it influences; throughD;_1, and has’; _k, ..., C;_1 as its informational
predecessors.

Given a horizonV, we mayunroll a TLIMID for N — K time-slicesn order to
obtain a DLIMID with the following joint distribution:
N
P(C: D) = P(Cp: Do) [[ P(Ci: Dy k..., D). (5.5)
t=K
Let V again denoteC U D, and letA; = {P(D | n(D)) | D € D;} denote
the strategy for time. Given a strategy\o = [k, At, Lo defines the following
distribution over the variables W :

Pa,(Vo) = P(Co: Do) [[ P(D|=(D)), (5.6)
DeDyg

and given a strateg; = (J,cg, Ai, Witht > K, £, defines the following condi-
tional distribution over the variables ¥;:

Pr,(Vi | L) = P(Cy: Dy—k,...,Dy) H P(D | =(D)) (5.7)
DeDy
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wherel; = {X(¢'): ¢/ < t,(X(t'),Y(t)) € A;} is theinterfaceof the transition
model, representing the variables that have a direct inflien variables iV .

Combining Egs. (5.6) and (5.7), given a horizdinand strategy\ = J,cr As,
a TLIMID induces the following distribution over variabl@s V:

N

PA(V) = Pa,(Vo) [] Pa.(Vi | ). (5.8)
t=K

LetU; = > ey, U denote the joint utility for a time-slice. We define the joint
utility function for a dynamic LIMID as

N
u=> U, (5.9)
t=0

with discount factory € [0, 1], such that the expected utility of a stratefyyis given
by EUA) =), PA(V)U(V).

5.2.2 Representing observed history

As remarked before, if decisions are allowed to depend opast observations,
then a DLIMID becomes computationally intractable for alt mall finite-horizon
decision processes. Therefore, we can only hope to find ¢appations to) the
optimal strategy, where each policy is based on a limitedbemof past observa-
tions2 It is clear from Fig. 5.5 that, if we use a TLIMID, policies &knto ac-
countat mostall chance and decision variables i subsequent time-slices since
m(Dy) € Vg U--- UV, (cf. Eqg. (5.5)). Observations made earlier in time will
not be taken into account and as a result, states that aiiéatjualy different can ap-
pear the same to the decision maker, leading to suboptintialgs In reinforcement
learning, this phenomenon is knownerceptual aliasingWhitehead and Ballard,
1991), indicating that active perception of the world camehas a consequence that
the agent’s internal representation confounds externdthvgtates. In order to allevi-
ate the problem of perceptual aliasing, there are a numbeays to relax the strong
limited-memory assumption implied by TLIMIDs. One way tsoéve this problem
is by using a large value fak. This still allows us to represent large decision pro-
cesses, and a& approachesV, we will find better approximations to the optimal
strategyA* in general.

An alternative way to deal with perceptual aliasing, as usethis chapter, is
to assume that the first-order Markov assumption that thedus independent of
the past given the present holds = 1), and to represent part of the observational
history by means ofmemory variablegMI C C. As shown in Fig. 5.6, one way to

3In the context of POMDPs, methods that rely on the use of afligtory are common, and can be
dated back to (Brown, 1972).
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maintain memory concerning chance and decision variaisiés,associate a unique
memory variableM € M with each informational predecessir € 7(D) for all
D € D. The TLIMID is then redefined by using memory variablesas the infor-
mational predecessors 6f, and by requiring that’ (0), M (0)) is an arc inA, and
both (V' (t), M (t)) and (M (t-1), M(t)) are arcs inA,.

BRI

] N2 1 NI | ot NP | NP

Figure 5.6: Dealing with perceptual aliasing by introducing memoryiahles (black cir-
cles). Memory variables are used instead of associatedvauseariables (shaded circles),
as the informational predecessor for a decision variakjegies).

Memory about the past is maintained by means of distribat®q\/ (0) | V' (0))
and P(M(t) | M(t-1),V(t)). For example, suppose we would like to maintain a
memory about the past two time-slices. Then it suffices todefi

Qv = Qe YUQve X Qy—1) UQue X Qui—1) X Qvi—2),

which represents all possible observational historieength three, and to use the
distributions to maintain changes in the observationalohys Note that such an
explicit enumeration of all observational histories letmla huge state space fof.
Therefore, we normally represent the observational histbl” more compactly by
partitioning all possible observational histories intav@edl set of states. In this way,
we useaggregation(Boutilier et al., 1996a) to group states that are indistisigable
from the point of view of the decision maker. The choice of #tates ofM is
problem dependent, and we will not further address thisigsthis chapter. Instead,
it is assumed that their definition is based on available dok@owledge.

In Section 5.4 we define a TLIMID for a dynamic decision probl@ medicine
that uses two memory variablegathist andbmdhist. Here,treathist is a short-term
memory variable that represents the three latest obsemngativhilebmdhist is a long-
term memory variable that indicates whether the patientelvas had bone-marrow
depression.

5.3 Improving strategies in infinite-horizon DLIMIDs

In the previous section we have shown how a DLIMID, consgddtom a TLIMID,
can represent an infinite-horizon Markov decision proc@gsproceed by exploring
techniques for approximating the optimal strategy.
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5.3.1 Computing expected utility

In order to compute the expected utility for a TLIMID, we rest an indirect ap-
proach, where we make use of the fact that giXeran influence diagrar(iN, A, P)
may be converted into a Bayesian network, which can subsdguee used as a
computational architecture for decision making under tagay (Cooper, 1988;
Shachter and Peot, 1992). Since a stratAgyduces a distribution over variables
in V (cf. Eq. (5.8)), we can usA to convert decision variable® € D into random
variablesX e X, with parentsr(D) such that:

P(X | 7(X)) = P(D | n(D)).

Additionally, utility functionsU € U may be converted into random variabl&sc
X, with parentst(U). We define the distributio® (X | 7(X)) with Qx = {0,1}
by means of a transformation:

U(x') — ming U(x)

maxx U(x) — ming U(x)

P(X=1|x)=

with x,x" € Q. as defined in (Cooper, 1988). This allows us to compute the
expected utility EWA) given a strategy\ directly, by using the Bayesian network
to compute the posterior probability &f, and performing the reverse transformation
on the probability ofX. We useB(L, A) to denote the conversion of a LIMIZ,
given a strategy\, into a Bayesian network.

Given A, we may convert a TLIMID(Ly, £;) into the pair(By, B;) with By =
B(Ly,Ag) and B, = B(L,A;), the latter of which is also known as a two-stage
temporal Bayes net. The pdiBy, ;) is often used to constructdynamic Bayesian
network (DBN)YDean and Kanazawa, 1989; Boutilier et al., 1996a). Thestoama-
tion of a TLIMID into (B, B;) and of a DLIMID into an unrolled DBN are depicted
in Fig. 5.7.

As the figure suggests, one way to do probabilistic inferemte unroll (B, B;)
into one big static network and to use a standard inferergeriim, such as the
junction tree algorithm (Cowell et al., 1999). Howeverhaligh the complexity of
inference is determined by the size of the largest cliqué ithabtained after tri-
angularization of the graph underlying the static netw@kdhter and Rish, 1994),
space complexity also grows linearly in the horizdin and therefore this approach
is unsuitable for large horizons. For online inference, engfficient inference algo-
rithms exist that operate directly @iy, 5;). We have used thiaterface algorithm
which uses a triangulation method such that the space amdtéiken to compute
P(X(t) | X(t-1)) does not depend on the number of time-slices (Murphy, 2002).
As the size of the model grows, exact inference may beconeasitile, and then we
may resort to deterministic or stochastic approximaterarfee schemes like loopy
belief propagation (Murphy et al., 1999) or particle filteyi(Doucet et al., 2001).
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TLIMID (Bo, By)

g B(Lo,A(0)) g
i B(£,A() _ g

l unroll l unroll

\

B(L,A)

SV S

DLIMID DBN

Figure 5.7: Converting between different representations for the ispe@se that the
TLIMID represents a first-order POMDR( = 1), as assumed throughout the remainder
of this chapter.

In order to compute an approximation to the expected utjign A, we assume
that the TLIMID (Lo, £;) represents a first order POMDR (= 1), andA can be
expressed as a paig, A;), whereA is the strategy at = 0 and A; is a statio-
nary strategy that does not depend ofor ¢ > 0. Recall that the optimal strategy
is deterministic and stationary for infinite-horizon Maviaecision processes (Ross,
1983). However, in the partially observable case, we cap expect to find approx-
imations to the optimal strategy by using memory variabies tepresent part of the
observational history (Meuleau et al., 1999). The appratiom EU*(A) to the ex-
pected utility is made by computing the discounted expeatéity (v < 1) using
(B(Lo, Ao), B(Lt, Ay)) for a finite number of time-slices. Here,x may be chosen
based on the problem characteristics, or based on somecgtesione. For instance,
by choosing

K= lOg,Y(E(l - 7)/2umax)7
where un,, Stands for the maximum utility obtainable during one tiniees we
ensure that at most/2 error is introduced into the approximation (Ng and Jordan,
2000).

5.3.2 Single policy updating

One way to improve strategies in standard LIMIDs is to useta@mative procedure
calledsingle policy updatingSPU) (Lauritzen and Nilsson, 2001). Let

AO = {p17’ .. 7pn}

be an ordered set representing the initial strategy, whereith 1 < j < n stands
for a (randomly initialized) policyPp,. We sayp; is thelocal maximum policyor
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a strategyA at decisionD; if EU(A) cannot be improved by changing. In SPU,
each cycle iterates over all decision variables to find lmsakimum policies, and
reiterates until no further improvement in expected wtitten be achieved. SPU
converges in a finite number of cycles tdogal maximum strategyA where each
p; € Ais alocal maximum policy. Note that this local maximum sigst is not
necessarily the global maximum stratefyy. Let

A% = AgU A,

be the initial strategy, witl\g = {p1,...,pn} andA; = {pm+1,.-.,pn}, Where
m IS the number of decision variables 4y andn — m is the number of decision
variables inL;. Following (Lauritzen and Nilsson, 2001), we defipf]e* A as the
strategy obtained by replacing with p;» in A. SPU based on a TLIMIIY with
initial strategyA° is then defined by Algorithm 5.1.

Algorithm 5.1 Single policy updating for TLIMIDs.

input: TLIMID T, initial random strategyA°, stopping criterions
A = A% euMax= EU"(AY).
repeat
euMaxOld= euMax
for j =1tondo
for all policiesp’; for A at D; do
Al =plx A
if EU®(A’) > euMaxthen
A = A’ and euMax= EU"(A)
end if
end for
end for
until euMax= euMaxOld
return A

In case of a (hon-temporal) LIMID, a locally optimal policarc be found by
optimizing each single rule independently of the othershsbat we need to evaluate
km™ different policies at each decision varialdle wherek denotes the cardinality
of Qp, andr is the number of informational predecessorsifassuming that the
cardinality ofQ2y, equalsm for all V; € =(D). However, in case adynamicLIMIDs
with stationary policies, the optimal rule for a certain rs&@o at timet depends
on the policies applied at future times, which leads to a togpf the rules. The
number of policies that need to be evaluated at each decisioable D therefore
grows as:(™"), such that it becomes impossible in practice to iterate al@ossible
policies forD.



100 Dynamic Decision Making with DLIMIDs

5.3.3 Single rule updating

For reasons exposed in the previous section, we use aihilbiclg search for DLIM-
IDs, calledsingle rule updating SRU), that is equivalent to single policy updating
for LIMIDs. A deterministic policy can be viewed as a mappjng QW(D§) — QD};,
describing for each configuration of the informational messsors of a decision
variabIeD§. an actiona € QD;- We call (x,a) € p; adecision rule Instead of
exhaustively searching over all possible policies for ed@tision variable, we try to
increase the expected utility by local changes to the detisiles within the policy.
l.e., at each step we change one decision-rule within theypalccepting the change
when the expected utility increases. We (sea’) * p; to denote the replacement of
(x,a) by (x,ad") in p;. Similarly to SPU, we keep iterating until there is no furtire
crease in the expected utility. Using single rule updatimg decrease the number of
policies that need to be evaluated in ebmtal cycle for a decision node to onkym”,
where notation is as before, albeit at the expense of regabie exhaustive search
by a hill-climbing strategy, which increases the risk ofiagclp in a local maximum,
and having to run local cycles until convergence. SRU basea BLIMID 7 with
initial strategyA° is then defined by Algorithm 5.2.

Algorithm 5.2 Single rule updating for TLIMIDs.

input: TLIMID 7, initial random strategyA", stopping criterions
A = AY euMax= EU"(A?)
repeat
euMaxOld= euMax
for j =1tondo
repeat
euMaxLocal= euMax
for all configurationsc of 7(D;) do
for all actionsa’ € Q1p, do

p; = (x,a") xp;

if EU®(A’) > euMaxthen
A = A’ and euMax= EU"(A)
end if
end for
end for
until euMax= euMaxLocal
end for
until euMax= euMaxOld
return A

The local maximum strategies returned by SRU (and occabjadao SPU) may
differ from the global maximum strateg®\*, as can be seen in the following exam-
ple.
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Figure 5.8: A DLIMID for treatment of patients that may or may not havdiseaseD. The
disease can be identified byfiading F', which is the result of daboratory testL, having

an associated cost that is captured by the utility fundtiofBased on the finding, we decide
whether or not to perforrtreatment!". If the patient does not have the disease then this has
an associated utility/’.

Example 5.1. Suppose the best strategy for the DLIMID shown in Fig. 5.80is t
always test, to treat when the outcome is positive, and nioe&t when the outcome
is negative. Suppose the initial stratefy§ is to never test and always treat. Trying to
improve the policy for the laboratory testwe find that performing the test will only
decrease the expected utility since the test has no inf@nadtvalue (we always
treat) but does have an associated cost. Conversely, tryimgprove the policy for
treatment we find that, as the test has not been performedsatfér to always treat.
Hence, SPU and SRU will stop after one cycle, returning topgsed strategy as the
local optimal strategy.

5.3.4 Simulated annealing

In order to improve upon the strategies found by SRU, we tdsmsimulated an-
nealing (SA), which is a heuristic search method that tries to aveaitling trapped
into local maximum solutions found by hill-climbing teclypies such as SRU (Kirk-
patrick et al., 1983). SA chooses candidate solutions bkihgoat neighbors of the
current solution as defined byreighborhood functionLocal maxima are avoided
by sometimes accepting worse solutions according @caeptance functiorin this
chapter, we have chosen the acceptance function

lifed > eu

PaA/ =Ves| e eLf,t = eu'—eu
(a(a) =yes|eu ) {em otherwise

wherea(A’) stands for the acceptance of the proposed stratéggu’ = EU"(A'),
eu = EU"(A) for the current strategy\, andT represents the temperature in an
annealing scheduldefined as

T(t+1)=a-T(t)

whereT'(0) = g with o < 1 andg > 0. The annealing schedule ensures that ini-
tially a random search through the space of strategies ferpggd, which gradually



102 Dynamic Decision Making with DLIMIDs

changes into a hill-climbing search. We refer to (Egles®0) %or a discussion about
choices that can be made for SA parameteasid 5. With respect to strategy finding
in dynamic LIMIDs, we propose an initial simulated anneglstheme and a sub-
sequent application of SRU in order to greedily find a locakimaim solution. Let

# denote a random variable that is repeatedly chosen unifjoatnlandom between

0 and 1, and lef,;, stand for the minimum temperature for which we perform the
annealing. SA based on a TLIMID with initial strategyA° is then defined by
Algorithm 5.3.

Algorithm 5.3 Simulated annealing for TLIMIDs.

input: TLIMID 7, initial random strategy\,, stopping criterion,
annealing schedulg, minimum temperaturéy,;,,
A=A%t=0,eu=EU"(A)
repeat
select a random decision varialdlg
select a random decision rule, a) € p;
select a random actiart € Qp,, ' # a
Py = (x,a') % p;
Al =pjx A
eu’ = EU"(AY)
if 0 < P(a(A’)=yes| eu, eu/,t) then
A=A
eu = eu’
end if
t=t+1
until T'(t) < Tnin
return SRUT7, A, k)

In Section 5.5, we illustrate the application of the simethinnealing algorithm
to a real-world problem in oncology that is described in iéofving section.

5.4 A dynamic decision problem in medicine

We have applied DLIMIDs to the problem of treatment selecfir high-grade car-
cinoid tumor patienté. A carcinoid tumor is a type of neuroendocrine tumor that is
predominantly found in the midgut and is normally charazest by the production
of excessive amounts of biochemically active substances$) as serotonin (Modlin
et al., 2005). These neuroendocrine tumors are often eiffexted according to the
histological findings (Capella et al., 1995) and in a smaifionity of cases tumors are
of high-grade histology, which, although biochemically echuess active than low-

“Although a patient’s life-span is bounded, it is useful teatie a treatment selection problem as
an infinite-horizon POMDP, where the process has an expiatigritecreasing but non-zero probability
of continuing at each time-slice.



5.4 A dynamic decision problem in medicine 103

grade carcinoids, show much more rapid tumor progressidmerefore, carcinoid
treatment that concentrates on reducing biochemicaligcts/not considered appli-
cable, and more aggressive chemotherapy in the form of gogtte and cisplatin-
containing scheme is the only remaining treatment optioodfi€! et al., 1991). The
dynamic decision problem then becomes whether or not torast®r chemother-
apy at each decision moment. Our aim is to validate if thenmeat strategy that is
used in practice will also be found by a TLIMID as a formal damaodel, thereby
confirming the quality of the employed strategy.

In order to solve this problem, we have constructed a TLIM$@anodel of high-
grade carcinoid tumor pathophysiology in collaboratiorthwan expert physician.
Figure 5.9 depicts the structure of the model, where shadedbles are observable.
Since patients return to the clinic for follow-up every tamaonths, we assume that
each time-slice represents the patient status at thre¢hnatervals, at which time
treatment can be adjusted.

gender

v

age

ghs

mass

resp

bo

treathist

chemo

bmdhist »C bmdhist>

Figure 5.9: A TLIMID for high-grade carcinoid tumor pathophysiologyh€motherapy has
not yet been given at the initial time, which renders the tunesponse to chemotherapy
(RESP independent of all other variablesag.

|

In the model, the patient'general health statugghs) is of central importance.

In oncology, one way to estimate the general health statby imeans of theper-
formance statugOken et al., 1982), which is distinguished imormal (0), mild
complaints(1), ambulatory(2), nursing care(3), intensive carg4), anddeath(5).
Modeling the evolution ofjhs is a non-trivial task; it depends on the current gen-
eral health status, and on patient properties suadyasandgender, since these are
risk factors that may lead to patient death due to causes tithe the disease. Fur-
thermore,ghs is influenced by the tumor massdss) and the treatment strategy.
Tumor mass has a negative influence on the general healils stad is the first cause

5The model was developed with Hugin Developerht t p: / / www. hugi n. com
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of death for patients with high-grade carcinoid tumors. &tepmetastases normally
account for the majority of the tumor mass, and the primacgliaation does not nor-
mally contribute significantly to the tumor mass. Tumor massxpressed in terms
of standard units, ranging from a patient with just a primagalization (hass = 0)
to a patient that shows the maximal amount of metastasass(= 16), as depicted
in Fig. 5.10.

none mild moderate severe extreme

[ [ [ [ |
0 3 4 8 16

Figure 5.10: Tumor mass.

Most patients with high-grade tumors have extensive maiastisease when
admitted to the hospital, and if there is no tumor respongetddreatment, then the
physician estimates an exponential growth in tumor mass:

z(t) = xo - e,

If there is a tumor response due to treatment then we will seelaction in tumor
mass according to Table 5.1. If no chemotherapy is givem e usent (no treat-
ment) to denote the absence of tumor response. Finallghd = deadthen there is
no change in tumor mass.

Table 5.1: The WHO criteria for tumor response.

Tumor Response Criteria

Complete remissiorc€)  Disappearance of all lesions.

Partial remissiongr) More than50% decrease in tumor mass.
Progressive diseaspd) More than25% increase in lesions, or a new lesion.
Stable diseases() Neitherpr norpd.

Chemotherapychemo), with Qchemo = {NONe reducedstandard, is the only
available treatment to reduce tumor growth, where a reddoseé is at 75% of the
standard dose. We useathist, with Qyeamist = {0, 1,2, 3}, as a memory variable
to represent the patient’s relevant treatment histon sattreathist = i represents
continued chemotherapy over the pasimesters. Reductions in tumor mass due to
chemotherapy are often described by means of the WHO erif@rtumor response
(resp), as defined in Table 5.1. In (Moertel et al., 1991), givenncbierapy, 17%
of patients showed complete regression, 50% showed pegtje¢ssion and the re-
maining 33% of patients showed stable disease. Hence,enpdtd not experience
progressive disease if he had not been treated previouslyeBuced chemotherapy
we estimate that 5% of patients show complete regressién, stow partial regres-
sion and the remaining 50% of patients show stable disedse pdtient has been
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treated previously, then the effectiveness of treatmeahgés. In caseesp(t-1) is
either pr or cr, then it is assumed that continued chemotherapy will leastdble
diseasedd). If, on the other handgesp(¢-1) = sdthen continued chemotherapy will
become less effective. Even when chemotherapy is disegdtinwe expect some
residual effect of chemotherapy due to the knock-out etbectumor-cells. It is es-
timated that after three months, the effect of chemothermay 70% of its normal
effectiveness.

