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Evolutionary Programming Made Faster

Xin Yao, Senior Member, IEEEYong Liu, Student Member, IEEEand Guangming Lin

Abstract—Evolutionary programming (EP) has been applied used to generate new solutions (offspring) and selection is used
with success to many numerical and combinatorial optimization to test which of the newly generated solutions should survive
problems in recent years. EP has rather slow convergence rates, 15 the next generation. Formulating EP as a special case of the
however, on some function optimization problems. In this paper, . .

a “fast EP” (FEP) is proposed which uses a Cauchy instead generate-and-test method establishes a prldge betvyeen EP gnd
of Gaussian mutation as the primary search operator. The re- Other search algorithms, such as evolution strategies, genetic
lationship between FEP and classical EP (CEP) is similar to algorithms, simulated annealing (SA), tabu search (TS), and
that between fast simulated annealing and the classical version. gthers, and thus facilitates cross-fertilization among different
Both analytical and empirical studies have been carried out to research areas.

evaluate the performance of FEP and CEP for different function One disadvant fEP | Vi fth ltimodal
optimization problems. This paper shows that FEP is very good ne disadvantage o iN'SoiVing SOME ot the muiiimoda

at search in a large neighborhood while CEP is better at search Optimization problems is its slow convergence to a good
in a small local neighborhood. For a suite of 23 benchmark near-optimum (e.g.fs to fi3 studied in this paper). The

problems, FEP performs much better than CEP for multimodal  generate-and-test formulation of EP indicates that mutation
functions with many local minima while being comparable 10 5 5 key search operator which generates new solutions from

CEP in performance for unimodal and multimodal functions with th t A tati tor b d C h
only a few local minima. This paper also shows the relationship € current ones. A new mutation operator based on Lauchy

between the search step size and the probability of finding a global fandom numbers is proposed and tested on a suite of 23
optimum and thus explains why FEP performs better than CEP functions in this paper. The new EP with Cauchy mutation
on some functions but not on others. In addition, the importance  significantly outperforms the classical EP (CEP), which uses
of the neighborhood size and its relationship to the probability of Gaussian mutation. on a number of multimodal functions

finding a near-optimum is investigated. Based on these analyses, . L . :
an improved FEP (IFEP) is proposed and tested empirically. with many local minima while being comparable to CEP for

This technique mixes different search operators (mutations). The Unimodal and multimodal functions with only a few local
experimental results show that IFEP performs better than or as minima. The new EP is denoted as “fast EP” (FEP) in this
well as the better of FEP and CEP for most benchmark problems paper.
tested. Extensive empirical studies of both FEP and CEP have been
Index Terms—Cauchy mutations, evolutionary programming, —carried out to evaluate the relative strength and weakness of
mixing operators. FEP and CEP for different problems. The results show that
Cauchy mutation is an efficient search operator for a large
I. INTRODUCTION class of multimodal function opti_mization problems. FEP’s
performance can be expected to improve further since all the

ALTHOUGH evolutionary programming (EP) was firstyaameters used in the FEP were set equivalently to those
proposed as an approach to artificial intelligence [1], lisaq in CEP.

has been recently applied with success to many numerical anq-0 explain why Cauchy mutation performs better than

combinatorial optimization problems [2]-[4]. Optimization byg 5 ssian mutation for most benchmark problems used here,
EP can be summarized into two major steps: theoretical analysis has been carried out to show the impor-

1) mutate the solutions in the current population; tance of the neighborhood size and search step size in EP.
2) select the next generation from the mutated and th€is shown that Cauchy mutation performs better because of
current solutions. its higher probability of making longer jumps. Although the

These two steps can be regarded as a population-based verigiea behind FEP appears to be simple and straightforward (the
of the classical generate-and-test method [5], where mutatiortdrger the search step size, the faster the algorithm gets to the
global optimum), no theoretical result has been provided so
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paper and the CEP used to solve it. The CEP algorithm giverd) Calculate the fitness of each offspritig;, ), Vi €

follows suggestions from Fogel [3], [6] andiBk and Schwefel {1,...,p}.

[7]. Section Il describes the FEP and its implementation. 5) Conduct pairwise comparison over the union of parents

Section IV gives the 23 functions used in our studies. Section  (x;,7;) and offspring (x},n}), ¥¢ € {1,...,u}. For

V presents the experimental results and discussions on FEP each individual,; opponents are chosen uniformly at

and CEP. Section VI investigates FEP with different scale  random from all the parents and offspring. For each

parameters for its Cauchy mutation. Section VIl analyzes FEP  comparison, if the individual’s fithess is no smaller than

and CEP and explains the performance difference between the opponent’s, it receives a “win.”

FEP and CEP in depth. Based on such analyses, an improvefl) Select they individuals out of (x;,#;) and (x},7}),

FEP (IFEP) is proposed and tested in Section VIII. Finally, Vi € {1,...,u}, that have the most wins to be parents

Section IX concludes with some remarks and future research  of the next generation.

directions. 7) Stop if the halting criterion is satisfied; otherwide—
k+ 1 and go to Step 3.

[I. FUNCTION OPTIMIZATION BY

CLASSICAL EVOLUTIONARY PROGRAMMING
I1l. FAST EVOLUTIONARY PROGRAMMING

A global minimization problem can be formalized as a pair
(S, 1), whereS C R™is a bounded set oR™ andf : S — R
is an n-dimensional real-valued function. The problem is t
find a pointx,,;, € S such thatf(x,,i,) is @ global minimum

The one-dimensional Cauchy density function centered at
Bhe origin is defined by

on S. More specifically, it is required to find aR,;, € S fi(z) = 3%7 —xo < T <00 (3)
such that Ttz
Vx €S : f(Xmin) < f(X) wheret > 0is a scale parameter [10, p. 51]. The corresponding
distribution function is
where f does not need to be continuous but it must be
bounded. This paper only considers unconstrained function Fy(z) = 1 + larctan(f).
w

optimization.

