
Chapter 22
Granular Concept Mapping and Applications

Sumalee Sonamthiang, Kanlaya Naruedomkul, and Nick Cercone

Abstract. This chapter presents a granular concept hierarchy (GCH) construction
and mapping of the hierarchy for granular knowledge. A GCH is comprised of mul-
tilevel granular concepts with their hierarchy relations. A rough set based approach
is proposed to induce the approximation of a domain concept hierarchy of an infor-
mation system. A sequence of attribute subsets is selected to partition a granularity,
hierarchically. In each level of granulation, reducts and core are applied to retain
the specific concepts of a granule whereas common attributes are applied to exclude
the common knowledge and generate a more general concept. A granule descrip-
tion language and granule measurements are proposed to enable mapping for an
appropriate granular concept that represents sufficient knowledge so solve problem
at hand. Applications of GCH are demonstrated through learning of higher order
decision rules.

Keywords: Information granules, granular knowledge, granular concept hierarchy,
granular knowledge mapping, granule description language, higher-order rules, mul-
tilevel partitioning, attribute selection

22.1 Introduction

An information system in a rough set paradigm [10], [11] is a basic knowledge repre-
sentation method in an attribute-value system. An information system is
represented in a table in which a row keeps an object and each column keeps the
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value of the corresponding attribute. The tabular representation simplifies record-
ing the objects into an information system, especially in real-time transactions by
capturing a transaction separately and using a single global representation for every
record in every situation. However, an occurrence of a transaction may be related to
other transactions in the problem space. Representation in this fashion is seen as a
flat and unconnected structure that hides the meaningful relations in the data.

An information analysis based on an attribute-value system considers the val-
ues of the attribute subsets to extract relationships within data. The relationships
can be classified into two types: internal and external. An internal relationship is
the relation between attributes’ values within a single object, whereas an external
relationship provides connections between many objects. Classical rule discover-
ing methods extract internal relationships from a decision table; however, the ob-
tained rules represent fragmented knowledge and hide the meaningful relationships
among objects of a universe. An example of an internal relation rule is expressed
by: IF < x,a >= va1THEN < x,d >= vd1 . The rules obtained from internal rela-
tionships can be superfluous. Postprocessing is necessary to reduce rules’ conflicts,
shorten the rule premise, shrink the size of the rule set, or group together similar
rules. The rules obtained from internal relations represent fragmented knowledge
and remain embodied in hidden meaningful relationships among objects in a uni-
verse. Postprocessing to improve quality of the rules has been studied, for example,
evaluation of association rules’ importance [9] and mining higher-order decision
rules [26].

Unlike internal relationships, an external relationship among objects does not
only provide knowledge of higher-order rules but also for concept approximation.

Table 22.1. Some examples of animal data set

label hair feathers eggs milk airborne aquatic predator toothed ... class

aardvark 1 0 0 1 0 0 1 1 ... 1
antelope 1 0 0 1 0 0 0 1 ... 1

bass 0 0 1 0 0 1 1 1 ... 4
bear 1 0 0 1 0 0 1 1 ... 1
boar 1 0 0 1 0 0 1 1 ... 1

buffalo 1 0 0 1 0 0 0 1 ... 1
calf 1 0 0 1 0 0 0 1 ... 1
carp 0 0 1 0 0 1 0 1 ... 4

catfish 0 0 1 0 0 1 1 1 ... 4
cavy 1 0 0 1 0 0 0 1 ... 1

cheetah 1 0 0 1 0 0 1 1 ... 1
chicken 0 1 1 0 1 0 0 0 ... 2

clam 0 0 1 0 0 0 1 0 ... 7
crab 0 0 1 0 0 1 1 0 ... 7

crayfish 0 0 1 0 0 1 1 0 ... 7
crow 0 1 1 0 1 0 1 0 ... 2
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For example, given animal data in the information system in Table 22.1, a human
categorizes and conceptualizes a concept differently.