Note that chemotherapy may have both positive and negéf®et® on general
health status. Positive due to reductions in tumor massnaegdtive due to severe
bone-marrow depressiomrfd) and damage associated with prolonged chemothe-
rapy. Severe bone-marrow depression may cause patierit deatto associated
neutropenic sepsis and/or internal bleeding and it has tegerted that 5 out of 45
patients experienced grade 4 leucopenia due to chemoth@vegertel et al., 1991).
We therefore estimate that 11% of patients will experieifeetihreatening forms of
bone-marrow depression when given standard chemothemien reduced dose
chemotherapy is administered, we estimate that in the @ild%o of patients will
be affected. We usemdhist, with statesno-bmdandbmd as a memory variable to
represent whether or not the patient has experiebo&tlin the past. No decision
variable has been defined that determines whether or nosésswend status, since
this status is assumed to be given by routine laboratorg.test

The global utility is defined as a discounted additive coratian of thequality
of life (qol) and the cost of chemotherapyoét):

U =" 7" (qol(t)(ghs(t))) — cost(t)(chemo(t))) -
t=0

Our measure of quality of life is based guality-adjusted life-yearsor QALYs
(Weinstein and Stason, 1977), which simultaneously ceptgains in quantity and
quality of life (Drummond et al., 2005). QALYs are computed mmultiplying a
quality-adjustment weiglfor each health state by the discounted time spent in this
state. We associate quality-adjustment weights with tagestofghs based on the
quality of well-beingscale (Kaplan and Anderson, 1988), taking into account that
each time-slice stands for a three-month period (Table 3/ have associated a
small economical cost with chemotherapy, that is regardsiymificant compared
with the benefit gained in terms of quality of life.

Table 5.2: Quality-adjustment weights fayhs.
ghs | 0 | 1 | 2 | 3 | 4 | 5
weight | 0.214] 0.184| 0.168| 0.121] 0.109| 0.000

In our model, we used a discounting factol0di5 as suggested in (Haddix et al.,
1996), such that the three-month discount factoy is 0.987. The expected utility
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then becomes:

EU(A) = Ea (Zv qol(t)(ghs( ))))—

Ea (Zy cost(t)(chemo(t )))) . (5.10)

The firstterm in Eq. (5.10) is the discounted quality-adjddife expectancy (QALE)
and the second term is the discounted expected cost of gaatrithe goal of our
model then is to find a policy for chemotherapy that maximibés expression.

The physician has indicated that the informational presteme ofchemo are
given byghs, treathist and bmdhist, where bothtreathist and bmdhist are used as
memory variables within the model. Changes in treatmernbihyisare specified as
follows. Given thaithemo equalsstandardor reduced treathist increases from: to
z + 1 until the maximum of3 is reached, and given thahemo = none treathist
decreases from to x — 1 until the minimum of0 is reached. In order to represent
whether or not a patient has ever experienced bone-marrpreskon, we assume
thatbmdhist(¢) = no-bmdif bmd(¢) = no andbmdhist(¢-1) =no-bmd Otherwise, it
is assumed thaimdhist(¢) = bmd Note that in this case, we represent memory of
infinite length by restricting ourselves to the event whetrenot severe bone-marrow
depression has occurred. Contrary to what may be expeajadas a correlate of
tumor mass, is not regarded to be an informational predecdssthe physician,
since a patient who is known to have a high-grade carcinaitbtuis treated as often
as possible, irrespective of the current state of the tumor.

5.5 Experimental results

Our aim is to find a treatment strategy for high-grade cardinomors using the
developed model and the described algorithms. We haveeaiibié simulated annea-
ling scheme, followed by SRU, as suggested in Sectiof! Siice the informational
predecessors are equal fistremo in £y and £, we assume thahy = A;. We use
A to denote this strategy, containing a stationary policycfe@mo. The number of
possible policies fochemo is then given by:

ghs Qireathist $2bmdhist 542 1019
Qchemo =3 ~ 1.22-10".
Note that single policy updating would require an exhaesgearch through this
space of possible policies, which is clearly computatignaitractable. For our
model, we have used = 40 as the stopping criterion for the approximation to

5The proposed algorithms have been implemented using sriebbabilistic Networks Library
(PNL):http://ww. i ntel.con technol ogy/ conputing/pnl.
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the expected utility, based on the observation that tens@aival is rarely attained
for this aggressive form of cancer. After some initial exments, we have chosen
a = 0.995, 8 = 0.5 andT,;, = 1.225-10~2 for the simulated annealing parameters.
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Figure 5.11: Change in EJ(A) for the treatment strategies, selected during simulated an
nealing, followed by single rule updating at the end.

The SA algorithm was repeated twenty times, starting fromdoan initial strate-
gies. It consistently found the same treatment strat&gyvith an expected utility
of 1.795. Figure 5.11 shows the subsequent values of &) of the strategies
found during one of these experiments. The figure depictsthewnitial explorative
behavior of the simulated annealing scheme gradually asirgo a hill-climbing
strategy. The application of single rule updating afterdimeulated annealing phase
caused a small increase in expected utility from 1.795 t®8..7For this particu-
lar example, the solution found by simulated annealingdfeéd by SRU) was the
same as the solution found by SRU alone, although this dadsofbin general (cf.
Example 5.1).

One way to depict the found strategy is by means pbhkcy graph which is
a finite state machine that represents state-transitiosssdboan observations and ac-
tions associated with the nodes (Smallwood and Sondik, )19¥Be policy graph
for the found treatment strategy is shown in Fig. 5.12 andeimterpreted as an
abstract representation of a treatment protocol. Arrowtherleft-hand side of the
figure depict the starting state, which depends on the limbaervations. Each state
has an associated action and the next state is chosen ba#iesl reext observation.
The protocol states that we treat once if the health statgsad enoughghs < 3),
where patients with sevetend receive reduced chemotherapy. Then we wait to let
the patient recover and treat again, depending on whetheotahe general health
status is good enough. According to the expert physicianfdabnd strategy was in
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0y — chemo = standard
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Figure 5.12: Policy graph for the best strategy that was found by simdlateealing, where
o1 =ghs > 3, 02 = ghs < 3 A bmdhist = no-bmdandos =ghs < 3 A bmdhist = bmd

agreement with the treatment protocol that is used in @inicactice, even though
in exceptional cases, patients are given chemotherapy doe than three consecu-
tive months. Hence, our formal domain model validates teatinent protocol that
physicians use to treat carcinoid patients.

5.6 Summary

We have defined DLIMIDs, represented as TLIMIDs, as a framkvimr dynamic
decision-making under uncertainty and used them as the fmasa pathophysiolog-
ical model for high-grade carcinoid patients. Although tkpetitive structure of a
TLIMID has been used implicitly in (Lauritzen and Nilsso®@), the explicit use of
a TLIMID and its transformation into a pair of Bayesian netlwéragments allows
for the representation of infinite-horizon POMDPs. This dféncomes at the ex-
pense of using strategies that may suffer from perceptisdiag), which we resolve
by means of memory variables that represent part of the wbddristory.

We have demonstrated that reasonable strategies can lweférunfinite-horizon
DLIMIDs, where both SRU and SA do not suffer from the intrlisy of SPU
when the number of informational predecessors increasesapproach does require
that good strategies can be found using a limited amount @haong since other-
wise, found strategies will fail to approximate the optirsthtegy. This requirement
should hold especially between time-slices, since the-sahce of memory variables
can become prohibitively large when a large part of the afeskhistory is required
for optimal decision-making. Although this restricts tlypes of decision problems
that can be managed, DLIMIDs, as constructed from a TLIMIDyathe represen-
tation of large or even infinite-horizon decision problemmaticannot be managed by
standard influence diagrams.

Our approach is particularly useful in the case of probldras¢annot be properly
approximated by a short number of time-slices, which wasvehor a toy problem



5.6 Summary 109

in (van Gerven and Diez, 2006). Application of the theoryhi selection of a treat-
ment strategy for high-grade carcinoid tumors has dematestrthe usefulness of
our approach for real-world medical problems. The theonvigles a formal basis
for the validation of existing treatment strategies and aeayally be used to modify
existing treatment strategies when more optimal solutasesound.






Chapter 6

A Probabilistic Model
for Carcinoid Prognosis

An important task in clinical patient management is to datee a prognosis
for a patient that suffers from a disease, where prognogiefised asthe predic-
tion of the future course of a disease process conditionapatient history and a
projected treatment strategyl his prediction is non-trivial since the physician often
has incomplete information and treatment itself can haveulitode of uncertain
effects. As a result, predictions made by the physician eapdor (Lee et al., 1986;
Knaus et al., 1991b; Christakis and Lamont, 2000) or mibcatied (Glare et al.,
2003). Therefore, patient management can benefit greathy the development of
prognostic models that aid the physician in this task. Ne»ts use in clinical de-
cision making, prognostic models can also be of value to dteept (notification,
quality-of-life decisions), as well as to the policy-maKeomparative audit, patient
selection for clinical trials, development of treatmenttpcols) (Wyatt and Altman,
1995; Abu-Hanna and Lucas, 2001).

Various approaches to develop a prognostic model existlitiwaally, a prognos-
tic model consists of simple decision rules that are basea prognostic score and
classify patients into different risk categories (Mazumaiad Glassman, 2000). Such
scores are often based on clinical variables, and have logestracted for the general
patient population (Knaus et al., 1991a; Le Gall et al., J@&3well as for specific pa-
tient subgroups (Schuchter et al., 1996; Groeger et al8)1®urvival analysis takes
a different approach, and models survival rate by taking aticount patient-specific
covariates, such as by means of the proportional hazardgIni@dx, 1972; Cox
and Oakes, 1984; Collett, 2003). In decision analysis,hstsiic processes which
evolve over time, known as Markov decision processes, aed as the basis for
prognostic models (Beck and Pauker, 1983; Sonnenberg arid B893). More re-
cently, techniques such as decision-trees, neural nesystpport vector machines,
and Bayesian networks, as developed by the artificial igegice community, have
become popular as prognostic models (Cruz and Wishart,; ZD8ién et al., 2005;

This chapter is based on (van Gerven and Taal, 2006; van Geta., 2007b).
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Ohno-Machado, 1997; Abu-Hanna and Lucas, 2001).

The above techniques have all proven their worth as prognaosbdels in
medicine, but they are not always applicable. Although &tiglated techniques,
such as neural networks and support vector machines, dignemgrove upon the
performance of simple decision rules, they also require aveslability of large
amounts of high-quality data. Unfortunately, this datadsaiways available, which
renders the methods inapplicable. Another perceived defigiis the fact that most
of the described techniques do not provide insight hidava certain prognostic con-
clusion is reached; they are so-call@dck-boxmodels, which is an undesirable pro-
perty of clinical decision support systems (Hart and VWE880). For instance, even
though the proportional hazards model has an interpretatiderms of the patient-
specific covariates that modulate patient hazard, the nezdeiot give a causal ex-
planation of how the covariates interact and influence paservival.

Bayesian networks (Pearl, 1988) do allow for an interpi@tain terms of causes
and effects, and have the additional benefit that they carobstricted from avai-
lable expert knowledge. If a Bayesian network incorporditeg, then it is known
as adynamicBayesian network (DBN), and if it includes decision makiag,is of-
ten needed for accurate prognostication (Hilden and Habbd®87), then it can
be regarded as a factorized representation of a partibBgrwable Markov decision
process. The usefulness of such a representation for allipatient management
has already been discussed in (Peek, 1999), but, to date,dreonly few systems
for clinical patient management that were built using tlupraach (Hauskrecht and
Fraser, 2000; Charitos et al., 2005). As will be shown, regméation of a prognostic
model in terms of a DBN is beneficial, since they allow for asadexplanation, can
be constructed from data and/or expert knowledge, and dtowflexible query an-
swering. However, DBNs constructed from expert knowledgeaddficult to develop,
which is thought to be one of the main reasons for their lichitse at present.

In this chapter, our aim is to describe the construction atidation of a DBN for
prognosis of patients that present with low-grade carditwinors; a neuroendocrine
tumor that displays a complex symptomatology. This is adliffitask, since the do-
main requires the incorporation of decision-making and-dpeesentation of tempo-
ral interactions. We proceed by describing the clinicabpgm, carcinoid pathophy-
siology, and carcinoid treatment in Section 6.1. Secti@d@scribes the prognostic
model, which we call, henceforth, the carcinoid model. Taecinoid model is vali-
dated in Section 6.3 by means of a database that has beertedléd the Netherlands
Cancer Institute (NKI). In order to obtain insight into theadjty of the model, we
use a number of techniques, where we focus not only on prtigrascuracy, but
also on the intelligibility of the prognostic conclusion&/e end with a discussion of
the results in Section 6.4.
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6.1 Prognosis of carcinoid tumors

6.1.1 Problem description

Low-grade carcinoid tumors are a type of neuroendocrineotutimat can produce
high levels of serotonin, kinins, prostaglandins, and otasoactive peptides. They
are most commonly found in the midgut (Taal and Smits, 200f) tpically be-
have less aggressively than conventional adenocarcinraasEeden et al., 2002).
During the early stages, carcinoid tumors often remainagmsed, where vague ab-
dominal pain is commonly ascribed to irritable bowel or $igasolon (Bast-Jr et al.,
2000). Progressive carcinoid disease is often accompdyettie carcinoid syn-
drome This syndrome is mainly characterized by diarrhea caug@udbeased bowel
motility due to serotonin overproductio®berg et al., 1987), periodical flushing at-
tacks due to the synergistic interaction between histankings, and prostaglandin
released by the tumor into the general circulation, and fespuently wheezing
(Zuetenhorst et al., 1999). Extreme cases of the carcingidreme are known as
a carcinoid crisis which may lead to cardiovascular collapse and ultimateltil.
Often, only if symptoms of the carcinoid syndrome are preseoarcinoid tumor is
suspected and the patient is sent to the hospital. Sincditieatdepartment of the
Netherlands Cancer InstitutéNKI) acts as a referral centre, most patients that are
admitted are already diagnosed to have carcinoid diseasst, aften of the midgut
type. Hence, for physicians at the NKI, diagnosis of caricisds not of primary con-
cern. However, due to the complex nature of carcinoid deseasd recent advances
in carcinoid treatment, the need for appropriate progoastn has increased.

6.1.2 Pathophysiology of carcinoid tumors

The midgut is the region in which carcinoids are predomilyaiound, and neuroen-
docrine tumors that derive from other sites often show naiykdifferent behavior
and hence need alternative models for prognosticationténherst and Taal, 2005).
Carcinoid tumor histology is determined by mitotic acivénd tissue necrosis, and
distinguished into well differentiated, éww-grademalignancies, and poorly differ-
entiated, othigh-grademalignancies (Capella et al., 1995). A minority of patients
presents with high-grade tumors, which grow faster but axehemically less active,
and therefore require a different prognostic model. Weirtsturselves to carcinoids
of the midgut with a low-grade histology.

As mentioned, the most prominent clinical sign of carcindisease is the car-
cinoid syndrome, which is caused by high levels of circalatbioactive substances
(Zuetenhorst et al., 1999). Although many of these substaace thought to play
a role in the disease, the exact interactions are as yetamelnd in practice, di-
agnosis relies on the assessment of serotonin overproduayi measuring urinary
5-hydroxyindole-3-acetic acid (5-HIAA) levels, which wéstinguish intonormal,
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elevated andextreme Serotonin overproduction is caused by the carcinoid tumor
in the presence of particular metastases. Hormones rdlegsearcinoid tumors are
often destroyed by the liver before they reach the generalleition to cause symp-
toms, and therefore, only liver metastases or metastaaesetflease hormones di-
rectly into the general circulation such as gonad (ovaresteis) or lung metastases,
can produce the carcinoid syndrome. Most of the hormondymiag tumor-mass
is accounted for by the liver, and consequently carcinordsoften accompanied by
widespread hepatic metastases. Plashramogranin A(CgA) levels can be used
as a marker of tumor load, in terms of neuroendocrine agti{iibbels et al., 1998)
and tumor mass (D’Herbomez and Gouze, 2002). We distinguisimal, elevated
and extremeCgA levels, and patients with extreme CgA levels have a Bagamitly
poorer 5-year survival than patients with elevated CgA lkydanson andberg,
1996). The production of CgA and serotonin is determinedusgar activity and
tumor extensiveness.

Sometimes, excessive release of bioactive substancesteadcarcinoid crisis,
which is characterized by severe flushing, severe diarrlied,vomiting. A crisis
may lead to dehydration, acute hypotension and may ultisneéeise cardiovascular
collapse, which is a life-threatening situation. It is tgbuto arise from an excessive
release of vasoactive substances into the general cimulébutton et al., 2003).
Serotonin is known to cause diarrhea and is used as a ceri@ldahe vasoactive
substances that cause flushing. Which substances areyaxagtibnsible for flushing
remains unclear.

A major complication of carcinoid tumors is carcinoid heditease (CHD),
which is a consequence of enlargement and distortion ofrtlecardium and suben-
docardium of the tricuspid valve, leading to tricuspid iffisience and decompensa-
tio cordis. CHD may lead to right heart failure which is theisa of death in approxi-
mately half of carcinoid patients (Taal et al., 1999); asgtep function of the heart
deteriorates the patient’s health deteriorates rapidlyeAd can be seen between the
degree of right atrium dilatation, and the level of thrain natriuretic peptid¢BNP);
especially its biologically inactive N-terminal fragmeNiT-pro-BNP (Zuetenhorst
et al., 2004). This level is distinguished imormalandelevated CHD-related mor-
tality is dependent on the progression of CHD in the patiertich is defined as
tricuspid valve thickening with additional severe or erieeregurgitation. Mesente-
rial fibrosis is another major complication of carcinoid @ns, where small-bowel
tumors cause shrinkage and fibrosis of the mesentery, padibowel obstruction
and/or ischaemia, with finally necrosis and perforationhef bowel wall, which is
frequently accompanied by acute abdominal pain (Modlirl.e2804).

6.1.3 Treatment of carcinoid tumors

Treatment is distinguished inioterventionsandsystemic treatmentdVe disregard
symptomatic treatment since this does not influence diggaggession.
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Interventions

Treatment of a carcinoid tumor often amounts to surgicari@ntion, and can be
either curative or palliative. Although curative surgicainoval of the primary tumor
is the treatment of choice for small localized tumors, itlima@st impossible in the
presence of intra-abdominal or hepatic metastases. Inaext of the prognostic
model, it is assumed that the patient has already receiveapate primary tumor
surgery. The remaining applicable interventions are shioviliable 6.1. These inter-
ventions also present a risk to the patient since they caatssnpdeath in a minority
of cases.

Table 6.1: Interventions for carcinoid tumors.

Intervention Usage

bowel resection Performed in case of severe mesenteriatftr
cardiac surgery Performed in case of carcinoid heart déseas
partial liver resection Treatment of mild liver metastases
radiofrequency ablation Treatment of moderate liver niates.
embolization Treatment of severe liver metastases.

Only when the primary tumor leads to mesenterial fibroségttnent in the form
of bowel resection becomes necessary (Sutton et al., 20B8)vel resection is a
preventive palliative treatment that is performed whenéhe patient experiences a
curable form of mesenterial fibrosis given an acceptablétstatus.

If a patient suffers from carcinoid heart disease then,rgitat the patient has
an acceptable health status, cardiac surgery is perforiitéd.normally amounts to
tricuspid valve replacement, reducing tricuspid valvelkbning and regurgitation.
Unfortunately, cardiac surgery has a relatively high aiséed mortality rate.

In case of hepatic metastases one may opt for one of the bdpaditments:
partial liver resection(PLR), radiofrequency ablatiofRFA), or hepatic artery em-
bolization (Meij et al., 2005). Hepatic metastases are operable oriheife are no
more than three localized metastatic regions, and, actpndi the physician, PLR
can be administered at most two times, given an acceptablkéhhgatus. If PLR
fails, then hepatic metastases may be treated by RFA whea #ine no more than
six metastatic localizations, each region being less them ¢/ diameter. RFA heats
tumors and thereby kills the cancer cells. The procedurah@s complication rate,
can be performed without major open surgery, only involvesriaight hospitaliza-
tion, and can be administered at most three times, given @ptable health status.
Embolization is a method to treat diffuse carcinoid locatiians in the liver. Selec-
tive embolization leads to occlusion of the liver artentticig off blood supply to the
tumor, depriving it of oxygen and nutrients. Embolizatidrttee liver arteries leads
to the post-embolization syndrome, which is charactertzgdemporary fever and
pain, and may cause life-threatening complications (Edkst al., 1998; Meij et al.,
2005). According to the physician, embolization can be aistéred at most two
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times, and is performed only in case of diffuse hepatic masas, when systemic
treatment has failed and given an acceptable health stEtesffect of hepatic treat-
ment is a reduction in hepatic tumor mass, and can be interpia terms of the

tumor response, as depicted in Table 6.2.

Table 6.2: The criteria for tumor response.

Tumor Response Criteria

Complete remissiorc()  Disappearance of all lesions.

Partial remissiongr) > 50% decrease in tumor mass.

Progressive diseaspd) > 25% increase in lesions, or appearance of a new lesion.
Stable diseases() Neitherpr norpd.

Systemic treatment

Systemic treatment focuses on reducing overall tumorigcawnd tumor growth, and
can be distinguished into the treatments shown in Table $y3temic treatment is
administered in case of biochemically active metastasesnjunction with extreme
5-HIAA levels and/or both severe diarrhea and flushing. Witlvase conditions the
systemic conditions

Table 6.3: Systemic treatment of carcinoid tumors.

Systemic treatment Description

farmacological somatostatin ~ Synthetic forms of native atmstatin.

interferon Synthetic form of an immune system stimulant.
radiolabeled somatostatin Radioactive somatostatin issexlitoradiation therapy.
radiolabeled MIBG Radioactive MIBG used for autoradiatiberapy.
farmacological MIBG Inhibitor of mitochondrial respirati.

Reductions in tumor growth are captured by the tumor respafslable 6.2,
whereas reductions in tumor activity are captured by theHsmical response, as
guantified by means of the criteria in Table 6.4. In genengiesnic treatment is
characterized by positive effects (such as tumor reduetiwhreduction of biological
activity), and possible side-effects, such as bone-mademvession.

Table 6.4: The criteria for biochemical response.

Biochemical response Criteria

Complete remissiorcf) Normal biochemical activity.

Partial remissiongr) > 50% decrease in biochemical activity.

Progressive diseaspd) No treatment response.