Fogel [3], [8] and Eck and Schwefel [7] have indicated ) _
that CEP with self-adaptive mutation usually performs bettdhe shape off,(z) resembles that of the Gaussian density
than CEP without self-adaptive mutation for the functions thdnction but approaches the axis so slowly that an expectation
tested. Hence the CEP with self-adaptive mutation will H&P€S not exist. As a result, the variance of the Cauchy
investigated in this paper. According to the description \ig'stribution is infinite. Fig. 1 shows the difference between
Back and Schwefel [7], the CEP is implemented as follo auchy and Gaussian functions by plotting them in the same
in this study: Scilr?. FEP studied in thi i tly th th

, Lo e studied in this paper is exactly the same as the

1 SGeetr;fer:at? tgzclr?Iitgﬂiv?ggglla}gotgkzjn Iggl\gd::ilrs ’Ofa?: aI-CEP described in Section Il except for (1) which is replaced

valued vectors(x;,7;), Vi € {1,..., u}, wherex;'s are by the following [11]
objective variables ang;’s are standard deviations for . ) )
Gaussian mutations (also known as strategy parameters z3(5) = i (j) + i (5)6; 4)
in self-adaptive evolutionary algorithms).
2) Evaluate the fitness score for each individg=l,;), whereé; is a Cauchy random variable with the scale parameter

Vi € {1,...,u}, of the population based on the objectivé = 1 and is generated anew for each value joflt is
function, f(x;). worth indicating that we leave (2) unchanged in FEP to keep
3) Each parent(x;,n;), ¢« = 1,...,u, creates a single our modification of CEP to a minimum. It is also easy to
offspring (x;,7,) by: forj =1,...,n investigate the impact of the Cauchy mutation on EP when
L . . other parameters are kept the same.
23(J) = zi(d) +mi(4)N;(0, 1) (1) itis clear from Fig. 1 that Cauchy mutation is more likely

7:(j) = n:(j) exp(r'N(0,1) + 7N;(0,1)) (2) to generate an offspring further away from its parent than
Gaussian mutation due to its long flat tails. It is expected to
where ;(j), x;(7), n:(j) and nj(j) denote thej-th paye a higher probability of escaping from a local optimum
component of the vectors;, x;, 7; and;, respectively. or moving away from a plateau, especially when the “basin
N(0,1) denotes a normally distributed one-dimensiongs attraction” of the local optimum or the plateau is large
random number with mean zero and standard deviatig\ative to the mean step size. On the other hand, the smaller
one. N;(0,1) indicates that the random number is gemyj|| around the center in Fig. 1 indicates that Cauchy mutation
erated anew for each value ¢f The factorst and ™’ gpends less time in exploiting the local neighborhood and thus
are commonly set t6y/2v/n) ' and(v2n) ' [7], [6]. has a weaker fine-tuning ability than Gaussian mutation in

1A recent study by Gehlhaar and Fogel [9] showed that swapping the oréﬂ'pa” tC? ml.d.—range regions. Our emplrlcal results Support the
of (1) and (2) may improve CEP’s performance. above intuition.
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Fig. 1. Comparison between Cauchy and Gaussian density functions.

IV. BENCHMARK FUNCTIONS V. EXPERIMENTAL STUDIES

Twenty-three benchmark functions [2], [7], [12], [13] were
used in our experimental studies. This number is larger thaAn Experimental Setup

that offered in many other empirical study papers. This is | a)| experiments, the same self-adaptive method [i.e., (2)],
necessary, however, since the aim here is not to show FERHS same population size = 100, the same tournament size
better or worse than CEP, but to find out when FEP is better (or_ 1) for selection, the same initiaj = 3.0, and the same
worse) than CEP and why. Wolpert and Macready [14], [19jitial population were used for both CEP and FEP. These
have shown that under certain assumptions no single seasghameters follow the suggestions froradk and Schwefel [7]
algorithm is best on average for all problems. If the numbegnq Fogel [2]. The initial population was generated uniformly
of test problems is small, it would be very difficult to make &t random in the range as specified in Table I.

generalized conclusion. Using too small a test set also has the

potential risk that the algorithm is biased (optimized) toward. Unimodal Functions

the chosen problems, while such bias might not be useful forthe first set of experiments was aimed to compare the
other problems of interest. convergence rate of CEP and FEP for functighsf;. The

The 23 benchmark functions are given in Table I. A morgyerage results of 50 independent runs are summarized in
detailed description of each function is given in the Appendixaple I1. Figs. 2 and 3 show the progress of the mean best
Functions f1—f13 are high-dimensional problems. Functiongplutions and the mean of average values of population found
f1—f5 are unimodal. Functiorfs is the step function, which by CEP and FEP over 50 runs foh—f;. It is apparent
has one minimum and is discontinuous. Functibnis a that FEP performs better than CEP in terms of convergence
noisy quartic function, whergandonf0, 1) is a uniformly rate although CEP’s final results were better than FEP's for
distributed random variable in [0, 1). Functiorfs—f13 are functions f; and f». Function f; is the simple sphere model
multimodal functions where the number of local minimatudied by many researchers. CEP’s and FEP’s behaviors on
increases exponentially with the problem dimension [12], [13}, are quite illuminating. In the beginning, FEP displays a
They appear to be the most difficult class of problems for mamster convergence rate than CEP due to its better global
optimization algorithms (including EP). Function&,—f23 search ability. It quickly approaches the neighborhood of the
are low-dimensional functions which have only a few locajlobal optimum and reaches approximately 0.001 in around
minima [12]. For unimodal functions, the convergence ratd200 generations, while CEP can only reach approximately
of FEP and CEP are more interesting than the final results@fiL. After that, FEP’s convergence rate reduces substantially,
optimization as there are other methods which are specificalihile CEP maintains a nearly constant convergence rate
designed to optimize unimodal functions. For multimodahroughout the evolution. Finally, CEP overtakes FEP at
functions, the final results are much more important sin@ound generation 1450. As indicated in Section Il and in
they reflect an algorithm’s ability of escaping from poor locdakig. 1, FEP is weaker than CEP in fine tuning. Such weakness
optima and locating a good near-global optimum. slows down its convergence considerably in the neighborhood
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TABLE |
THE 23 BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDY, WHERE n |S THE DIMENSION OF THE FUNCTION, finin
Is THE MINIMUM VALUE OF THE FUNCTION, AND S € R™. A DETAILED DESCRIPTION OFALL FUNCTIONS IS GIVEN IN THE APPENDIX

