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ABSTRACT

Since introduction of the theory of rough set in early eighties, considerable work

has been done on the development and application of this new theory. The paper

provides a review of the Pawlak rough set model and its extensions, with emphasis

on the formulation, characterization, and interpretation of various rough set models.

1 INTRODUCTION

In early eighties, Pawlak [22] introduced the theory of rough sets as an extension
of set theory for the study of intelligent systems characterized by insufficient
and incomplete information [22, 23, 26]. It is motivated by the practical needs
in classification and concept formation [27]. One may regard the theory of
rough sets to be complementary to other generalizations of set theory, such
as fuzzy sets and multisets [6, 24, 27, 42]. In recent years, there has been a
fast growing interest in this new emerging theory. The successful applications
of the rough set model in a variety of problems have amply demonstrated its
usefulness and versatility [13, 15, 25, 33, 50].

The main objective of this paper is to present a review of the standard rough
set model and its extensions, and to give some new results. Our emphasis will
be on the formulation, characterization, and interpretation of various rough
set models. We group existing rough set models into two major classes, the
algebraic and probabilistic rough set models, depending on whether statistical
information is used. In the algebraic class, we examine different rough set mod-
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els in relation to modal logic, graded rough set models, rough set models over
two universes, and rough set models over Boolean algebras. In the probabilis-
tic class, we analyze rough membership functions and variable precision rough
set models. More importantly, the probabilistic rough set models are justified
based on the framework of decision theory.

In this paper, binary relations are used as a primitive notion. Rough set models
are built and investigated based on various binary relations. Our aim is not to
provide a complete and exhaustive summary of all works on rough set models.
We only review existing works that fall in the framework we intent to establish
based on binary relations. Many important studies, such as the construction
of rough set model based on a covering of the universe [48] and algebraic study
of rough set models [30, 37], are not covered in this paper.

2 ALGEBRAIC ROUGH SET MODELS

This section reviews the Pawlak rough set model and presents its extensions
and interpretations.

2.1 Pawlak rough set model

Let U denote a finite and non-empty set called the universe, and let < ⊆
U × U denote an equivalence relation on U . The pair apr = (U,<) is called
an approximation space. The equivalence relation < partitions the set U into
disjoint subsets. Such a partition of the universe is denoted by U/<. If two
elements x, y in U belong to the same equivalence class, we say that x and y
are indistinguishable. The equivalence classes of < and the empty set ∅ are
called the elementary or atomic sets in the approximation space apr = (U,<).
The union of one or more elementary sets is called a composed set. The family
of all composed sets, including the empty set, is denoted by Com(apr), which
forms a Boolean algebra.

The equivalence relation and the induced equivalence classes may be regarded
as the available information or knowledge about the objects under consider-
ation. Given an arbitrary set X ⊆ U , it may be impossible to describe X
precisely using the equivalence classes of <. That is, the available information
is not sufficient to give a precise representation of X. In this case, one may
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characterize X by a pair of lower and upper approximations:

apr(X) =
⋃

[x]<⊆X

[x]<,

apr(X) =
⋃

[x]<∩X 6=∅

[x]<, (1.1)

where
[x]< = {y | x<y}, (1.2)

is the equivalence class containing x. The lower approximation apr(X) is the
union of all the elementary sets which are subsets of X. It is the largest
composed set contained in X. The upper approximation apr(X) is the union
of all the elementary sets which have a non-empty intersection with X. It is the
smallest composed set containing X. An element in the lower approximation
necessarily belongs to X, while an element in the upper approximation possibly
belongs to X. We can also express lower and upper approximations as follow:

apr(X) = {x | [x]< ⊆ X}
apr(X) = {x | [x]< ∩X 6= ∅}. (1.3)

That is, an element of U necessarily belongs to X if all its equivalent elements
belong to X; it is possibly belongs to X if at least one of its equivalent elements
belongs to X.

For any subsets X,Y ⊆ U , the lower approximation apr satisfies properties:

(AL1) apr(X) = ∼apr(∼X),
(AL2) apr(U) = U,

(AL3) apr(X ∩ Y ) = apr(X) ∩ apr(Y ),
(AL4) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ),
(AL5) X ⊆ Y =⇒ apr(X) ⊆ apr(Y ),
(AL6) apr(∅) = ∅,
(AL7) apr(X) ⊆ X,
(AL8) X ⊆ apr(apr(X)),
(AL9) apr(X) ⊆ apr(apr(X)),

(AL10) apr(X) ⊆ apr(apr(X)),

and the upper approximation apr satisfies properties:

(AU1) apr(X) = ∼apr(∼X),
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(AU2) apr(∅) = ∅,
(AU3) apr(X ∪ Y ) = apr(X) ∪ apr(Y ),
(AU4) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ),
(AU5) X ⊆ Y =⇒ apr(X) ⊆ apr(Y ),
(AU6) apr(U) = U,

(AU7) X ⊆ apr(X),
(AU8) apr(apr(X)) ⊆ X,
(AU9) apr(apr(X)) ⊆ apr(X),

(AU10) apr(apr(X)) ⊆ apr(X),

where ∼X = U −X denotes the set complement of X. The lower and upper
approximations may be viewed as two operators on the universe [14]. Properties
(AL1) and (AU1) state that two approximation operators are dual operators.
Hence, properties with the same number may be regarded as dual properties.
These properties are not independent.