One may give a name of concept represented by class 1 as mammal class with-
out concerning surrounding data. But for a machine, it can learn that only the at-
tribute value milk=1 is sufficient to determine the class 1 precisely (based on given
data sets). In this example, however, some attributes’ values such as egg=0, hair=1,
toothed=1 are correlated with (but not necessary dependent) milk=1. These features
can be seen as dominate attribute subset in which together the attribute subset has
more gravity to draw animal class abstraction. Therefore, a machine can form a
concept by using the most dominant attribute subset on the decision class to mimic
human granular conceptualization. On the other hand, if one is asked to differentiate
animal in class 1, one needs to granulate knowledge relative to more of the detailed
features such as size, domestic/wild, and legs based on given data.

Various attribute subsets can be considered to obtain external relations from dif-
ferent dimensions; thus, groups of related objects can be discovered. The knowledge
obtained from this type of relationship is represented as clusters attached with each
clusters’ description[4],[5], [20]. Moreover, the relationships among the objects can
be local or global; specifically, relations can be extracted in many levels of granu-
larity. We hypothesize that discovering external relationships between objects in a
universe can be used to approximate the connections of objects and form multilevel
granular concepts.

Rough set theory (RST) [10], [11] provides a formal framework that focuses on
both internal and external relations. For extensions on rough sets please refer to
[12], [13], [14]. In rough sets, the indiscernibility relation expresses the external re-
lations between objects and the relation can be used to form a granular concepts.
Rough sets also influence Granular Computing (GrC), an emerging paradigm for
computing of concept approximation [1], [15]. A granular concept represents suffi-
cient information to solve a problem at hand. How coarse or how specific should a
granular concept be to convey such sufficient information?

In this study, a granular concept hierarchy (GCH) and granular concept mapping
are presented. GCH is a multilevel of granularity of a domain knowledge in hierar-
chical structure. This structure provides rich information for a problem solver and
mapping mechanism to search for an appropriate level of granularity. GCH com-
prises of a root node, a set of nonroot nodes, a non empty set of leaves, and the
hierarchy relations. A node in a tree can be seen as a granule in which instances in
the node hold similar properties to a certain degree, and they are part of their parent.
Thus, a parent holds the common properties of its children, and the siblings have a
certain degree of similarity to each other by the common properties.

We present two algorithms to construct a GCH. The first algorithm is to recur-
sively partition an information system into a GCH. The second algorithm computes
the selection of a sequence of attribute subsets which is necessary to partition a
granularity hierarchically. Common attributes (defined as the subset of attributes
that forms indiscernibility relations among the objects of a granule) and the at-
tributes’ values are united to form the granular concept’s description. At each level
of granulation, reducts and core are applied to retain the specific concepts of a gran-
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ule, whereas common attributes are applied to exclude the common knowledge and
generate a more general concept. We also present a granule description language
that provides semantic encoding as well as an interpretation of which semantics a
granule concept conveys. The semantics are encoded by rough set approximation.
Degree of coarseness/specificity of a granular concept, then, can be interpreted for
a target concept.

The chapter is outlined as follows: In the next section, related works in hierar-
chical information granulation are explored. A formal definition of a GCH and an
example are given in Section 22.3. Section 22.4 details two algorithms to construct
a GCH hierarchically. Section 22.5 reports our evaluation and results of higher-
order rules learning from a GCH of an artificial Zoo database. Finally, Section 22.6
presents conclusion and discussion of possible extensions.

22.2 Related Study

In this section, previous studies on multilevel granular concept approximation are
reviewed. There are various approaches to approximate uncertain concepts from
uncertain data. Four main approaches are focused which are rough sets, fuzzy sets,
near sets, and shadowed sets.

The fuzzy sets and shadowed sets provide contributions to GrC [1] for information
processing by using continuous membership grades induction [2], [16],[17],[27]. Hi-
erarchical fuzzy sets and shadowed sets can be identified by further refinement of the
sets. Multilevel fuzzy sets can be approximated based on previous layer of fuzzy sets
in order to obtain multilevel granular concepts. Therefore, defuzzification is needed
to map for granular fuzzy concept indexing. It is preferable if the approximated con-
cept mechanism provide descriptive knowledge and knowledge evaluation for hier-
archical granular mapping.

RST was proposed by Zdzisław Pawlak (1926-2006) in 1982. The theory is to
model indiscernible (similar) objects and forms a basic granule of knowledge about
a domain, based on given observations (see, e.g.,[18],[21]). However, the observa-
tions can be imperfect: inconsistent, insufficient and uncertain. These characteristics
of observations, consequently, cause basic granules being rough which are defined
as rough sets. Defining rough sets does not require priori probabilistic information
about data. Moreover, the rough sets permits induction of rules about uncertainty
[6], namely the certain classes as certain rules, and the uncertain classes as possible
rules.