Test function n S fmin
filz) =51 77 30 [~100, 100]* 0
falz) =200, |n| +1T- 1 |4 30 [-10,10]" 0

fslo) = 0, (o, 75)° 30 (100, t00]" 0

fa(x) = max;{|z],1 <i < n} 30 [-100, 100]" 0

fs(@) = 27 [100(z e — x?)2 + (i = 1)] 30 [-30,30]" 0

folz) =", (L +0. 5])? 30 [=100, 100" 0

fi(@) = S0, iz} + random(0,1) 30 [-1.28,1.28]" 0

fs(x) = >0, —zssin(y/|zi]) 30 [—500, 500]™ -12569.5

folz) =30 [#? — 10cos(2mz;) + 10)] 30 [-5.12,5.12]" 0

fro(z) = —20exp (fO.Q,/ Yoz ) —exp (L Y% cos2rz;) 30 [-32,32]" 0

+20+ ¢

Fi(@) = s Sy 22 = 110y cos (2) +1 30 [-600,600]" 0

fra(z) == {10 sin® (my:) + 0 (g — 1?1+ 10sin?(myiq1)] 30 (50, 50]" 0

Hya — 12} + 200 u(4,10,100,4),
yo =1+ gz +1)

k(z; —a)™, z; > a,
u(2;,a,k,m) =< 0, —a<z; <a
k(— zl—a) , T; < —a.
fis(z) =01 {sm (Brzy) + Y0 @ - 121 + sin(3nzigy)] 30 [—50, 50]™ 0
+(2n — 1)[1 + sin? (2rz )} + 3, u(w:,5,100,4)
—1

|1 25 1 n

Jia(z) = {-05 +350 i+2i:,(rifa-1>5} 2 [~65.536,65.536] 1
o 2

fis(@) =211 [al T—Z‘ﬁ;ﬁfﬁj] 1 [~5,5]" 0.0003075
fis(z) = 4z — 2. 1x1 + a;, o 4z3 + 4z} 2 [-5,5]" -1.0316285
fra(z) = (22 — 25a? + 52y —6)° +10(1 - —) coszy + 10 2 [-5,10] x 0,15] 0.398
flg(ili) [] + (1‘1 + T + 1) (19 — 14z, + 31171 — 14y 2 [—2,2]71 3

+6z172 + 372)] X [30 + (221 — 372)%(18 — 321,

+12x% + 48z, — 36z174 + 2723))
fro(w) = = Yoisy cvexp | — 25 ais(x; — py)? 4 (0,1]* -3.86
faolz) = =0 ciexp |- Z?:x aij{z; — pij)? 6 [0,1] -3.32
fa(w) =~ EZZI[(I —ai)(z - a)’ +e]” 4 (0,10 -10
forlzy = =S [(z ez —a)T + ]! 4 [0, 10" -10
fos(z) = — 2 [z —a)(@ — a))T + ]t 4 [0, 10]" ~10

TABLE I
CompPARISON BETWEEN CEP AND FEP ON f1—f7. ALL ResuLTs HAVE BEEN AVERAGED OVER 50 RUNS, WHERE “M EAN BEST’ | NDICATES THE
MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

Function Number of FEP CEP FEP-CEDP
Generations Mean Best Std Dev Mean Best Std Dev t-test

fi 1500 57x107% 1.3x107% 22x107* 59x10? 1.067

f2 2000 81x107% 77x107% 26x107% 1.7x 1074 49.831

fa 5000 16x107%2 1.4x107%2 50x1072 6.6x107? —3.791

fa 5000 0.3 0.5 2.0 1.2 -g8.251

fs 20000 5.06 5.87 6.17 13.61 —0.52

fs 1500 0 0 577.76 1125.76 —3.671

fr 3000 76x107% 26x107% 18x1072 64 x 1073 710.72j_

TThe value of ¢ with 49 degrees of freedom is significant at o = 0.05 by a two-tailed test.

of the global optimum. CEP is capable of maintaining itsharacterized by plateaus and discontinuity. CEP performs
nearly constant convergence rate because its search is mpobrly on the step function because it mainly searches in a
more localized than FEP. The different behavior of CEP amdlatively small local neighborhood. All the points within the
FEP onf; suggests that CEP is better at fine-grained seardtal neighborhood will have the same fithess value except
while FEP is better at coarse-grained search. for a few boundaries between plateaus. Hence it is very
The largest difference in performance between CEP adifficult for CEP to move from one plateau to a lower one.
FEP occurs with functionfs, the step function, which is On the other hand, FEP has a much higher probability of
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f 1 (Sphere Model)
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. -
f2 (Schwefel’s Problem 2.22)
le+12 T T T 1e+21 T T T
Best of FEP Average of FEP
Bestof CEP ----- Average of CEP ----
1e+18 [ ]
1e+09
1e+15 [ ]
1e+12
1e+06 [ ]
1e+09 |' ]
1000 16406 [ ! ]
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| |
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f3 (Schwefel’s Problem 1.2)
1e+06 T T T T T T T T T 1e+08 T T T T T T T T T
Bestof FEP — Average of FEP —
Bestof CEP ----- Average of CEP ----
1e+06 [ ]
10000
10000 [ ]
100
100 [ ]
1
i) 1
0o P 0or S
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Q 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
™ >
fa (Schwefel’s Problem 2.21)
100 T T T T T T T T 100 T T T T T T T T T
Bestof FEP — Average of FEP —
Bestof CEP ----- Average of CEP ----
10 4 10 | 4
1 4 1k |
o P o S
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Q 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

@ (b)

Fig. 2. Comparison between CEP and FEP far-f4. The vertical axis is the function value, and the horizontal axis is the number of generations.
The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best results, and (b) shows the average results.
Both were averaged over 50 runs.
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fs (Generalized Rosenbrock’s Function)

1e+10 T T T Te+10 T T T
Best of FEP —— Average of FEP —
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| - 1 [ - 1
1

[} 5000 10000 15000 20000 o 5000 10000 15000 20000

fe (Step Function)

1e+06 T T 1e+06 T T
Best of FEP Average of FEP
Best of CEP - Average of CEP -~
’ 10000 [ ]
10000 .
100 [ 1
100
1
I 1
1
0. [ -I
001 , L , L , L 00001 , L L , L , ,
) 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400

f7 (Quartic Function with Noise)

