
82 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

Evolutionary Programming Made Faster
Xin Yao, Senior Member, IEEE, Yong Liu, Student Member, IEEE, and Guangming Lin

Abstract—Evolutionary programming (EP) has been applied
with success to many numerical and combinatorial optimization
problems in recent years. EP has rather slow convergence rates,
however, on some function optimization problems. In this paper,
a “fast EP” (FEP) is proposed which uses a Cauchy instead
of Gaussian mutation as the primary search operator. The re-
lationship between FEP and classical EP (CEP) is similar to
that between fast simulated annealing and the classical version.
Both analytical and empirical studies have been carried out to
evaluate the performance of FEP and CEP for different function
optimization problems. This paper shows that FEP is very good
at search in a large neighborhood while CEP is better at search
in a small local neighborhood. For a suite of 23 benchmark
problems, FEP performs much better than CEP for multimodal
functions with many local minima while being comparable to
CEP in performance for unimodal and multimodal functions with
only a few local minima. This paper also shows the relationship
between the search step size and the probability of finding a global
optimum and thus explains why FEP performs better than CEP
on some functions but not on others. In addition, the importance
of the neighborhood size and its relationship to the probability of
finding a near-optimum is investigated. Based on these analyses,
an improved FEP (IFEP) is proposed and tested empirically.
This technique mixes different search operators (mutations). The
experimental results show that IFEP performs better than or as
well as the better of FEP and CEP for most benchmark problems
tested.

Index Terms—Cauchy mutations, evolutionary programming,
mixing operators.

I. INTRODUCTION

A LTHOUGH evolutionary programming (EP) was first
proposed as an approach to artificial intelligence [1], it

has been recently applied with success to many numerical and
combinatorial optimization problems [2]–[4]. Optimization by
EP can be summarized into two major steps:

1) mutate the solutions in the current population;
2) select the next generation from the mutated and the

current solutions.

These two steps can be regarded as a population-based version
of the classical generate-and-test method [5], where mutation is

Manuscript received October 30, 1996; revised February 3, 1998, August
14, 1998, and January 7, 1999. This work was supported in part by the
Australian Research Council through its small grant scheme and by a special
research grant from the University College, UNSW, ADFA.

X. Yao was with the Computational Intelligence Group, School of Computer
Science, University College, The University of New South Wales, Australian
Defence Force Academy, Canberra, ACT, Australia 2600. He is now with the
School of Computer Science, University of Birmingham, Birmingham B15
2TT U.K. (e-mail: X.Yao@cs.bham.ac.uk).

Y. Liu and G. Lin are with the Computational Intelligence Group, School of
Computer Science, University College, The University of New South Wales,
Australian Defence Force Academy, Canberra, ACT, Australia 2600 (e-mail:
liuy@cs.adfa.edu.au; glin@cs.adfa.edu.au).

Publisher Item Identifier S 1089-778X(99)04556-7.

used to generate new solutions (offspring) and selection is used
to test which of the newly generated solutions should survive
to the next generation. Formulating EP as a special case of the
generate-and-test method establishes a bridge between EP and
other search algorithms, such as evolution strategies, genetic
algorithms, simulated annealing (SA), tabu search (TS), and
others, and thus facilitates cross-fertilization among different
research areas.

One disadvantage of EP in solving some of the multimodal
optimization problems is its slow convergence to a good
near-optimum (e.g., to studied in this paper). The
generate-and-test formulation of EP indicates that mutation
is a key search operator which generates new solutions from
the current ones. A new mutation operator based on Cauchy
random numbers is proposed and tested on a suite of 23
functions in this paper. The new EP with Cauchy mutation
significantly outperforms the classical EP (CEP), which uses
Gaussian mutation, on a number of multimodal functions
with many local minima while being comparable to CEP for
unimodal and multimodal functions with only a few local
minima. The new EP is denoted as “fast EP” (FEP) in this
paper.

Extensive empirical studies of both FEP and CEP have been
carried out to evaluate the relative strength and weakness of
FEP and CEP for different problems. The results show that
Cauchy mutation is an efficient search operator for a large
class of multimodal function optimization problems. FEP’s
performance can be expected to improve further since all the
parameters used in the FEP were set equivalently to those
used in CEP.

To explain why Cauchy mutation performs better than
Gaussian mutation for most benchmark problems used here,
theoretical analysis has been carried out to show the impor-
tance of the neighborhood size and search step size in EP.
It is shown that Cauchy mutation performs better because of
its higher probability of making longer jumps. Although the
idea behind FEP appears to be simple and straightforward (the
larger the search step size, the faster the algorithm gets to the
global optimum), no theoretical result has been provided so
far to answer the question why this is the case and how fast it
might be. In addition, a large step size may not be beneficial at
all if the current search point is already very close to the global
optimum. This paper shows for the first time the relationship
between the distance to the global optimum and the search
step size, and the relationship between the search step size
and the probability of finding a near (global) optimum. Based
on such analyses, an improved FEP has been proposed and
tested empirically.

The rest of this paper is organized as follows. Section II
describes the global minimization problem considered in this

1089–778X/99$10.00 1999 IEEE

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 83

paper and the CEP used to solve it. The CEP algorithm given
follows suggestions from Fogel [3], [6] and Bäck and Schwefel
[7]. Section III describes the FEP and its implementation.
Section IV gives the 23 functions used in our studies. Section
V presents the experimental results and discussions on FEP
and CEP. Section VI investigates FEP with different scale
parameters for its Cauchy mutation. Section VII analyzes FEP
and CEP and explains the performance difference between
FEP and CEP in depth. Based on such analyses, an improved
FEP (IFEP) is proposed and tested in Section VIII. Finally,
Section IX concludes with some remarks and future research
directions.