Stable diseases() < 50% decrease o 25% increase in biochemical activity.
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Somatostatin is a peptide that has widespread inhibitdactsf and leads to a
reduction in the release and production of serotonin andacisve substances by the
tumor. It binds to the somatostatin receptors which areesg@d on more than 80%
of the carcinoid tumors. Native somatostatin has limitegl lmgits short half life, but
a number of longer acting somatostatin analogues have @&toged. Octreotide
(Lamberts et al., 1996) is a somatostatin analogue, thah dfiduces symptomatic
improvement, although this is not always accompanied bydaateoon in 5-HIAA
excretion. Somatostatin analogues have been reportedlitititumor growth, but a
reduction in tumor volume is seldom observed (Zuetenhoidflaal, 2005). We refer
to this form of medication afarmacological somatostatiff-soma). Farmacological
somatostatin may induce increased bowel motility, and trres, farmacological so-
matostatin efficacy decreases due to somatostatin reagptor-regulation. A tracer
dose of radiolabeled octreotide is used to detect sométostgeptors by means of
a so-calledbctreoscanand in order to treat withsoma, the octreoscan must be po-
sitive. Once started, we increase the dosage when the éibeasmes progressive
despite treatment, until the highest dosage is reached amdaimed.

Interferone (ifn) is a synthetic copy of a substance that is produced nagurgll
monocyte/ macrophages and is considered after failufesa@ha treatment. Due to
binding ofifn to interferon receptors a complex series of signal trarsolu@vents
takes place, resulting in the production of a multitude a@it@ins with different ac-
tions. ifn works directly on cancer cells by interfering with cells @itb and multi-
plication, and stimulates the immune system, by encougaljiter T cells and other
cells that attack cancer cell®perg and Eriksson, 1991).  Side-effects amount to
flu-like symptoms, diarrhea, general sickness, tiredrless,of appetite, and a tem-
porary drop in bone marrow functioning. Due to these sideets,ifn is administered
for at most a year. Note that the health status should be tditepand bone-marrow
depression must be absent, in order to give treatment.

Once interferon treatment has failed, we may use eitfi@ru-labeled Oc-
treotide (Lutetium), or'3!l-labeled MIBG, to invoke autoradiation. Meta-
lodobenzylguanidin (MIBG) resembles noradrenalin anatesin, and it is taken
up in the carcinoid tumor cells and stored in the neurosegregranules. We refer
to the respective treatments rasliolabeled somatostatifr-soma) andradiolabeled
MIBG (r-mibg) treatment. R-soma has a strong tumor reducing effect, and is only
administered once in a series of four treatments with twotmaontervals. Observed
toxicities of r-soma autoradiation therapy are nausea and vomiting, haematalog
toxicity and renal function impairment (Zuetenhorst andIlTa005), and therefore, a
good renal function is required, and bone-marrow may noebergly depressed. Re-
nal failure may arise due to various causes such as medicaascular obstruction,
or hypertension.

Radiolabeled MIBG is also used for scanning purposaibdscan, and a posi-
tive mibgscan is a prerequisite fomibg treatment. Predosing withmibg leads to
improved tumor targeting ofmibg sincef-mibg has the capacity to render a negative
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mibgscan positive. Radiolabeled MIBG treatment consittsvo 200 mCi dosages
within a six to eight week interval, and can be administerechast twice due to
radiation damage, leading to severe bone-marrow depress@éminority of cases.

Farmacological MIBG ftmibg) is administered when other treatments have
failed. The cytotoxic effect of-mibg is related to inhibition of mitochondrial res-
piration, resulting in enhanced glucose consumption,em®ed lactic acid produc-
tion, inhibition of oxygen consumption and decreased asi@edriphosphate levels
(Zuetenhorst et al., 1999F-mibg treatment requires a normal blood pressure since
it induces changes in blood pressure (Zuetenhorst et &9)19he treatment stra-
tegy forf-mibg is to treat for three months, to stop for six months and therepeat
treatment if previous results were positive.

6.2 Structure of the carcinoid model

We proceed with a description of the architecture of theinaid model, which is
specified in terms of a dynamic Bayesian network.

6.2.1 Dynamic Bayesian networks

A Bayesian networl3 = (G, P) is a pair whereGG is anacyclic directed graph
with nodes corresponding to a set of random varialleand P is a joint probability
distribution (JPD) of variables iiX, which factorizes as:

=[] PX | =X

XeX

where 7(X) denotes the parents of in G. The representation of a JPD by a
Bayesian network generally reduces the number of param#tat need to be es-
timated and allows for efficient probabilistic inference. dase we are dealing with
problems of a temporal nature, we explicitly include timéhivi a Bayesian network,
by reasoning over random processés= {X(¢): t € T'} instead of random vari-
ables. The resulting model is known aslgamic Bayesian netwarland if it is
assumed that the Markov property holds, which states tleafutiure is independent
of the past, given the present, we obtain the following faz#bion:

=11 II P&®I=x@))

teT X (H)eX(t)

with X(t) = {X(¢): X € X}.

In this work, we will focus on discrete-time and discretexsp random processes,
which implies thatl” C N and P(- | -) can be specified by a finite look-up table. If
the structure of the dynamic Bayesian network is invariangfl timest € {1,2,...}
then it can be specified in terms of:
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e aprior model P(X(0)), specifying the initial distribution of the joint process,
and

e atransition modelP(X(t) | 7(X(t))), specifying how the process evolves as
we go from timet to timet¢ + 1 fort € {1,2,...}.

In the following, we describe the structure of the carcinmiddel, focusing first on

pathophysiology (Section 6.2.2), and second on treatn@attion 6.2.3). The prior
model and transition model together consist of 218 vargahtel 74 342 CPT entries.
In order to compute distributions of interest, we use thegjxection tree algorithm

(Lauritzen and Spiegelhalter, 1988) and approximate @artiltering (Doucet et al.,

2001) where appropriate. For a more complete descripticheofnodel and its re-
quired parameter estimates, we refer to (van Gerven and 2@@6).

6.2.2 Architecture of the pathophysiological component

The shaded nodes in Fig. A.2 in Appendix A are an abstracesemtation of carci-
noid tumor pathophysiology as it is embodied in the carcimobdel. It is depicted
how health is influenced by carcinoid disease, through thetuits biochemistry,
and its major complications of carcinoid crisis, carcinbehrt disease, and mesente-
rial fibrosis in the bowel. Observable symptoms arise dubeédtochemistry, bowel
problems, and tumor progression. Furthermore, it is shdantiealth is influenced
by patient specific risk factors.

/ hepatic Y, [ hepatic hepatic
——
| response | | metastases | metastases

active
mass

other tumor
| metastases | metastases mass

[ primary primary
| localization ! localization

Figure 6.1: Representation of tumor progression.

Figure 6.1 depicts the progression of the tumor in detail.d@scribed, the tu-
mor may lead to various metastases, some of which may bediuchlly active.
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Furthermore, hepatic metastases are distinguished ifferatit types, since hepa-
tic treatment depends on this. The variabépatic response captures the effect of
hepatic treatment, whereas the variall@or response captures the tumor effect of
systemic treatment. We only represent primary tumor laadibbn and not its size,
since disease progression is mainly determined by meatadiaease. Active meta-
stases and total metastatic tumor mass are representedidlyl®sactive mass and
tumor mass. Parameter estimates are based on clinical expertise dnd Henazi
et al., 1996).

| _soroonin )
release serotonin
response
- Y Y
active
( flushing j [ 5-hiaa j

Figure 6.2: Representation of tumor biochemistry.

Carcinoid tumor biochemistry is captured in Fig. 6.2. Hdtds shown that
all metastases determine CgA production, whereas biodadignactive metastases
determine the release of various biochemical compounds.obthese compounds is
serotonin, whose product 5-HIAA can be measured in a urimgka Note that the
release of CgA and other biochemical compounds is influebgettie biochemical
response of systemic treatment. Parameter estimates s&d ba clinical expertise
and Ref. (Nehar et al., 2004). The release of biochemicapoaimds may in severe
cases lead to a carcinoid crisis through a cascade of ev@inise our interest is not
in modeling this cascade, we simply capture this by assumigpendence between
release at timet andcrisis at timet + 1, where parameters were estimated by an
expert physician.

| release : nt-pro-bnp

Figure 6.3: Representation of carcinoid heart disease.

The release of biochemical compounds is also responsibléhéodevelopment
of carcinoid heart disease, as shown in Fig. 6.3. Note tlgkahing is a prerequisite
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for regurgitation, and CHD is defined in terms of both as fwHo

P(chd | thickening, regurgitation) = 1thiCkening:yesA regurgitation>moderate

where 1y is the indicator function, which is equal to oneXf evaluates tdrue,
and equal to zero iX evaluates tdalse Even though CHD is fully determined
by thickening and regurgitation, it is still useful to repeat the variable CHD in
the model, as it facilitates subsequent parameter estmattor example, NT-pro-
BNP concentrations are normally expressed conditionaherabsence or presence
of CHD (e.g., (Zuetenhorst et al., 2004)).

Bowel-related problems are another complication of caidinumors (Fig. 6.4).
Mesenterial fibrosis is induced by biochemically active kibpawel primary tumors,
and may lead to ischaemia and/or obstruction. Abdominal isa symptom of these
complications, but may also be caused by other metastasesreased bowel moti-
lity, for instance due to serotonin overproduction. Insehbowel motility leads to
diarrhea, and cessation of diarrhea may be experiencedénatdowel obstruction.
Parameter estimates are based on clinical expertise an{TRaf and Visser, 2004).

ischaemia

!

(

other
metastases

[ mesenterial mesenterial abdominal

' fibrosis fibrosis pain
""""" A

' obstruction obstruction

primary diarrhea bOW.EI
localization motility

Figure 6.4: Representation of bowel-related problems.

The core part of the carcinoid model is formed by modeling hgatient’s health
status is influenced by the disease, by risk factors indeperaf the disease, and by
possible treatment complications. In oncology, one wayeforesent the patient’s
health status is in terms of thperformance statu@Oken et al., 1982), which is dis-
tinguished intonormal (0), mild complaints(1), ambulatory(2), nursing care(3),
intensive carg4), anddeath(5), where we say that the health status is acceptable if
health < 3. Figure 6.5 depicts the influences on patibedlth, where the variables
age andgender are major risk factors that determine patient death indegenof
the disease. Their influence has been estimated from deptogrdata collected by
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the Central Bureau of Statistickr the period 2000-2004 (Centraal Bureau voor de
Statistiek, 2005).
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Figure 6.5: Representation of patient health.

The large number of conditioning variables that (partjalietermine patient
health, makes estimation of conditional probabilitiestfos variable very difficult.
However, a large subset of these variables are risk fadtatsrifluence health due to
the fact that they may cause immediate patient death. If ithdesariableendurance
With Qandurance = {yes no} stand for survival of such risk factors, then we obtain
a much simpler model, as given in Fig. 6.6.

(endurancej( chd j( bmd j( tumorj
mass

Figure 6.6: A simplified representation of patient health.

The structure which we associate with the variabidurance can be interpreted
as a causal interaction model (Meek and Heckerman, 1997)e, dedurance is
indirectly influenced by risk factor§’; € C through intermediate variablées; € X,
as modulated by patient health. The influences are then cemtiiy a logical OR,
and we obtain

P(endurance=true | C, health(t-1)) = 1 —H P(X;=false| C;, health(t-1))
C;eC
(6.2)

with causesC = {{age, gender}, obstruction, ischaemia, crisis, bowel resection,
cardiac surgery, plr, rfa, embolization }, whereage andgender condition the same
intermediate variable, as they together quantify deakhimishe general population.
As can be seenin Eqg. (6.1), the variabéalth also plays an important role if our
interest is in computing posteriors for other variables. A&fee found it useful to use
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the notion of adefault influencein order to facilitate the estimation of how health
influences various risk factors. Consider for instance tifi@ence of patient health
on the risk of dying from a carcinoid crisig?(crisis-death(t) = yes| crisis(t-1) =
yes health(t-1) = g). SinceQpaqith = 10, - .., 5}, we need to estimate six different
probability values. It is assumed thadalth has a default influence on the various
risk factors, which is accomplished by assuming that theiémite ohealth on a risk
factorx can be written as:

P(yes| yesg) P(yes|yes1)

Pnolyesg) ~ P(no|yes1) ‘healtn(9) (6.2)

where Plyes| )
_ L'(yesjyesg
Ohealth (9) = P(no|yes1)
represents the change in the oddsxXdeath(¢) =yesgiven a change in health. This
change is estimated by the physician as

Ohealth = 1(0,0.99), (1,1), (2, 1.75), (3, 10), (4, 100), (5,0)} ,

where the choice of for health = 5 represents the fact that a risk factor has no
influence whenever the patient is already dead. This use fatildenfluences of
health leads to a six-fold decrease in the number of probabilitied heed to be
specified for variables that are conditionedaalth, since we can use Eq. (6.2) to
compute probabilities fonealth # 1. In the following, conditioning of risk factors
by patient health is left implicit.

6.2.3 Architecture of the treatment component

A prognostic model also requires the representation osa®ts and their outcomes.
For each treatment, we need to specify its negative andymsifects, and the treat-
ment protocol; i.e., under which conditions the varioustiments are applied.

Treatment effects

Negative treatment effects have already been shown in 6i§snd 6.6, where bone-
marrow depressiorbfnd) may be caused Lifn, r-soma, or r-mibg treatment. Positive
treatment effects are modeled as follows. The interverndtodiac surgery(¢-1) sim-
ply conditions tricuspid valvéhickening(t), where it is assumed thdatickening(t) =
absentgiven thatcardiac surgery(t-1) = yes The interventiorbowel resection(¢-1)
conditionsmesenterial fibrosis(t), where it is assumed thatesenterial fibrosis(¢) =
absentgiven thatbowel resection(t-1) =yes

Hepatic treatments influence thiepatic metastases through the hepatic
response(t), which represents the combined effect of all hepatic treatsy An ex-
ample is given in Fig. 6.7, which models the positive effefcaio arbitrary hepatic
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treatment. Note that the effect of hepatic treatment is rfatdd by the metastatic
type, which can bdocalized multiple or diffuse The total hepatic response can be
modeled by means of the following causal interaction model:

Z H P(x; | C;,type(t-1))

x: max(x)=e C;€C

P(hepatic response = e | C,type(t-1)) =

(6.3)
with C = {plr(¢-1), rfa(t-1), embolization(¢-1)}. States othepatic response are or-
dered:progressive disease stable disease partial response< complete response

[ hepatic hepatic
|__metastases metastases
. tpe |

I hepatic hepatic

| |

| _treatment | response

Figure 6.7: The positive effect ofiepatic treatment 0N hepatic metastases.

Figure 6.8 depicts the tumor and biochemical response ofdheus systemic
treatments. The effect of some of these treatments is miedulay other variables
(not shown).
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Figure 6.8: The tumor and biochemical response of systemic treatment.
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Forf-soma, we condition tumor and biochemical response on a variablease,
which captures if thé-soma dosage has recently been increased, since an increase
in dosage induces a stronger response. The tumor and biazliessponse of both
f-soma andr-soma is modulated by thectreoscan (since these treatments have no
effect in case the octreoscan is negative). Similarly, timear and biochemical re-
sponse of-mibg is conditioned by thenibgscan. The combined effects can again be
modeled by means of a causal interaction model, similarabdhEq. (6.3), where
the current responses are also modulated by the previopengss. The positive
effect oftumor response(¢) andbiochemical response(t) has already been shown in
Figs. 6.1 and 6.2, with states as given by Tables 6.2 and 6.4.

Treatment protocol

The protocol for the various treatments was mentioned isipgsn Section 6.1.3.
Bowel resection is applied in case of curable mesenterisddib and/or obstruction
due to other causes, together with an acceptable healtis ¢E&g. 6.9).

[~ curable [ curable
' fibrosis fibrosis health

""""" Y
mesenterial bowel .
. . . obstruction
fibrosis resection

Figure 6.9: The treatment strategy for bowel resection.

A similar situation holds for cardiac surgery, where wettiaaase of carcinoid
heart disease given an acceptable health status (Fig. 6.10)

surgery

Figure 6.10: The treatment strategy for cardiac surgery.

For the hepatic treatments, the strategy is determined dyextensiveness of
hepatic metastases, the type of hepatic metastases, btslib, and the history of
treatment. Additionally, for embolization, we require tilzutoradiation treatments
have failed (Fig. 6.11). For the systemic treatments, tfaesiies are more complex.
Consider for instance the treatment strategy-kwma (Fig. 6.12). The figure depicts
that the systemic conditions must be present and the ocaeasust be positive in
order to administef-soma. It is also shown that if biochemical and tumor responses
are absent despifesoma treatment, then there is tumor progression despite tredtme
(f-soma progression). This progression determines whetfieoma treatment dosage
is increased, or whethésoma treatment fails. Finally, if the patient comes in with
severe or extreme amounts of tumor mass, then the patigivest:soma, possibly
together with other systemic treatment.



126 A Probabilistic

Model for Carcinoid Prognosis

plr Ir hepatic
history P metastases
rfa hepatic
. rfa
history type
embolization o
. embolization health
history
r-mibg r-soma
failure failure

Figure 6.11: The treatment strategies fir, rfa, andembolization.
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Figure 6.12: The treatment str
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Figure 6.13: The treatment strategy fd.

For interferon treatment (Fig. 6.13), we additionally neéedake into account
whether or not-soma treatment has failed, sindgén treatment is only given after
f-soma failure when the systemic conditions hold, health is acdapt and there is
no bone-marrow depression. We also need to take into actimeitieatment history,
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since interferon may only be administered for a year.

Forr-soma andr-mibg treatment, we use a similar structure, whesema treat-
ment also takes into account that the patient may not sufben fenal failure. Ad-
ditionally, we need to take into account that we make a randbaice between the
two treatments, as represented by Fig. 6.14.

ifn
failure

7 “systemic
choice

r-soma

r-mibg

Figure 6.14: Representing the choice between two treatments.

Farmacological MIBG is administered in case of a good blomssgure when
f-mibg has failed and other treatments are not applicable fornostalue to a poor
condition. The treatment history is used to represent thiem¢hat we treat for three
months and then stop for six months (Fig. 6.15).
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Figure 6.15: The treatment strategy femibg.

Once the transition model for the pathophysiological aedtthent components
has been specified, we need to define a prior model. This padehtan be gene-
rated in part from the independencies that are already septed in the transition
model, although we need to take into account possible aggmts between random
variables. For example, patient age is conditioned by batfept gender and the
primary localization of the tumor since these variables @meelated at admission
time.
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6.3 Validation of the carcinoid model

In order to determine if the performance of a prognostic rhaleatisfactory, it is

important to validate the results that are obtained by meérike model (Altman

and Royston, 2000). In order to validate the carcinoid mode& will use (1) a

clinical database, obtained from the Netherlands Cancstitute, containing data
on 129 patients with a diagnosed low-grade midgut carcimamdor, and (2) more

extensive data on a number of individual patients. Valatatf the carcinoid model
is done in a number of ways. In Section 6.3.1, we compare valreurves that

were generated by the carcinoid model with Kaplan-Meienvesirthat have been
constructed from the clinical database. In Section 6.3uality of the prior and

transition models is determined by means of the clinicahllate and a particular
scoring rule, and compared with that of a proportional hdg@&PH) model. Finally,

in Section 6.3.3, individual patient cases are analyzed bgnms of the carcinoid
model, which is in close correspondence with how the cardimoodel would be

used in clinical practice.

6.3.1 Survival curves

Let T" be asurvival random variablevheret € [0, o) denotes a survival time, such
that thesurvivor function given byS(t) = 1 — P(T <t), represents the probability
of survival at timet. Lett; denote thej-th smallest survival time that occurs in the
database. An estimatéof the survivor function is constructed from da®eby means
of the Kaplan-Meier method (Kaplan and Meier, 1958) as fedlo

risk(t;) — failure(t;)
risk(t;) ’

St;) = ﬁP(T>ti|TZti):g(tj—l)'
1=1

whereS‘(O) = 1 by definition, risk(t;) denotes the number of people at risk of dying
at timet;, andfailure(¢;) denotes the number of people that has died in the period
[t5,5+1)-

Figure 6.16 depicts the Kaplan-Meier curve as estimated ttata, and a survival
curve, which was generated by the carcinoid model, where igreghard patient-
specific evidence. There is a salient jump in the Kaplan-Maieve some five years
after admission to the hospital, which the physician hypsited to be due to the
exhaustion of treatment options at that point. The fit of tlwvisal curve that was
generated by the model is not perfect, since it overestsnadtient survival, espe-
cially for longer survival times. An analysis of the caseshie database showed that
survival curves differed considerably for patients withwathout hepatic metastases.

Figure 6.17 shows that patientsthouthepatic metastases have a lower survival
rate in the first few years. The physician gave the followirgl@nation of this seem-
ingly counterintuitive result: patients that present with hepatic metastases must
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have other complications, since otherwise they would nee lieeen sent to the re-
ferral centre in the first place. In this case, we can expeztptiesence of other
malignancies or metastatic disease in other locations.

4 5 6 ‘7 é é 10
t (years)

Figure 6.16: Kaplan-Meier curve (solid line) as estimated from data, and/ival curve
(dashed line) as predicted by the model.
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Figure 6.17: Kaplan-Meier curves (solid lines) as estimated from data, survival curves
(dashed lines) as predicted by the model, for patients thisr éhe hospital with hepatic
metastases (left), or without hepatic metastases (right).

We have formalized this by means of the variables in Fig. 6.48ere
other malignancy takes part as a cause in the causal interaction modehtarance
in Eqg. (6.1). The survival curve that was computed from théated model shows
a somewhat better correspondence between the Kaplan-bMeier and the survival
curve that was computed from the model. The improvementtidramatic however,
due to the fact that the patient group without hepatic masastis relatively small.
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Figure 6.18: Conditioning of variables byepatic metastases at admission time (dashed
variables), and representation of patient death due tchanotalignancy (solid variables),
whereX is an intermediate variable that quantifies the effect orepa&ndurance.

