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Evolutionary programming

� By Lawrence J. Fogel in 1960

Self-adaptation of mutation step sizesSpeciality

Probabilistic (µ+µ)Survivor selection

Gaussian perturbationMutation

NoneRecombination

Deterministic (each parent create one offspring)Parent selection

Real-valued vectorsRepresentation

Sketch of EP
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Representation

� Typically used for continuous parameter optimization

� A vector of floating-point variables <x1, …, xn> 

� Objective function: Rn → R

� To self-adapt mutation parameters
� <x1, …, xn, σ1, …, σn>

σx

Strategy parameters
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Mutation

σi’ =σi + α*σi *N (0, 1),

xi’ =xi + σi’ *N (0, 1)

α ≈ 0.2

Boundary rule to prevent standard deviation too close to 0:

σi’ < ε0          σi’ := ε0 
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Mutation

� Cauchy distribution can be used to 
replace normal distribution

� Cauchy distribution has a fatter tail

� More chance of generating a large 
mutation and escaping from local 
minima

� Gaussian distribution gives greater 
ability to fine-tune the current 
parents
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Recombination

� Conceptually not but technically possible

� It is possible to get improved performance without recombination

� Depending on the state of the search process(supported by theory)

� Mutation improves offspring initially

� Crossover gains in ability as evolution progresses
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Parent selection

� Every member creates exactly one offspring by mutation

� In GA and GP, selective pressure based on fitness

� In ES, it is stochastic λ/µ
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Genetic programming

Generational replacementSurvivor selection

Fitness proportionalParent selection

Random change in treesMutation

Exchange of subtreesRecombination

Tree structuresRepresentation

Sketch of GP

� Youngest member in EC by Nichael L. Cramer, 1985



9

Representation

� Parse trees as chromosomes (non-linear)

� Function set, e.g. F = {+,-,*, /}

� Terminal set, e.g. T = R U {x, y}

� Rules, e.g.

� All elements of the terminal set T are correct expressions

� If f F is a function symbol with arity n and e1, …, en are correct 

expressions, then so is f(e1,…,en).

� Examples

� Knowledge rules conditions (e.g. classification)

� Arithmetic expressions

� Formulas in first-order predicate logic

� Programming language code

∈
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Representation

� Knowledge rules (e.g. classification)

AND

=

N 2

>

S 80,000

IF (No. children = 2) AND (Salary > 80,000) THEN good ELSE bad

1Married50,000210000

……………

1Divorced60,00024

1Married40,00013

1Single30,00002

0Married45,00021

Creditwo
rthiness

Marital 
status

SalaryNo. of 
children

Customer 
ID
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Representation

� Arithmetic expressions 





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Representation

� Formulas in first-order predicate logic

� (x ٨ true) → ((x ٧ y)  ٧ (z ↔ (x ٨ y)))

→

٨

truex

x

٧

٧ ↔

y z

yx

٨
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Representation

� Programming language code

i = 1;

while (i < 20){

i=i+1;

}

;

=

1i

i

while

< =

20 i

1i

+
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Mutation

� GP is a variant of GA with a different data structure - tree

� Replacing a random subtree by a randomly generated tree

� The probability of mutation at the junction with recombination

� The probability of choosing a subtree to be replaced
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Mutation

� It is suggested GP works without mutation or by 5%

� This makes GP different from other EAs

� The crossover has a large shuffling effect, accounting in some 
sense as a macromutation operator
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Recombination

� Swapping subtrees among selected parents (subtree crossover)
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Discussion on evolutionary computing

� Unimodal problems

� A problem has only one point that is fitter than all points

� Global optimum

� Multimodal problems

� A problem has multiple points that are fitter than their neighbors

� Local optima and global optimum

� Genetic drift

� Variety or highly fit individuals are lost from the population

� Climbs the wrong hill - local optima
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Adaptive landscape (surface)
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Discussion on evolutionary computing

� Exploration

� The generation of new individuals in as yet untested regions

� If too much, it is inefficient

� Exploitation

� The concentration of the search in the vicinity of current individuals

� If too much, premature convergence

� Losing population diversity too quickly & get trapped in a local optimum

� Trade-off between exploration and exploitation
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Working of evolutionary algorithms

Just after initialization Climbs hills

Around hill peaks

A typical 3 
step process
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Better initialization?

After a small k generations, population quality can reach level b from 
level a. The worth of extra effort to start from a better population is 
questionable.
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Long runs?

It might not be worthwhile to allow very long runs
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Better than random search

However, the No Free Lunch theorem has shown no blackbox algorithm 
can outperfrom random walk when averaged over “all” problems. 

No problem or 
instance-specific 
knowledge 
incorporated