II. FUNCTION OPTIMIZATION BY

CLASSICAL EVOLUTIONARY PROGRAMMING

A global minimization problem can be formalized as a pair
, where is a bounded set on and

is an -dimensional real-valued function. The problem is to
find a point such that is a global minimum
on . More specifically, it is required to find an
such that

where does not need to be continuous but it must be
bounded. This paper only considers unconstrained function
optimization.

Fogel [3], [8] and B̈ack and Schwefel [7] have indicated
that CEP with self-adaptive mutation usually performs better
than CEP without self-adaptive mutation for the functions they
tested. Hence the CEP with self-adaptive mutation will be
investigated in this paper. According to the description by
Bäck and Schwefel [7], the CEP is implemented as follows
in this study.1

1) Generate the initial population of individuals, and
set . Each individual is taken as a pair of real-
valued vectors, , where ’s are
objective variables and ’s are standard deviations for
Gaussian mutations (also known as strategy parameters
in self-adaptive evolutionary algorithms).

2) Evaluate the fitness score for each individual
, of the population based on the objective

function, .
3) Each parent , creates a single

offspring by: for

(1)

(2)

where and denote the -th
component of the vectors and , respectively.

denotes a normally distributed one-dimensional
random number with mean zero and standard deviation
one. indicates that the random number is gen-
erated anew for each value of. The factors and
are commonly set to and [7], [6].

1A recent study by Gehlhaar and Fogel [9] showed that swapping the order
of (1) and (2) may improve CEP’s performance.

4) Calculate the fitness of each offspring
.

5) Conduct pairwise comparison over the union of parents
and offspring . For

each individual, opponents are chosen uniformly at
random from all the parents and offspring. For each
comparison, if the individual’s fitness is no smaller than
the opponent’s, it receives a “win.”

6) Select the individuals out of and
, that have the most wins to be parents

of the next generation.
7) Stop if the halting criterion is satisfied; otherwise,

and go to Step 3.

III. FAST EVOLUTIONARY PROGRAMMING

The one-dimensional Cauchy density function centered at
the origin is defined by

(3)

where is a scale parameter [10, p. 51]. The corresponding
distribution function is

The shape of resembles that of the Gaussian density
function but approaches the axis so slowly that an expectation
does not exist. As a result, the variance of the Cauchy
distribution is infinite. Fig. 1 shows the difference between
Cauchy and Gaussian functions by plotting them in the same
scale.

The FEP studied in this paper is exactly the same as the
CEP described in Section II except for (1) which is replaced
by the following [11]

(4)

where is a Cauchy random variable with the scale parameter
and is generated anew for each value of. It is

worth indicating that we leave (2) unchanged in FEP to keep
our modification of CEP to a minimum. It is also easy to
investigate the impact of the Cauchy mutation on EP when
other parameters are kept the same.

It is clear from Fig. 1 that Cauchy mutation is more likely
to generate an offspring further away from its parent than
Gaussian mutation due to its long flat tails. It is expected to
have a higher probability of escaping from a local optimum
or moving away from a plateau, especially when the “basin
of attraction” of the local optimum or the plateau is large
relative to the mean step size. On the other hand, the smaller
hill around the center in Fig. 1 indicates that Cauchy mutation
spends less time in exploiting the local neighborhood and thus
has a weaker fine-tuning ability than Gaussian mutation in
small to mid-range regions. Our empirical results support the
above intuition.

84 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

Fig. 1. Comparison between Cauchy and Gaussian density functions.

IV. BENCHMARK FUNCTIONS

Twenty-three benchmark functions [2], [7], [12], [13] were
used in our experimental studies. This number is larger than
that offered in many other empirical study papers. This is
necessary, however, since the aim here is not to show FEP is
better or worse than CEP, but to find out when FEP is better (or
worse) than CEP and why. Wolpert and Macready [14], [15]
have shown that under certain assumptions no single search
algorithm is best on average for all problems. If the number
of test problems is small, it would be very difficult to make a
generalized conclusion. Using too small a test set also has the
potential risk that the algorithm is biased (optimized) toward
the chosen problems, while such bias might not be useful for
other problems of interest.

The 23 benchmark functions are given in Table I. A more
detailed description of each function is given in the Appendix.
Functions – are high-dimensional problems. Functions

– are unimodal. Function is the step function, which
has one minimum and is discontinuous. Function is a
noisy quartic function, whererandom[0, 1) is a uniformly
distributed random variable in [0, 1). Functions– are
multimodal functions where the number of local minima
increases exponentially with the problem dimension [12], [13].
They appear to be the most difficult class of problems for many
optimization algorithms (including EP). Functions –
are low-dimensional functions which have only a few local
minima [12]. For unimodal functions, the convergence rates
of FEP and CEP are more interesting than the final results of
optimization as there are other methods which are specifically
designed to optimize unimodal functions. For multimodal
functions, the final results are much more important since
they reflect an algorithm’s ability of escaping from poor local
optima and locating a good near-global optimum.

V. EXPERIMENTAL STUDIES

A. Experimental Setup

In all experiments, the same self-adaptive method [i.e., (2)],
the same population size , the same tournament size

for selection, the same initial , and the same
initial population were used for both CEP and FEP. These
parameters follow the suggestions from Bäck and Schwefel [7]
and Fogel [2]. The initial population was generated uniformly
at random in the range as specified in Table I.