Based on the lower and upper approximations of a set X ⊆ U , the universe
U can be divided into three disjoint regions, the positive region POS(X), the
negative region NEG(X), and the boundary region BND(X):

POS(X) = apr(X),
NEG(X) = U − apr(X),
BND(X) = apr(X)− apr(X). (1.4)

Figure 1 illustrates the approximation of a set X, and the positive, negative and
boundary regions. Each small rectangle represent an equivalence class. From
this figure, we have the following observations. One can say with certainty that
any element x ∈ POS(X) belongs to X, and that any element x ∈ NEG(X)
does not belong to X. The upper approximation of a set X is the union of the
positive and boundary regions, namely, apr(X) = POS(X) ∪ BND(X). One
cannot decide with certainty whether or not an element x ∈ BND(X) belongs
to X. For arbitrary element x ∈ apr(X), one can only conclude that x possibly
belongs to X.

An important concept related to lower and upper approximations is the ac-
curacy of the approximation of a set [22]. Yao and Lin [44] have shown
that the accuracy of approximation can be interpreted using the well-known
Marczewski-Steinhaus metric, or MZ metric for short. For two sets X and Y ,
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Figure 1 Positive, boundary and negative regions of a set X

the Marczewski-Steinhaus metric measures the distance between two sets [18]:

D(X,Y ) =
|X∆Y |
|X ∪ Y |

= 1− |X ∩ Y |
|X ∪ Y |

, (1.5)
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where X∆Y = (X ∪ Y ) − (X ∩ Y ) denotes the symmetric difference between
two sets X and Y , and | · | the cardinality of a set. It reaches the maximum
value of 1 if X and Y are disjoint, i.e., they are totally different, and it reaches
the minimum value of 0 if X and Y are exactly the same. The quantity,

S(X,Y ) =
|X ∩ Y |
|X ∪ Y |

, (1.6)

may be interpreted as a measure of similarity or closeness between X and Y .
By applying the MZ metric to the lower and upper approximations, we have:

D(apr(X), apr(X)) = 1−
|apr(X) ∩ apr(X)|
|apr(X) ∪ apr(X)|

= 1−
|apr(X)|
|apr(X)|

, (1.7)

The distance function defined above is indeed the inverse function of the accu-
racy of rough set approximation proposed by Pawlak [22], namely,

ρ(X) = 1−D(apr(X), apr(X))

=
|apr(X)|
|apr(X)|

= S(apr(X), apr(X)). (1.8)

For the empty set ∅, we define ρ(∅) = 1. If X is a composed set, then ρ(X) = 1.
If X is not composed set, then 0 ≤ ρ(X) < 1.

In the Pawlak rough set model, an arbitrary set is described by a pair of lower
and upper approximations. Several different interpretations of the concepts of
rough sets have been proposed. The interpretation suggested by Iwinski [11]
views a rough set as a pair of composed sets, and the original proposal of
Pawlak regards a rough set as a family of sets having the same lower and/or
upper approximation. Rough sets may also be described by using the notion
of rough membership functions, which will be discussed in Section 3.

Given two composed sets X1, X2 ∈ Com(apr) with X1 ⊆ X2, Iwinski called the
pair (X1, X2) an rough set [11]. In order to distinguish it from other definition,
we call the pair an I-rough set. Let R(apr) be the set of all I-rough sets. Set-
theoretic operators on R(apr) can be defined component-wise using standard
set operators. For a pair of I-rough sets, we have:

(X1, X2) ∩ (Y1, Y2) = (X1 ∩ Y1, X2 ∩ Y2),
(X1, X2) ∪ (Y1, Y2) = (X1 ∪ Y1, X2 ∪ Y2). (1.9)
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The intersection and union of two composed sets are still composed sets. The
above operators are well defined, as the results are also I-rough sets. The system
(R(apr),∩,∪) is complete distributive lattice [11], with zero element (∅, ∅) and
unit element (U,U). The associated order relation can be interpreted as I-rough
set inclusion, which is defined by:

(X1, X2) ⊆ (Y1, Y2) ⇐⇒ X1 ⊆ Y1 and X2 ⊆ Y2. (1.10)

The difference of I-rough sets can be defined as

(X1, X2)− (Y1, Y2) = (X1 − Y2, X2 − Y1), (1.11)

which is an I-rough set. Finally, the I-rough set complement is given as:

∼ (X1, X2) = (U,U)− (X1, X2) = (∼ X2,∼ X1). (1.12)

The complement is neither a Boolean complement nor a pseudocomplement in
the lattice (R(apr),∩,∪). The system (R(apr),∩,∪,∼, (∅, ∅), (U,U)) is called
an I-rough set algebra.

In Pawlak’s seminal paper, another interpretation of rough sets was introduced.
Using lower and upper approximations, we define three binary relations on
subsets of U :

X≈∗Y ⇐⇒ apr(X) = apr(Y ),
X≈∗Y ⇐⇒ apr(X) = apr(Y ),
X ≈ Y ⇐⇒ apr(X) = apr(Y ) and apr(X) = apr(Y ). (1.13)

Each of them defines an equivalence relation on 2U , which induces a partition
of 2U . By interpreting an equivalence, say [X]≈ containing X, as a rough set,
called a P-rough set, we obtain three algebras of rough sets.