6.3.2 Model likelihood

One way to assess model quality is by usingcaring rule(Murphy and Winkler,
1984), that penalizes a probability model based on a databas {u',...,u’V}

with instancean’ = (ui,...,u!,). LetX C U denote the variables of interest, and
Y C U, XNY = & the variables for which we have evidence. We assume that
instancesu’ are independently and identically distributed, and useldgarithmic

score(Spiegelhalter et al., 1993):
N . .
S=-> logP(x'|y")
=1

which incurs a penalty if a low probability is assigned torggethat actually occur
(note that we have to account for the fact that the logarithseore is undefined if
this probability is zero). We compare the logarithmic scéref our modelM with
the logarithmic scoré&™f of a reference modebt™!, where

(6.4)

S5 — g (221

P(D | Mref)

A positive sign of this quantity expresses that madklis preferred, and a negative
sign expresses that modet'' is preferred. The quantity

P(D | M)/P(D | M')

is known as the Bayes factor, whef¢D | M) is the likelihood of modelM given
the data andP(D | M) is the likelihood of modelM'f given the data. We use
Eq. (6.4) in order to determine the performance of the pnal @ansition models of
the carcinoid model.
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Prior model quality
For the prior model, our interest is in variables

E(0) = { gender(0),age(0),5-hiaa(0), cga(0), diarrhea(0), flushing(0),
bowel obstruction(0), hepatic metastases(0), octreoscan(0),
mibgscan(0), primary localization(0), mesenterial fibrosis(0) }

for which evidence at the time of admission to the hospitalvalable in the clinical
database. The carcinoid model was then used in order to dentipel logarithmic

score: N
S==> log) P(u}|y"
i=1 j=1

wherey' represents the evidence for instamée This logarithmic score is compared
with that of a reference model that assigns a uniform prdipato each possible
value of the goal variable. The results are listed in Tale Where the junction tree
algorithm was used to compute the posterior distributidResults show that most
variables are predicted better by the carcinoid model. gixoes are5-hiaa and
hepatic metastases, which is most likely caused by the fact that the model oueres
mates the causal relation between the presence of hepatistases and increased
5-hiaa levels.

Table 6.5: Bayes factors for the prior model.

Variable | Bayes factor || Variable Bayes factor
gender(0) 1.7 bowel obstruction(0) 1.7-10™
age(0) 5.3-107 hepatic metastases(0) | 7.0 - 1072
5-hiaa(0) 2.2-1073 octreoscan(0) 1.0

cga(0) 8.4 mibgscan(0) 14

diarrhea(0) | 30 primary localization(0) | 6.0 - 107
flushing(0) | 4.4 - 103 mesenterial fibrosis(0) | 6.4 - 102

Transition model quality

In order to determine the quality of the prediction of patisarvival from patient
specific covariates by the model, we compute the logarittatice for the prediction
of ten-year survival (in terms of three-month follow-up &8), given covariateg’:

N
=1
We compare this score with the score of a PH model (Cox, 198&;ahd Oakes,

1984): SEH . ., where baseline hazard and coefficients were estimateddatan The
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variable age was discretized inige < 58 andage > 58, with 58 being the average
age of patients in the database, and an imputation schemeiseasthat imputed
missing values based on their prior probability, since #irgd number of missing
values caused numerical instability of the algorithm. Th&med coefficients are
shown in Table 6.6.

Table 6.6: Estimated coefficient8 of the PH modelEH ...

Variable | Coefficient | Variable Coefficient
gender(0) 0.8660 || bowel obstruction(0) 0.5314
age(0) 1.0454 || hepatic metastases(0) —0.3146
5-hiaa(0) 0.0043 || octreoscan(0) 1.2103
cga(0) 0.7091 || mibgscan(0) —0.3952
diarrhea(0) 0.3371 || primary localization(0) —0.1812
flushing(0) —0.5039 || mesenterial fibrosis(0) —1.2263

Note that some of the coefficients are negative, which itdicthat, contrary to
expectations, the presence of that particular “risk f&asbeneficial for patient sur-
vival according to the databasP. The computation of Eq. (6.5) for the PH model
needs to take into account that there are missing value®foe patient cases. Fur-
thermore, in order to compare with the carcinoid model, wik lat discrete times
t € {0,...,40}. Letsi = Lsurvivaliyes ands = 1 — si. We use the following
equation, as an estimate of the logarithmic score for the BHiain

l—ci
Ssurvwal = — ZlogH <1st +( st Z So(t)=P (0y?) (ZZ)>

wherec’(t) = 1 (c'(t) = 0) indicates that patientis censored (uncensored) at time
t, andz’ are instantiations of variablés’ C Y that have missing values for patient
i. The contribution of each such instantiation is weightedt®yrior probability in
the database under the assumption that missing covarigesdependent. For the
carcinoid model, we simply instantiate the covariatéfor which values are known,
and compute

Ssurvival = — Z log H P(SurVivali(t) | yi)l—c§

using particle filtering with 3000 particles. As a result, nave found thastH ;- =
1.190 - 103 and Ssynival = 1.229 - 103, which gives a Bayes factor df155 - 10~17
that is significantly in favour of the PH model.

We remark that the PH model did have the advantage that itsrEders were
learnt from the data on which it was tested, whereas therwccimodel is fully
estimated from expert knowledge. Furthermore, althouglc#ncinoid model is out-
performed by the PH model in this respect, the carcinoid uakethe advantage that
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(2) it can make use of evidence that becomes available awer, (2) it may answer
other types of queries, such as the expected cause of dedtie expected future
treatment, and (3) since the carcinoid model is an explmitsal model of disease
progression, the drawn conclusions are more understanddblese features consi-
derably improve both the quality and detail of the prognaassswill be demonstrated.

6.3.3 Patient specific predictions

In this section, we intend to show that having an explicit glaaf medical domain

knowledge at ones disposal has additional benefits thabtéenobtained by means
of standard proportional hazards models. In order to detratesthis, we focus on
individual patients where data about these patients, antébom the database, is
supplemented with more specific clinical evidence as fouarttié physician’s paper
records.

Patient A

Patient A is a 70 year old male that came into the hospital wigmall-bowel tu-

mor and some health-related problems. The patient hadtetevdiaa levels, and

suffered from diarrhea, flushing, and obstruction, but isvi@und that the patient
was free from hepatic metastases and other malignanciesre T¥as no indication
of carcinoid heart disease, and both the octreoscan andsosbgvere positive. The
patient eventually died of wasting five years and two monttes admission.
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Figure 6.19: Predictions of patient A's health.
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The predictions of the carcinoid model as well as the PH mfmtgdatient health
are shown in Fig. 6.19. According to the carcinoid model, ghéents starts with
an ambulatory health status, where over time the chance exfimg nursing care
first increases and then decreases since the patient'secloanlying increases. In
contrast, the PH model can only predict the probability digrd death over time and
due to the negative contribution of the covariates an uistezllly high probability
of patient death is assigned.

During hospitalization, the patient was given severaltinemts. He received
bowel resection at admission due to obstruction. After temtims, farmacological
somatostatin treatment was initiated due to the developofeserotonin-producing
metastases. Thirteen months after admission, the pageeived farmacological
MIBG for four months since deteriorations in health preeldather treatments. Af-
ter three years and nine months, the patient received anotine=| resection due to
the development of mesenterial fibrosis.
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Figure 6.20: Predictions of treatment for patient A.

Figure 6.20 depicts the predictions of the carcinoid modelthe treatments
which patient A will receive. We condition here on the eviderthat is present
during admission, and on observations that are made over tiamely, the deve-
lopment of serotonin-producing metastases after one y#acli we take here to be
hepatic metastases), a deterioration in health after 1&mpand the development of
mesenterial fibrosis after 45 months. The figure is in acecarelavith the physician’s
expectations. At admission, the model suggests boweltiesawrith high probabi-
lity. This probability drops to zero at 18 months (since Healas deteriorated), and
shows a small increase at 45 months (due to the developmenesénterial fibro-
sis). The model also predicts that farmacological somatiosis administered early
on and continued indefinitely. Finally, the probability tHiarmacological MIBG is
administered increases when it is found that health hasideted.
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Figure 6.21: Predictions of tumor response and biochemical respongeatant A.

If we instantiate the projected treatment for this pati¢hén we can examine
the predicted tumor response and biochemical responseqRit)). Both for tumor
and biochemistry, the model predicts an initial stabila@at which over time has a
higher chance of becoming progressive. This is in agreemvéhtthe physician’'s
expectation, although progression was expected to occte rapidly.

Patient B

Patient B is a 59 year old male that came into the hospital avgmaltbowel tumor,
all the symptoms of carcinoid syndrome, and minor heallfitee problems. It was
found during admission that the patient suffered from @ardialve thickening to-
gether with moderate fibrosis as well as mesenterial fibrddie patient eventually
died fourteen months after admission due to complicatidtes aardiac surgery at
thirteen months. An important question, would be to deteerat admission time
the probability that the patient will receive cardiac suygd-igure 6.22 depicts this
probability for the coming five years, and shows that thidbplulity is at a reasonably
high level after thirteen months.
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Figure 6.22: Predicting cardiac surgery for patient B.

Next to predicting future patient health and projectedtinemts, we may em-
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Figure 6.23: Comparing survival of patient B given cardiac surgery andawaliac surgery.

ploy the model in order to distinguish between differentnsc®s. For instance, for
a patient that has developed carcinoid heart disease aiéeyemr, we may compare
the expected course of events in case the patient receivéiscaurgery between
twelve and fifteen months with the expected course of eventsase the patient
never receives cardiac surgery. This comparison is showkign6.23 and moti
vates the physician’s choice of performing cardiac surgdmge this is expected to
improve long-term survival. However, the figure also shdwe performing this type
of surgery may lead to patient death in a minority of cases amirtunately, patient
B also died after surgery. The sudden increase in surviwdighility after one year
is implied by the treatment which the patient received at time. The PH model
is unable to distinguish between the treatment and nortrexat conditions and its
estimate is located in between both scenarios.

With respect to mesenterial fibrosis, the model predictsthieae is a 78% chance
that bowel resection is immediately performed. It was fobadever that the patient
did not receive such a surgical intervention. After somébdeation with the physi-
cian, it was found that the operationalization of meseatdibrosis in the model
differed from that in the database. In the model, the presefheesenterial fibrosis
indicates severe fibrosis, which warrants the interventwmereas in the database,
presence of mesenterial fibrosis also indicates mild fibraghich does not warrant
such an intervention.
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Patient C

Patient C is a 68 year old male of which the primary local@atis unknown. He

came in with extreme CgA levels, no signs of the carcinoiddsyme or other ma

lignancies, and only minor health problems. The patient &aegative octreoscan
and a positive mibgscan. After five months the patient siaitereceive farmaco-
logical somatostatin. From eleven to fifteen months, theepateceived interferon.
After fourteen months, it was found that the patient hadagksy NT-pro-BNP levels.

Currently, seventeen months after diagnosis, the patiarisgo receive radiolabeled
MIBG. The patient remains alive today, and we wish to pregetient health and
projected treatment for the next five years.
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Figure 6.24: Predicting future health of patient C.

Figure 6.24 shows the predictions for patient health. Nb# &t seventeen
months, the carcinoid model predicts that the patient eitlhs mild complaints, or
is ambulatory, since treatment with radiolabeled MIBG iszgian acceptable health
status. Over time, the probability of being in these stagzsahses, and the probabili-
ty of requiring nursing care/dying increases. Five yeaer|dhe patient is predicted
to have a 34% chance of remaining alive. Note that, similgpatent A, the PH
model assigns an unrealistically high probability of patideath due to the negative
influence of the covariates.

Even if NT-pro-BNP levels were elevated, the model assignémv probability
to the development of carcinoid heart disease. This is stardiwith the physician’s
expectations, since diarrhea and flushing were absentatfiadmission (indicating
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that CHD due to elevated serotonin levels is unlikely), anccardiac surgery was
performed immediately after elevated {To-BNP levels were noticed. The model
also assigned low probabilities to the development of otleenplications such as a
crisis or mesenterial fibrosis, and therefore did not reguegatments specific to these
complications.
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Figure 6.25: Predicting future MIBG treatment of patient C.

For f-soma treatment, the data in the database is not consistent vatmtidel;
since the octreoscan of the patient is negative, the moddigis that farmacological
somatostatin is not administered. In reality the patierg gigen this treatment since
his condition at that time precluded other treatment. Updaréng this evidence, the
model responds by giving no biochemical or tumor respong&twis in accordance
with the observed progressive disease of the patient, artiebgiscontinuation of
this treatment for the remaining time slices. For the saraeae, the model predicts
that radiolabeled octreotide will not be administered im filture. The only remain-
ing applicable systemic treatments are then radiolabeldGvand farmacological
MIBG, the predictions of which are shown in Fig. 6.25. The fegshows that the
patient has a chance of receiving radiolabeled MIBG onceemaehere this chance
is smeared out over a longer period, since patient healthlétie acceptable. The
patient also has a small chance of receiving farmacolo§idBIG at each time slice,
since this does not require any conditions other than a ddsload pressure.

6.4 Discussion

In this section, the results which have been obtained frasnstindy are discussed.
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6.4.1 Quality of the carcinoid model

In Section 6.3.2, the prior model has been shown to be ofrogtiglity than a refe
rence model with uniform posteriors in terms of logarithragore. The validation
results for the transition model have shown that the caiginmedel, as constructed
from expert knowledge, is outperformed by the proportidredards model, in terms
of logarithmic score with respect to patient survival. lidend that predictions by the
carcinoid model are miscalibrated in the sense that surisvaften overestimated,
which is in accordance with the general observation thasigigns tend to overes-
timate patient survival (Glare et al., 2003; Christakis &adont, 2000). Since the
carcinoid model is a prototype, we expect that predictivdgomance can be im-
proved by refining the model and its probability estimates.

An advantage of the carcinoid model is that it is not restdcto the evidence
variables that are known at admission, since it allows ferititlusion of evidence
that becomes available as a patient progresses. This leadsre accurate predic-
tions, as was demonstrated in Section 6.3.3. Another aagantf the carcinoid
model is that it may answer queries other than patient sairvduch as expectations
regarding the cause of death, health status, projecteteed and treatment effects.
In fact, with minor modifications, the carcinoid model coaldo be used for patient
monitoring (comparing expected and observed patientstatureatment selection.
Finally, the carcinoid model can explain its predictiondérms of a semantics that
captures cause-effect relations between domain variables

6.4.2 Characteristics of the carcinoid database

Since the treatment protocol for carcinoid tumors is stiltler development, the
database included sequences of treatments that were iimpoascording to the
model. Furthermore, some treatments that were preser itetfabase are no longer
used in clinical practice. For instance, chemotherapy liseatly considered too ag-
gressive as a treatment option for low-grade carcinoiceptgi Also, sometimes the
operationalization of variables in the database was neair,ckes was the case with
mesenterial fibrosis, and abdominal pain, which was exdddethis reason. Addi-
tionally, Table 6.6 shows that the presence of some riskfadiad a positive effect
on patient survival in the database. The presence of mesgtilerosis, for instance,
had a very strong positive effect on patient survival, and wafact the strongest
effect found. Clearly, this does not match with the caranmiodel, which predicts
that mesenterial fibrosis has a negative effect on patiewivaill

6.4.3 Encountered difficulties

Even though this prototype has demonstrated that diseaggegsion for complex
domains can be modeled succesfully by means of dynamic Bayestworks, there
are also some lessons to be learned from this study. Durengdfielopment of the
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structure of the carcinoid model, it was found that somesintige physician had dif
ficulty in determining the causal structure of the domainr &ample, in the early
stages of modeling, a negative octreoscan (absence of tmaEs on the scan) was
associated with aegativeeffect on patient survival as based on clinical expertise.
Later on, when the causal structure of the domain was madieigxpbecame clear
that a negative scan implies that radiolabeled somatostatinot be given as treat-
ment, therefore reducing the chances of survival. At thasly stages of modeling,
it was clearly hard for the physician to structure the domainich frequently led to
the claim thateverything is connected to everythingowever, as domain variables
became consolidated, the task became easier; especialy pathophysiology was
distinguished from the treatment protocol, and modelircuéed on individual sub-
models for the various complications. Another problem thas encountered is that
sometimes the physician was unsure of certain (in)depeieenFor example, the
formation of mesenterial fibrosis is still under debate rebg making model con-
struction and parameter estimation difficult.

During the estimation of probabilities, it was found thag gphysician was not
very sure about the point estimates that she provided. Tdreteit might have
been advisable to model the physician’s uncertainty eitiylicn terms of hyper-
parameters, although this would also have increased modgdlexity considerably.
Various kinds of biases have also been observed during tinesti®n process. Forin-
stance, the physician sometimes claimed initially thateserents never occur (while
in reality they had a small chance of ocurring) or always o¢atnile in reality they
had a small chance of not occurring). It seemed to be the basthe physician con-
ditioned her estimates on the average situation, withdinngainto account possible
exceptions. The physician also noticed that she tendedd®e bher estimates more
strongly on patients that stood out in one sense or anotheeselare examples of
theavailability heuristic(Tversky and Kahneman, 1973). Another observed bias was
therecency effeqtAtkinson and Shiffrin, 1971), where knowledge about patdhat
were seen most recently was used disproportionally foebe&timation.

Sometimes, difficulties arose due to the discretizatioroafiouous variables. As
a simple example, consider the variabtge. By modeling age progression by means
of a small probability that patients advance one discrette st a time (e.g., from
50-60to 60-70and from60-70to 70-80, we have the bizarre effect that a very small
patient group ends up in much older age groups after a fewslioes. Although we
can still approximate the effect of age on patient surviea teasonable degree, this
behavior is clearly undesirable.

A general problem that was encountered is the fact thatru@tidisease as a
whole is still not well-understood and disease progressi@ubject to much varia-
tion, which made model construction a difficult task. Alsagdo the highly com-
plex pathophysiology of carcinoid tumors, and the large beirrof treatments that
are used, model complexity grew considerably, leading tmg Hevelopment time.
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6.5 Summary

In this chapter, we have demonstrated that prognostic reatket be constructed
with dynamic Bayesian networks that take causal, temparad, decisiormaking
characteristics into account. Although the more realisticcinoid model does not
achieve the quality in terms of logarithmic score that wasioied by a proportional
hazards model that was learnt from data, this performanoé dme improved by
subsequent model refinement. The carcinoid model also ltkisoaal benefits, such
as the incorporation of evidence over time, the possihititgnswer different queries,
and an explicit representation of the problem domain. ltishmpe that the discussed
carcinoid model demonstrates the potential of probatuilistodels in medicine, and
guides the future development of other clinical decisioppsut systems.






Chapter 7

Bayesian Classifiers for
Clinical Decision Support

The problem of representing and reasoning with medical kedge has attracted
considerable attention during the last decades. In p#aticways of dealing with
the uncertainty involved in medical decision making hasnbieentified again and
again as one of the key issues in this area and Bayesian tkstaw nowadays cen
sidered as standard tools for representing and reasonihguweertain biomedical
knowledge (Lucas et al., 2004). However, although possihnually constructing
a Bayesian network for a realistic medical domain is a lahriand time-consuming
task.

Another approach to the construction of Bayesian netwarks learn the struc-
ture and parameters of a Bayesian network from data (Coaoypkerarskovits, 1992;
Buntine, 1994; Heckerman et al., 1995; Bouckaert, 1995yarRaters can be effi-
ciently computed as the maximum likelihood estimates ofpthiameters given the
data, but learning the correct graph structure requiresuaisen the space of possi-
ble acyclic directed graphs which grows superexponentieith the number of nodes
(Robinson, 1973; McKay et al., 2004), and exhaustive seartierefore generally
infeasible.

One approach to the problem of learning a Bayesian netwark fiiata is to
search for an optimal graph structure in a restricted segpalbe. Although the re-
sulting Bayesian networks are not expected to represefuititgorobability distribu-
tion over random variables accurately, they may still beduse computing a MAP
estimatex* = argmaxyx P(x | y) as long as the (possibly inaccurate) estimate of
P(x* | y) exceeds the estimate &f(x | y) for all x # x*. If we regardx to be
a class assignment based on the available evidgriben this approach can be in-
terpreted as solving a classification problem. Since we niseence in a Bayesian
network with a restricted graph structure in order to sohesdlassification problem,
we will call these networks Bayesian classifiers. One exarapBayesian classifiers

This chapter is based on (van Gerven and Lucas, 2004a; varee2007b; van Gerven et al.,
2007a; van Gerven and Lucas, 2007).
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are the naive Bayes classifier (Duda and Hart, 1973), whademse variables are
assumed to be conditionally independent given the clasablar

Classification is an important concept in current medicatpce. The (differen
tial) diagnosis of disease, the selection of appropriagatinent, and the prediction
of patient survival can all be cast in a framework that ssléoe correct class from
a set of possible classes given observed patient data. énofd&ayesian classifica-
tion, each class has an associated posterior probabibityrépresents the belief in
that particular class. In this chapter, we focus on Bayesiassification for clini-
cal decision support, and address three different Baye&iasification methods. In
Section 7.1 we describe tmeaximum mutual informatioalgorithm and its applica-
tion to the diagnosis of liver disease. The aim here is tonletassifier structures
that retain some of the (in)dependence structure that Hmtiseen variables in the
domain. In Section 7.2 we develtgnsor decompositiores a novel Bayesian classi-
fication technique and show that it performs well for the dizggic problem that has
already been addressed in Section 7.1. In Section 7.3 wgzanidle semantics and
performance of tha@oisy-thresholctlassifier (Jurgelenaite and Heskes, 2006) in the
context of a prognostic problem in clinical oncology. We evith conclusions about
our research in Section 7.4.

7.1 Maximizing mutual information

Bayesian classifiers are a valuable tool for the automatiatirocal tasks. However,
most Bayesian classifiers place very heavy restrictionshenfarm of the under-
lying Bayesian network structure. The naive Bayes classifite instance, allows
no freedom in the graph structure. These constraints digattany (in)dependence
statements, such as the encoding of higher-order depepdemcere therder of
a dependency is the size of the conditioning7sX’) of the conditional probability
P(X | m(X)) associated with the dependency (van Dijk et al., 2003). eantore,
the constraints lead to classifier structures which may ligelhgible to the physi-
cian. Itis felt that intelligible classifier structures miagrease the acceptance of the
use of Bayesian classifiers in medical practice because oharoved accordance
with a physician’s domain knowledge. Classifier perforneandl also benefit from
such an agreement, since the physician may now aid in igemgicounter-intuitive
(in)dependence statements.