100 T T T T T 1000 T T T T T
Bestof FEP — Average of FEP —
Best of CEP Average of CEP
10 4 100 | 4
1 4 10 b 4
01} 4 1k 4
oot | q o1 1
0.001 L . L . L 0.01 . . . . .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
@) (b)

Fig. 3. Comparison between CEP and FEP frf7. The vertical axis is the function value, and the horizontal axis is the number of generations.
The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best results, and (b) shows average results.
Both were averaged over 50 runs.

generating long jumps than CEP. Such long jumps enable FERponentially as the dimension of the function increases.
to move from one plateau to a lower one with relative easgig. 4 shows the two-dimensional version ff.
The rapid convergence of FEP shown in Fig. 3 supports ourThe dimensions offs—f;3 were all set to 30 in our ex-

explanations. periments. Table Ill summarizes the final results of CEP and
FEP. It is obvious that FEP performs significantly better than
C. Multimodal Functions CEP consistently for these functions. CEP appeared to become

1) Multimodal Functions with Many Local Min- trapped in a poor local optimum and unable to escape from it
ima: Multimodal functions having many local minimadue to its smaller probability of making long jumps. According
are often regarded as being difficult to optimize—fi3 are to the figures we plotted to observe the evolutionary process,
such functions where the number of local minima increas€EP fell into a poor local optimum quite early in a run while
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TABLE 1l

ComPARISON BETWEEN CEP AND FEP ON fs—f13. THE RESULTS

ARE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST’ | NDICATES THE

MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

function Number of FEP CEP FEP--CEP
Generations  Mean Best Std Dev Mean Best  Std Dev t-test
fs 9000 —12554.5 52.6 —7917.1 634.5 —51.397
fo 5000 46x1072 1.2x1072 89.0 23.1 —97.251
fio 1500 1.8x 1072 21 x 107 9.2 2.8 -23.33%
i 2000 1.6x1072 22x1072 8.6 %1072 0.12 —4.08t
fi2 1500 9.2 x 1076 3.6 x 1076 1.76 2.4 —5.201
frs 1500 1.6 x107% 73 x107° 1.4 3.7 —9.76t

tThe value of ¢ with 49 degrees of freedom is significant at « = 0.05 by a two-tailed test.

TABLE IV
CoMPARISON BETWEEN CEP AND FEPON fi4—f23. THE RESULTS ARE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST’ | NDICATES THE
MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

Function Number of FEP CEP FEP—-CEP
Generations Mean Best Std Dev Mean Best Std Dev t-test
fia 100 1.22 0.56 1.66 1.19 —2.21F
Jis 4000 50x107% 3.2x107% 47x107* 3.0x 1071 0.49
fie 100 —-1.03 4.9 x 1077 -1.03 4.9 % 1077 0.0
fir 100 0.398 1.5 x 1077 0.398 1.5 x 1077 0.0
fis 100 3.02 0.11 3.0 0 1.0
J19 100 —3.86 1.4 x 1075 —3.86 1.4 x 1072 -1.0
S0 200 —3.27 5.9 x 1072 —3.28 5.8 x 1072 0.45
for 100 —5.52 1.59 —6.86 2.67 3561
fou 100 —5.52 2.12 —8.27 2.95 5.441
23 100 —6.57 3.14 —9.10 2.92 4.941

The value of ¢ with 49 degrees

of freedom is significant at o = 0.05 by a two-tailed test.

FEP was able to improve its solution steadily for a long timevhere the number of local minima for each function and the
FEP appeared to converge at least at a linear rate with resphatension of the function are small. Table IV summarizes the
to the number of generations. An exponential convergence ragsults averaged over 50 runs.

was observed for some problems.

Interestingly, quite different results have been observed for

2) Multimodal Functions with Only a Few Local Minima:functions f;4—f23. For six (i.e.,fi15—f20) out of ten functions,
To evaluate FEP more fully, additional multimodal benchmanko statistically significant difference was found between FEP

functions were also included in our experiments, ifes—f23,

and CEP. In fact, FEP performed exactly the same as CEP for
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TABLE V
ComPARISON BETWEEN CEP AND FEPON fg TO fi3 WiTH n = 5. THE RESULTS ARE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST’
INDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION AND “STD DEV” STANDS FOR THE STANDARD DEVIATION

Function Number of FEP CEP FEP-CEP
Generations Mean Best  Std Dev Mecan Best  Std Dev t-test
fs 500 -2061.74 58.79 -1762.45 176.21 —11.17F
fo 400 0.14 0.40 4.08 3.08 —g.89f
Fro 400 86x107*% 1.8x10"* 81 x 102 0.34 —1.67
I 1500 5.3 x 1072 4.2 x 1072 0.14 0.12 ~4.64%
fi2 200 1.5x 1077 1.2x1077 25x107? 0.12 —1.43
fi3 200 35x 1077 1.8x1077 3.8x107% 1.4x1072 —1.89

TThe value of ¢ with 49 degrees of freedom is significant at a = 0.05 by a two-tailed test.

f16 and f17. For the four functions where there was statistically TABLE VI
significant difference between FEP and CEP, FEP performed TPHE MEAN BtEST SOLUCT'ONS FOI\‘AJND BY FEP Lﬁ'NG D'FFEREN; rs(%\LE
better for f1,, but was outperformed by CEP fgg;—f23. The ARAMETER t IN THE CAUCHY MUTATION FOR FUNCTIONS fi (1500),

. o ! £2(2000), f10(1500), f11(2000), f21(100), f22(100), AND f23(100).
consistent superiority of FEP over CEP for functiofas-f13 THE VALUES IN “()" | NDICATE THE NUMBER OF GENERATIONS USED IN
was not observed here.