Consider the equivalence relation ≈. The set of all P-rough sets is denoted by
R≈(apr) = 2U/≈. Given two sets X1, X2 ∈ Com(apr) with X1 ⊆ X2, if there
exists at least a subset X ⊆ U such that apr(X) = X1 and apr(X) = X2, the
following family of subsets of U ,

〈X1, X2〉 = {X ∈ 2U | apr(X) = X1, apr(X) = X2}, (1.14)

is called a P-rough set. A set X ∈ 〈X1, X2〉 is said to be a member of the
P-rough set. Given a member X, a P-rough set can also be more conveniently
expression as [X]≈, which is the equivalent class containing X. A member is
also referred to as a generator of the P-rough set [3]. Rough set intersection
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u, union t, and complement ¬ are defined by set operators as follows: for two
P-rough sets 〈X1, X2〉 and 〈Y1, Y2〉,

〈X1, X2〉 u 〈Y1, Y2〉
= {X ∈ 2U | apr(X) = X1 ∩ Y1, apr(X) = X2 ∩ Y2}
= 〈X1 ∩ Y1, X2 ∩ Y2〉,
〈X1, X2〉 t 〈Y1, Y2〉

= {X ∈ 2U | apr(X) = X1 ∪ Y1, apr(X) = X2 ∪ Y2}
= 〈X1 ∪ Y1, X2 ∪ Y2〉,
¬〈X1, X2〉

= {X ∈ 2U | apr(X) = ∼ X2, apr(X) = ∼ X1},
= 〈∼ X2,∼ X1〉. (1.15)

The results are also P-rough sets. The induced system (R≈(apr),u,t) is a
complete distributive lattice [1, 30], with zero element [∅]≈ and unit element
[U ]≈. The corresponding order relation is called P-rough set inclusion given
by:

〈X1, X2〉 v 〈Y1, Y2〉 ⇐⇒ X1 ⊆ Y1 and X2 ⊆ Y2. (1.16)

The system (R≈(apr),u,t,¬, [∅]≈, [U ]≈) is called a P-rough set algebra. If
equivalence relations ≈∗ and ≈∗ are used, similar structures can be obtained.

Example 1 This example illustrates the main ideas developed so far. Consider
a universe consisting of three elements U = {a, b, c} and an equivalence relation
< on U:

a<a, b<b, b<c, c<b, c<c.
The equivalence relation induces two equivalence classes [a]< = {a} and [b]< =
[c]< = {b, c}. Table 1 summarizes the lower and upper approximations, the pos-
itive, negative and boundary regions, and the accuracy of approximations for all
subsets of U . The family of all composed sets is Com(apr) = {∅, {a}, {b, c}, U}.
It defines nine I-rough sets. Figure 2 shows the lattice formed by these I-rough
sets. Based on the lower and upper approximations, a relation ≈ on 2U is given
by:

∅ ≈ ∅,
{a} ≈ {a},
{b, c} ≈ {b, c},
{b} ≈ {b}, {b} ≈ {c}, {c} ≈ {c}, {c} ≈ {b},
{a, b} ≈ {a, b}, {a, b} ≈ {a, c}, {a, c} ≈ {a, b}, {a, c} ≈ {a, c},
U ≈ U.

Yao, Y.Y., Wong, S.K.M., and Lin, T.Y., A review of rough set models
in: Rough Sets and Data Mining: Analysis for Imprecise Data, Lin, T.Y. and Cercone, N. (Eds.),
Kluwer Academic Publishers, Boston, pp. 47-75, 1997.



A Review of Rough Set Models 9

X apr(X) apr(X) POS(X) NEG(X) BND(X) ρ(X)
∅ ∅ ∅ ∅ U ∅ 1

{a} {a} {a} {a} {b, c} ∅ 1
{b} ∅ {b, c} ∅ {a} {b, c} 0
{c} ∅ {b, c} ∅ {a} {b, c} 0
{a, b} {a} U {a} ∅ {b, c} 1/3
{a, c} {a} U {a} ∅ {b, c} 1/3
{b, c} {b, c} {b, c} {b, c} {a} ∅ 1

U U U U ∅ ∅ 1

Table 1 Basic notions in Pawlak rough set model

This relation induces the following equivalence classes, i.e., P-rough sets:

〈∅, ∅〉 = {∅},
〈{a}, {a}〉 = {{a}},
〈∅, {b, c}, }〉 = {{b}, {c}},
〈{b, c}, {b, c}〉 = {{b, c}},

〈{a}, U〉 = {{a, b}, {a, c}},
〈U,U〉 = {U}.

Figure 3 is the lattice formed by these P-rough sets. From this example, one
can see that I-rough set algebra is different from the P-rough set algebra. In
general, the lattice formed by P-rough sets is isomorphic to a sublattice of the
lattice formed by I-rough sets.

2.2 Non-standard rough set models

The Pawlak rough set model may be extended by using an arbitrary binary
relation [41, 43]. Given a binary relation < and two elements x, y ∈ U , if x<y,
we say that y is <-related to x. A binary relation may be more conveniently
represented by a mapping r : U −→ 2U :

r(x) = {y ∈ U | x<y}. (1.17)

That is, r(x) consists of all <-related elements of x. It may be interpreted
as a neighborhood of x [12, 14]. If < is an equivalence relation, r(x) is the
equivalence class containing x. By using the notion of neighborhoods to replace
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equivalence classes, we can extend equation (1.3) as follows:

apr(X) = {x | r(x) ⊆ X},
apr(X) = {x | r(x) ∩X 6= ∅}. (1.18)

The set apr(X) consists of those elements whose <-related elements are all in
X, and apr(X) consists of those elements such that at least one of whose <-
related elements is in X. They are referred to as generalized approximations
of X.