Alternative classification algorithms have been devised thcus on lifting the
independence assumptions of the naive Bayes model (Sipédgeland Knill-Jones,
1984). The tree-augmented naive (TAN) classifier (Friedre@al., 1997) repre-
sents correlations between evidence variables as arce®etvidence variables in
the form of a tree, the forest-augmented naive (FAN) clagsifeneralizes the TAN
classifier by representing correlations between evideadahles as a forest of trees
(Sacha et al., 2002; Lucas, 2004), and the limited-depemdetassifier (Sahami,
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1996), allows each evidence variable to h&vecoming arcs, wheré is chosen
beforehand.

In this section, we introduce a new algorithm to construgté®@an network clas
sifiers. This so-calleanaximum mutual informatiothenceforth MMI) algorithm
builds a structure which favors those features showing mami (conditional) mu-
tual information and resembles the limited-dependencssifiar in the sense that
evidence variables are allowed to have multiple incomimng.aNext to the problems
arising from constraints on classifier structure, Bayesiassifiers perform poorly in
the face of small databases. (In)dependence statementhavaynly little support
from the database (in terms of number of records) and yetrareded within the
classifier structure. The MMI algorithm incorporates a soluby making use of a
heuristic during structure learning which penalizes giiastthat are estimated from
few data samples.

Structure learning algorithms that use information-tke&oal measures such as
mutual information are known aonstraint-basedlgorithms. They have been re-
searched extensively in the context of learning arbitraaydsian network structures
(Cheng et al., 2002; Spirtes et al., 1993; Chickering andkyi2@06). In contrast, in
this research we do not aim to build arbitrary Bayesian nekwtructures, but instead
aim to build a structure learning algorithm for Bayesiarssifiers that provides a ba-
lance between the complexity issues associated with destemature learning algo-
rithms and the highly restrictive structural assumptiohgassifier structure learning
algorithms. In order to determine the performance of the Milgbrithm we make
use of a clinical dataset of hepatobiliary (liver and bifjadisorders, the reputation of
which has been firmly established. Classification accurétleoalgorithm is com-
pared with that of an existing system for diagnosis of hdghtoy disorders, as well
as with that of FAN classifiers, of which the naive Bayes dfesssand TAN classifier
are special cases.

7.1.1 Probabilistic classification

One way to determine the performance of a Bayesian classdfier compute its
classification accuracy. Lé? be a dataset consisting &f cases and let* be the

value of the class variabl€ given thek-th examplee*. Theclassification accuracy
is defined as the percentage of correctly classified cases:

N
(D) = %Z (1 - L(ek)) x 100%, (7.1)
k=1

whereL(e*) is theloss functiopnwhich equals zero ifirg max . {P(C=c|E=e")}
= ¢* and equals one otherwise.

In order to assess the classification accuracy of the MMIrdtga, we com-
pare it with the classification accuracy of the forest-augiee naive (FAN) classi-
fier (Fig. 7.1). A FAN classifier is a modification of the treeganented naive (TAN)
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Figure 7.1: A forestaugmented naive (FAN) classifier. For each evidence viariépthere

is at most one incoming arc allowed fraf\ { F;} and exactly one incoming arc from the
class variabl€’. Both the naive classifier and the tree-augmented naivsifitasare extreme
cases of the forest-augmented naive classifier

classifier, where the topology of the resulting graph ovédence variables is re-
stricted to a forest of trees (Lucas, 2004). The algorithiwotastruct FAN classifiers,
that is used in this chapter, is based on a modification of ldnarithm to construct
TAN classifiers (Friedman et al., 1997), where the conditienutual information, as
computed from a datas@, is used to build a minimum cost spanning tree between
evidence variableE = {Ey, ..., E,,}.

7.1.2 The maximum mutual information algorithm

The maximum mutual information algorithm is a classifier stomction algorithm
that is less restrictive than the discussed FAN algorithnusés both the computed
mutual information between evidence variables and thesatagable, and the com-
puted conditional mutual information between evidenceatdes as a basis for con-
structing a Bayesian classifier. The mutual information)(btween an evidence
variable E and the class-variabl€ is given by:

ZP e, c)log ——— Ple,c) (7.2)

whereas the conditional mutual information between ewiderariables, given other
evidence variables and/or the class variable is given by:

I(E,E'|A) = Y Plee,a)log (P|(a) (|€"j‘)| ~ (7.3)

e.e’,a

with A ¢ EU{C}. Contrary to naive and TAN classifiers, the MMI algorithm reak
no assumptions about the initial network structure. lttstimom a fully disconnected
graph, whereas the FAN algorithm starts with a naive classsiiructure such that
(C,E) € A(G) for all evidence variableZ € E. Since redundant attributes are
not encoded, network structures are sparser, at the saradrtdicating important
information about independence between class and evidemiebles. In this sense,
the MMI algorithm can be said to resemlselective Bayesian classifieflsangley
and Sage, 1994). The algorithm iteratively selects the @it lghest (conditional)
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mutual information from the set of candidates and adds ihéoBayesian network
B = (G,P). It starts by computing (C, E) for the setS = E. From this set,
the evidence variabl& having highest mutual information with the class variable
C'is selected. This candidate is removed frBrand (C, E) is added to the arcs in
G. Subsequently, it will construct all candidates of the faif1, £) and add them
to (an initially empty) setA if £’ was added later t6: than E. The conditional
mutual informationI (E’, E | n(E)) is computed for these candidates. Now, the
algorithm iteratively selects the candidateSof) A having the highest (conditional)
mutual information. If a candidater’, F') € A is chosen, thed(E", E | n(E)) is
recomputed for all pair§E”, E) € A, since the parent set @& has changed. By
directing evidence arcs to attributes that show high mutidafmation with the class
variable, we enforce that the resulting graph remains tickand acyclic. The full
algorithm is shown in Algorithm 7.1.

Algorithm 7.1 MMI construction algorithm.
input: empty graph, databas®,
class variabl€”, evidence variableE, number of required arch/
S—E
A — aninitially empty set of pairs of evidence variables
for i = 0to M do
let £ = arg maxg/cs {I(C, E/)}
let (B, Es) = argmax(g pyea {I(E', E | 7(E))}
if I(C,E) > I(Ey, Ey | m(E2)) then
S—S\{F}
A(G) — A(G)U{(C,E)}
forall E' € Sdo
A—AU{(F,E)}
end for
else
A(G) — A(G) U{(E1, Ex)}
A — A\{(E1, E)}
end if
end for
return G

Figure 7.2 shows an example of how the algorithm builds a Bayeclassifier
structure. The final structure incorporates feature delgcorientation of arcs in
the direction of evidence variables that show high mutu@rmation with the class
variable, and the encoding of a thiolder dependenc®(FE; | C, E1, Es).

Looking back at Eq. (7.3) a possible complication is idesdifi Since the set
7 (E) of an evidence variabl& may grow indefinitely and the number of parent con-
figurations grows exponentially with, the network may become victim of its own
unrestrictedness. Note that since one has a finite (and sftafl) database at ones
disposal, this means that the actual conditional probigli{ £ | 7(E)) will become
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Figure 7.2: An example of the MMI algorithm building a Bayesian classif&ructure from
the top left to the bottom right with dashed arrows reprasgritandidate dependencies.

increasingly inaccurate when the number of parents growsdjgurations associated
with large parensets cannot be reliably estimated from moderate size ads¢ab

introducing what may be termegpurious dependencietn order to prevent the oc-
currence of spurious dependencies, we make use of the fofidveuristic. We use

B
Na+

D / Na /
P(E,E |a) = Na—l—ﬁP(E’E | a) +
as the expression for the conditional probability fand E’ given thatA = a,
during the computation of conditional mutual informatiaocording to Eqg. (7.3). In
Eq. (7.4), N, is the number of times the configurati@nhoccurs inD, andg is a
parameter that we choose @s= 500 throughout our experiments, unless indicated
otherwise. P(E,E’' | a), P(E | a), and P(E’ | a) are computed fronD and
smoothed using Laplace smoothing. This heuristic enshighe conditional mu-
tual information computed according to Eq. (7.3) will be dmden the number of
occurrencesV, of the conditioning case is small, since, in the limi, — 0, we
obtain

P(E|a)P(E' |a)  (7.4)

P(e,€ | a)
I(E,F' | A) = P " a)l ’
( ’ ‘ ) e%:a (676 Ja) 0og P(e ‘ a)P(el ‘ a)
Ple|a)P( | a)
= ¥ Pe,é,a)l —0.
2 Pled o 5 ey ~

7.1.3 The COMIK dataset

In order to validate classifier performance we made use cZ®®IIK dataset, which
was collected by the Copenhagen Computer Icterus (COMIBQmand consists of
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data on 1002 jaundiced patients. The COMIK group has beekimgpfor over a
decade on the development of a system for diagnosing livkebgiary disease which

is known as the Copenhagen Pocket Diagnostic Chart (Maldigller et al., 1986).
Using a setE of 21 evidence variables, the system classifies patientsdné of
four diagnostic categoriesacute non-obstructiyechronic non-obstructivebenign
obstructiveandmalignant obstructive The chart offers a compact representation of
three logistic regression equations, where the probglufitacute obstructive jaun-
dice for instance, is computed as follows?(acute obstructive jaundicé E) =
P(acute| E) - P(obstructive| E). The performance of the system has been studied
using retrospective patient data and it has been foundhbagytstem is able to pro-
duce a correct diagnostic conclusion (in accordance wihdibgnostic conclusion
of expert clinicians) in about5 — 77% of jaundiced patients (Lindberg et al., 1987).

7.1.4 Classification results and network interpretation

In this section we will demonstrate the usefulness ofthmarameter that was intro-
duced in Eq. (7.4), compare the classification performahbeth the FAN and MMI
classifiers on the COMIK dataset and give a medical inteagicet of the resulting
structures.

Table 7.1: Effects of varying parametgt for a model consisting a30 arcs.

B _nD) FB)|B nD) FB)|B 0@  FB
1 7475% 87 || 102 7595% 65 | 800 76.25% 59

4 T475% 77 290 7595% 63 | 900 76.25% 59
36 7485% 71 610 75.95% 61 2000 76.25% 57
56 75.15% 67 660 76.25% 61

First we present the results of varying the parameéten order to determine
whether this has an effect on the classification performamcknetwork structure
of our classifiers. To this end, we focused on a Bayesianifitas8 = (G, P)
that allows 30 arcs (the paramet®&f in Algorithm 7.1). For this classifier, we have
determined the classification accuracy, and summed sqtemead

FB) = ) @),

1eV(Q)

where|r(i)| denotes the cardinality of the parent set of a vefteXable 7.1 clearly
shows that the summed squared fan-in decreases Whetreases; indicating that
spurious dependencies are removed. This removal also reseéidal effect on the
classification accuracy, which rises fram.75% for 5 = 1 t0 76.25% for 5 = 660.
We have compared the performance of the MMI algorithm witt &f the FAN
algorithm, using leave-one-out cross-validation, usihg- 500. Figure 7.3 shows
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accuracy (%)

70 . .
10 15 20

25 30 3‘5 4‘0
number of arcs

Figure 7.3: Classification accuracy for Bayesian classifiers with a iv@ryiumber of arcs
learnt using the FAN algorithm or the MMI algorithm for the GIK dataset.

that both algorithms perform comparably and within the losuof the Copenhagen
Pocket Diagnostic Chart. Both algorithms show a small perémce decrease for
dense network structures, which may be explained in ternwveffitting artifacts.
Maximal classifier accuracy for the MMI algorithm 7$.65% for a network of19
arcs versu§6.45% for a network of27 arcs for the FAN algorithm.

In terms of classifier structure, one can observe that babrithms represent
similar dependencies, with the difference that those ofMihél algorithm form a
subset of those of the FAN algorithm. The best FAN classifées & structure with
an arc from the class variable to every evidence variable thadollowing arcs
between evidence variablebiliary-colics-gallstones— upper-abdominal-pain—
leukemia-lymphoma- gall-bladder, history-ge-2-weeks- weight-loss ascites—
liver-surfaceand ASAT— clotting-factors The MMI algorithm has lefteukemia-
lymphomecongestive-heart-failureand LDH independent of the clasariable and
shows just the dependentiyer-surface— ascitesbetween evidence variables.

Given our aim of learning Bayesian classifiers that not ongpldy good clas-
sification performance, but are comprehensible to medicatiads as well, we have
carried out a qualitative comparison between two of the Biayenetworks learned
from the COMIK data: Figure 7.4 shows a FAN classifier whictswearned using
the FAN algorithm described previously (Lucas, 2004), whsrFigure 7.5 shows an
MMI network with the same number of arcs. Clearly, the resith imposed by the
FAN algorithm that the arcs between evidence variables fforest of trees does
have implications with regard to the understandabilityhef tesulting networks. Yet,
parts of the Bayesian network shown in Figure 7.4 can be gavelimical interpreta-
tion. Similar remarks can be made for the MMI network, altifowne would hope
that giving an interpretation is at least somewhat easier.
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Figure 7.4: Arcs between evidence variables for a FAN classifier coirtgid1 arcs. The
class variable was connected with all evidence variablessimown).
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Figure 7.5: Arcs between evidence variables for an MMI classifier conigj 41 arcs. The
class variable was connected with all evidence variablessimown).

GALL-BLADDER

If we ignore the arcs between the class vertex and the ewedesttices, there are
20 arcs between evidence vertices in the FAN and 22 arcs betexédence vertices
in the MMI network. Ignoring arc orientation, 9 of the arcstire MMI network are
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shared by the FAN classifier. As the choice of the directioaros in the FAN is ar
bitrary, it is worth noting that in 4 of these arcs the direntis different; in 2 of these
arcs it is medically speaking impossible to establish tghtrdirection of the arcs,
as hidden variables are involved, in 1 the arc direction rsemb Congestive-heart-
failure — ASAT), whereas in the remaining arGl-cancer— LDH) the direction is
incorrect. Some of the 13 non-shared arcs of the MMI netwarleha clear clinical
interpretation. For example, the arG¢-cancer— ascites congestive-heart-failure
— ascitesand Gl-cancer— liver-surfaceare arcs that can be given a causal inter-
pretation, as gastrointestinal (Gl) cancer and rightthfzaiure do give rise to the
accumulation of fluid in the abdomen (i.e. ascites), and limetastases due to Gl
cancer may change the liver surface. Observe that the reultguses of ascites
cannot be represented in the FAN due to its structural ofisins. The pattgall-
bladder — intermittent-jaundice— feverin the MMI network offers a reasonably
accurate picture of the course of events of the processgyivée to fever; in con-
trast, the situation depicted in the FAN, whéakemia-lymphomacts as a common
cause, does not reflect clinical reality. However, the asmfupper-abdominal-pain
to biliary-colics-gallstonesn the FAN, which is correct, is missing in the MMI net-
work. Overall, the MMI network seems to reflect clinical igasomewhat better
than the FAN, although not perfectly.

7.2 Decomposed tensor classifiers

In this section, we present a novel probabilistic clasdificatechnique which is
based on the decomposition of a multiway array, also knowa tagsor(de Lath-
auwer, 1997), by means of a set of components, often takimdattm of vectors.
We call classifiers that use this technigdecomposed tensor classifiend test
their performance by means of a database that contains loatd H002 patients that
present with hepatic disease. The goal is to diagnose thmeatalisease for each of
the patients from a set of four distinct diseases. The padoce of this new tech-
nique is analyzed and compared with the performance of tive iBayes classifier
(Maron, 1961).

We proceed as follows. In Sections 7.2.1 and 7.2.2 the thieakdackground
of tensors and their decompositions is described. Subsdguie Section 7.2.3, we
address how tensor decompositions can be used for pratt@bdiassification. The
clinical database and the techniques used to evaluatéefidassn performance are
described in Section 7.2.5. We end with an analysis of themxgntal results in
Section 7.2.6.

7.2.1 Tensors

A tensor is a concept taken from multilinear algebra whichegalizes the concepts
of vectors and matrices, and is defined as follows.
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Definition 7.1. Let I1,..., Iy € N denote index upper bounds. t&nsorA <
RI¢-xIn'js an N-way array where elements ...;, are indexed by; € {1,...,I;}
fort <j <N.

We call N the order of a tensor, such that a tensor of order one denotes a vector
a € R1, and a tensor of order two denotes a matix: R’1*/2, Thenth modeof a
tensor refers to theth dimension of a tensor. A tensor can be expressed in terms of
a matrix using the concept of a matrix unfolding.

Definition 7.2. Thematrix unfoldingA ;) € RE*Wis1livaIvhlz-Ij-1) of an Nth
order tensord € R/1**Ixn js the matrix that has elemeat, ...;,, at row numberi;
and column number

1+ Y (=1 [[ Im.
1<k<N k+1<m<N
ki mj

Example 7.1. The matrix unfoldingA ) of a third-order tensor
(@, D) (e, )T . _(a b e f
A= < (. )T (g h)T is given byA (o) = cdgh)
A tensor may be multiplied by a matrix by means of thenode product

Definition 7.3. Then-mode product x,, B of a tensotd € R *I~x and a matrix
B € R/VXIN is atensoiC € RI1x*In—1xJnxIny1ixXIN with elements:

Ciy i1 i1 -in = E iy i Uiy, -
in

Example 7.2. Let A be a third-order tensor as in example 7.1 andBedenote a
square matrix witth1; = u, b1o = v, bo1 = w, bas = z. The 2-mode productl x», B
is then given by

( (a(u +v),b(u+v)T  (c(w+2),dw+z))T )
(e(u+v), flu+v)T (g(w+ ), h(w+z))T )

We also define, for tensord, B € R *I~ theinner product

<A,B>E Z ail...isz‘l...Z‘N

115 0N

and Frobenius norm||A|| = /(A,.A). The outer productA o B of two tensors
A € RIv<xIn gndB € R1**/n is defined as the tens@re RV xInxJix:xJn
such thate;, ...;,, j,...j, = Giy.i, - bj;...5, fOr all elements of’. The rank of a tensor is
then defined as follows (Hastad, 1990).
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Definition 7.4. A tensor of orderN hasrank one if it can be written as an outer
producta® o - .. 0 alN) of vectors. The rank of a tenset is defined as the minimal

number of tensorsly, . .., Ax of rank one such that
K
A=) A (7.5)
k=1

Example 7.3. The thirdorder tensor

_ (63" (84T
A_<(—12, 6)7 (-16, 8)T>

has rank one since it can be written as the outer produ¢t,ef2)”, (3,4)7, and
(2,-1T.

7.2.2 Tensor decompositions

Equation (7.5) is known asrmank-K decompositiorof . A. A more general kind of
decomposition is th&ucker decompositioflTucker, 1966), which can be interpreted
as a multilinear formulation of the singular value deconifpms (de Lathauwer et al.,
2000a):

T3(A) = C x1 BW x5 ... xy B (7.6)

with J = (J1,...,Jy), core tensoriC = (cj,..j, ) and matriceB™ € RInx/n,
Elements of4 are then computed as follows:

1 N
iy iy = Z Cjrjn bglgl o bl('NJ)N T Tigiy (7.7)

jl"“7jN

where (74,...;,,) denotes a residual tens@®. The parameters of the Tucker de-
composition can be found usirfggher-order orthogonal iteration{de Lathauwer
et al., 2000b). A special case of the Tucker decompositi@mbigined when one as-
sumes that the core tensrnis a superdiagonal tensor with ...;,, = 0 if there are
u,v € {1,..., N} such thatj, # j,. Hence, we obtain:

K
N
k=1

for some suitably choseR. Equation (7.8) is known as tlianonical decomposition
(Carroll and Chang, 1970), qarallel factors decompositiofHarshman, 1970). In
general, the decomposition of Eq. (7.8) is not necessatiitymal nor exact, and can
be interpreted as a sum of rank-1 approximations. One wayndiniy a rank-1 ap-
proximation is by means of tH@gher-order power metho(HOPM) (de Lathauwer
et al., 2000b), as shown in Algorithm 7.2.
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Algorithm 7.2 HigherOrder Power Method (HOPM).
input: A
initialize b™®) ..., b™Y)
repeat
forn=1to N do

B = A x; M7 xg v, 1 b DT BT sy BT
A =[]
b — f)(n)/,\n

end for

until convergence
return A=Ay -bM o... o b@)

The higher-order power method finds a tensbe= A - b®) o --- o b®), with
scalar) and unit-norm vectord(™, 1 < n < N, that minimizes the least-squares
cost functionC'(A, A) = || A — AJ|2. A greedy approach to finding the sum of rank-
1 terms in Eq. (7.8) is to apply the higher-order power mettwothe residuals that
remain after obtaining a rank-1 approximation. This teghaihas been employed
successfully in Ref. (Wang and Ahuja, 2004) in order to aghieigh compression
rates for image sequences. By definiag = A and A* = A*~1 — HOPM(A*1)
the following rank# approximation of a tensoA is obtained:

K
R (A) =)  HOPMAY). (7.9)

k=1

In order to initialize matrices and vectors in Algorithm ,A/Arious schemes can
be used. One approach is to repeat the algorithm for se\ardbm initializations
and to choose that decomposition which maximizes the fitéetvthe original tensor
and the approximation. Another approach, which has praverotk well in practice,
is to choose the first dominant left singular vector of therivatnfolding A ;), as an
initial estimate ofb?) (de Lathauwer et al., 2000b,a). The algorithm has converged
when the increase in fit between the tensor and its approkim#iat is gained after
one iteration drops below a small error criterien In the following section, we
will use decompositions of tensoy < [0, 1]/~ for the task of probabilistic
classification.