FEP. AL ResuLTs HAVE BEEN AVERAGED OVER 50 RUNS
The major difference between functiofis-f1s and f14—fo3

Tunction | ¢ =0.0156 | £ = 0.0313 [ £ = 0.0625 [ £ = 0.1250 | t = 0.2500
is that functionsfi4—f23 appear to be simpler thafk—fiz N 1.0435 0.0599 00038 | 15x1077|65x 1075
. . . i e . - —7 -1
due to their low dimensionalities and a smaller number of: “i X61207 3%;810 5.9 ;01;; 888;1) 888?;
e . . : : 10 5 2858 0.006 . .
local minima. To f|r_1d qgt whether. or no.t t.he d|me,n5|onallty of%l Cotal 03557 01003 0.0740 00368
functions plays a significant role in deciding FEP’s and CEP’§;| 69236 | 7261 | —8.0437 | —86473 | —8.0932
behavior, another set of experiments on the low-dimensiongl, —7.9211 | —83719 | —9.1735 | —9.8401 | -9.1587
(n = 5) version of fs—fi3 was carried out. The results fz —7.8588 | —8.6935 | -—0.4663 | —9.2627 | —9.8107
averaged over 50 runs are given in Table V. Function | ¢ =0.5000 | t =0.7500 | = 1.0000 | ¢ = 1.2500 | ¢ = 1.5000
Very similar results to the previous ones on functigigsf h 18 x 1071135 1078 | 5.7 x 1071 [ 82 x 1077 | 0.0012
y si ) previc , U9BS/13 - 0.0041 0.0060 0.0081 0.0101 0.0120
were obtained despite the large difference in the dimensionality, 0.0001 0.0138 50133 0.0207 9.1937
of functions. FEP still outperforms CEP significantly eveny, 0.0274 0.0233 0.0161 0.0202 0.0121
when the dimensionality of functiong—f13 is low (n = 5).  fa —6.6272 | 52845 | 55189 | ~5.0095 | -5.0578
; ; - - P —7.6820 | —6.9698 | —55194 | —6.1831 | —5.6476
It is clear that dimensionality is not the key factor which’* s T e e e T 61300 —6536d

determines the behavior of FEP and CEP. It is the shape of
the function and/or the number of local minima that have a
major impact on FEP’s and CEP’s performance.

deal with this issue is to use self-adaptation so thaian
gradually evolve toward its near optimum although its initial
value might not be optimal.
Another approach to be explored is to mix Cauchy mutation
: . . . : . with differentt¢ values in a population so that the whole popu-
its?:ugﬁyprézzztsiggatrerﬂslT/;Tuee?/\r/:l\gtisei?g:lﬁg ;:fne;}c:g/ _IJation can search both globally and locally. The percentage of
' - 'Bach type of Cauchy mutation will be self-adaptive, rather than

examine the impact of differeritvalues on the performanceﬁ ed. Hence the population may emphasize either global or

of FEP in detail, a set of experiments have been carried 9 ' : . . )
R : I h ff h I

on FEP using different values for the Cauchy mutation. el searc depending on different stages in the evolutionary

. . r .
Seven benchmark functions from the three different grouBsocess

in Table | were used in these experiments. The setup of these
experiments is exactly the same as before. Table VI shows the
average results over 50 independent runs of FEP for different
parameters.

These results show that= 1 was not the optimal value
for the seven benchmark problems. The optima problem It has been pointed out in Section Il that Cauchy mutation
dependent. As analyzed later in Section VII-A, the optimdlas a higher probability of making long jumps than Gaussian
t depends on the distance between the current search pamtation due to its long flat tails shown in Fig. 1. In fact, the
and the global optimum. Since the global optimum is usuallikelihood of a Cauchy mutation generating a larger jump than
unknown for real-world problems, it is extremely difficult toa Gaussian mutation can be estimated by a simple heuristic
find the optimalt for a given problem. A good approach toargument.

VI. FAST EVOLUTIONARY PROGRAMMING

WITH DIFFERENT PARAMETERS

VII. ANALYSIS OF FAST AND CLASSICAL

EVOLUTIONARY PROGRAMMING
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f(x)

probability density function of x

/

0 Vi N

x*- ¢ x*t+¢g

x*- e+d

Fig. 5. Evolutionary search as neighborhood search, whéras the global optimum and > 0 is the neighborhood size: is a small positive
number (0 < 6 < 2e).

It is well known that if Ny and N, are independent Similar results can be obtained for Gaussian distribution
and identically distributed (i.i.d.) normal (Gaussian) randomith expectationm > 0 and variances? > 1 and Cauchy
variates with density function distribution with scale parametets> 1. The question now is

1 , why larger jumps would be beneficial. Is this always true?

fGaussian(x) = \/%C N
A. When Larger Jumps Are Beneficial
then Ny /N, is Cauchy distributed with density function [16,
p. 451] Sections V-B and V-C1 have explained qualitatively why
larger jumps are good at dealing with plateaus and many local
Feauchy () = # optima. This section shows analytically and empirically that
' m(1+2?) this is true only when the global optimum is sufficiently far

Given that Cauchy and Gaussian mutations follow tr%way from the current search point, i.e., when the distance

aforementioned distributions, Cauchy mutation will generateﬂ?t\r’]viﬁn fhte curi;erlt F;ot':t Eri:dt tt?englobal optimum is larger
larger jump than Gaussian mutation whengwér/N,| > | V| an the step size- of the mutation.

(i.e.,|N2| < 1.0). Since the probability of a Gaussian random Take the G"Wss'a'? m_utayon n CEP as an example, Wh'Ch
variate smaller than 1.0 is uses the following distribution with expectation zero (which

implies the current search point is located at zero) and variance
Ll e o?
¢ 2z dr=0.68

[1 27 1 2

fa(o,.02)(x) = \/2—6_21;’_2, —o0 < T < F00.
then Cauchy mutation is expected to generate a longer jump gven

than Gaussian mutation with probability 0.68. The probability of generating a point in the neighborhood of
The expected length of Gaussian and Cauchy jumps can;je global optimumz* is given by

calculated as follows:

" +te
+oo *
EGaussian(-T) =2 .’L’—l G_é der = —2 =0.80 PG(O:UZ)(|]; - | < 6) = /ﬁ_ fG(O,O-Z)(x) dx (5)
0 2 2 e
“+oo . . . .
1
Ecauety (@) = 2/ r e = 400 wherec > 0 is the neighborhood size andis often regarded
0 (1 +22) as the step size of the Gaussian mutation. Fig. 5 illustrates the
(i.e., does not exist) situation.
The derivative 2 Pg(o,2)(|Jz — 2| < €) can be used to
It is obvious that Gaussian mutation is much more localizevaluate the impact @f on Pg (g o2)(|z — 2*| < ¢). According
than Cauchy mutation. to the mean value theorem for definite integrals [17, p. 322],
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there exists a number (0 < ¢ < 2¢) such that

" e
/ fG(O,oz)(x) dr = 26fG(0,02)(x* —e+ 6)

T*—e€

Hence
9 Pooanle =o' <0
90 G,e)\|[T =T | S ¢
9 x* 4e
= % . fG(070.2)($) dx
= 3 (26fG(0 oz)(.I* — €+ (5))
do ’
a < 1 _<w*—c+6>2>
=2e— | ——e 202
0o \ ov/2n
* 2 e 2F —c
— 26(@;% _ #e—%>
ot/ 27 02/ 27
_ 2¢ o (aﬁ;;é)z <(a:* — €+ 6)2 _ 1>'
o2/ 27 o?