Generalized approximation operators do not necessarily satisfy all the prop-
erties in Pawlak rough set models. Nevertheless, properties (AL1)-(AL5) and
(AU1)-(AU5) hold independent of the properties of the binary relation. Prop-
erties (AL7)-(AL10) may be used to characterize various rough set models.
Such a classification of rough set models is similar to the classification of modal
logics. For this purpose, we use the following properties, adopting the same
labeling system from Chellas [4]:

(K) apr(∼X ∪ Y ) ⊆ ∼apr(X) ∪ apr(Y ),
(D) apr(X) ⊆ apr(X),
(T) apr(X) ⊆ X,
(B) X ⊆ apr(apr(X)),
(4) apr(X) ⊆ apr(apr(X)),
(5) apr(X) ⊆ apr(apr(X)).

Property (K) does not depend on any particular binary relation. In order to
construct a rough set model so that other properties hold, it is necessary to
impose certain conditions on the binary relation <.

Each of the properties (D)-(5) corresponds to a property of the binary relation.
Property (D) holds if < is a serial relation, i.e., for all x ∈ U , there exists at
least an element y such that x<y. Property (T) holds if < is a reflexive relation,
i.e., for all x ∈ U , x<x. Property (B) holds if < is a symmetric relation, i.e., for
all x, y ∈ U , x<y implies y<x. Property (4) holds if < is a transitive relation,
i.e., for all x, y, z ∈ U , x<y and y<z imply x<z. Property (5) holds if the
< is an Euclidean relation, i.e., for all x, y, z ∈ U , x<y and x<z imply y<z.
By combining these properties, one can construct distinct rough set models.
Various rough set models are named according to the properties of the binary
relation or the properties of the approximation operators. For example, a rough
set model constructed from a symmetric relation is referred to as a symmetric
rough set model or the KD model. If < is reflexive and symmetric, i.e., < is
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Figure 4 Rough set models

a compatibility relation, properties (K), (D), (T) and (B) hold. This model
is labeled by KTB, which is the set of properties satisfied by operators apr
and apr. Property (D) does not explicitly appear in the label because it is
implied by (T). Similarly, Pawlak rough set model is labled by KT5, which is
also commonly known as S5 in modal logic.

By the results from modal logic, it is possible to construct at least fifteen
distinct classes of rough set models based on the properties satisfied by the
binary relation [4, 17, 43]. Figure 4, adopted from Chellas [4] and Marchal [17],
summarizes the relationships between these models. A line connecting two
models indicates the model in the upper level is a model in the lower level.
These lines that can be derived from the transitivity are not explicitly shown.
The model K may be considered as the basic and the weakest model. It does
not require any special property on the binary relation. All other models are
built on top the model K. The model KT5, i.e., the Pawlak rough set model,
is the strongest model.
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In the above formulation of rough set model, one considers only two special
kinds of relationships between the neighborhood r(x) of an element x and a
set X to be approximated. An element belongs to the lower approximation of
a subset X if all its <-related elements belong to X, it belongs to the upper
approximation if there exists one elements belonging to X. The degree of
overlap of X and r(x) is not taken into consideration. By employing such
information, graded rough set models can be obtained, in the same way graded
modal logic is developed [2, 7, 9, 35, 36, 43].

Given the universe U and a binary relation < on U , a family of graded approx-
imation operators are defined as:

apr
n
(X) = {x | |r(x)| − |X ∩ r(x)| ≤ n},

aprn(X) = {x | |X ∩ r(x)| > n}. (1.19)

An element of U belongs to apr
n
(X) if at most n of its <-related elements

are not in X, and belongs to aprn(X) if more than n of its <-related elements
are in X. Based on the properties of binary relation, we can similarly define
different classes of graded rough set models.

2.3 Rough sets in information systems

Following Lipski [16], Orlowska [20], Pawlak [21], Vakarelov [34], and Yao and
Noroozi [45], we define a set-based information system to be a quadruple,

S = (U,At, {Va | a ∈ At}, {fa | a ∈ At}),

where

U is a nonempty set of objects,
At is a nonempty set of attributes,
Va is a nonempty set of values for each attribute a ∈ At,
fa : U −→ 2Va is an information function for each attribute a ∈ At.

The notion of information systems provides a convenient tool for the represen-
tation of objects in terms of their attribute values. If all information functions
map an object to only singleton subsets of attribute values, we obtain a de-
generate set-based information system commonly used in the Pawlak rough set
model. In this case, information functions can be expressed as fa : U −→ Va.
In the following discussions, we only consider this kind of information systems.
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We can describe relationships between objects through their attribute values.
With respect to an attribute a ∈ At, a relation <a is given by: for x, y ∈ U ,

x<ay ⇐⇒ fa(x) = fa(y). (1.20)

That is, two objects are considered to be indiscernible, in the view of single
attribute a, if and only if they have exactly the same value. <a is an equivalence
relation. The reflexivity, symmetry and transitivity of <a follow trivially from
the properties of the relation = between attribute values. For a subset of
attributes A ⊆ At, this definition can be extended as follows:

x<Ay ⇐⇒ (∀a ∈ A)fa(x) = fa(y). (1.21)

That is, in terms of all attributes in A, x and y are indiscernible, if and only
if they have the same value for every attribute in A. The extended relation is
still is an equivalence relation [20].