7.2.3 Classification with tensor decompositions

In this section, we focus on a multisat = {a!,... a"} that represents our data,
and where an instaneé = (z4, ..., 2% ) consists of evidencer!, ..., z% ;) and a
class labelr},. We assume that all variables are discrete and/yséth 1 < j < N

This procedure is only guaranteed to find the optimal r&hlepproximation if the tensos is
orthogonally decomposable (Zhang and Golub, 2001).
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to denote the finite number of values of a variableX ;. The basic idea is to obtain
an approximation of aimcompletetensor.4 using a tensor decomposition. Let
denote the evidence and fefx, z ) stand for the number of timés, z 5) occurs in
A. We transformA into an incompletely specified tensdr € [0, 1)71**I~ such
that )

Azy-xy = En(xa xN) (7.10)
for all (x, z ) for which some(x, j) with 1 < j < Iy occurs inA. Henceay,....
is undefined for unseen evidenkdas indicated by), which implies that the tensor
is incomplete. The element,,...., is used to represent an estimate of the joint
probability P(x,zx). For incomplete tensors, we interpret undefined elements as
zero in Algorithm 7.2. Since zero elements have no coniobyutwe may use a
sparse representation of tensgtse [0, 1]71%*/~ with very largeN, provided that
only some of the elements are defined.

Example 7.4. Consider a dataseA = {(1,1,1), (1,2,1), (1,2,1), (1,2,2),
(2,1,2), (1,1,2)}. By applying the transformation (7.10) to the example dstas
we obtain the thirebrder tensor

The basic idea is then to obtain an approximation dhanmpletaensor.A using
a tensor decomposition. For incomplete tensors, we may sgarae representation,
by interpreting undefined elements as zero in Algorithm Sihce zero elements
have no contribution, we may use tensotse [0, 1]/~ with very large N,
provided that only some of the elements are defined.

Example 7.5. When applying the higher-order power method to our exerypr-
sor, we have the following matrix unfoldings:

11 2 1 11 0 1 12 0
_[& & 6 & _[8s & & ® _[& & @
A(l)_ 0 1 A(2)_ 2 1 A(3)_ 1 1 1
6 & * * 6§ 6 * * 6§ 6 6 *

Assuming thatb™ = (a,5)”, b® = (¢,d)T, andb® = (e, f)T, one cycle of
Algorithm 7.2 for variable4; would give us

b =

* o
* Ol

7

o ol— oo o
= O =

) ) (Ca d)T X3 (67 f)T
B .ce+%cf+%de+%df
gee + %cf ~+ xde + *df

[ gce+ ief + E2de + df
5cf
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with \; = ||by|| = \/(%ce + gcf + 2de + 3df)% + (3¢f)2. Hence, zero and unée
fined elements have no effect.

In case of probabilistic classification, our interest is amputing the posterior
probability P(xx | x) based on our estimate &f(x, zy). Although P(x,zy) is
approximated bYRk (A)z, ..., We have no guarantee that the tensor approximation
represents a proper probability distribution for unsedédeswce (which is the goal of
probabilistic classification), since the approximationynb@ unnormalized or even
lying outside the unit interval. Therefore, we use the folly transform when com-
puting the conditional probability ok 5 givenx:

RE(A)pyon
Plzy | x) = K L,
Z1§j§1N R}_((A):cl---:czv_lj

(7.11)

where
R}(A)xl...mN = Rk (A)p,..cy — min {O,mjin(RK(A)xl---le,j)}

ensures that we sum over positive terms by making (smallpthegterms non-
negative. Alternatively, a log transform together with &adle prior may be used in
order to guarantee that we obtain a proper conditional fiétyadistribution. How-
ever, experiments in that direction led to less optimalgifastion results.

We use the terndecomposed tensor classifterdenote a classifier that uses the
approximationRg (A),...., for the purpose of classification. In this chapter, we
use the rankX approximation, although other tensor decompositions sigckhe
Tucker decomposition could also be used. Furthermore, geireethat variables
are discrete (or discretized a priori), and data is completecompleted using an
imputation scheme). The classification procedure is showiigorithm 7.3.

Algorithm 7.3 Decomposed tensor classification.

iNput: Avrain, Atest R
transform the datas& i, into the tensordyain Using Eq. (7.10)
learn the approximatioRy (Atain) Using Algorithm 7.2
for all rows(x) € Atestdo

for j = 1to Iy do

computeP(j | x) using Eq. (7.11)

end for

assign class labél(x) = argmax;{P(j | x)}
end for
return class label
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7.2.4 Graphical model interpretation

If the approximatiorRx (A);,...i, IS €xact, then we may interpret a rahkapproxi-
mation in terms of a graphical model structure, as notice(bavicky and Vomlel,
2006), and shown in Fig. 7.6.

o1 dN-1

10}

oN

Figure 7.6: Representation of a tensor rafk-approximation as a graphical model, with
(possibly negative) real-valued functionts, and where the hidden variablé has states

1,....K}.

According to Eq. (7.8), a rank’ approximation can be written as
1)
Ric(A)a,ooan Z A b b (7.12)

We define function®;(z;, h) = bg_)h for 1 < j < N and absorb\ into the function
J

on (@, h) = Ny, - b We now define
N
P(z1,...,an,h) = H (zj,h (7.13)

with partition functionz = >, H;.Vzl ¢j(x;, h) as the joint probability dis-
tribution for random variables(y, ..., Xy, H. Equation (7.12) can then be inter-
preted as marginalization over the hidden variafite

N
P(ml,...,xN):%ZH (x5,h), (7.14)

and the computation aP(zy | x) can therefore be interpreted in terms of proba-
bilistic inference in the graphical model of Fig. 7.6.
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7.2.5 Classifier evaluation

In order to examine the performance of decomposed tensssifitas, we have made
use of the COMIK dataset, which was collected by the Copesi@pmputer Icterus
(COMIK) group and consists of data on 1002 jaundiced patitmat may be clas
sified into one of four diagnostic categorieacute non-obstructivechronic non-
obstructive benign obstructiveand malignant obstructivegiven 21 evidence vari-
ables (Malchow-Mgller et al., 1986). Earlier classificatstudies have shown that,
typically, the correct diagnostic conclusion (in accoramvith the diagnostic con-
clusion of expert clinicians) is found for abadti — 77% of jaundiced patients (Lind-
berg et al., 1987; van Gerven and Lucas, 2004a). As a pregsiocestep, we have
computed the mutual information between evidence varsadhel the class variable,
and selected the eighteen evidence variables that showedtighutual information
(MI) with the class variable as the basis for classificat&ince the three remaining
evidence variables give relatively small contributiongy(F.7).

mutual information

2 4 6 8 . 10 12 i 14 16 18 20
evidence variable

Figure 7.7: Mutual information between the class variable and evideacables.

Classification performance of the decomposed tensor fitxsss compared with
that of a naive Bayes classifier using a ten-fold cross-atibd scheme. Empirical
estimates of the required probabilities are smoothed usaipdpce smoothing. The
naive Bayes classifier typically reaches high classificatiocuracies, and uses the
(naive) assumption that evidence variables are indepégilean the class label:

N-1
P($N|X O(P:L’N HP.QZJ‘.TN
7j=1
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Since the COMIK dataset contains missing values, and thendgased tensor classi
fiers require complete data, we have used multiple imputdticreate three complete
datasets from the incomplete dataset. Since we have no &dge/kbbout the missing
data mechanism, we make the (admittedly unrealistic) agamthat data is miss-
ing completely at random, and use the prior probabilitieshefevidence variables
to determine the imputed values. This allows a comparisaerins of classification
performance between the naive Bayes classifier and the ges@u tensor classi-
fiers, where performance is averaged over folds and datasets

Classification performance is quantified by means of classifin accuracy and
logarithmic score. Classification accuracy is defined apéreentage of correctly
classified cases, as in (7.1). The logarithmic score (Sihiatjer et al., 1993) is a
scoring rule which penalizes a probability model based oatalihse consisting of
m instancesgx’, z;) wherex’ denotes the evidence am{, denotes the class value.
Assuming that instances are independently sampled antiddiy distributed, the
logarithmic score is defined as:

m
S=-) log Py | x')
=1
which incurs a penalty if a low probability is assigned torggethat actually occur.
The logarithmic score of the decomposed tensor classifieorigpared with that of
the naive Bayes classifier in order to determine how wellagiasterior probabilities
are approximated.

7.2.6 Experimental results

In order to use the rank approximation for classification, the first question is vhic
initialization procedure to use in Algorithm 1. Therefovee have conducted a pre-
liminary experiment in order to compare different initetion schemes in terms of
classification accuracy and least squares error. To thisveadhave chosen the five
most informative evidence variables as the basis for ¢leasbn, and compared the
performance on the test set of classifigyg, with 1 < K < 30, for 1, 5, and 10
random initializations, and for the initialization with ehdnant left singular vectors.

The results shown in Fig. 7.8 indicate that there is not muiflrdnce in classi-
fication accuracy or least squares error for the differeitilization schemes. Dif-
ferences in standard deviations were also negligible (mowg). Therefore, we have
chosen to use just one random initialization since this tisedeast computational
resources.

We have learnt decomposed tensor classifiers based on titeaigmost infor-
mative evidence variables far< K < 30 components. The comparison of the clas-
sification accuracy of the decomposed tensor classifier thihof the naive Bayes
classifier is shown in Fig. 7.9. The highest average accuitadhe decomposed ten-
sor classifier is reached at nineteen components with amagcaf 76.75%, whereas
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Figure 7.8: Average classification accuracy on the test set (left) aast lsquares error of the
tensor approximation (right) based on five evidence vaemhlith different initializations.

for the naive Bayes classifier, the average classificationracy is 77.25%. At that
point, the standard deviation of the classification acgucdthe decomposed tensor
classifier is 3.24%, whereas that of the naive Bayes classf&40%. Although the
naive Bayes classifier performs somewhat better than thent@esed tensor classi
fier in terms of classification accuracy, differences ardigiie.
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Figure 7.9: Average classification accuracy and standard deviatiorth®mest set for the
decomposed tensor classifier (solid line) and the naive 8algssifier (dashed line).
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Figure 7.10 depicts the average logarithmic scores for #eomiposed tensor
classifier and the naive Bayes classifier (where we have addswhall term to
Eq. (7.11) in order to prevent numerical problems). It sheoiwat the logarithmic
score of the decomposed tensor classifier decreases as omop@reents are added
and eventually becomes lower than that of the naive Bayssifitr?

150

e e - =
= 5 % N
s 8 8 8

logarithmic score
-
5
8

5 10 15 20 25 30
components

Figure 7.10: Average logarithmic score on the test set for the decomptesesbr classifier
(solid line) and the naive Bayes classifier (dashed line).

Figure 7.11 shows a Hinton diagram, depicting the contidioubf each compo
nent for each of the four classes for a decomposed tensaif@asontaining nine-
teen components. The large white block that can be founddh ealumn indicates
that each of the components improves the approximation éysfaog mainly on one
class.

Figure 7.11: Hinton diagram, showing the magnitude of positive contiins (white blocks)
and negative contributions (black blocks) of nineteen rhckmponents (horizontal axis) for
the four classes (vertical axis).

For the decomposed tensor classifier, the transform of Efjl)&ssigns dis-
tributions skewed towards zero for incorrect classes apd/e# towards one for the

2In practice, the appropriate number of components is saldny means of cross-validation on a
hold-out set.
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correct class, although not as well as the naive Bayes fi&assis shown in Fig. 7.12.

decomposed tensor classifier naive Bayes classifier
900 5000
[___Jincorrect class [___Jincorrect class
800 I correct class | 4500 I correct class | |

4000

3500

3000

2500

cases
cases

2000
1500
1000

i ekl L |

o] 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6 0.4 0.6
probability probability

Figure 7.12: Distribution of posterior probabilities of correct and amcect classes for the
decomposed tensor classifier and the naive Bayes classifier.

The analysis of the classification accuracy and the diffe¥en logarithmic score
show that although both classifiers operate differentlyy ferform comparably with
respect to classification accuracy. If we inspect the diaations that were made
by the classifiers then it is interesting to see that only 26#ad a total of 2955
cases (8.60%) have been classified differently by the twssiflars. Out of these 254
cases, the naive Bayes classifier assigned 107 cases tatbet @bass, whereas the
decomposed tensor classifier assigned 93 cases to thetaasss Hence, the clas
sifiers are able to classify different cases correctly, saggg that there are certain
problems for which the naive Bayes classifier is more swtadhd other problems
for which the decomposed tensor classifier is more suitable.

7.3 Predicting CHD with a noisy-threshold classifier

In this section, we employ a novel Bayesian classifier, duoed in (Jurgelenaite
and Heskes, 2006), that facilitates medical interpratati® it explicitly provides for
a semantics in terms of cause and effect relationships @fe@n and Breese, 1994).
This noisy-threshold classifigs based on a generalization of the well-knomgisy-
or model, which has already been used for the purpose of tesgifitation in (Vom-
lel, 2002). In order to demonstrate the merits of the ndmsgghold classifier in a
medical context, we apply the technique to the predictiocantinoid heart disease
(chd); a serious condition that arises as a complication of certauroendocrine tu-
mors (Zuetenhorst et al., 2003). We demonstrate that trsy4tieshold classifier
performs competitively with state-of-the art classifioatitechniques for this medi-
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cally relevant problem. Furthermore, an expert physiciaih@ Netherlands Cancer
Institute (NKI) was consulted, and it is demonstrated honknewledge concerning
chd relates to the parameters that were estimated for the4tlmisghold classifier.

7.3.1 Semantics of the noisy-threshold model

We will show how to arrive at the noisy-threshold model, lyoducing a number of
assumptions that are motivated by the semantics in termeusks and effects, that is
taken to hold for causal independence models. Causal indepee is a popular way
to specify interactions among cause variables (Pearl,;11988kerman and Breese,
1994; Zhang and Poole, 1996; Diez, 1993; Lucas, 2005). Tdimabstructure of a
causal independence model is shown in Figure 4.2 and exgrédssidea that causes
C = {C1,...,C,} influence a common effedd through hidden variableH =
{H.,...,H,} and a deterministic functiorf, called theinteraction function The
causal independence assumption does not refer to indepmntetween causes, but
rather to the assumption that hidden varialiigsare independent of caus€s\ {C;}
given C;. Causal independence is therefore also knowimdspendence of causal
influenceor exception independencdn practice, causes in a causal independence
model can be dependent; for instance, when the model is etateslithin a larger
network, or if there are direct dependencies between caudesvever, if causes
are completely observed then it is not necessary to modalg¢pendence structure
between cause variables.

We assume that causes are eitivesenior absent We user™ andz~ for X = T
(true) andX = L (false) respectively, and interprétas 1 andL as 0 in an arithmetic
context. The individual contribution of a cauég to the effectE is realized by the
parameterP(H; | C;) associated with the hidden variablg; if P(h] | ¢) < 1
then H; is said to inhibit the caus€’;. The assumption adiccountabilitystates that
absent causes do not contribute to the effect which implies®(h | ¢;) = 0
(Pearl, 1988). The interaction functighrepresents in which way the hidden vari-
ablesH;, and indirectly also the causés, interactdeterministicallyto yield the final
effect £. Since variables are binary,reduces to a Boolean function. It is also use-
ful to introduce deak termwhenever it is infeasible to identify all the variables that
influence the effect. We model this leak term by postulaticg@seC; that is always
present and with which is associated a leak probahifityi,” | ¢;") (Pradhan et al.,
1994). In this manner, we maintain tilosed-world assumptiofReiter, 1978). It
follows from these assumptions that the conditional prdibabf the effecte™ given
a configuratiornc of the cause€ can be obtained from the parametét&:; | ¢;) as
follows (Zhang and Poole, 1996):

Piet|e)= > HPh | ci), (7.15)

h: f(h) =1
T.

wherePs(e™ | h) =1 < f(h)
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As there are2?”" different n-ary Boolean functions (Enderton, 1972; Wegener,
1987), the potential number of causal independence mobatsi¢ admitted by
Eq. (7.15) is huge. However, if we assume that the order of#luse variables does
not matter, the Boolean functions becosymmetricand the number of such func-
tions reduces ta@"*! (Wegener, 1987). An important symmetric Boolean funct®n i
the exactBoolean functiorx,,,, which is defined as:

em(h, . hy) =T &Y hj=m.

Any symmetric Boolean function can be decomposed in terntiseoéxact functions
€ as follows (Wegener, 1987):

fha, b)) =\ em(h, .. ) A ym (7.16)
m=0

where~,,, are Boolean constants dependent on the choice of the symrutction
f. A particularly useful type of symmetric Boolean functiarthethresholdfunction
T, Which simply checks whether there are at IdasaluesT among the arguments,
ie.

(i, ) =T &Y hy > k.
j=1
In terms of causes and effects, the use of the thresholdifumes the interaction
function of a causal independence model expresses thearibtibasufficienthumber
of causes should be present in order to induce the effectn, Thenoisy-threshold
mode] as defined in (Jurgelenaite et al., 2006), is given by:

(eT|c)= Z ZHP}L|CZ (7.17)

Jj=k h:e;j(h)i=1

To express a threshold function in terms of Eq. (7.16) wewse --- = y,_1 = L
andv; = --- = v, = T. Note that the noisy-or model, witfi(hy, ..., h,) <
hy V ---V hy, corresponds to threshold functien, and the noisy-and model, with
f(hi,... hy) < hy A--- A hy, corresponds to threshold functiep. Hence, these
two commonly used causal independence models are the edreiha spectrum of
causal independence models that are defined by the noesshtbid function.

The parameter®(h; | ¢;) of the model can be learned using expectation
maximization(EM) algorithm (Dempster et al., 1977). EM is a method for find
ing maximum likelihood estimates of parameters in prolstitl models, where the
model depends on (unobserved) hidden variables. Evesaitarof an EM algorithm
consists of two steps: the expectation step (E-step), wtdchputes the expected
value of the hidden variables, and a maximization step @®»stwhich computes the
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maximum likelihood estimates of the parameters given tha.d&o learn the para

meters in the noisy-threshold classifier we use the EM dlgorfor noisy-threshold

models (Jurgelenaite and Heskes, 2006). Generally, thecegon and maximiza-
tion steps are alternated repeatedly until convergenceveker, for small data sets,
this may result in overfitting artifacts; an issue to whichnetirn later.

The analysis in this section has shown that causal indepeadaodels such as
the noisy-threshold model have an interesting semantiesnms of causes and effect,
and can be learned using the EM algorithm, given a symmetudan interaction
function. The next section describes the medical problemishused to illustrate the
usefulness of the noisy-threshold model as a classifier.

7.3.2 Carcinoid heart disease

Carcinoid tumors belong to the group of neuroendocrine tsmehich are known

for the production of vasoactive agents in the presence ¢dhstatic disease; usu-
ally hepatic (liver) metastases. Among these agents,®#@rois the most important
agent, leading to the characteristic carcinoid syndromitushes and diarrhea. The
other main characteristic feature of neuroendocrine tgnsaihe slow progression of
most tumors if the histology shows a low-grade pattern (@oiedrst and Taal, 2005).

Figure 7.13: chd is characterized by heart valve fibrosis as shown in the ayerl

Serotonin overproduction may also cause carcinoid headade ¢hd), which
is characterized by fibrosis of the right sided heart vah&steown in Fig. 7.13.
Fibrosis induces thickening and retraction of the tricdsgilve, leading to tricuspid
insufficience and ultimately heart failure, which is the sawf death in as much
as half of carcinoid patients (Zuetenhorst et al., 2003;téhigorst and Taal, 2003).
Since so many carcinoid patients dieabid, it is important to distinguish patients
that are admitted to the clinic into patients that are prongevelop a severe form of
carcinoid heart disease, and those that do not developaesesform. In this way,
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patients that are at risk can be given more aggressive tesatim order to reduce
the probability of the development ehd. Hence, the classification task for this
medical problem will be to classify the patients into these groups, depending on
the attributes that are known at the time of admission to timcc We use chd

to denote the development of moderate to extreme tricusgige insufficience and
chd™ to denote the absence, or development of mild tricuspidevaigufficience
during patient followup.

Table 7.2: Patient attributes that are measured at admission.

Name | Definition Name | Definition

hia 5-HIAA levels gil General illness

cga Chromogranin A levels| bob Bowel obstruction
dia Diarrhea ibl Internal bleeding
whe Wheezing fev Fever

flu Flushing hme Hepatic metastases
apa Abdominal pain

In principle, the physician can make use of the attributas dhe measured at ad-
mission (Table 7.2), in order to predict the developmernthaf However, in practice,
in order to determine the probability of developing modetatsevere tricuspid valve
insufficience, the physician makes use of the following sieai rule:

0.50 if hia™ A dia™ A hme™

0.25 if hia*t A (dia~ A hme* v dia™ A hme™)

0.10 if hia™ A dia~ A hme™ \V hia~ A dia™ A hme™
0.03 otherwise.

P(chd" | ¢) =

The aim of this section, is to show that a noisy-threshold eh@dn be used as a
Bayesian classifier where performance is compared with biysigian’s classifica-
tion performance, as well as with standard classificatiohrigjues such as the naive
Bayes classifier, logistic regression, and decision-trBasient attributes are used as
cause variables in the definition of a noisy-threshold moaledl it is assumed that
independence of causal influence, accountability, symnaetd sufficiency hold. As
required, variables are binary, and positive states oblabet are perceived to be less
favorable than negative states, such that they could bemsgpe for carcinoid heart
disease. To train and test Bayesian classifiers for this cakgroblem, we have
used a clinical database consisting of fifty-four patientd suffered from a neuroen-
docrine tumor, and for which the grade of tricuspid valveuffisience was known.
Twenty-two patients developed moderate or worse tricusglde insufficience du-
ring follow-up.

We have not yet touched upon the most important assumptioausfal indepen-
dence models. That is, can the variables be regarded asscalusarcinoid heart
disease? For some attributes this is questionable. Dafdreénstance is a symptom
of other processes and is therefore not likely to be a causaroinoid heart disease.



168 Bayesian Classifiers for Clinical Decision Support

§15555458258

Figure 7.14: A noisy-threshold model for carcinoid heart disease, where theathsegion
represents the total tumor burden for the patient. Note sleeofithe leak caugg; in order to
model possible hidden causes.