It is apparent from the above equation that

a :
$Pg(0702)(|x —z"|<e)>0 if o <|z*—e+6| (6)

a :
%PG(OJZ)(LT —z"|<e) <0 if o> z"—e+6]. (7)

That is, the larger is, the largerPg g »2)(|x — z*| <€) will

91

of finding a near-optimal solution) only when the distance
between the neighborhood of and the current search point

(at zero) is larger than the step size or else a large step size may
be detrimental to finding a near-optimal solution. The above
analyses also show the rates of probability increase/decrease
by deriving the explicit expressions fg%PG(0702)(|x—x*| <

e¢) and %Pc(t)(h: —z*| < e).

The analytical results explain why FEP achieved better
results than CEP for most of the benchmark problems we
tested, because the initial population was generated uniformly
atrandom in a relatively large space and was far away from the
global optimum on average. Cauchy mutation is more likely to
generate larger jumps than Gaussian mutation and thus better
in such cases. FEP would be less effective than CEP, however,
near the small neighborhood of the global optimum because
Gaussian mutation’s step size is smaller (smaller is better in
this case). The experimental results on functighsand fo
illustrate such behavior clearly.

The analytical results also explain why FEP with a smaller
value for its Cauchy mutation would perform better whenever
CEP outperforms FEP witlh = 1. If CEP outperforms FEP
with ¢ = 1 for a problem, it implies that this FEP’s search step
size may be too large. In this case, using a Cauchy mutation
with a smallert is very likely to improve FEP’s performance
since it will have a smaller search step size. The experimental
results presented in Table VI match our theoretical prediction

be, if o < |2* — ¢+ §|. However, ifo > |27 — e+ 4], the quite well.

larger o is, the smalletPg o o2)(|z — z*| < ¢) will be.

Similar analysis can be carried out for Cauchy mutation
in FEP. Denote the Cauchy distribution defined by (3) & Empirical Evidence

few(z). Then we have

9 g [T

apc(t)(uj -z <e) = at ). few () ds

7]
= o (2CfC(t) (a:* — e+ (5))

RYTAN
o O\ (2t — e+ 6)2

2 1
o\ 4 (2 —e+6)2

22
(@4 —6+5)2)2>
2 (zf—e+ 617
T (24 (at—c+6)2)2

To validate the above analysis empirically, additional ex-
periments were carried out. Functigh, (i.e., Shekel-5) was
used here since it appears to pose some difficulties to FEP.
First we made the search points closer to the global optimum
by generating the initial population uniformly at random in
the range of2.5 < z; < 5.5 rather than0 < z; < 10 and
repeated our previous experiments. (The global optimum of
fo1 is atzf = 4.) Such minor variation to the experiment is
expected to improve the performance of both CEP and FEP
since the initial search points are closer to the global optimum.
Note that both Gaussian and Cauchy distributions have higher
probabilities in generating points around zero than those in
generating points far away from zero.

The final experimental results averaged over 50 runs are
given in Table VII. Fig. 6 shows the results of CEP and FEP.

wheres (0 < § < 2¢) may not be the same as that in (6) andf IS quite clear that the performance of CEP improved much

(7). It is obvious that

a :
aPC(t)(|$—$*|§f)>0 ift<|z*—€e+6 (8)

a .
aPc(t)(|a:—a:*|§c)<0 if t>]z*—e+6]. (9)
That is, the larget is, the largerPe()(|z — z*| < ) will be,
if t < |z* — e+ 6|. However, ift > |2* — ¢ + §], the largert
is, the smallerPe (1) (|z — =*| < €) will be.

more than that of FEP since the smaller average distance
between search points and the global optimum favors a small
step size. The mean best of CEP improved significantly from
—6.86 to—7.90, while that of FEP improved only from5.52

to —5.62.

Then three more sets of experiments were conducted where
the search space was expanded ten times, 100 times, and 1000
times, i.e., the initial population was generated uniformly at
random in the range of < z; < 100, 0 < z; < 1000,

Sinces andt could be regarded as search step sizes fand 0 < z; < 10000, and a;'s were multiplied by 10,
Gaussian and Cauchy mutations, the above analyses show 18 and 1000, respectively, making the average distance to
a large step size is beneficial (i.e., increases the probabilibe global optimum increasingly large. The enlarged search
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TABLE VII
CoMPARISON OF CEP’s AND FEP’s FINAL RESULTS ON f21 WHEN THE INITIAL POPULATION IS GENERATED UNIFORMLY AT RANDOM IN THE RANGE OF

0 <uax; <10 AND 2.5 < x; < 5.5. THE REsuLTs WERE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST’ | NDICATES THE MEAN BEST FUNCTION VALUES
FounD IN THE LAST GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION. THE NUMBER OF GENERATIONS FOREACH RuN Was 100

Initial Range FEP CEP FEP—CEP
Mean Best  Std Dev | Mean Best  Std Dev t-test
2.5 <zx; <55 —5.62 1.71 —7.90 2.85 4.581
0<a; <10 —~5.57 1.54 —6.86 2.94 2.94F
t-test ~0.16 —1.80f
TThe value of ¢ with 49 degrees of frecedom is significant at o = 0.05 by a two-tailed test.
FFEP(CEP) gynan—FEP(CEP ) ormal.
-2 T 7 0 T T T T
Best of FEP —— . — Average of FEP
EE— Best of CEP - At 0 Average of CEP -~
3t E— ] .
2 F -
4t
-3+ -
~
-5 \\\ 4L J
6 I . N S S ]
6+ 4
_7 L
7+ 1
8 ‘ . Bl s 8 . ‘ LT
0 20 40 60 80 100 0 20 40 60 80 100
(@ (b)