The above discussion provides a convenient and practical method for construct-
ing a binary relation, and in turn a Pawlak rough set model. All other notions
can be easily defined. For an element x ∈ U , its equivalence class is given by:

rA(x) = {y | x<Ay}. (1.22)

For any subset X ⊆ U , the lower and upper approximations can be constructed
as:

apr
A

(X) = {x | rA(x) ⊆ X},
aprA(X) = {x | rA(x) ∩X 6= ∅}. (1.23)

As shown in the following example, different subsets of attributes may induce
distinct approximation space, and hence different approximations of the same
set.

Example 2 Consider the information system given in Table 2, taken from
Quinlan [31]. Each object is described by three attributes. If the attribute
A = {Hair} is chosen, we can partition the universe into equivalence classes
{o1, o2, o6, o8}, {o3}, and {o4, o5, o7}, reflecting the colour of Hair being blond,
red and dark, respectively. With respect to the class + = {o1, o3, o6}, the
following approximations are obtained:

apr
A

(+) = {o3},
aprA(+) = {o1, o2, o3, o6, o8}.
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Object Height Hair Eyes Classification
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 2 An information system

Hence,

POSA(+) = apr
A

(+) = {o3},
BNDA(+) = aprA(+)− apr

A
(+) = {o1, o2, o6, o8},

NEGA(+) = U − aprA(+) = {o4, o5, o7}.

If a set of two attributes A′ = {Hair,Eyes} is used, we have equivalence classes
{o1, o6}, {o2, o8}, {o3}, {o4, o5} and {o7}. The lower and upper approximation
of + are:

apr
A′

(+) = {o1, o3, o6},
aprA′(+) = {o1, o3, o6}.

Three regions are:

POSA′(+) = apr
A′

(+) = {o1, o3, o6},
BNDA′(+) = aprA′(+)− apr

A′
(+) = ∅,

NEGA′(+) = U − aprA′(+) = {o2, o4, o5, o7, o8}.

From this example, it is clear that some approximation spaces are better than
others.

The Pawlak rough set model can be easily generalized in information system
by considering any binary relations on attribute values, instead of the trivial
equality relation =. SupposeRa is a binary relation on the values of an attribute
a ∈ At. By extending equation (1.20), for a ∈ At we define a binary relation
on U :

x<ay ⇐⇒ fa(x)Rafa(y). (1.24)
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Similarly, by extending equation (1.21), for A ⊆ At we define a relation on U :

x<Ay ⇐⇒ (∀a ∈ A)fa(x)Rafa(y)
⇐⇒ (∀a ∈ A)x<ay. (1.25)

An object x is related to another object y, based on an attribute a, if their
values on a are related. With respect to a subset A of attributes, x is related to
y if their values are related for every attribute in A. When all relations Ra are
chosen to be =, the proposed definition reduced to the definition in the Pawlak
rough set model.

The empty set ∅ produces the coarsest relation, i.e., <∅ = U × U , where ×
denotes the Cartesian product of sets. If the entire attribute set is used, one ob-
tains the finest relation <At. Moreover, if each object is described by an unique
description, <At becomes the identity relation. The algebra ({<A}A⊆At,∩) is
a lower semilattice with the zero element <At [20].

The relation <a preserves properties of Ra. Suppose Ra is a binary relation on
Va, and <a a binary relation on U defined by equation (1.24). Then,

a). Ra is serial =⇒ <a is serial;
b). Ra is reflexive =⇒ <a is reflexive;
c). Ra is symmetric =⇒ <a is symmetric;
d). Ra is transitive =⇒ <a is transitive;
e). Ra is Euclidean =⇒ <a is Euclidean.

The set of <A-related objects, rA(x) = {y | x<Ay}, can be regarded as a
neighborhood of x. Likewise, the set of Ra-related values, ra(v) = {v′ | vRav′},
can be viewed as a neighborhood of v [12]. By definition, a neighborhood of
objects is defined according to neighborhoods of its attribute values:

rA(x) = {y | x<Ay}
=

⋂
a∈A
{y | x<ay}

=
⋂
a∈A
{y | fa(x)Rafa(y)}

=
⋂
a∈A
{y | fa(y) ∈ ra(fa(x))}. (1.26)

This suggests that the notion of generalized rough sets is useful for approximate
retrieval in information systems.
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2.4 Rough set model over two universes

Recently, Wong, Wang and Yao generalized the rough set model using two
distinct but related universes [38, 39, 47]. Let U and V represent two finite
universes of interest. Suppose the relationships between elements of the two
universes are described by a compatibility relation [32]. The formulation and
interpretation of U and V and the compatibility relation between the two uni-
verses depend very much on the available knowledge and the domain of applica-
tions. For example, in a medical diagnosis system, U can be a set of symptoms
and V a set of diseases. A symptom u ∈ U is said to be compatible with a
disease v ∈ V if any patient with symptom u may have contracted the disease
v. An element u ∈ U is compatible with an element v ∈ V , written u C v, if
the u is related to v. Without loss of generality, we may assume that for any
u ∈ U there exists a v ∈ V with u C v, and vice versa.