However, wecan interpret the attributes as risk factors that act as commusnef

the totaltumor burden as depicted in Fig. 7.14. Since the causes are assumed to be
completely observed, we refrain from adding additionalettejencies between cause
variables.

7.3.3 The noisy-threshold classifier
Classifier construction

Construction of a noisy-threshold classifier (NTC) proceas follows. We first de-
termine the cause variabl€sand effect variablér that are used in the classifier. In
the context of a classifier, the cause variables stand foatthibutes and the effect
variable stands for the class-variable. Secondly, we neetktermine the positive
states of the variables. In tlhd domain, the positive states are simply defined as
the presence of attributes that affect the presence of #ss-sfariablehd. Once the
cause and effect variables have been defined, we need to fihdhH@ooptimal va-
lues for the parameterB(h;” | ¢;) using an EM algorithm, as well as the correct
threshold function,.

The parameters and threshold function are learned from abas¢D =
{ul,...,u"} where instancea’ = {c/, e’} = {c],...,ch, e/} withj =1,...,N
consist of realizations of causes and the effect. D&EtC D denote those instances
{c/, e’} for whiche/ = T, and letD~ C D denote those instancds’, e’} for
which e/ = 1. We define the following measures with respect to a fixed @b
and modelM/. Let thetrue positiveqtp) stand for the number of instancas ¢ D+
for which P(e* | ¢/) > 0.5 and let thefalse negativegfn) stand for the number of
instancesw’ € DT for which P(e' | ¢/) < 0.5. Likewise, we define th&ue nega-
tives(tn) as the number of instanced € D~ for which P(e* | ¢/) < 0.5 and the
false positivegfp) as the number of instanceé € D~ for which P(e* | ¢/) > 0.5.

In order to learn the parameters of the noisy-threshold meadeused a training set
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Dyain and a validation seDygigatee. The validation set is used to counterbalance the
overfitting that may occur when learning model parametehg dim of the learning
phase is to maximize both tleassification accuracy

tp +1in
D) =
n(P) tp+itn+ fn+ fp

as a measure of the number of correctly classified caseshafd theasure

x 100%

2T
(D) = —F
T+ p
as a measure that takes into account the tradeoff betpeersionr = tpfffp and
recall p = —2_ which is also known asensitivity We use these two measures

- tp+fn’ " . N
since the accuracy is the obvious measure but may conveyrtirgvintuition when

the classes are not equal in size (van Rijsbergen, 1979linginhe optimal noisy
threshold classifier then proceeds as follows:

1. Divide the data se into the disjoint setDirain, Dvalidate AN Diest

2. For all noisy-threshold modelB,,, ..., P, with n = |C|, use the training
dataDyain and the EM-algorithm in (Jurgelenaite and Heskes, 2006¢dol
the parameter®(h; | c;).

3. Select the noisy-threshold model and the number of iteraitof the EM-
algorithm that maximizes -n(Dyalidate) + w2 - F1 (Dyalidate) With equal weights
w1 = ws, as the optimal noisy-threshold classifier.

With regard to the clinical data s&? we have used a leave-one-out cross-
validation scheme to implement the above algoritlincontains too many missing
values to simply remove the instances that contain missata &Ve have usetiean
substitution(Kline, 1998) as an imputation scheme, and noteittaitiple imputation
(Rubin, 1987) produced similar results.

Classifier evaluation

In order to evaluate the performance of the noisy-threshladsifier, we compared
its classification accuracy with the accuracy of a numbertioéiowell-known algo-
rithms. For the comparison we have used the naive Bayesfea$siBC), for which

P(e* | ¢) x P(e") [[ Plei | e),
=1
logistic regression (LG), where the posterior probabibtgeveloping carcinoid heart
disease is given by

1

+ —
Pl |c) = 1 + e—(aotarci+-+ancn)

)
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and a decisioitree learning algorithm (C4.5), as implemented by the WEKA-
chine learning tool (Witten and Frank, 2005)Furthermore, we compare the per-
formance of the optimal noisy-threshold classifier witht thizthe noisy-or classifier
P;, as a special case (Vomlel, 2002). Parameters are estimtatadifita and for the
probabilistic algorithms classification proceeds by délgcthe class value that has
highest posterior probability’(e™ | c¢). For the decision-tree learning algorithm, no
posterior probability is computed and classification peotseby traversing the tree
and selecting the class value that is associated with thedek.

As pointed out in (Salzberg, 1997), when comparing two diaation algo-
rithms, the approach preferred to a standard t-test, is@causinomial test, which
uses the number of casedor which the two classifiers produce a different output,
and the number of caseswhere the output of the examined classifier was correct,
while the output of the reference classifier was wrong. Utigenull hypothesis that
the two classifiers perform equally well, we compute:

n

n! n
1= ; T =
for a one-tailed test, and= 24 for a two-tailed test.

Since the classification accuracy assumes equal costsérefalse positives and
false negatives, we use tReceiver Operating Characteristi¢ROC) curve to com-
pare the performance of some of the classifiers in terms dfdlde off betweesen-
sitivity p = tpfffn andspecificityo = mtffp for every possible cutoff (Egan, 1975),
wherep is shown on the y-axis, and— ¢ is shown on the x-axis. This performance
can be quantified by computing the area under the ROC curv€jAlshich has been

shown to equal the outcome of the Mann-Whitney U statisteniBer, 1975):

ZcieD+ ZCjED_ u(ci7 Cj)

AUC =
DD
where 4 ,
o 1 if Plet |c') > Pe™ | &)
u(c',dd)=< L if P(et | c') = P(et | &)
0 if PleT|c)) < Ple™]| )

We can interpret this statistic as follows. We assume theaetls a ranking between
instances irD such that any deviation from the perfect ranking that ratiksositive
examples higher than all negative examples leads to a decneahe AUC (Cortes
and Mohri, 2004). IfP(e™ | ¢') > P(e* | ¢/) then we produce a correct ranking, if
P(et | c') = P(et | ¢/) then we break ties at random and produce a correct ranking
half of the time, and ifP(e™ | ¢’) < P(e* | ¢’) then we produce an incorrect
ranking.

3We use WEKA's default parameter settings; the default impom method is to interpret a missing
value for X as a separate valuec Qx.



7.3 Predicting CHD with a noisy-threshold classifier 171

7.3.4 Results
Classification performance

Table 7.3 lists the classification accuracy for netisgeshold classifier®’;, to P;,.
The noisy-threshold classifig?;; is selected, based on the validation Bgkjdate
and shows the best classification accuracy2st on the test seDies Note that this
exceeds considerably the classification accuracy46f for the noisy-or classifier
P,,.

Table 7.3: Classification accuracy dPes: for noisy-threshold classifielB,,, . . ., P,,,.
NTC | n(Dtest) || NTC | n(Dtest) || NTC | n(Dtest)

P, |54% | P, |69% | P, |59%
P, |65% | P, |72% | P, |59%
P, |65% | P. |65% | P, |59%
P, |70% | P, |57% | P, |59%

In order to test how well the NTC performs compared with thgsatian, and
with the other classification algorithms that were previpuiscussed, we have de-
termined the classification accuracy. Table 7.4 describeglassification accuracy
on Dt for the physician’s decision rule, NBC, LG, C4.5 and noisyamdp-values
for the null-hypothesis that the classifier accuracy is caraple to that of the NTC
P..

Table 7.4: Classification accuracy andvalues for classification e

Classifier | 7(Diesy) | p

physician | 69 % 7.0-1071
LG 67 % 6.3-1071
NBC 63 % 2.3.1071
noisy-or | 54 % 6.4-1073
C4.5 44 % 6.2.107°

Note that the expert physician’s classification accuraag#sonably high, out-
performing all but the noisy-threshold classifier. The pdlsreshold classifieP,
shows the best classification accuracy, although the diife is significant only for
C4.5 and the noisy-or classifier at a confidence levelef0.05. For the physician’s
decision rule, the naive Bayes classifier, and logisticeggjon, we cannot reject the
null hypothesis that the algorithms may in fact be equaluaate for this data set.

Itis well-known that classifiers that show large bias tendutperform classifiers
that show high variance for small data sets, since this esltiee risk of overfitting.
For this reason, the naive Bayes classifier tends to perfoethom many data sets
(Kohavi and Wolpert, 1996). However, although not alwayeoted in its classi-
fication accuracy (Domingos and Pazzani, 1997), the assompt independence
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between attributes given the claggiable, is a strong assumption which does not
hold in general. In contrast, the noisy-threshold clag&fi@ssumptions are moti-
vated by a cause-effect semantics as described in Sec8dn &nd hold for domains
where the presence of a sufficient number of causes is safficienduce the effect.
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Figure 7.15: ROC curve for the noisy-threshold classifier, logistic esgion, and the naive
Bayes classifier, where the straight line segment in the Nli@ecis a consequence of the
assumption that absent causes do not contribute to the.effec

Figure 7.15 presents the ROC curves for the physician’sibeciule, the noisy-
threshold classifieP’,,, the naive Bayes classifier, and logistic regression, wtere
area under the curve equals 0.66, 0.66, 0.60 and 0.59 reghgcAlthough the per-
formance in terms of AUC is mediocre, both the physician'siglen rule, and the
noisy-threshold classifier show a considerably betteioperdnce than the other stan-
dard classification techniques. The ROC curve does denadasirpotential danger
of using the noisy-threshold classifier, especially whendausal assumptions are
not satisfied. Whereas the naive Bayes classifier is ableathugtly increase the true
positive rate at the expense of increasing the true negettee the noisy-threshold
classifier fails to accomplish this for all true positiveast This is a consequence
of the assumption that absent causes cannot contribute teffict; the probability
Py, (e™ | ¢') of assigning an instance to the positive class equals zeemevier the
number of present causes is less than the threghold
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Medical interpretation

In this section we look at the noigiaireshold classifier fothd from a medical point
of view. Prior to presenting the resulting classifier, we enasked the physician
to indicate how important the individual attributes weré fe be with respect to
predicting the development of carcinoid heart disease.

According to the physician, progressive carcinoid diseaasd#ten accompanied
by the carcinoid syndrome, which is characterized by dearfiia) caused by in-
creased bowel motility due to serotonin overproduction,pbyiodical flushing at-
tacks (lu) due to the synergistic interaction between various vds@aagents, and
sometimes by wheezingvfie). As discussed in Section 7.3.2, serotonin overpro-
duction is thought to play a key role in the etiologyabid and it can be measured
indirectly by means of the urinary 5-HIAA levehi@) since this is a metabolite of
serotonin. Hence, the variables related to the carcinadireyne are indicative of
serotonin overproduction and ultimatetiid. It is therefore assumed that the vari-
ableshia, dia, flu and to a lesser extemthe have a high predictive value. Serotonin
overproduction is itself caused by the carcinoid tumor i@ piesence of particu-
lar metastases; hormones released by carcinoid tumorsftare destroyed by the
liver before they reach the general circulation to causepsgms. Therefore, only
hepatic metastasebnfe), or metastases that can release hormones directly into the
general circulation, can produce the carcinoid syndronmeeoAding to the physician,
the presence of hepatic metastagese) during hospitalization is indicative ahd
development, since this is a requirement for serotoningreeluction, The plasma
chromogranin A ¢ga) level is used as a general marker of neuroendocrine activit
and tumor extensiveness (Nobels et al., 1998). Althoughagatrded as important as
the previously discussed attributes, the physician erplega to have a high predic-
tive value since extensive tumors with high neuroendoaterity are more likely to
causechd. In contrast, the variablasl, fev, apa andbob were not thought to predict
chd very well. Local progression of hyper-vascular primary tuminto the lumen
of the small bowel is often the cause of internal bleeding, (but is not thought to
be related to metastatic disease. Fefer) (can be caused by hepatic metastases, as
captured by the variableme, but it is also a non-specific symptom that is not neces-
sarily caused by carcinoid disease in the first place. Abdahpain @pa) and bowel
obstruction hob) are often caused by complications due to the primary tumdr a
were assumed to be unrelated to the developmestidbfAccording to the physician,
general ilinessdil) could be indicative of the development of carcinoid he@tdse;

a poor condition is often due to extensive metastases anefdine a high probability
of serotonin overproduction. In general, the physicianeexgd that at least some of
the risk factors should occur together in order to catige

Figure 7.16 depicts the estimates of prior probabilitieg;") and conditional
probabilities P(h; | ;) for the noisy-threshold classifier that was used for predic-
ting chd. The predictive value of the variabléd, dia, flu andwhe is reflected in
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hia cga dia whe flu apa gil bob ibl fev hme ¢
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Figure 7.16: Estimates of priors”(c;"), and conditional probabilitie® (" | ¢;), for the
noisy-threshold classifier with threshold functieg

the reasonably high associated probabilitis;” | ¢;”) with i € {1, 3,4, 5}, which
range from 0.67 to 0.91, where wheezing is indeed seen to lesopredictive value
than the other attributes. The presence of hepatic metastase) is also an impor-
tant predictor othd, as is indicated by the high probabili(h]; | ¢{;) = 0.92. No-
tice that most patients that are admitted already presehtsuch metastases, which
is reflected by the high prior probability(cfl) = 0.78. Contrary to the physician’s
expectationsgga was not a very good predictor ofd, with P(h; | ¢) = 0.53. In
hindsight, this may be explained by the fact tbgd overproduction does not neces-
sarily reflect serotonin overproduction, and if it does, #ynve redundant information
given that we have observéd, which is a metabolite of serotonin. Internal bleeding
(ibl) and fever fev), with P(h | ¢) = 0.12 and P(h] | ¢;") = 0.13 respectively,
did not contribute much to the effect. Unexpectedly, bottaabinal pain épa) and
bowel obstructionfob) had relatively high probability valueB(h; | ¢;) of 0.80
and 0.84 respectively. After some deliberation, the pligsigave the following pos-
sible explanation. Since abdominal pain and bowel obstmucre often caused by
complications due to the primary tumor, batpa andbob indicate a midgut tumor
with possible mesenterial fibrosis. A midgut localizatienai prerequisite for sero-
tonin overproduction, and mesenterial fibrosis is thoughbe related to tricuspid
valve fibrosis (Modlin et al., 2004). Therefore, the pregeotthese variables could
have been indicative of the developmentbfl. General illnessdil) had a high pro-
bability value of P(h; | ¢) = 0.93. Five out of seven patients that suffered from
general illness indeed developelsd. The threshold functiong corresponds to the
physician’s opinion that the presence of just one risk faistgenerally insufficient to
causechd, whereas the presence of all risk factors is much too stretjairement as
a cause forhd; demonstrating that the noisy-threshold model as a genatiah of
both the noisy-or and noisy-and model can be the proper etioigealistic domains.
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7.4 Summary

In this chapter, we have described three different protstioilclassification tech
nigues. We discuss each of the techniques seperately.

Maximizing mutual information

The MMI algorithm makes few structural assumptions andatteely builds classi-
fier structures that reflect higher-order dependenciesdmtvwevidence variables. In
this sense, the MMI algorithm resembles Sahami’s limitedesthdence classifier (Sa-
hami, 1996) with the difference that we do not require thatamdof an arc between
the class variable and each evidence variable. Furtherrimeeheuristic that was
used during the estimation of conditional mutual informatprevents the construc-
tion of overly complex network structures and the introdurctof spurious depen-
dencies. As is shown, the number of higher-order depenégvill only increase
if this is warranted by sufficient data. The experimentalltssshow that classifica-
tion performance of the MMI classifier is comparable withttbbthe FAN classifier
while the weaker assumptions allow for a network structhet ts less ad-hoc and
somewhat better to interpret from a medical point of view.

Decomposed tensor classifiers

In this chapter, we have also shown that tensor decompuasittan be used for the
purpose of probabilistic classification. The classificat@curacy of this novel clas-
sification method on a problem in medical diagnosis is coaiparto that of the naive
Bayes classifier and other methods which have been spdgifumleloped to solve
this classification problem. The logarithmic score of deposed tensor classifiers
suggests that the method is less suitable for obtainingratecposterior probabili-
ties, although the different mode of operation, togethehhe results concerning
correctly classified cases, suggest that there may be ydartiproblems for which
this new technique performs better than the naive Bayesifiexs Current limita-
tions of the technique are the requirements that data isatésand complete, and the
fact that learning the classifiers requires more computaticesources than the (easy
to learn) naive Bayes classifier.

Decomposed tensor classifiers are a new way of employin@reteomposi-
tions, the usefulness of which we have demonstrated indéisarch using a classifi-
cation problem in medical diagnosis. Dealing with currémitations and validation
of the technique by means of multiple datasets are futuesarek goals.

The noisy-threshold classifier

The noisy-threshold classifier is a novel type of classifiett thas a well-defined
semantics in terms of causes and effect. Due to the indepeadssumptions that are
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made by the classifier, parameters can be reliably estimédtbdut needing to resort
to huge amounts of data. This is an important feature singg/ m@mains are charac
terized by limited amounts of data, as discussed in (van &eand Lucas, 2004b).
Learning Bayesian classifiers from data is to be contrasiddthe construction of
a full Bayesian network that captures available domain kedge, which, although
possible, can be very resource intensive for realistic diogna

We have demonstrated that the noisy-threshold classifiéorpgs comparably
with the decision rule that is used by an expert physiciad, @mpetitively with
state-of-the-art classifiers, on an important classificatask in oncology. Further-
more, it significantly outperforms the noisy-or classifias, a special case of the
noisy-threshold classifier, for this data set. The semsrifcthe noisy-threshold
classifier enables an interpretation in terms of availablmain knowledge, as is il-
lustrated by the physician’s interpretation of classifiargmeters. Nevertheless, one
should be cautious when defining the positive states of theeceariables since neg-
ative states cannot contribute to the effect, as reflectdegtraight line segment of
the ROC curve. The competitive classification performamzkveell-defined seman-
tics make the noisy-threshold classifier a promising newhimadearning technique,
as was demonstrated here in the context of medical prognosis



Chapter 8

Conclusion

The goal of this thesis has been to examine how graphical iméateclinical deci
sion support (such as Bayesian networks and influence dnsyrean be constructed
in order to deal with large and complex dynamic decision |enois that require rea-
soning under uncertainty and are characterized by limitadability of data. In this
concluding chapter, we describe the scientific contrimgiof this thesis (Section
8.1), consider the strengths and limitations of our apgrd&ection 8.2), and reflect
on the subject matter of this thesis (Section 8.3).

8.1 Scientific contributions

Chapter 3: Clinical decision support with Bayesian networls

The construction of Bayesian networks for clinical decgisgupport often proceeds
in an ad-hoc fashion. Therefore, in Chapter 3, we addressedroblem of how to
construct Bayesian networks for clinical decision suppgrtonsidering how a clin-
ical problem together with practical considerations tlaesinto particular Bayesian
network designs. We have shown that insight into the nattitieeoclinical problem
can be obtained by:

e describing the clinical task in terms of abstract probletwisg,

e distinguishing non-temporal and temporal forms of probkatving,
o differentiating between a patient model and a physicianehahd
¢ dividing clinical concepts into different categories.

Practical considerations relate to the amount of time omalli;g to spend on model
construction. The following factors reduce modeling dffairthe expense of model
expressiveness:

e using restricted associative instead of unrestrictedatanedels,

e using non-temporal instead of temporal models,
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e taking a restricted number of clinical categories into actp

e enforcing conditional independence assumptions betwkeical categories,
and

e externally imposing, instead of incorporating, a decisioeking strategy.

By making the nature of the clinical task more explicit anddking into account pos-
sible practical considerations, we have pointed out a moneipled approach when
choosing a Bayesian network design in order to solve a dlirpcoblem. Finally,
we have shared some of the insight that has been gained dberdgevelopment of
Bayesian networks for clinical decision support, which vagéndivided into variable
definition, structure specification, factor associatiord parameter estimation.

Chapter 4: A qualitative characterization of causal indepadence

The manual construction of Bayesian networks, especiatipability estimation, is
a difficult task. This motivates the development of techagthat reduce the ef-
fort when specifying a Bayesian network. In Chapter 4, weeHaeused on causal
independence models, which offer one way to facilitate Beyenetwork construc-
tion. The theory developed in this chapter allows one totiflewhether a particular
causal independence model with a chosen interaction imctn fulfill the speci-
fied qualitative properties in principle. This is a usefukelepment since without the
theory one would need to estimate the conditional probaslP(m | ¢) for each
of the causes and exhaustively compute the influences amdgsys for the model
as in Section 4.1.2. By means of the theory, the qualitatareabior can be read off
directly from the underlying interaction function. The éé&yed theory can also be
employed for placing direct constraints on the structurgéhefunderlying interac-
tion function givena qualitative specification in terms of influences and syiesrg
as demonstrated by Tables 4.1, 4.2, and 4.3. These resnltsecased to generate
the set of interaction functions that respect the congwaimich facilitates the selec-
tion of a suitable interaction function for problems than ¢e represented as causal
independence models. Given the fact that probability egton is time-consuming,
and since causal independence models allow for efficiertente and have a se-
mantics that is understandable by the physician, the piegepproach (i.e., using a
qualitative specification to identify a suitable causakipendence model) is seen as
a valuable contribution.

Chapter 5: Dynamic decision making with DLIMIDs

Chapter 3 described the steps that need to be taken whenumdimg} a Bayesian net-
work for clinical decision support, where it was assumed tha physician’s treat-
ment strategy is either externally imposed or explicitlgressented. However, when
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dealing with (clinical) decision problems, the ultimateayof decision theory is to
find the optimal (treatment) strategy in the first place. T¥as the topic of Chapter 5,
where dynamic limiteadnemory influence diagrams (DLIMIDs) were described as a
novel approach to the representation of dynamic decisiobl@ms. DLIMIDs pro-
vide an alternative to the solution strategies offered hyiglh/-observable Markov
decision processes (Monahan, 1982) for the solution ofnftefihorizon) dynamic
decision problems. We have developed new solution algosthwhere simulated
annealing combined with single rule updating is shown tdgoer well on a realistic
clinical decision problem. The alternative representattdb complex dynamic deci-
sion problems together with the definition of algorithmg fivad acceptable solutions
motivates the usefulness of our approach.