In [19], James F. Peters proposed a special theory of near sets. Near sets are dis-
joint sets that resemble each other to a certain degree. Resemblance of near sets can
be obtained using a probe function such as closeness (qualitatively near) between
objects as well as other probe functions that return values of object features such
as color, shape, texture, and duration. The closeness is determined by the objects’
features. Near sets is an extension of rough sets with nearness function for granular
concept approximation. A granular knowledge approximation based on near sets is
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to identify family of an instance x to an instance y by link relation. Therefore, a
granule X and a granule Y are near sets to each other if and only if mapping the link
relation of x with y is sufficiently large. The author also proposed a framework to
enable searching for relevant nearness relation relative to the problem being solved
through a distance measurement. Based on the rough sets, we proposed an idea
of domination attribute subset partitioning to granulate an information granule into
lower level granules. Like the near set approach, using domination attributes has
advantages in linking a family of an object together. We also apply reduct and core
attributes to retain specific information until the lowest level of granulation.

Hoa and Son [7] introduced a complex concept approximation approach based
on a layered learning method together with RST. The authors used taxonomy as
the domain knowledge and attribute values in the data set to guide composing at-
tributes into intermediate concepts until the target concept is obtained. The target
concepts are the concepts in the decision attribute. However, the domain taxonomies
are usually unavailable to guide the layer learning and need to be discovered before
applying this approach.

A study of granularity-based formal concepts is presented in [21], [25], for exam-
ple. In [25], the authors defined a formal concept by a pair consisting of its intension
and extension (φ,m(φ)), where φ is a logical rule of a subset of attributes with the
attributes’ values and m(φ) is a granule obtained by partitioning the universe of
objects using the attribute subset φ. Moreover, Yao [24] presented an approach to
hierarchical granulation based on rough sets called stratified rough approximation.
The stratified rough set approximation is a simple multi-level granulation based on
nesting of one-level granulation (e.g., granulation by the equivalence relation). Yao
[24] presented three methods for multi-layered granulation which are as follows:

• nested rough set approximations induced by a nested sequence of equivalence
relations,

• stratified rough set approximations induced by hierarchies, and
• stratified rough set approximations induced by neighborhood systems.

In the nested granulation approach, the granulation starts with indiscernibility rela-
tions on a set of objects represented by attribute-value vectors. Then the subsequent
indiscernibility relations are defined by successively removing attributes from the
set of remaining attributes. Sequencing of attribute subsets for partitioning is de-
termined by dependencies between condition attributes. The sequence of attribute
subsets for partitioning affects a granules’ extension and the hierarchy structure. By
this approach, the obtained hierarchy structures are predefined by the attributes’ de-
pendencies. Thus, the approach is unconcerned about the objects similarities which
are very important in the sense of clusters. Moreover, there are some information
systems that have no attribute dependency. In the stratified rough set approxima-
tions induced by hierarchies, levels of hierarchies provide the sequence of granula-
tion. As mentioned earlier, the hierarchy of a domain may be unavailable. In [23],
the authors also described the use of neighborhood systems to induce hierarchial
partitioning. The neighborhood system NS(x) is a nested family of subsets of the
universe, with each neighborhood representing a specific level of similarity to x.
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However, an information system can contain a huge number of attributes. The issue
of attribute subset selection for measuring the closeness, similarity or proximity in
an information system is not studied.

Yao [24] recommended a motivating idea for our approach, that is, stratified ap-
proximation can be used to search for an appropriate level of accuracy for an ap-
plication. Therefore, a map of granular concepts which provides rich information
about domain structure is developed.

22.3 Granular Concept Hierarchy

In this section, we shall formally define elements and the hierarchy structure of our
granular concept mapping approach. Definitions of a GCH with its syntax and se-
mantics are given and detailed in the next subsection. Then, the granular knowledge
evaluation is also presented through the semantics of the target concept approxima-
tion using a rough set-based approach.

22.3.1 Formal Definitions of a Granular Concept Hierarchy

A GCH is a hierarchical granular knowledge organization that provides multilevel
granular knowledge units, evaluation of knowledge, and knowledge mapping mech-
anism.