A compatibility relation C between U and V can be equivalently defined by a
multi-valued mapping, γ : U −→ 2V , as [5, 32]:

γ(u) = {v ∈ V | u C v}. (1.27)

That is, γ(u) is a subset of V consisting of all elements compatible with u.
Based on this multi-valued mapping, a subset X ⊆ V may be represented in
terms of these elements of U compatible with the elements in X. For example,
a particular group of diseases may be described by the symptoms compatible
with them. Since the induced multi-valued mapping is not necessarily an one-
to-one mapping, one may not be able to derive an exact representation for any
subset X ⊆ V . By extending notion of approximation operators in rough set
model, we define a pair of lower and upper approximations:

apr(X) = {u ∈ U | γ(u) ⊆ X},
apr(X) = {u ∈ U | γ(u) ∩X 6= ∅}. (1.28)

The set apr(X) consists of the elements in U compatible with only those el-
ements in X, while the set apr(X) consists of the elements in U compatible
with at least one element in X. Therefore, the lower approximation apr(X)
can be interpreted as the pessimistic description and the upper approximation
apr(X) as the optimistic description of X. These approximation operators
satisfy properties similar to (AL1)-(AL6) and (AU1)-(AU6). Since two uni-
verses are involved, there do not exist properties similar to (AL7)-(AL10) and
(AU7)-(AU10).
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2.5 Rough set model over Boolean algebras

Recall that the set of composed sets Com(apr) forms a sub-algebra of the
Boolean algebra of the power set. One can easily formulate Pawlak rough set
model in a wider context of Boolean algebra. Suppose (A,∧,∨,¬, 0, 1) is a
Boolean algebra and (B,∧,∨,¬, 0, 1) is a sub-algebra. In terms of elements of
B, one may approximate any element of A using a pair of lower and upper
approximations: for a ∈ A,

apr(a) =
∨
{b | b ∈ B, b � a},

apr(a) =
∧
{b | b ∈ B, a � b}. (1.29)

Clearly, this definition reduce to Pawlak’s original proposal if A is chosen to be
2U and B is chosen to be Com(apr).

Wong, Wang and Yao [39] extended the above formulation further by consider-
ing two arbitrary Boolean algebras. Suppose f : A −→ B and f : A −→ B are
two mappings from a Boolean algebra (A,∨,∧,¬, 0, 1) to another Boolean alge-
bra (B,∨,∧,¬, 0, 1). We say that f and f are dual mappings if f(a) = ¬f(¬a)
for every a ∈ A. The pair of dual mappings form an interval structure if they
satisfy the following axioms:

(IL1) f(a) ∧ f(b) = f(a ∧ b),
(IL2) f(0) = 0,
(IL3) f(1) = 1,

(IU1) f(a ∨ b) = f(a) ∨ f(b),
(IU2) f(0) = 0,
(IU3) f(1) = 1.

These properties indeed correspond to properties (AL3), (AL2), (AL6), (AU3),
(AU2) and (AU6).

An alternate way of defining an interval structure is through another mapping
j : A −→ B satisfying the axioms:

(A1) j(0) = 0,

(A2)
∨
a∈A

j(a) = 1,

(A3) a 6= b =⇒ j(a) ∧ j(b) = 0.

This mapping is called a basic assignment , and an element a ∈ A with j(a) 6= 0
is called a focal element. From a given j, one can define a mapping f : for all
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a ∈ A,

f(a) =
∨
b�a

j(b), (1.30)

and another mapping f by the relationship f(a) = ¬f(¬a). The mapping f
can be equivalently defined by:

f(a) =
∨

a∧b6=0

j(b). (1.31)

Conversely, given an interval structure (f, f), we can construct the basic as-
signment j by the formula: for all a ∈ A,

j(a) = f(a) ∧ ¬(
∨
b≺a

f(b)). (1.32)

Rough set models on the same universe and on two universes are only special
cases of this general framework. Based on the axioms of an interval structure,
the above developed relationships hold in any rough set model that is stronger
than the KD model. More specifically, we have the following connections:

j(X) = {x | r(x) = X},
j(X) = apr(X)−

⋂
Y⊂X

apr(Y ),

apr(X) =
⋃
Y⊆X

j(X),

apr(X) =
⋃

Y ∩X 6=∅

j(X). (1.33)

Therefore, the basic assignment provides another representation of approxima-
tion operators.

3 PROBABILISTIC ROUGH SET MODELS

Based on the notion of rough membership functions, we review two different
approaches for the construction of probabilistic rough set model. One is related
to probabilistic modal logic and the other is based on decision theory.
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3.1 Rough membership functions

Pawlak and Skowron [28], Pawlak et al. [29] and Wong and Ziarko [40] proposed
another way to characterize a rough set by a single membership function. For
any X ⊆ U , a rough membership function is defined by:

µX(x) =
|X ∩ [x]<|
|[x]<|

. (1.34)

By definition, elements in the same equivalent class have the same degree of
membership. The rough membership µX(x) may be interpreted as the proba-
bility of x belonging to X given that x belongs to an equivalence class. This
interpretation leads to probabilistic rough sets [29, 40]. Like the algebraic
rough set model, the intersection and union of probabilistic rough sets are not
truth-functional. Nevertheless, we have:

(m1) µX(x) = 1⇐⇒ x ∈ POS(X),
(m2) µX(x) = 0⇐⇒ x ∈ NEG(X),
(m3) 0 < µX(x) < 0⇐⇒ x ∈ BND(X),
(m4) µ∼X(x) = 1− µX(x),
(m5) µX∪Y (x) = µX(x) + µY (x)− µX∩Y (x),
(m6) max(0, µX(x) + µY (x)− 1) ≤ µX∩Y (x) ≤ min(µX(x), µY (x)),
(m7) max(µX(x), µY (x)) ≤ µX∪Y (x) ≤ min(1, µX(x) + µY (x)).