B. Unimodal Functions

The first set of experiments was aimed to compare the
convergence rate of CEP and FEP for functions– . The
average results of 50 independent runs are summarized in
Table II. Figs. 2 and 3 show the progress of the mean best
solutions and the mean of average values of population found
by CEP and FEP over 50 runs for – . It is apparent
that FEP performs better than CEP in terms of convergence
rate although CEP’s final results were better than FEP’s for
functions and . Function is the simple sphere model
studied by many researchers. CEP’s and FEP’s behaviors on

are quite illuminating. In the beginning, FEP displays a
faster convergence rate than CEP due to its better global
search ability. It quickly approaches the neighborhood of the
global optimum and reaches approximately 0.001 in around
1200 generations, while CEP can only reach approximately
0.1. After that, FEP’s convergence rate reduces substantially,
while CEP maintains a nearly constant convergence rate
throughout the evolution. Finally, CEP overtakes FEP at
around generation 1450. As indicated in Section III and in
Fig. 1, FEP is weaker than CEP in fine tuning. Such weakness
slows down its convergence considerably in the neighborhood

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 85

TABLE I
THE 23 BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDY, WHERE n IS THE DIMENSION OF THE FUNCTION, fmin

IS THE MINIMUM VALUE OF THE FUNCTION, AND S � Rn. A DETAILED DESCRIPTION OFALL FUNCTIONS IS GIVEN IN THE APPENDIX

TABLE II
COMPARISON BETWEEN CEP AND FEP ON f1–f7. ALL RESULTS HAVE BEEN AVERAGED OVER 50 RUNS, WHERE “M EAN BEST” I NDICATES THE

MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

of the global optimum. CEP is capable of maintaining its
nearly constant convergence rate because its search is much
more localized than FEP. The different behavior of CEP and
FEP on suggests that CEP is better at fine-grained search
while FEP is better at coarse-grained search.

The largest difference in performance between CEP and
FEP occurs with function , the step function, which is

characterized by plateaus and discontinuity. CEP performs
poorly on the step function because it mainly searches in a
relatively small local neighborhood. All the points within the
local neighborhood will have the same fitness value except
for a few boundaries between plateaus. Hence it is very
difficult for CEP to move from one plateau to a lower one.
On the other hand, FEP has a much higher probability of

86 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

(a) (b)

Fig. 2. Comparison between CEP and FEP onf1–f4. The vertical axis is the function value, and the horizontal axis is the number of generations.
The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best results, and (b) shows the average results.
Both were averaged over 50 runs.

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 87

(a) (b)

Fig. 3. Comparison between CEP and FEP onf5–f7. The vertical axis is the function value, and the horizontal axis is the number of generations.
The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best results, and (b) shows average results.
Both were averaged over 50 runs.

generating long jumps than CEP. Such long jumps enable FEP
to move from one plateau to a lower one with relative ease.
The rapid convergence of FEP shown in Fig. 3 supports our
explanations.

C. Multimodal Functions

1) Multimodal Functions with Many Local Min-
ima: Multimodal functions having many local minima
are often regarded as being difficult to optimize.– are
such functions where the number of local minima increases

exponentially as the dimension of the function increases.
Fig. 4 shows the two-dimensional version of.

The dimensions of – were all set to 30 in our ex-
periments. Table III summarizes the final results of CEP and
FEP. It is obvious that FEP performs significantly better than
CEP consistently for these functions. CEP appeared to become
trapped in a poor local optimum and unable to escape from it
due to its smaller probability of making long jumps. According
to the figures we plotted to observe the evolutionary process,
CEP fell into a poor local optimum quite early in a run while

88 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

Fig. 4. The two-dimensional version off8.

TABLE III
COMPARISON BETWEEN CEP AND FEP ON f8–f13. THE RESULTS ARE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST” I NDICATES THE

MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

TABLE IV
COMPARISON BETWEEN CEP AND FEP ON f14–f23. THE RESULTS ARE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST” I NDICATES THE

MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

FEP was able to improve its solution steadily for a long time.
FEP appeared to converge at least at a linear rate with respect
to the number of generations. An exponential convergence rate
was observed for some problems.

2) Multimodal Functions with Only a Few Local Minima:
To evaluate FEP more fully, additional multimodal benchmark
functions were also included in our experiments, i.e.,– ,

where the number of local minima for each function and the
dimension of the function are small. Table IV summarizes the
results averaged over 50 runs.

Interestingly, quite different results have been observed for
functions – . For six (i.e., –) out of ten functions,
no statistically significant difference was found between FEP
and CEP. In fact, FEP performed exactly the same as CEP for

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 89

TABLE V
COMPARISON BETWEEN CEP AND FEP ON f8 TO f13 WITH n = 5. THE RESULTS ARE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST”
INDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

and . For the four functions where there was statistically
significant difference between FEP and CEP, FEP performed
better for , but was outperformed by CEP for – . The
consistent superiority of FEP over CEP for functions–
was not observed here.

The major difference between functions– and –
is that functions – appear to be simpler than –
due to their low dimensionalities and a smaller number of
local minima. To find out whether or not the dimensionality of
functions plays a significant role in deciding FEP’s and CEP’s
behavior, another set of experiments on the low-dimensional

version of – was carried out. The results
averaged over 50 runs are given in Table V.

Very similar results to the previous ones on functions–
were obtained despite the large difference in the dimensionality
of functions. FEP still outperforms CEP significantly even
when the dimensionality of functions – is low .
It is clear that dimensionality is not the key factor which
determines the behavior of FEP and CEP. It is the shape of
the function and/or the number of local minima that have a
major impact on FEP’s and CEP’s performance.

VI. FAST EVOLUTIONARY PROGRAMMING

WITH DIFFERENT PARAMETERS

The FEP investigated in the previous section used in
its Cauchy mutation. This value was used for its simplicity. To
examine the impact of different values on the performance
of FEP in detail, a set of experiments have been carried out
on FEP using different values for the Cauchy mutation.
Seven benchmark functions from the three different groups
in Table I were used in these experiments. The setup of these
experiments is exactly the same as before. Table VI shows the
average results over 50 independent runs of FEP for different
parameters.