A hierarchy of granular concept mapping is formally defined as a quadruple

GCH =< G,R,T,α>, (22.1)

where G is a non-empty set of nodes, and the nodes themselves are non-empty set.
R denotes a relationship between two nodes. T denotes the target concept of a node,
and α denotes the accuracy approximation of the target concept T .

R is a binary relation of parent-child and child-parent relation on g. If < g,g′ >∈
R then g is the parent of g′ and g′ is a child of g. There is a designated element
r of G called root. r holds the universe of elements such that ¬r = /0. A branch
BR = g0,g1,g2, ...,gn is the maximal sequence of element of G such that g0 = r,
and for every i ≥ 0,< gi,gi+1 >∈ R. Nodes g which R(g) = /0 are called leaves.
The level of g, denoted by ‖g‖, is defined by n if and only if there is a branch
BR = g0,g1,g2, ...,gn, where g = gn . Obviously, ‖r‖ = 0.

T is the target concept of granule which is defined by a set of decision attribute
values.
α is knowledge evaluation of a granule g. The knowledge evaluation in our ap-

proach is defined by accuracy of rough approximation:

α(g) =
|LOWER(g)|
|UPPER(g)| . (22.2)
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LOWER(g) is lower approximation and |UPPER(g)| is upper approximation of a
granule g induced by a subset of attribute. |X | denotes the cardinality of a set X . The
approximation accuracy is in the range of 0≤ α(X)≤ 1, and α( /0) = 1.

A GCH comprises of nodes in which the coarsest concept is represented at the
root level, whereas the most specific concept is represented at the leaf levels. We ar-
ticulate a concept by using the idea of the most dominant attribute subset: the more
dominant degree attribute subset, the more gravity to draw the objects into concepts
by that subset. Once a concept is granulated by the most dominant attributes subset,
we obtain the more specific concepts which are drawn by common attribute subset.
The common attribute subset forms the indiscernibility relations among the con-
cept’s extension. This structure allows mapping of appropriate granular knowledge
in order to solve a problem at hand. The essences of GCH knowledge organization
are as follows.

• In order to map to an appropriate granular knowledge, the problem solver must
identify satisfaction criterions. One of satisfaction criterion is that the granular
knowledge is evaluated by sufficient knowledge for solving a particular prob-
lem. If the problem is to find decision rules to predict unseen objects, then the
appropriate levels of granularity can be found in the granules which no children
of them have smaller boundary regions. If the problem is to predict missing
values of condition attributes of an object, then the appropriate levels of gran-
ularity can be found at the leaf levels where the objects are indiscernible. One
may define a satisfaction criterion by setting precision tolerance of applying the
granular knowledge. This criterion permits reducing cost of computation where
precisiation is expensive or unavailable.

• Because GCH provides multilevel of granular knowledge ranging from the
coarsest level at the root and the most specific level at the leaves, GCH struc-
ture provides system of granular knowledge mapping through a tree traversal.
Searching for a granular concept in a GCH can be achieved through several
techniques such as the depth first search and breadth first search.

• Core attributes are essential to form the more specific concepts since they con-
tains specific characteristics of an object. In GCH construction, core attributes
are preserved to retain such specific concepts until the latest granulation.

We shall define the syntax and semantics of GCH and present algorithms to con-
struct a GCH as follows.

22.3.2 Syntax and Semantics of a Granular Concept

This section explains what knowledge is represented in the granular concepts and
how to interpret and evaluate knowledge in a granular concept. The section is started
by definitions of basic notions, followed by syntax and semantics of a granular
concept.
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Definition 22.1. Let g be a node in a map of granular concepts M and g is a decision
table, g⊆ D. A common attribute of g is the attribute that forms the indiscernibility
relation on g×g. The set of common attributes is denoted by CA,CA ⊆ A.

Definition 22.2. The set of target concepts of g, denoted by τ(g), is defined by the
set of decision values in the decision attribute o f x ∈ g.

τ(g) =
⋃

vd |< x,d >= vd ,∀x ∈ g. (22.3)

Definition 22.3. The most dominant target concept, τ̂, is defined by the decision
value of the largest decision class in g.