Fig. 6. Comparison between CEP and FEPfen when the initial population is generated uniformly at random in the rangeioK x; < 5.5. The solid
lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result, and (b) shows the average result. Beifjedere av
over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates the function value.

space is expected to make the problem more difficult and thggace. It is quite clear that a similar trend can be observed as
make CEP and FEP less efficient. The results of the sathe initial ranges increase.

experiment averaged over 50 runs are shown in Table VIII It is worth reiterating that the only difference between the
and Figs. 7-9. It is interesting to note that the performance @periments in this section and the previous experiment in
FEP was less affected by the larger search space than CBegtion V-C2 is the range used to generate initial random
When the search space was increasef t© z; < 100 and populations. The empirical results match quite well with our
0 < z; < 1000, the superiority of CEP over FEP ofy; analysis on the relationship between the step size and the
disappeared. There was no statistically significant differenéistance to the global optimum. The results also indicate
between CEP and FEP. When the search space was incredRayFEP is less sensitive to initial conditions than CEP and
further to 0 < x; < 10000, FEP even outperformed cepthus more robust_. Ir_1 practice, the global optimum is usuall_y
significantly. It is worth pointing out that a population size ofNknown. There is little knowledge one can use to constrain
100 and the maximum number of generations of 100 are vé search space to a sufﬂqently small region. In such cases,
small numbers for such a huge search space. The populal'l: would be a better choice than CEP.

might not have converged by the end of generation 100. This,

however, does not affect our conclusion. The experimerfs The Importance of Neighborhood Size

still show that Cauchy mutation performs much better than |; is well known that finding an exact global optimum for
Gaussian mutation when the current search points are far awayultimodal function is hard without prior knowledge about
from the global optimum. the function. It might take an infinite amount of time to find
Even if ¢;’s were not multiplied by 10, 100, and 1000the global optimum for a global search algorithm such as CEP
similar results can still be obtained as long as the initigh FEP. In practice, one often has to sacrifice discovering the
population was generated uniformly at random in the ranggobal optimum in exchange for efficiency. A key issue that
of 0 < z; <100, 0 £ g; <1000, and0 < z; < 10000. arises here is how much sacrifice one has to make to get a
Table IX shows the results whesy’'s were unchanged. The near-optimum in a reasonable amount of time. In other words,
figures of this set of experiments are omitted to save somdat is the relationship between the optimality of the solution
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TABLE VIl

CoMPARISON OF CEP’s AND FEP’s FINAL RESULTS ON f21 WHEN THE INITIAL POPULATION IS GENERATED UNIFORMLY AT RANDOM IN THE

RANGE OF 0 < 2; <10, 0 < 2; <100, 0 < x; <1000, anD 0 < 2; < 10000, AND «;'s WERE MuLTIPLIED BY 10, 100,AnD 1000.
THE ResuLTs WERE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST' | NDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE
LAST GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION. THE NUMBER OF GENERATIONS FOREACH RuN WAas 100.
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-4

Initial Range FEP CEP FEP-CEP
Mean Best  Std Dev | Mean Best  Std Dev t-test
0 < z; < 10000 —3.97 2.28 —2.60 2.43 —4.02f
0 < z; < 1000 —5.00 2.96 —5.33 2.76 1.05
0<x; <100 —5.80 321 —5.59 2.97 20.40
0<z; <10 —5.57 1.54 —6.86 2.94 2.94%
F(C)EP10000—F(C)EP 1000 2.731 6.571
F(CYEP1900—F(C)EP1g0 1.63 0.71
F(C)EP ;00— F(C)EP o ~0.48 2.10

The value of ¢ with 49 degrees of freedom is significant

Best of FEP
Best of CEP

@

100

at @ = 0.05 by a two-tailed test.

Average of FEP ——
Average of CEP

(b)

Fig. 7. Comparison between CEP and FEP fan when the initial population is generated uniformly at random in the rande <¢fz; < 100 anda;’s
were multiplied by ten. The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result, asdh®) show
average result. Both were averaged over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates théuginction va
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Fig. 8. Comparison between CEP and FEPfen when the initial population is generated uniformly at random in the rande <fr; < 1000 anda;’s
were multiplied by 100. The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result, aadh®) show
average result. Both were averaged over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates théuginction va
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Fig. 9. Comparison between CEP and FEPfan when the initial population is generated uniformly at random in the range<fx; < 10000 anda;’s
were multiplied by 1000. The solid lines indicate the results of FEP. The dotted lines indicate the results of CEP. (a) shows the best result,vasdh@) sho
average result. Both were averaged over 50 runs. The horizontal axis indicates the number of generations. The vertical axis indicates théuinction va

TABLE IX
CoMPARISON OF CEP’s AND FEP’s FINAL RESULTS ON f21 WHEN THE INITIAL POPULATION |S GENERATED UNIFORMLY AT RANDOM IN
THE RANGE OF 0 < z; < 10, 0 < z; €100, 0 < a; < 1000, and0 < 2; < 10000. a;’s WERE UNCHANGED. THE
ResuLTs WERE AVERAGED OVER 50 RUNS, WHERE “M EAN BEST’ | NDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE LAST
GENERATION, AND “STD DEV” STANDS FOR THE STANDARD DEVIATION. THE NUMBER OF GENERATIONS FOREACH RuN WAas 100

Initial Range FEP CEP FEP—-CEP
Mean Best Std Dev | Mean Best  Std Dev t-test
0 < z; < 10000 —4.12 1.45 —1.40 1.43 ~10.447
0 < z; < 1000 ~5.10 0.81 —5.15 1.66 0.19
0<x; <100 —5.16 1.13 ~5.61 2.31 121
0<z: <10 —5.57 1.54 ~6.86 2.94 2.94F
F(C)EP10000—F(C)EP1000 4.721 12.461
F(CYEP 1000—F(C)EP 100 0.33 1.33
F(C)EP 90— F(C)EP,g 1.48 2.241

The value of ¢ with 49 degrees of freedom is significant at @ = 0.05 by a two-tailed test.

and the time used to find the solution? This issue can be _ 2 9 <Fe%>

approached from the point of view of neighborhood size, ¢.e., o2m de \”

in (5), since a smaller neighborhood size usually implies better 2 _roen? € . 96
optimality. It will be very useful if the impact of neighborhood ~ ~ /5, <1 + gl —etd) <1 - &))

sizee on the probability of generating a near-optimum in that
neighborhood can be worked out. (The probability of finding For the above equation, there exists a sufficiently small
a near-optimum would be the same as that of generatingltmbere; > 0 such that for any < ¢;
when the elitism is used.) Although not an exact answer to ¢ 9
the issue, the following analysis does provide some insights ‘—(x* —€+ 5)<1 - —>‘ <1
into such impact.