These results show that was not the optimal value
for the seven benchmark problems. The optimalis problem
dependent. As analyzed later in Section VII-A, the optimal

depends on the distance between the current search point
and the global optimum. Since the global optimum is usually
unknown for real-world problems, it is extremely difficult to
find the optimal for a given problem. A good approach to

TABLE VI
THE MEAN BEST SOLUTIONS FOUND BY FEP USING DIFFERENT SCALE

PARAMETER t IN THE CAUCHY MUTATION FOR FUNCTIONS f1(1500);
f2(2000); f10(1500); f11(2000); f21(100); f22(100); AND f23(100).

THE VALUES IN “()” I NDICATE THE NUMBER OF GENERATIONS USED IN

FEP. ALL RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

deal with this issue is to use self-adaptation so thatcan
gradually evolve toward its near optimum although its initial
value might not be optimal.

Another approach to be explored is to mix Cauchy mutation
with different values in a population so that the whole popu-
lation can search both globally and locally. The percentage of
each type of Cauchy mutation will be self-adaptive, rather than
fixed. Hence the population may emphasize either global or
local search depending on different stages in the evolutionary
process.

VII. A NALYSIS OF FAST AND CLASSICAL

EVOLUTIONARY PROGRAMMING

It has been pointed out in Section III that Cauchy mutation
has a higher probability of making long jumps than Gaussian
mutation due to its long flat tails shown in Fig. 1. In fact, the
likelihood of a Cauchy mutation generating a larger jump than
a Gaussian mutation can be estimated by a simple heuristic
argument.

90 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

Fig. 5. Evolutionary search as neighborhood search, wherex� is the global optimum and� > 0 is the neighborhood size.� is a small positive
number (0 < � < 2�).

It is well known that if and are independent
and identically distributed (i.i.d.) normal (Gaussian) random
variates with density function

then is Cauchy distributed with density function [16,
p. 451]

Given that Cauchy and Gaussian mutations follow the
aforementioned distributions, Cauchy mutation will generate a
larger jump than Gaussian mutation whenever
(i.e.,). Since the probability of a Gaussian random
variate smaller than 1.0 is

then Cauchy mutation is expected to generate a longer jump
than Gaussian mutation with probability 0.68.

The expected length of Gaussian and Cauchy jumps can be
calculated as follows:

(i.e., does not exist)

It is obvious that Gaussian mutation is much more localized
than Cauchy mutation.

Similar results can be obtained for Gaussian distribution
with expectation and variance and Cauchy
distribution with scale parameters . The question now is
why larger jumps would be beneficial. Is this always true?

A. When Larger Jumps Are Beneficial

Sections V-B and V-C1 have explained qualitatively why
larger jumps are good at dealing with plateaus and many local
optima. This section shows analytically and empirically that
this is true only when the global optimum is sufficiently far
away from the current search point, i.e., when the distance
between the current point and the global optimum is larger
than the “step size” of the mutation.

Take the Gaussian mutation in CEP as an example, which
uses the following distribution with expectation zero (which
implies the current search point is located at zero) and variance

The probability of generating a point in the neighborhood of
the global optimum is given by

(5)

where is the neighborhood size andis often regarded
as the step size of the Gaussian mutation. Fig. 5 illustrates the
situation.

The derivative can be used to
evaluate the impact of on . According
to the mean value theorem for definite integrals [17, p. 322],

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 91

there exists a number such that

Hence

It is apparent from the above equation that

if (6)

if (7)

That is, the larger is, the larger will
be, if . However, if , the
larger is, the smaller will be.

Similar analysis can be carried out for Cauchy mutation
in FEP. Denote the Cauchy distribution defined by (3) as

. Then we have

where may not be the same as that in (6) and
(7). It is obvious that

if (8)

if (9)

That is, the larger is, the larger will be,
if . However, if , the larger
is, the smaller will be.

Since and could be regarded as search step sizes for
Gaussian and Cauchy mutations, the above analyses show that
a large step size is beneficial (i.e., increases the probability

of finding a near-optimal solution) only when the distance
between the neighborhood of and the current search point
(at zero) is larger than the step size or else a large step size may
be detrimental to finding a near-optimal solution. The above
analyses also show the rates of probability increase/decrease
by deriving the explicit expressions for

and .
The analytical results explain why FEP achieved better

results than CEP for most of the benchmark problems we
tested, because the initial population was generated uniformly
at random in a relatively large space and was far away from the
global optimum on average. Cauchy mutation is more likely to
generate larger jumps than Gaussian mutation and thus better
in such cases. FEP would be less effective than CEP, however,
near the small neighborhood of the global optimum because
Gaussian mutation’s step size is smaller (smaller is better in
this case). The experimental results on functionsand
illustrate such behavior clearly.

The analytical results also explain why FEP with a smaller
value for its Cauchy mutation would perform better whenever
CEP outperforms FEP with . If CEP outperforms FEP
with for a problem, it implies that this FEP’s search step
size may be too large. In this case, using a Cauchy mutation
with a smaller is very likely to improve FEP’s performance
since it will have a smaller search step size. The experimental
results presented in Table VI match our theoretical prediction
quite well.

B. Empirical Evidence

To validate the above analysis empirically, additional ex-
periments were carried out. Function (i.e., Shekel-5) was
used here since it appears to pose some difficulties to FEP.
First we made the search points closer to the global optimum
by generating the initial population uniformly at random in
the range of rather than and
repeated our previous experiments. (The global optimum of

is at .) Such minor variation to the experiment is
expected to improve the performance of both CEP and FEP
since the initial search points are closer to the global optimum.
Note that both Gaussian and Cauchy distributions have higher
probabilities in generating points around zero than those in
generating points far away from zero.