Definition 22.4. A granular concept description phrase of g, denoted by π(g), com-
prises of atomic predicates. A predicate is defined by a pair of a common attribute’s
name and a value of the attribute. Each predicate is conjuncted by the ∧ operator
to form a phrase.

π(g) = ca0(Vca0)∧ ca1(Vca1)∧ ca2(Vca2)∧ ...∧ can(Vcan), (22.4)

where cai ∈CA and |CA|= n,1≤ i≤ n.

Definition 22.5. A granular concept description language of g is denoted by λ(g).
The language λ(g) is generated by traversing M from g0 to g. The phrases of the
traversed granules are ∧ conjuncted successively to form λ(g).

λ(g) = π(g0)∧π(g1)∧ ...∧π(g). (22.5)

Definition 22.6. Syntax of a granular concept g is denoted by a pair:

ψ=< φ(g),λ(g) > if and only if x |= λ(g),∀x ∈ g. (22.6)

φ(g) = {x|x ∈ g} is called concept’s extensions and every member of φ(g) is under-
stood by λ(g). Note that λ(g) is the granular concept’s intension.

Definition 22.7. Semantics of a granular concept is the accuracy of rough approx-
imation of the granule toward the most dominant target concepts and the concept’s
intension. The semantics of g is denoted by ξ(g)

ξ(g) =
|LOWER(g)|
|UPPER(g)| , (22.7)

where

LOWER(X) =
⋃

[g]B|x ∈ g, [g]B ⊆ g,

UPPER(X) =
⋃

[g]B|x ∈ g, [g]B∩g �= /0,

[g]B =
⋃{[< a,v >]|a ∈ B,B = CA∪{d}}, f (x,a) = τ̂.
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A granular concept is indexed by its intension. The granular concept conveys a
semantic of being a target concept (τ̂.). To interpret the concept’s semantic, one can
measure the rough approximation accuracy toward the target concept based on the
granular concept intension. Example 1 provides an illustrative explanation.

Example 1. The decision table of Flu diagnosis in Table 22.2 contains four condition
attributes of symptoms {Temperature, Headache, Nausea, Cough} and one decision
attribute {Flu}.

Table 22.2. Flu diagnosis

Cases Temperature Headache Nausea Cough Flu

1 high yes no yes yes
2 very high yes yes no yes
3 high no no no no
4 high yes yes yes yes
5 normal yes no no no
6 normal no yes yes no

There are six cases of patient. If the first partitioning is {Headache}*, two gran-
ular concepts of g1 and g2 are obtained as shown in Table 22.3. If the equivalence
relation is used to discern patients, there is one common attribute CA = {Headache}
for both g1 and g2. The description language is λ(g1) = Headache(yes) and λ(g2) =
Headache(no). The target concept of g1 is having Flu, and the semantics conveyed
by g1 is the patients who have headache also get flu, with the accuracy of approxi-
mation is 3/4. For g2, the target concept is having no Flu. The semantics of having
no Flu is 2/2 of the patients who have no headache.

Table 22.3. Granulated concepts of Flu diagnosis

g1 : λ(g1) = Headache(yes)
Cases Temperature Headache Nausea Cough Flu

1 high yes no yes yes
2 very high yes yes no yes
4 high yes yes yes yes
5 normal yes no no no

g2 : λ(g2) = Headache(no)
Cases Temperature Headache Nausea Cough Flu

3 high no no no no
6 normal no yes yes no

By the definitions, granular concepts can be approximated and interpreted to ob-
tain their semantic. The next section gives details of GCH construction. A recursive
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partitioning algorithm is proposed as well as an attribute subset selection algorithm
to partition the granularity hierarchically.

Fig. 22.1. A granular concept hierarchy for the Flu case base

22.4 Granular Concept Hierarchy Construction

The GCH construction is a recursive granulation in top-down manner. Specifically,
the recursive construction is given in Section 22.4.1, where the symbols are the
ones defined in Section 22.3. We also present an algorithm for attribute subset se-
lection based on the most dominant degree of the attribute subset as illustrated in
Section 22.4.2. In Section 22.4.3, the mapping for an appropriate granularity on the
GCH is detailed.