They follow from the property of probability. The definition in equation (1.34)
can be easily extended by using an arbitrary binary relation.

3.2 Variable precision rough set model

In the definition of graded rough set models, the size of r(x) is not taken into
consideration. By using such information, we can define variable precision,
or probabilistic, rough set model [40, 49], in parallel to probabilistic modal
logic [8, 10, 19, 43].

With respect to the universe U and a binary relation < on U , we define a family
of probabilistic rough set operators:

apr
α

(X) = {x | |X ∩ r(x)|
|r(x)|

≥ 1− α},

aprα(X) = {x | |X ∩ r(x)|
|r(x)|

> α}. (1.35)
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By definition, for a serial binary relation and α ∈ [0, 1], probabilistic rough set
operators satisfy the following properties:

(PL0) apr(X) = apr
0
(X),

(PL1) apr
α

(X) = ∼aprα(∼X),
(PL2) apr

α
(U) = U,

(PL3) apr
α

(X ∩ Y ) ⊆ apr
α

(X) ∩ apr
α

(Y ),
(PL4) apr

α
(X ∪ Y ) ⊇ apr

α
(X) ∪ apr

α
(Y ),

(PL5) X ⊆ Y =⇒ apr
α

(X) ⊆ apr
α

(Y ),
(PL6) α ≥ β =⇒ apr

α
(X) ⊇ apr

β
(X),

(PU0) apr(X) = apr0(X),
(PU1) aprα(X) = ∼apr

α
(∼X),

(PU2) aprα(∅) = ∅,
(PU3) aprα(X ∪ Y ) ⊇ aprα(X) ∪ aprα(Y ),
(PU4) aprα(X ∩ Y ) ⊆ aprα(X) ∩ aprα(Y ),
(PU5) X ⊆ Y =⇒ aprα(X) ⊆ aprα(Y ),
(PU6) α ≥ β =⇒ aprα(X) ⊆ aprβ(X).

Moreover, for 0 ≤ α < 0.5,

(PD) apr
α

(X) ⊆ aprα(X),

which may be interpreted as a probabilistic version of axiom (D). In this case,
one can also partition the into three regions based on the value of α:

POSα(X) = apr
α

(X),
NEGα(X) = U − aprα(X),
BNDα(X) = aprα(X)− apr

α
(X). (1.36)

They may be referred to as the probabilistic positive, negative and boundary
regions. In the following subsection, we will show that the value of α can be
determined within the framework of decision theory.

3.3 Rough set model based on decision theory

In the variable precision rough set model, the universe is partitioned into three
regions. The same goal can be achieved by using rough membership functions in
the framework of decision theory [46]. In terms of decision-theoretic language,
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we have a set of states Ω = {X,¬X}, indicating that an element belongs to
and does not belong to X, and the set of actions A = {a1, a2, a3}, representing
the three actions, deciding POS(X), deciding NEG(X), and deciding BND(X),
respectively.

Let λ(ai|X) denote the loss incurred for taking action ai when an object in
fact belongs to X, and let λ(ai|¬X) denote the loss incurred when the object
actually belongs to ¬X. P (X | r(x)) and P (¬X | r(x)) are the probabilities
that an object with neighborhood r(x) belongs to X and ¬X, respectively.
They are in fact the rough membership functions with respect to X and ¬X.
Thus, the expected loss R(ai|r(x)) associated with taking the individual actions
can be expressed as:

R(a1|r(x)) = λ11P (X | r(x)) + λ12P (¬X | r(x)),
R(a2|r(x)) = λ21P (X | r(x)) + λ22P (¬X | r(x)),
R(a3|r(x)) = λ31P (X | r(x)) + λ32P (¬X | r(x)), (1.37)

where λi1 = λ(ai|X), λi2 = λ(ai|¬X), and i = 1, 2, 3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

(P) Decide POS(X) if
R(a1|r(x)) ≤ R(a2|r(x)) and R(a1|r(x)) ≤ R(a3|r(x));

(N) Decide NEG(X) if
R(a2|r(x)) ≤ R(a1|r(x)) and R(a2|r(x)) ≤ R(a3|r(x));

(B) Decide BND(X) if
R(a3|r(x)) ≤ R(a1|r(x)) and R(a3|r(x)) ≤ R(a2|r(x)).

Since P (X | r(x))+P (¬X | r(x)) = 1, the above decision rules can be simplified
so that only the probabilities P (X | r(x)) are involved. Thus, we can classify
any object with neighborhood r(x) based only on the probabilities P (X | r(x)),
i.e., the rough membership function, and the given loss function λij (i = 1, 2, 3;
j = 1, 2).

Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 <
λ12. The loss of classifying an object x belonging to X into the positive region
POS(X) is less than or equal to the loss of classifying x into the boundary region
BND(X), and both of these losses are strictly less than the loss of classifying
x into the negative region NEG(X). We obtain the reverse order of losses by
classifying an object that does not belong to X. For this type of loss functions,
the minimum-risk decision rules (P)-(B) can be written as:

(P) Decide POS(X) if P (X | r(x)) ≥ β and P (X | r(x)) ≥ γ;
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(N) Decide NEG(X) if P (X | r(x)) ≤ γ and P (X | r(x)) ≤ δ;
(B) Decide BND(X) if δ ≤ P (X | r(x)) and P (X | r(x)) ≤ β;

where

β =
λ12 − λ32

(λ31 − λ11) + (λ12 − λ32)
,

γ =
λ12 − λ22

(λ21 − λ11) + (λ12 − λ22)
,

δ =
λ32 − λ22

(λ21 − λ31) + (λ32 − λ22)
(1.38)

From the assumptions, λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that
β ∈ (0, 1], γ ∈ (0, 1), and δ ∈ [0, 1). Decision rules (P)-(B) depend only on the
parameters β, γ, and δ computable from the λij ’s directly supplied by the user.

If δ ≤ β, δ ≤ γ ≤ β. By decision rules (P)-(B), three regions can be determined
by δ and β. If β < δ, we have β < γ < δ. According to (P)-(B), the boundary
region is empty, and both positive and negative region can be determined by
γ. To be consistent with the variable precision rough set model, we assume
δ < β, which implies δ < γ < β. Furthermore, we choose a tie-breaking rule to
differentiate actions producing the same risk. If the risk of deciding POS(X)
or BND(X) is the same, we decide POS(X); if the risk of deciding NEG(X) or
BND(X) is the same, we decide NEG(X). Under these assumptions, (P)-(B)
can be simplified into:

(P) Decide POS(X) if P (X | r(x)) ≥ β;
(N) Decide NEG(X) if P (X | r(x)) ≤ δ;
(B) Decide BND(X) if δ < P (X | r(x)) < β.

The positive, negative, and boundary regions can be explicitly expressed in
terms of the pair of parameters δ and β, namely:

POSβ,δ(X) = {x | P (X | r(x)) ≥ β},
NEGβ,δ(X) = {x | P (X | r(x)) ≤ δ},
BNDβ,δ(X) = {x | δ < P (X | r(x)) < β}. (1.39)

The lower and upper approximations apr
β,δ

(X) and aprβ,δ(X) of X can be
defined as:

apr
β,δ

(X) = POSβ,δ(X)

= {x | P (X | r(x)) ≥ β},
aprβ,δ(X) = POSβ,δ(X) ∪ BNDβ,δ(X)

= {x | P (X | r(x)) > δ}. (1.40)
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Now assume the following condition:

λ12 − λ32

λ31 − λ11
=
λ21 − λ31

λ32 − λ22
. (1.41)

We have β = 1 − δ. Let α = δ. The lower and upper approximations can be
expressed by:

apr
1−α,α(X) = {x | P (X | r(x)) ≥ 1− α},

apr1−α,α(X) = {x | P (X | r(x)) > α}. (1.42)

They are exactly the probabilistic approximations given in equation (1.35) if
the required probabilities are estimated from the cardinalities of X ∩ r(x) and
r(x), namely, P (X | r(x)) = |X ∩ r(x)|/|r(x)|. The approximations of in an
algebraic rough set model can be easily derived. Consider the following loss
function:

λ12 = λ21 = 1, λ11 = λ22 = λ31 = λ32 = 0. (1.43)

This means that there is a unit cost if an object belonging to X is classified
into the negative region or if an object not belonging to X is classified into the
positive region; otherwise there is no cost. For such a loss function, we obtain
from equation (1.38) that β = 1 and δ = 0. Hence, according to equation (1.40),
we have:

apr
1,0

(X) = {x | P (X | r(x)) = 1},

apr1,0(X) = {x | P (X | r(x)) > 0}. (1.44)

With the probabilities estimated by

P (X | r(x)) =
|X ∩ r(x)|
|r(x)|

, (1.45)

apr
1,0

(X) and apr1,0(X) can be expressed as:

apr
1,0

(X) = {x | r(x) ⊆ X},

apr1,0(X) = {x | r(x) ∩X 6= ∅}. (1.46)

The results given here suggest that both algebraic rough set and probabilistic
rough set models can be viewed as a special case of the decision theoretic
framework.
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4 CONCLUSION

In the Pawlak rough set model, an equivalent relation is used to define an ap-
proximation space. Following the argument of Pawlak and using an arbitrary
binary relation, one can derive various type of generalized rough set models.
Alternatively, one may also generalize Pawlak rough set model by using statis-
tical information. Based on the properties of binary relation, one can identify
the properties of lower and upper approximations. Generalized rough set mod-
els may be grouped into two classes, the algebraic and probabilistic rough set
models, depending on whether statistical information is used. The algebraic
class includes normal rough set models, graded rough set models, rough set
models over two universes, and rough set models over Boolean algebras. The
probabilistic rough set models may be interpreted based on rough membership
functions.

The successful applications of the theory of rough sets depends to a large extent
on the formulation, characterization, and interpretation of the theory. In this
paper, existing works are reviewed using a very simple, and unified, view. That
is, rough set models are constructed, classified, and interpreted based on the
notion of binary relations. This view in may be useful in the applications of
the theory of rough sets.
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