The final experimental results averaged over 50 runs are
given in Table VII. Fig. 6 shows the results of CEP and FEP.
It is quite clear that the performance of CEP improved much
more than that of FEP since the smaller average distance
between search points and the global optimum favors a small
step size. The mean best of CEP improved significantly from

6.86 to 7.90, while that of FEP improved only from5.52
to 5.62.

Then three more sets of experiments were conducted where
the search space was expanded ten times, 100 times, and 1000
times, i.e., the initial population was generated uniformly at
random in the range of ,
and , and ’s were multiplied by 10,
100 and 1000, respectively, making the average distance to
the global optimum increasingly large. The enlarged search

92 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

TABLE VII
COMPARISON OFCEP’S AND FEP’S FINAL RESULTS ONf21 WHEN THE INITIAL POPULATION IS GENERATED UNIFORMLY AT RANDOM IN THE RANGE OF

0 � xi � 10 AND 2:5 � xi � 5:5. THE RESULTS WERE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST” I NDICATES THE MEAN BEST FUNCTION VALUES

FOUND IN THE LAST GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION. THE NUMBER OF GENERATIONS FOREACH RUN WAS 100

(a) (b)

Fig. 6. Comparison between CEP and FEP onf21 when the initial population is generated uniformly at random in the range of2:5 � xi � 5:5. The solid
lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result, and (b) shows the average result. Both were averaged
over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates the function value.

space is expected to make the problem more difficult and thus
make CEP and FEP less efficient. The results of the same
experiment averaged over 50 runs are shown in Table VIII
and Figs. 7–9. It is interesting to note that the performance of
FEP was less affected by the larger search space than CEP.
When the search space was increased to and

, the superiority of CEP over FEP on
disappeared. There was no statistically significant difference
between CEP and FEP. When the search space was increased
further to , FEP even outperformed CEP
significantly. It is worth pointing out that a population size of
100 and the maximum number of generations of 100 are very
small numbers for such a huge search space. The population
might not have converged by the end of generation 100. This,
however, does not affect our conclusion. The experiments
still show that Cauchy mutation performs much better than
Gaussian mutation when the current search points are far away
from the global optimum.

Even if ’s were not multiplied by 10, 100, and 1000,
similar results can still be obtained as long as the initial
population was generated uniformly at random in the range
of , and .
Table IX shows the results when’s were unchanged. The
figures of this set of experiments are omitted to save some

space. It is quite clear that a similar trend can be observed as
the initial ranges increase.

It is worth reiterating that the only difference between the
experiments in this section and the previous experiment in
Section V-C2 is the range used to generate initial random
populations. The empirical results match quite well with our
analysis on the relationship between the step size and the
distance to the global optimum. The results also indicate
that FEP is less sensitive to initial conditions than CEP and
thus more robust. In practice, the global optimum is usually
unknown. There is little knowledge one can use to constrain
the search space to a sufficiently small region. In such cases,
FEP would be a better choice than CEP.

C. The Importance of Neighborhood Size

It is well known that finding an exact global optimum for
a multimodal function is hard without prior knowledge about
the function. It might take an infinite amount of time to find
the global optimum for a global search algorithm such as CEP
or FEP. In practice, one often has to sacrifice discovering the
global optimum in exchange for efficiency. A key issue that
arises here is how much sacrifice one has to make to get a
near-optimum in a reasonable amount of time. In other words,
what is the relationship between the optimality of the solution

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 93

TABLE VIII
COMPARISON OFCEP’S AND FEP’S FINAL RESULTS ONf21 WHEN THE INITIAL POPULATION IS GENERATED UNIFORMLY AT RANDOM IN THE

RANGE OF 0 � xi � 10; 0 � xi � 100; 0 � xi � 1000; AND 0 � xi � 10000, AND ai ’ S WERE MULTIPLIED BY 10, 100,AND 1000.
THE RESULTS WERE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST” I NDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE

LAST GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION. THE NUMBER OF GENERATIONS FOREACH RUN WAS 100.

(a) (b)

Fig. 7. Comparison between CEP and FEP onf21 when the initial population is generated uniformly at random in the range of0 � xi � 100 andai’s
were multiplied by ten. The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result, and (b) shows the
average result. Both were averaged over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates the function value.

(a) (b)

Fig. 8. Comparison between CEP and FEP onf21 when the initial population is generated uniformly at random in the range of0 � xi � 1000 andai’s
were multiplied by 100. The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result, and (b) shows the
average result. Both were averaged over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates the function value.

94 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

Fig. 9. Comparison between CEP and FEP onf21 when the initial population is generated uniformly at random in the range of0 � xi � 10000 andai’s
were multiplied by 1000. The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result, and (b) shows the
average result. Both were averaged over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates the function value.

TABLE IX
COMPARISON OFCEP’S AND FEP’S FINAL RESULTS ON f21 WHEN THE INITIAL POPULATION IS GENERATED UNIFORMLY AT RANDOM IN

THE RANGE OF 0 � xi � 10; 0 � xi � 100; 0 � xi � 1000; and0 � xi � 10000. ai’ S WERE UNCHANGED. THE

RESULTS WERE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST” I NDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE LAST

GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION. THE NUMBER OF GENERATIONS FOREACH RUN WAS 100

and the time used to find the solution? This issue can be
approached from the point of view of neighborhood size, i.e.,
in (5), since a smaller neighborhood size usually implies better
optimality. It will be very useful if the impact of neighborhood
size on the probability of generating a near-optimum in that
neighborhood can be worked out. (The probability of finding
a near-optimum would be the same as that of generating it
when the elitism is used.) Although not an exact answer to
the issue, the following analysis does provide some insights
into such impact.

Similar to the analysis in Section VII-A7, the following is
true according to the mean value theorem for definite integrals
[17, p. 322]: for f

For the above equation, there exists a sufficiently small
number such that for any

That is, for

which implies that the probability of generating a near-
optimum increases as the neighborhood size increases in the
vicinity of the optimum. The rate of such probability growth
(i.e.,) is governed by the term

That is, grows exponentially faster
as increases.