22.4.1 An Algorithm for Recursive Granulations

Given a data set as an information system format, all observations start in one clus-
ter, and granulations are performed recursively as one moves down the hierarchy.
We design a recursive hierarchy construction as given in Algorithm 22.1. The input
to this algorithm is an information system and the output is a GCH. The process
begins with finding common attribute subset. Then, a temporary decision (TempD)
table is derived from the current decision table by removing the common attributes.
The TempD is not necessary if there is no common attribute. The attribute sequenc-
ing is accomplished through local attributes subset selection in the recursive parti-
tioning. We select the most dominant attribute subset based on the attributes’ values
available in the decision table. We determine the domination using Algorithm 22.2.



22 Granular Concept Mapping and Applications 595

Algorithm 22.1. Granular Concept Hierarchy Construction
Input : a decision table, D =< g,(A∪{d}),(Va)a⊂A,Vd , f >.
Output: a granular concept map, M =< G,R >.
g←−D.
g0 ←− g. // the root of the hierarchy
TempD←−D.
B←− /0. // attribute subset for partitioning
CA←− /0. // the set of common attributes
granulatedStatus(g) = f alse. //mark the granulated concepts
Function GCHconstruct(g)
begin

if (g is discernible) then
1. Find common attribute subset CA of g;
2. Generate a granule description phrase //See Definition 22.4.
3. if (CA �= /0) then

A←− A−AC
TempD←−< g,(A∪{d}),(Va)a⊂A,Vd , f >

4. B ←−MostDAselect(TempD).
//Select the most dominant attribute subset B, see Algorithm 22.2.
5. Partition the TempD by B, {B}∗= g1,g2, ...,gn.
6. Generate relations of < g,g1 >,< g,g2 >,...,< g,gn >∈ R.
for all gi,< g,gi >∈ R do

7. Find τ̂, the most dominant target concept of gi.
// see Definition 22.3
8. Compute semantics of gi.
// see Definition 22.7
9. granulatedStatus(gi)←− f alse.

10. granulatedStatus(g) ←− true; //mark g as granulated.
11. g←− g1.
12. TempD =< g,(A∪{d}),(Va)a⊂A,Vd , f >

else
Make a leaf granule.

end
for all gi, (R(gi) = R(g)) and (granulatedStatus(gi) = f alse) do

GCHconstruct(gi).

The selected attributes subset is then used to partition TempD and assign relation-
ships between the obtained granules (children) and the original granule (parent).
If a granule cannot be partitioned by the indiscernibility relation, a leaf node is
generated.

22.4.2 An Algorithm for Level-Wise Attribute Selection

In this section, we present an algorithm for attribute subset selection which
the selected attribute subset is used in partitioning a granule at each level by
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Algorithm 22.2. Most Dominant Attribute Subset Selection
Input : a decision table (TempD), CORE, parameter N and ε.
Output: The most dominant attribute subset B // this attribute subset will be used to partition

the TempD in Algorithm 22.1.
MostDA ←− /0.
TopDA ←− /0.
B←− /0.
for each a ∈ A do

for each va ∈Va do
1. [x]a∪d ←−

⋃{[a,v]| f (x,a) = va, f (x,d) = vd}
2. domDegree(ai)←− argmax(|[x]a∪d |)

MostDA ←− argmax(domDegree(ai)).
TopDA ←− TopN argmax(domDegree(ai))
B←−MostDA
for each TopB, TopB ⊆ TopDA and |TopB|> 1 do

[x]TopB ←−⋃{[a,v]| f (x,a) = va,a ∈ TopB}
if argmax(|[x]topB|) > ε then

B←− topB

if B−CORE �= /0 then
B←− B−CORE

Return B

Algorithm 22.1. Algorithm 22.2 is designed to compute the most dominant attribute
subset selection.

The rough set exploration system (RSES version 2.2) [3] is used to calculate
reducts of the universe. Then CORE can be derived from intersection of all reducts.
Given a decision table (temporary), we find the N most dominant attributes toward
the decision class. CORE is used to preserve the specific feature(s) of instances
in the granule by retaining CORE until the latest granulations. N can be tuned up
to the number of condition attributes to compose a concept. In other words, our
algorithm allows a flexible number of attributes in a subset for partitioning. We use
co-occurrence counting of attributes’ values and decision classes to determine the
domination degree. Once the most N dominant attributes are obtained, we determine
the co-occurrences within the N attributes to find if any combination of them can
be used to approximate a concept by threshold ε. A count of co-occurrence among
condition attributes’ values implies the degree of which these attribute values can
be used to compose a common concept. We tune the ε by the number of instances in
working granule. The subset of attributes with the greatest domination degree, and
the greatest domination degree is greater than the threshold, is selected to partition
the current granule. If no domination degree of the N combination attributes meets
the threshold ε, the single most dominant attribute is selected.