Chapter 6: A probabilistic model for carcinoid prognosis

In Chapter 6, we embarked on the manual construction of ardinBayesian net-
work (DBN) for prognosis of low-grade carcinoid tumors oétmidgut. With 218
variables and 74 342 CPT entries for the prior and transitiodel, the so-called car-
cinoid model is one of the largest DBNs for clinical decissupport that has been
developed to date. The resulting model was created from iokmeowledge that
was provided by an expert physician at the Netherlands Cdnsttute. It captures
state-of-the-art knowledge about treatment and prograsigarcinoid tumors. The
predictive performance of the carcinoid model was not agigmothat of a propor-
tional hazards model, but it has to be noted that the lattetaineas allowed to learn
from the data on which it was tested. Furthermore, the quafithe database itself
can be questioned, as evident from Table 6.6 and Sectiod. @rt Section 6.3.3, it
was shown that the carcinoid model can make very specifiégtieas for individual
patients, which is the carcinoid model's projected modepsration. Even though
the carcinoid model is an initial prototype, it has alread@yndnstrated that DBNs
are suitable for the representation of complex pathoplygital processes as they
are influenced by the physician, whereas approximate inéerallows for the online
computation of prognostic outcome at future points in time.

Chapter 7: Bayesian classifiers for clinical decision suppb

A different approach was taken in Chapter 7, where Bayesétnarks were learnt
from data instead of expert knowledge. We focused on clieaision making as
a classification problem and used Bayesian networks wittsigicted graph struc-
ture for the purpose of probabilistic classification. In tepter, three varieties of
these so-called Bayesian classifiers have been describe8edtion 7.1 the maxi-
mum mutual information (MMI) algorithm was developed. Imt@st to the limited-

dependence classifier (Sahami, 1996), the MMI classifiersislective method that
uses a heuristic in order to automatically determine thelmmof incoming arcs
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for the evidence variables. The algorithm performs well afisgnostic problem in
hepatology and allows graph structures that are more irdtwethan that of, say,
the naive Bayes classifier. In Section 7.2, tensor decortiposi(a technique taken
from multilinear algebra) were used for the purpose of pbilsic classification.
In particular cases, these decompositions can be desdnbedms of a graphical
model structure. They are shown to perform about as well @asdive Bayes clas
sifier on the diagnostic problem of Section 7.1. Its goodsifastion performance,
along with the fact that it classifies other instances cdiyreghen compared with
the naive Bayes classifier, warrants further research eméw and promising tech-
nique for probabilistic classification. In Section 7.3, wealyzed the performance
of a recently described type of Bayesian classifier. Theynibiseshold classifier
is a causal independence model that is employed for the parpbclassification.
It compares favorably with state-of-the-art classifiersttos prediction of carcinoid
heart disease in carcinoid patients and due to the nice smsi@amterms of causes
and effects is also more interpretable by the physician. ddseribed techniques
offer new directions for learning Bayesian networks froninasited amount of data.
We have demonstrated their usefulness using clinical estalsut remark that their
applicability extends beyond the medical domain.

8.2 Strengths and limitations

It is well-known that the manual construction of realistiay@sian networks is diffi-
cult and time-consuming. Contrary to learning a Bayesiawoek from data (as in
Chapter 7), where general purpose algorithms can be usedamatically construct
a model, there are no off-the-shelf recipes for the manuadtcoction of a Bayesian
network. Chapter 3 provides a partial solution to this peaibby coupling problem
solving and a characterization of clinical tasks with martar Bayesian network de-
signs. However, actual model construction must still beedonthe knowledge engi-
neer on a case-by-case basis. As yet, the large scale depibpirBayesian networks
(and expert systems in general) is not realized in praciioe we view the knowledge
elicitation bottleneck as the main reason for this failareeliver. It would therefore
be a major improvement if the knowledge engineer has acoastein used network
designs. These designs may be specified at the task leveisadame in Section 3.2
and in (Murphy, 2002) for dynamic Bayesian networks, or atlével of node-node
interactions, as was done in Section 3.3.3 and in (Neil amdofe 2000). For clini-
cal purposes, we envision reusable network fragments &fuihctioning of organs,
main pathophysiological processes, and often occurrimypdioations, that can be
reused when modeling different disorders.
The analysis of causal independence models in Chapter wsaflar the iden-

tification of qualitative properties of a causal indepermtemodel based on its in-
teraction function. A limitation of the current approactthat the theory is defined
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for binary variables only, and a generalization to +mmary variables would extend
the applicability of the theory. There is also a need to frttesearch the identifi-
cation of the set of interaction functions that fulfills agivqualitative characteriza-

tion. Forn causes, there afg - 5) . 5() different qualitative characterizations
(in terms of possible combinations of qualitative influesycadditive synergies, and
product synergies) and the size of the the set of Booleartiturscthat is associated
with each qualitative characterization may become hugeesime have2?” possi-
ble Boolean functions. However, preliminary results imadcthat sets with many
ambiguous qualitative influences and synergies contairyriuanctions, whereas sets
with few ambiguous qualitative influences and synergiesainriew functions. Since
we expect real-world specifications to contain many unaodag qualitative influ-
ences and synergies, the approach may still be feasible.fiAalanote, since causal
independence models allow for efficient inference, it maybeful to approximate
arbitrary probability distributions with causal independe models. By computing
the qualitative properties of the target distribution, described approach may aid in
identifying the causal independence models that offer &st &pproximation.

The DLIMIDs of Chapter 5 allow us to findcceptabldreatment strategies using
algorithms such as single rule updating and simulated dingelut it is not gua-
ranteed that the strategy found is tgimal strategy. However, alternatives such as
partially-observable Markov decision processes (POMDRIas)only find solutions
for small problems, which makes such an approach infeagibleomplex medical
decision problems. Therefore, any strategy that is found BY.IMID and improves
upon the accepted strategy that is used in current cliniegdtise (in the sense that
expected utility increases) is regarded to be acceptable.

DLIMIDs require the a priori specification of the informati@ predecessors (ob-
servable variables) that are assumed to influence the ee@astrategy. For example,
the variablecga in Fig. 5.9 is excluded from consideration by the physiciewen
though its inclusion may well lead to better treatment styes. Therefore, an inter-
esting research direction would be to devise a proceduteattés observable vari-
ables automatically, based on the utility that is gainedtdyniclusion. As a specific
example, consider a memory variall¢ that captures the history of a finding,
based on which we decide to treat or not to treat a patient.waydao search for bet-
ter strategies is to automatically increase the length @hiktory that is represented
by M. There are situations in which a full history is needed to entiie optimal
decision, which precludes this approach, but for real-vprbblems, changes in ex-
pected utility should decrease for older observationsré&fbee, by focusing on more
recent observations, the size of memory variables can ber&kgively small. For
the same reason, it may be useful to adapt Algorithm 5.3 $wathdecision rules that
change recent observations are selected more often th#ioterles that change
older observations, in order to speed up the approximatigheooptimal treatment
strategy.
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In Chapter 6 we have constructed the carcinoid model formmsig of lowgrade
midgut carcinoid tumors. Although the model did not perfaasiwell as a pro-
portional hazards model when predicting survival for pagetaken from a clinical
database, the model was better at making patient specifiicions due to the ex-
plicit representation of how domain variables interactrtik@rmore, due to this ex-
plicit representation, the range of questions that can lsevared by the carcinoid
model exceeds that of the proportional hazards model seckatter is optimized for
prediction only. The discussion of the carcinoid model ict®® 6.4 has made clear
that the construction of a dynamic Bayesian network foricéihdecision support is
hard. We expect that the quality of (dynamic) Bayesian ngtev@s improved by
taking the following considerations into account:

e A clear understanding of the clinical task and the a pridectén of a suitable
Bayesian network design, based on the nature of the clitasél

e A focus on clearly defined disorders that show limited valitgbin progres-
sion, where the treatment protocol is fixed and not subjechach change,

thereby facilitating model construction and parameteanegion by the physi-
cian.

e The a priori availability of a high quality database thatdgs the identification
of relevant domain variables, allows for automated leaymimodel parame-
ters, and/or makes preliminary evaluation of model comptspossible.

e To retain the continuous nature of random variables as msigivssible, or to
use holding times in order to model that random variablesarerim specific
discrete states for a prolonged time. In the latter caserehigting dynamic
Bayesian network can be interpreted aseani-Markowdecision process (e.g.,
(Leong, 1994; Murphy, 2002)).

e The explicit representation of a physician’s uncertairtigu probability esti-
mates in terms of hyper-parameters.

In Chapter 7 we focused on learning from limited amounts td.d&@he developed
algorithms are not to be used for the accurate represemtatia joint probability
distribution, but rather for the purpose of probabilistiassification. The maximum
mutual information (MMI) algorithm is useful when one desirto retain part of the
independence structure that is present in the domain. &griiv Sahami’s limited
dependence classifier (Sahami, 1996), the MMI algorithis ahmé require an upper
bound for the number of incoming arcs to each evidence Jetialmce this is deter-
mined through Eq. (7.4), although it does require that wearaguitable choice for
the parametef}, which is not straightforward.

In Section 7.2, we focused on the use of rdikapproximations as the basis
for decomposed tensor classification which, at the momengstricted to discrete
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and complete data. The raffk approximation is a special case of the more general
Tucker decomposition, which may also be used for the purpbpeobabilistic clas-
sification and can be learnt usifggher-order orthogonal iteratior{de Lathauwer

et al., 2000b). Preliminary results suggest that this isiptes albeit much harder,
since we are now required to search for the optimal sizes tfeeaB (™) e RI»*/n,

1 <n < N, as shown in Eq. (7.6). Once found, the Tucker decompositamthe
advantage that it is a more natural decomposition sincees dot necessarily require
the repeated approximation of residual tensors. The cas®t€ = (c;, ...;, ) of the
Tucker decomposition gives additional insight into how dhniginal tensor and hence
the problem decomposes.

We also mention that tensor decompositions such as the kaagproximation
of Section 7.2 can be useful for approximate inference. i&anlork (Savicky and
Vomlel, 2006; van Gerven, 2006) has shown that each famihodes in a Bayesian
network can be replaced by the graphical model equivaleattehsor decomposi-
tion, as shown in Fig. 7.6. This replacement leads to spaesterorks and therefore
more efficient probabilistic inference (Fig. 8.1). The ie&se in efficiency depends
on the size of the hidden node, which in turn depends on thidyoathe tensor ap-
proximation. This approach to approximate inference isanily under investigation

(van Gerven, 2007a).
— - C§ i j % ) —= O %i\}) O
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Figure 8.1: Moralization of (a) leads to the dense network (b) where@nadr decomposi-
tion of (b) leads to the sparse network (c).

In Section 7.3 we looked at the noisy-threshold classifiet.th& moment the
technique is restricted to binary variables and a threshwidtion as the interaction
function. Various extensions that increase the appliitghdf the noisy-threshold
classifier are possible. One can think here of the incorfworaif graded or con-
tinuous variables that allow for a more natural representatf risk factors such as
abdominal pain or fever, a focus on more general interadtimctions, or the in-
corporation of time, analogous to the generalization ofywar models to temporal
noisy-or models as was realized in (Galan and Diez, 200@)thermore, lifting the
assumption of independence of causal influence by allowialjipfe causes to in-
fluence the same hidden variable may lead to more realistielroWe leave these
extensions as topics for further research.
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8.3 Concluding remarks

In this thesis, we have advocated the use of (Bayesian) bildpaheory as the
method of choice for reasoning under uncertainty in medicimile the decision
theoretic notion of utility motivates the clinical decie®that are being made. This
begs the question of how physicians reason in practice. By #lgt according to
probability theory when making an inference and do they acbraling to decision
theory when making a decision? In other words, are prolalaiid decision theory
just normative (describing optimal problem solving for agmal agent) or descriptive
as well (describing optimal problem solving in humans)? Titezature about the
cognitive biases and heuristics displayed in humans inrgérfgahneman et al.,
1982) and physicians in particular (Chapman and ElsteidQ2Borstein and Emier,
2001) suggests no. However, recent research has also deatedshat some of
the biases disappear when questions are posed in a lessanifhy (Cosmides and
Tooby, 1996; Gigerenzer, 2000). The emerging frameworkaddinalistic decision-
making (Klein et al., 1993) recognizes the importance obé¢hebservations, and
dictates that we should consider decision-making in a ahtatting, where we need
to deal with stress, time pressure, fatigue, and commuaicgatterns, as well as
with the bounded rationality of humans due to informatisoegssing constraints
(Simon, 1955). Under that interpretation, heuristics areviewed as erroneous, but
rather as effective strategies for real-world decisiorkima (Patel et al., 2002).

One particularly influential view of clinical problem sahg is thehypothetico-
deductive approacliElstein et al., 1978), which is an iterative process where h
potheses are generated according to the available dat&yaotheses in turn guide
the selection of new data. It is found that expert physicgerserate the correct hy-
pothesis early on and use the remaining time to confirm anderdfie hypothesis,
whereas less experienced physicians take longer to depatethe final hypothesis
due to an inability to eliminate incorrect alternativess@gh and Patel, 1990). An-
other observation is that although expert physicians hawe raxtensive knowledge
about pathophysiological processes, they tend to make$essf it than non-experts,
and base themselves more on clinical experience. One etarof this effect is the
notion ofknowledge encapsulatipmvhich suggests that explicit pathophysiological
knowledge is represented by the expert in compiled formJenstill being retrie-
vable if necessary (Boshuizen and Schmidt, 1992). The ngiatthich emerges, is
one where expert physicians rapidly recognize the corngmbtihesis (possibly aided
by heuristics) while still being able to give a causal exptéon of how they arrive at a
hypothesis. Our experiences during the construction ofdineinoid model of Chap-
ter 6 suggest that expert physicians may indeed operatésiwéy. During the initial
phase of knowledge elicitation the physician often jumpeddnclusions, associa-
ting findings with expected outcomes, whereas after reqmiai causal explanation,
it became possible to explain these associations in terrogusie-effect relations.

These two modes of operation also relate to the differentvedss Bayesian clas-
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sifiers and causal Bayesian networks, which has been ddrésseighout this thesis.
This distinction between associative and causal modelahaddy been recognized
by knowledge engineers of the 1970s, where early assaeiakpert systems such
as Internistl (Miller and Pople, 1982) were observed to suffer from taekl| of
pathophysiological knowledge (Schwartz et al., 1987)dileg to the development
of causal expert systems such as CasNet/Glaucoma (Weissl&78b; Kulikowski
and Weiss, 1982). The distinction between associative andat modes of opera-
tion also has computational consequences. Associativelsibdve the benefit that
they can be both learnt as well as operated more efficierdly tusal models, albeit
at the expense of offering a less accurate representatitimeainderlying domain
knowledge. This suggests a computational strategy for 8agenetworks, where
a Bayesian classifier is used to quickly generate a smallfggdssible hypotheses
which can be subsequently fed into a causal Bayesian netw¥drigher complexity
in order to generate more accurate probability estimatefadt, the strategy of rea-
soning at multiple levels of detail has already been usetienAbel expert system
(Patil, 1981; Szolovits and Pauker, 1993). In earlier wodn(Gerven and Lucas,
2004b), we have shown how the causal Bayesian network éelpict=ig. 3.7 can be
transformed into a forest-augmented naive Bayes clasflifigras, 2004); a process
reminiscent of knowledge encapsulation in domain experts.

From the point of view of knowledge engineering, we emplesiace more that
the translation of a physician’s knowledge into a graphicadlel is difficult and time-
consuming, which implies a trade-off between the amounineé tone is willing to
spend and the quality of the resulting system. When oneueslimtervention to be
the ultimate goal of clinical reasoning, associative meden perform as well as
causal models provided that they lead to the same actiorsacisdive models, such
as those of Section 3.2 and Chapter 7, can show acceptalidenpance and can be
constructed with minimal effort. However, expert systemsearch has shown that
not just intervention but also trexplanationof intervention is a necessary ingredient
of clinical decision support systems, since drawn conchsimust be justifiable to
the physician who is responsible for patient care (TeachStrattliffe, 1984). Fur-
thermore, it is a characteristic of associative modelsttiny are difficult to extend
as new knowledge becomes available (Schwartz et al., 198®refore, if the aim
is to create a flexible system that represents domain kngeledth a high degree of
detail, then one should consider building a causal modefaltaiv the construction
steps of Section 3.3 as illustrated by the carcinoid mod€lratpter 6.

At the start of the twenty-first century, artificial inteligce finds itself in an ex-
citing position, where the traditional analysis of humaalpem solving can finally
be combined with mathematically sound inference techrsiguerder to create high-
quality expert systems for complex domains. This thesisgred ideas concerning
the use of decision-theoretic principles for the purposdinical decision support. It
is hoped that these ideas find their way from proof of concefite actual improve-
ment of quality of life.






Appendix A

The Carcinoid Model

In this appendix, we show a full representation of the caidirmodel of Chapter 6.
In order to depict the full model, we use an objeciented representation. Figure
A.1 makes clear that such a representation becomes a ngdesstomplex do-
mains, since otherwise model construction becomes iffieasiigure A.2 shows
this object-oriented representation of the carcinoid rhodde 62 depicted nodes
encapsulate a total of 218 variables and 74 342 CPT entries.
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Figure A.1: Fragment of the carcinoid model.
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Figure A.2: The carcinoid model, as given by an objectented representation of the prior
and transition model, where shaded nodes represent thegbatsiological component and

unshaded nodes represent the treatment component of ttieaidmodel.
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Samenvatting

De klinische praktijk wordt gekenmerkt door complexe takés diagnose, be
handeling en prognose, waarbij de arts op ieder moment sl jbeslissing dient te
nemen in onzekere situaties. Door de toenemende complexitede hedendaagse
geneeskunde en het streven naar doeltreffend en efficiédisoh handelen, bestaat
er behoefte aan systemen die de arts ondersteunen bij hehnam beslissingen.

De afgelopen decennia zijn er steeds geavanceerdere ékehrontwikkeld die
een basis kunnen vormen voor beslissingsondersteunestisran. In dit proef-
schrift richten we ons op zogenaamde Bayesiaanse netwegkafische modellen
die gebaseerd zijn op kansrekening en een mogelijkheicbieth te redeneren met
onzekere kennis. Het is bekend dat optimale modellen adtechageleerd kunnen
worden mits men over veel tijd en een grote hoeveelheid astevdata beschikt.
De klinische praktijk wordt echter gekenmerkt door een bidpehoeveelheid data.
Dit impliceert dat het leren van optimale modellen vaak megelijk is. Hier staat
tegenover dat artsen beschikken over een grote hoevesjheghlistische kennis die
gebruikt kan worden om Bayesiaanse netwerken handmatigntraeren. In dit
proefschrift worden verschillende technieken ontwikkeilel Bayesiaanse netwerken
geschikt maken voor beslissingsondersteuning in de kliigraktijk. Met behulp
van deze technieken kunnen modellen opgebouwd wordensghiidare medische
kennis en bruikbare modellen geleerd worden uit een bepédaveelheid data.

Na een beschouwing over de medische en wiskundige concejgevan be-
lang zijn voor het onderzoek, beginnen we in hoofdstuk 3 neebeischrijving van
medische beslissingsondersteuning in termen van alesipaableemoplossing. Een
duidelijke definitie van het medische probleem in comb&atet de specificatie van
restricties op het te gebruiken model, geven al enig inzitkie uiteindelijke struc-
tuur van het te bouwen Bayesiaanse netwerk. Vervolgenstwerdhandleiding ge-
boden voor het bouwen van Bayesiaanse netwerken op basixsahikbare medi-
sche kennis welke onder andere gebaseerd is op eerder apgaddelleerervaring.

In hoofdstuk 4 ontwikkelen we een concrete techniek die ¢et deeft om medi-
sche kennis te representeren in termen van speciale Bagesiaetwerk structuren.
Het idee is dat causale (oorzaak-gevolg) relaties die gégpmerd zijn op een kwali-
tatieve manier in combinatie met een aantal voor de haneérigg aannamen, leiden
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tot een theorie die het toestaat om automatisch een modetizdmeling modellen)
te identificeren die aan de kwalitatieve specificatie vald@zt biedt onder andere
de mogelijkheid om het ontwikkelen van Bayesiaanse ne@vedp basis van expert
kennis te vereenvoudigen.

Hoofdstuk 5 behandelt een ander probleem; namelijk hehlgem een opti
maal behandelingsmodel als we de beschikking hebben omemedel van de on-
derliggende ziekte. Dit is een complex probleem aangeziafdeling het nemen
van de juiste beslissingen op ieder moment in de tijd verdistbeschrijven een for-
malisme waarin dit soort problemen gerepresenteerd kuwoetien en ontwikkelen
een aantal technieken die het leren van (bij benaderinghnafe behandelingsmo-
dellen mogelijk maakt. De bruikbaarheid van de techniekendtvgedemonstreerd
aan de hand van een model van hoog-gradige carcinoide éamor

In hoofdstuk 6 beschrijven we de ontwikkeling van een moeel kaag-gradige
carcinoide tumoren waarin zowel de ziekte alsmede haarigehing centraal staan.
Met 218 variabelen en 74342 kans-schattingen is dit zogedaadynamische
Bayesiaanse netwerk een van de grootste in zijn soort. Hetamudit soort mo-
dellen wordt gedemonstreerd aan de hand van een aantabeasus

De hoofdstukken drie tot en met zes richten zich voornakiepjbehandeling en
maken gebruik van aanwezige medische kennis. In hoofdgwénzrichten we ons
op diagnose en prognose, waarbij de modellen automatidelrdeworden uit een
beperkte hoeveelheid data. We demonstreren de prestatidset maximum mutual
information algoritme, decomposed tensor classifiers &yrtbreshold classifiers in
de context van medische diagnose en prognose.

Hoofdstuk 8 geeft een algemene beschouwing over de ontldékechnieken.
We concluderen dat de behandelde technieken hun nut hebbezén en een solide
basis vormen voor beslissingsondersteuning in de klisischktijk.
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