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 95

TABLE X
COMPARISON AMONG IFEP, FEP,AND CEP ON FUNCTIONS f1; f2; f10; f11; f21; f22; AND f23. ALL RESULTS HAVE BEEN

AVERAGED OVER 50 RUNS, WHERE “M EAN BEST” I NDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION

A similar analysis can be carried out for Cauchy mutation
using its density function, i.e., (3). Let the density function be

when . For

Hence the probability of generating a near-optimum in the
neighborhood always increases as the neighborhood size in-
creases. While this conclusion is quite straightforward, it is
interesting to note that the rate of increase in the probability
differs significantly between Gaussian and Cauchy mutation
since .

VIII. A N IMPROVED FAST EVOLUTIONARY PROGRAMMING

The previous analyses show the benefits of FEP and CEP
in different situations. Generally, Cauchy mutation performs
better when the current search point is far away from the
global minimum, while Gaussian mutation is better at finding
a local optimum in a good region. It would be ideal if
Cauchy mutation is used when search points are far away from
the global optimum and Gaussian mutation is adopted when
search points are in the neighborhood of the global optimum.
Unfortunately, the global optimum is usually unknown in
practice, making the ideal switch from Cauchy to Gaussian
mutation very difficult. Self-adaptive Gaussian mutation [7],
[2], [8] is an excellent technique to partially address the
problem. That is, the evolutionary algorithm itself will learn
when to “switch” from one step size to another. There is room
for further improvement, however, to self-adaptive algorithms
like CEP or even FEP.

This paper proposes an improved FEP (IFEP) based on
mixing (rather than switching) different mutation operators.
The idea is to mix different search biases of Cauchy and
Gaussian mutations. The importance of search biases has been
pointed out by some earlier studies [18, pp. 375–376]. The
implementation of IFEP is very simple. It differs from FEP
and CEP only in Step 3 of the algorithm described in Section
II. Instead of using (1) (for CEP)or (4) (for FEP) alone, IFEP
generates two offspring from each parent, one by Cauchy mu-
tation and the other by Gaussian. The better one is then chosen
as the offspring. The rest of the algorithm is exactly the same
as FEP and CEP. Chellapilla [19] has recently presented some
more results on comparing different mutation operators in EP.

A. Experimental Studies

To carry out a fair comparison among IFEP, FEP, and
CEP, the population size of IFEP was reduced to half of
that of FEP or CEP in all the following experiments, since
each individual in IFEP generates two offspring. Reducing
IFEP’s population size by half, however, actually puts IFEP
at a slight disadvantage because it does not double the time
for any operators (such as selection) other than mutations.
Nevertheless, such comparison offers a good and simple
compromise.

IFEP was tested in the same experimental setup as before.
For the sake of clarity and brevity, only some representative
functions (out of 23) from each group were tested. Functions

and are typical unimodal functions. Functions
and are multimodal functions with many local minima.
Functions – are multimodal functions with only a few
local minima and are particularly challenging to FEP. Table X
summarizes the final results of IFEP in comparison with FEP
and CEP. Figs. 10 and 11 show the results of IFEP, FEP, and
CEP.

B. Discussions

It is very clear from Table X that IFEP has improved FEP’s
performance significantly for all test functions except for.
Even in the case of , IFEP is better than FEP for 25 out of
50 runs. In other words, IFEP’s performance is still rather close
to FEP’s and certainly better than CEP’s (35 out of 50 runs)
on . These results show that IFEP continues to perform

96 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

(a) (b)

Fig. 10. Comparison among IFEP, FEP, and CEP on functionsf1; f2; f10; and f11. The vertical axis is the function value, and the horizontal axis is
the number of generations. The solid lines indicate the results of IFEP. The dashed lines indicate the results of FEP. The dotted lines indicate the results
of CEP. (a) shows the best results, and (b) shows the average results. All were averaged over 50 runs.

at least as well as FEP on multimodal functions with many
minima and also performs very well on unimodal functions
and multimodal functions with only a few local minima with
which FEP has difficulty handling. IFEP achieved performance
similar to CEP’s on these functions.

For the two unimodal functions where FEP is outperformed
by CEP significantly, IFEP performs better than CEP on,

while worse than CEP on . A closer look at the actual
average solutions reveals that IFEP found much better solution
than CEP on (roughly an order of magnitude smaller) while
only performed slightly worse than CEP on.

For the three Shekel functions – , the difference be-
tween IFEP and CEP is much smaller than that between FEP
and CEP. IFEP has improved FEP’s performance significantly

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 97

Fig. 11. Comparison among IFEP, FEP and CEP on functionsf21–f23. The vertical axis is the function value, and the horizontal axis is the number of
generations. The solid lines indicate the results of IFEP. The dashed lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a)
shows the best results, and (b) shows the average results. All were averaged over 50 runs.

on all three functions. It performs better than CEP on, the
same on , and worse on .

It is very encouraging that IFEP is capable of performing
as well as or better than the better one of FEP and CEP
for most test functions. This is achieved through a minimal
change to the existing FEP and CEP. No prior knowledge
or any other complicated operators were used. There is no

additional parameter used either. The superiority of IFEP
also demonstrates the importance of mixing difference search
biases (e.g., “step sizes”) in a robust search algorithm.

The population size of IFEP used in the above experiments
was only half of that of FEP and CEP. It is not unreasonable
to expect even better results from IFEP if it uses the same
population size as FEP’s and CEP’s. For or

98 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

Fig. 12. Number of successful Cauchy mutations in a population when IFEP is applied to functionf1. The vertical axis indicates the number of successful
Cauchy mutations in a population, and the horizontal axis indicates the number of generations. The results have been averaged over 50 runs.