Example 2 illustrates the recursive construction of a GCH using Algorithm 22.1
and Algorithm 22.2.
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Example 2. A GCH construction for the Flu diagnosis decision table (Table 22.1)
is described step by step. The granulation starts by partitioning the universe (Ta-
ble 22.1). In this example, the equivalence relation is used. The size of attribute
subset to partition is one (N = 1) since the number of condition attributes is rel-
atively small. The objects in the universe are discernible by the equivalence rela-
tion. Thus, we find reducts for this table which are, {Temperature, Headache, Nau-
sea}, {Temperature, Nausea, Cough}, and {Headache, Nausea, Cough}, and core
is {Nausea}. There is no common attribute value in this granule. We select the
first attribute subset by determining the degree of attribute dominations. Headache
has the highest domination degree (domDegree = 3) compared with the rest of the
condition attributes (domDegree = 2). Thus, the first attribute subset to partition is
{Headache} and g1 = {1,2,4,5} and g2 = {3,6} are obtained. Then we continue
granulate g1 selecting the most dominant attributes for g1. Temperature,Nausea
and Cough attributes have the same degree of domination. Nausea is the core; thus,
it is retained at this granulation. We can select Temperature or Cough to partition g1.
If we apply Temperature, we obtain granule g3 = {1,4}, g4 = {5}, g5 = {2} which
are children of g1. The granule g4 and g5 are indiscernible so they are leaf gran-
ule. We then granulate g3 by finding common attribute subset which is {Cough}.
The Cough attribute can be now removed. The remaining attribute {Nausea} is then
used to partition g3 to obtain g6 = {2},g7 = {3}. Since all siblings are now leaf
nodes we can return to the higher levels. We continue granulate g2. Note that the
temporary table can be generated as the common attribute {Headache} is removed.
Like partitioning g1, Nausea is retained. If we partition g2 by Temperature, the in-
discernible granule g8 = {3} and g9 = {6} are obtained. Fig. 22.1 shows the GCH
for the Flu diagnosis domain.

22.4.3 Mapping for Appropriate Granularity in a GCH

Our approach of GCH does not only provide a multilevel of granular concept rep-
resentation of variables, but also enables searching and evaluating techniques for a
granular variable. In order to solve a problem, an application can perform a search
in the GCH for an appropriate level of granularity. As a result, the appropriate level
of granularity is evaluated by sufficient knowledge for solving a particular problem.
If the problem is to obtain decision rules to diagnose unseen objects, then the ap-
propriate levels of granularity can be found in the granules which no children of
them have smaller boundary regions. If the problem is to predict missing values of
condition attributes of an object, then the appropriate levels of granularity can be
found at the leaf levels where the objects are indiscernible. Searching for a granular
concept in a GCH can be achieved through several techniques such as the depth first
search and breadth first search.
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Table 22.4. Higher-order rules for the Zoo database

Rules Accuracy Coverage

Rule 1:
IF animals have the same values in condition attribute
{C,E,J,K}
THEN they are in the same class of {R} 0.956 0.979
Rule 2:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{B,D,F,H, I,M,O,P}
THEN they are in the same class of {R} 0.972 0.209
Rule 3:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{D,L,M,P}
and animals have the same values in condition attributes
{B,F,G, I,N,O}
THEN they are in the same class of {R} 1.0 0.266
Rule 4:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{D,P}
and animals have the same values in condition attributes
{G, I,M,Q}
THEN they are in the same class of {R} 0.961 0.293
Rule 5:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{F}
and animals have the same values in condition attributes
{B,D,M,O}
THEN they are in the same class of {R} 0.988 0.562
Rule 6:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{B,D, I,L,M,N,O}
THEN they are in the same class of {R} 0.998 0.534
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Fig. 22.2. A granular concept hierarchy for the Zoo data set
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22.5 Evaluation

We evaluate the usefulness of a GCH through higher-order decision rules learning.
The definition of higher-order rules are introduced by Yao [26]. A higher order
rule expresses connections of different objects based on their attribute values. An
example of a higher-order rule is ”if object x is related to object y with respect to
an attribute set a, then x is related to y to another attribute set b.” Yao recommends
a mining of higher-order rules from a transformed decision table, where an entity
is a pair of objects from the original table. However, transforming the n objects
table generates n!