Fig. 13. Number of successful Cauchy mutations in a population when IFEP is applied to functionf10. The vertical axis indicates the number of successful
Cauchy mutations in a population, and the horizontal axis indicates the number of generations. The results have been averaged over 50 runs.

evolutionary algorithms where , it would be quite natural
to use both Cauchy and Gaussian mutations since a parent
needs to generate more than one offspring anyway.

It has been mentioned several times in this paper that
Cauchy mutation performs better than Gaussian mutation
because of its higher probability of making large jumps (i.e.,
having a larger expected search step size). According to our
theoretical analysis, however, large search step sizes would
be detrimental to search when the current search points are
very close to the global optimum. Figs. 12–14 show the
number of successful Cauchy mutations in a population in

different generations. It is obvious that Cauchy mutation
played a major role in the population in the early stages of
evolution since the distance between the current search points
and the global optimum was relatively large on average in
the early stages. Hence Cauchy mutation performed better.
As the evolution progressed, however, the distance became
smaller and smaller. Large search step sizes produced by
Cauchy mutation tended to produce worse offspring than those
produced by Gaussian mutation. The decreasing number of
successful Cauchy mutations in those figures illustrates this
behavior.

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 99

Fig. 14. Number of successful Cauchy mutations in a population when IFEP is applied to functionf21. The vertical axis indicates the number of successful
Cauchy mutations in a population, and the horizontal axis indicates the number of generations. The results have been averaged over 50 runs.

IX. CONCLUSION

This paper first proposes a fast evolutionary programming
algorithm FEP and evaluates its performance on a number
of benchmark problems. The experimental results show that
FEP performs much better than CEP for multimodal functions
with many local minima while being comparable to CEP in
performance for unimodal and multimodal functions with only
a few local minima. Since FEP and CEP differ only in their
mutations, it is quite easy to apply FEP to real-world problems.
No additional cost was introduced except for the difference in
generating a Cauchy random number instead of a Gaussian
random number.

The paper then analyzes FEP and CEP in depth in terms of
search step size and neighborhood size and explains why FEP
performs better than CEP for most benchmark problems. The
theoretical analysis is supported by the additional empirical
evidence in which the range of initial values was changed.
The paper shows that FEP’s long jumps increase the probabil-
ity of finding a near-optimum when the distance between the
current search point and the optimum is large, but decrease
the probability when such distance is small. The paper also
investigates the relationship between the neighborhood size
and the probability of finding a near-optimum in this neighbor-
hood. Some insights on evolutionary search and optimization
in general have been gained from the above analyses.

The above analyses also led to an IFEP which is very simple
yet effective. IFEP uses the idea of mixing search biases to
mix Cauchy and Gaussian mutations. Unlike some switching
algorithms which have to decide when to switch between
different mutations during search, IFEP does not need to make
such decision and introduces no parameters. IFEP is robust,
assumes no prior knowledge of the problem to be solved, and
performs at least as well as the better one of FEP and CEP

for most benchmark problems. Future work on IFEP includes
the comparison of IFEP with other self-adaptive algorithms
such as [20] and other evolutionary algorithms using Cauchy
mutation [21].

The idea of FEP and IFEP can also be applied to other evo-
lutionary algorithms to design faster optimization algorithms
[22]. For and evolutionary algorithms where

, IFEP would be particularly attractive since a parent
has to generate more than one offspring. It may be beneficial
if different offspring are generated by different mutations [22].

APPENDIX

BENCHMARK FUNCTIONS

A. Sphere Model

B. Schwefel’s Problem 2.22

C. Schwefel’s Problem 1.2

100 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

D. Schwefel’s Problem 2.21

E. Generalized Rosenbrock’s Function

F. Step Function

G. Quartic Function i.e. Noise

random

H. Generalized Schwefel’s Problem 2.26

I. Generalized Rastrigin’s Function

J. Ackley’s Function

TABLE XI
KOWALIK’S FUNCTION f15

TABLE XII
HARTMAN FUNCTION f19

K. Generalized Griewank Function

L. Generalized Penalized Functions

where

YAO et al.: EVOLUTIONARY PROGRAMMING MADE FASTER 101

TABLE XIII
HARTMAN FUNCTION f20

M. Shekel’s Foxholes Function

where

N. Kowalik’s Function

O. Six-Hump Camel-Back Function

P. Branin Function

Q. Goldstein-Price Function

TABLE XIV
SHEKEL FUNCTIONS f21; f22; f23

R. Hartman’s Family

with for and , respectively,
. The coefficients are defined by Tables XII and XIII,

respectively.
For the global minimum is equal to and it

is reached at the point . For the
global minimum is at the point

.

S. Shekel’s Family

with and for and , respec-
tively, .

These functions have five, seven, and ten local minima
for , and , respectively.

for . The coefficients are
defined by Table XIV.

ACKNOWLEDGMENT

The authors are grateful to anonymous referees and D. B.
Fogel for their constructive comments and criticism of earlier
versions of this paper, and P. Angeline and T. Bäck for
their insightful comments on self-adaptation in evolutionary
algorithms.

102 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999

REFERENCES

[1] L. J. Fogel, A. J. Owens, and M. J. Walsh,Artificial Intelligence Through
Simulated Evolution. New York: Wiley, 1966.

[2] D. B. Fogel, System Identification Through Simulated Evolution: A
Machine Learning Approach to Modeling. Needham Heights, MA:
Ginn, 1991.

[3] , “Evolving artificial intelligence,” Ph.D. dissertation, Univ. of
California, San Diego, CA, 1992.

[4] , “Applying evolutionary programming to selected traveling sales-
man problems,”Cybern. Syst., vol. 24, pp. 27–36, 1993.

[5] X. Yao, “An overview of evolutionary computation,”Chinese J. Adv.
Software Res., vol. 3, no. 1, pp. 12–29, 1996.

[6] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Trans. Neural Networks, vol. 5, pp. 3–14, Jan. 1994.

[7] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,”Evol. Comput., vol. 1, no. 1, pp. 1–23,
1993.

[8] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[9] D. K. Gehlhaar and D. B. Fogel, “Tuning evolutionary programming
for conformationally flexible molecular docking,” inEvolutionary Pro-
gramming V: Proc. of the Fifth Annual Conference on Evolutionary
Programming, L. J. Fogel, P. J. Angeline, and T. Bäck, Eds. Cam-
bridge, MA: MIT Press, 1996, pp. 419–429.

[10] W. Feller, An Introduction to Probability Theory and Its Applications,
vol. 2, 2nd ed. New York: Wiley, 1971.

[11] X. Yao and Y. Liu, “Fast evolutionary programming,” inEvolutionary
Programming V: Proc. Fifth Annual Conference on Evolutionary Pro-
gramming, L. J. Fogel, P. J. Angeline, and T. B¨ack, Eds. Cambridge,
MA: MIT Press, 1996, pp. 451–460.

[12] A. Törn and A. Z̆ilinskas, Global Optimization (Lecture Notes in
Computer Science, vol. 350). Berlin, Germany: Springer-Verlag, 1989.

[13] H.-P. Schwefel,Evolution and Optimum Seeking. New York: Wiley,
1995.

[14] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
search,” Santa Fe Institute, Santa Fe, NM, Tech. Rep. SFI-TR-95-02-
010,July 1995.

[15] , “No free lunch theorems for optimization,”IEEE Trans. Evol.
Comput., vol. 1, pp. 67–82, Apr. 1997.

[16] L. Devroye, Non-Uniform Random Variate Generation. New York:
Springer-Verlag, 1986.

[17] R. A. Hunt, Calculus with Analytic Geometry. New York: Harper &
Row, 1986.

[18] X. Yao, “Introduction,” Informatica, vol. 18, pp. 375–376, 1994.
[19] K. Chellapilla, “Combining mutation operators in evolutionary program-

ming,” IEEE Trans. Evol. Comput., vol. 2, pp. 91–96, Sept. 1998.
[20] J. Born, “An evolution strategy with adaptation of the step sizes by

a variance function,” inParallel Problem Solving from Nature (PPSN)
IV (Lecture Notes in Computer Science, vol. 1141), H.-M. Voigt, W.
Ebeling, I. Rechenberg, and H.-P. Schwefel Eds. Berlin, Germany:
Springer-Verlag, 1996, pp. 388–397.

[21] C. Kappler, “Are evolutionary algorithms improved by large muta-
tions?,” in Parallel Problem Solving from Nature (PPSN) IV(Lecture
Notes in Computer Science, vol. 1141), H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel Eds. Berlin, Germany: Springer-
Verlag, 1996, pp. 346–355.

[22] X. Yao and Y. Liu, “Fast evolution strategies,”Contr. Cybern., vol. 26,
no. 3, pp. 467–496, 1997.

Xin Yao (M’91–SM’96) received the B.Sc. degree
from the University of Science and Technology of
China (USTC) in 1982, the M.Sc. degree from the
North China Institute of Computing Technologies
(NCI) in 1985, and the Ph.D. degree from USTC in
1990.

He is currently a Professor in the School of
Computer Science, University of Birmingham, U.K.
He was an Associate Professor in the School of
Computer Science, University College, the Uni-
versity of New South Wales, Australian Defence

Force Academy (ADFA). He held post-doctoral fellowships in the Australian
National University (ANU) and the Commonwealth Scientific and Industrial
Research Organization (CSIRO) before joining ADFA in 1992.

Dr. Yao was the Program Committee Cochair for IEEE ICEC’97 and
CEC’99 and Co-Vice-Chair for IEEE ICEC’98 in Anchorage. He was also the
Program Committee Cochair for SEAL’96, SEAL’98 and ICCIMA’99. He is
an Associate Editor of IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

andKnowledge and Information Systems: An International Journal(Springer),
a member of the editorial board ofJournal of Cognitive Systems Research
(Elsevier), a member of the IEEE NNC Technical Committee on Evolutionary
Computation, and the second vice-president of the Evolutionary Programming
Society.

Yong Liu (S’97) received the B.Sc. degree from
Wuhan University in 1988 and the M.Sc. degree
from Huazhong University of Science and Technol-
ogy in 1991.

From 1994 to 1996, he was a Lecturer at Wuhan
University. Between the end of 1994 to 1995, he
was a Visiting Fellow in the School of Computer
Science, University College, the University of New
South Wales, Australian Defence Force Academy.
He is currently a Ph.D. candidate in the same school.
He has published a number of papers in international

journals and conferences and is the first author of the bookGenetic Algorithms
(Beijing: Science Press, 1995). His research interests include neural networks,
evolutionary algorithms, parallel computing, and optimization.

Mr. Liu received the Third Place Award in the 1997 IEEE Region 10
Postgraduate Student Paper Competition.

Guangming Lin received the B.Sc. degree in 1985
and the M.Sc. degree in 1988 from Wuhan Uni-
versity, China. He is currently pursuing the Ph.D.
degree in the School of Computer Science, Univer-
sity College, the University of New South Wales,
Australian Defence Force Academy, Canberra, Aus-
tralia.

He is currently a Lecturer in the Department
of Soft Science at Shenzhen University, China. In
1994, he was a Visiting Fellow in the Computer
Sciences Laboratory at the Australian National Uni-

versity. He has published a number of papers in the fields of evolutionary
computation and parallel computing. His research interests include evolution-
ary algorithms, parallel computing and optimization.