((n−2)!∗2!) pairs of objects. We present an alternative approach to
extract higher-order decision rules from a GCH where no transformation process is
required.

The data set used in the experiment is the Zoo database from the UCI machine
learning repository. This database contains 101 objects, 17 condition attributes and
one decision attribute. The condition attributes include 16 boolean-valued attributes
and a numerical attribute. The decision attribute contains 7 classes of animal type.
There is no missing value in this datas et. We construct a GCH for the Zoo data set
as shown in Fig 22.2.

There can be several groups of animals that hold the same attributes’ values in a
subset of condition attributes. For example, there are 6 groups of animals clustered
by attribute set {C,E,J,K} which are Feathers, Milk, Backbone, Breathes respec-
tively. These attributes draw a concept of mammal when C = 0,E = 1,J = 1, and
K = 1. The concept of bird is drawn when C = 1,E = 0,J = 1, and K = 1, the
concept of amphibia is formed by C = 0,E = 0,J = 1, and K = 1. The arthropod
(bug) concept is formed by C = 0,E = 0,J = 0, and K = 1. The concept of fish
is formed by C = 0,E = 0,J = 1, and K = 0. The concept of being crustacean is
formed when C = 0,E = 0,J = 0, and K = 0. Note that, these groups will be gran-
ulated until all the member of the group are indiscernible. The concept descriptions
of the animal groups are used to generate the higher-order rules. Once the hierar-
chy is obtained, a depth first tree search is performed to find the maximum level of
accuracy of each branch. The higher-order rules are obtained from conjunctive con-
nection of granular concepts’ intensions along the visited branches. The extracted
higher-order decision rule set for the Zoo data base is given in the first column in
Table 22.3. Number of conjunction shows the level of hierarchy, starting from level
0 at the root. The higher-order rules are applied to the total of 5,050 pairs of animals,
and there are 1,177 pairs of animals that belong to the same class. We measure the
rules’ accuracy and coverage which were used by [22] as follows:

accuracy(premise⇒ conclusion) =
|φ(premise∧ conclusion)|

|φ(premise)| , (22.8)

coverage(premise⇒ conclusion) =
|φ(premise∧ conclusion)|

|φ(conclusion)| , (22.9)
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where φ(g) is the granule’s extension, and |x| denotes the cardinality of the set x.
The results of the rules’ accuracy and coverage are shown in the second and the
third column of Table 22.4, respectively.

We shall discuss the interestingness of the higher-order decision rules as follows.
The higher-order rule is the type of knowledge in more abstract level. This knowl-
edge should be firstly applied to solve a problem. Naturally, given two animals, one
can differentiate them by the concepts, not by the detailed of each attribute value if
not necessary. The higher-order rules provide the concepts upon the domain which
the rules can be applied for only some groups. The rules obtained from our approach
have much higher accuracy degree than the coverage degree. This is because of the
tree traversal searches for the maximum accurate level of each branch, where their
children do not have smaller boundary regions than the parents. Once the target
granules are found, the granules’ language can be used to express the connections
between objects in the same granule directly. The connections are multi-dimension
which reflect the relationships between attributes in the attribute subset (e.g., depen-
dencies) and also the relationships between the condition attribute subset and the
decision attribute. On the other hand, if one prefers the rule with higher coverage
degree, the bread first search for the coarser granules can be achieved.

22.6 Conclusion

An approach to automatically construct a GCH from a decision table is presented. A
GCH represents knowledge in different level of specificness/coarseness. A granular
concept is formally defined for its syntax, semantic, and interpretation. With this
rich information, an application can map from a granular concept that conveys suffi-
cient information to solve a problem. The usefulness of the GCH is shown from the
ability to extract higher-order rules from the GCH structure without postprocessing
required. Extensions of this work include granular concept mapping based on a con-
ceptual network of a domain for real world applications such as the educational and
instructional area.
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