Similar to the analysis in Section VII-A7, the following is

o? e

That is, for0 < ¢ < ¢;

true according to the mean value theorem for definite integrals EP (5= o <) >0
[17, p. 322]: for0 < 6 < 2¢ f e G007 =
5 which implies that the probability of generating a near-
a_pG(O o2)(|z — 2" <€) optimum increases as the neighborhood size increases in the
. , <

vicinity of the optimum. The rate of such probability growth

. o fe,00)(z) dx (i.e., & Pgo,02)(|z — z*| < ¢)) is governed by the term
86 r*—e 7
o _(@F et 8)? _ (@t —(c—en?

= 5 (26fg(0702)($* — €+ (5)) ¢ 2 =¢ 2%

_ 9 <2€ 1 C%) That is, %PG(OJZ)(M: — z*| < €) grows exponentially faster
Oe aV2n as ¢ — § increases.
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TABLE X
ComPARISON AMONG IFEP, FEP,AND CEP oN FUNCTIONS fi, f2, fio, fit1, f21, foa, AND fa3. ALL ReEsuLTs HAvE BEEN
AVERAGED OVER 50 RUNS, WHERE “M EAN BEST’ I NDICATES THE MEAN BEST FUNCTION VALUES FOUND IN THE LAST GENERATION

F  #of IFEP FEP CEP IFEP-FEP IFEP—CEP
Gen’s Mean Best Mean Best  Mean Best t-test t-test
fi 1500 416 x 107> 572x 1074 191 x 1071 —28.061 —2.301
fo 2000 244 x107% 7.60x107% 229 x 1072 —51.611 3.471
fio 1500  4.83 x 1073 1.76 x 1072 8.79 —48.541 —21.261
fii 2000 454 x1072 249 x1072 8.13 x 1072 2.167 —2.19f
for 100 —6.46 —5.50 —6.43 2101 —5.461
f22 100 ~7.10 —5.73 ~7.62 —2.25t 0.84
faz 100 —7.80 —6.41 ~8.86 —2.14f 173t

The value of ¢ with 49 degrees of freedom is significant at « = 0.05 by a two-tailed test.

A similar analysis can be carried out for Cauchy mutation This paper proposes an improved FEP (IFEP) based on
using its density function, i.e., (3). Let the density function bmixing (rather than switching) different mutation operators.
C(1) whent = 1. For0 < ¢ < 2¢ The idea is to mix different search biases of Cauchy and

Gaussian mutations. The importance of search biases has been

3] N i i i _
= Pey(jz — 27| <€) pointed out by some earlier studies [18, pp. 375-376]. The

Oe i implementation of IFEP is very simple. It differs from FEP
a [*te and CEP only in Step 3 of the algorithm described in Section
= B¢ /QC_E Jew(@)de I. Instead of using (1) (for CERr (4) (for FEP) alone, IFEP
g [ +e 1 generates two offspring from each parent, one by Cauchy mu-
=5 | m dz tation and the other by Gaussian. The better one is then chosen
C e as the offspring. The rest of the algorithm is exactly the same
= 9 <l(arctan(a:* + ¢) — arctan(z* — 6))) as FEP and CEP. Chellapilla [19] has recently presented some
e\ more results on comparing different mutation operators in EP.
= %(1 T (;_ TP + e (;_ — 6)2> A. Experimental Studies
> 0. To carry out a fair comparison among IFEP, FEP, and

CEP, the population size of IFEP was reduced to half of

Hence the probability of generating a near-optimum in tH&at of FEP or CEP in all the following experiments, since
neighborhood always increases as the neighborhood sizegfch individual in IFEP generates two offspring. Reducing
creases. While this conclusion is quite straightforward, it ISEP’s population size by half, however, actually puts IFEP
interesting to note that the rate of increase in the probabili@} @ slight disadvantage because it does not double the time
differs significantly between Gaussian and Cauchy mutatié@r any operators (such as selection) other than mutations.
since %Pc(l)qa: —x*| <e) > %Pc(o,l)(h? —z*| < e). Neverthel'ess, such comparison offers a good and simple
compromise.
IFEP was tested in the same experimental setup as before.
VIII. AN IMPROVED FAST EVOLUTIONARY PROGRAMMING  For the sake of clarity and brevity, only some representative
The previous analyses show the benefits of FEP and CE&Mctions (out of 23) from each group were tested. Functions
in different situations. Generally, Cauchy mutation performf and f, are typical unimodal functions. Functionf
better when the current search point is far away from ttad fi; are multimodal functions with many local minima.
global minimum, while Gaussian mutation is better at findingunctions f21—f23 are multimodal functions with only a few
a local optimum in a good region. It would be ideal iflocal minima and are particularly challenging to FEP. Table X
Cauchy mutation is used when search points are far away freommarizes the final results of IFEP in comparison with FEP
the global optimum and Gaussian mutation is adopted whand CEP. Figs. 10 and 11 show the results of IFEP, FEP, and
search points are in the neighborhood of the global optimu@EP.
Unfortunately, the global optimum is usually unknown i!%1 Discussions
practice, making the ideal switch from Cauchy to Gaussi
mutation very difficult. Self-adaptive Gaussian mutation [7], Itis very clear from Table X that IFEP has improved FEP’s
[2], [8] is an excellent technique to partially address thperformance significantly for all test functions except for.
problem. That is, the evolutionary algorithm itself will learrEven in the case of;;, IFEP is better than FEP for 25 out of
when to “switch” from one step size to another. There is roofD runs. In other words, IFEP’s performance is still rather close
for further improvement, however, to self-adaptive algorithnt® FEP’s and certainly better than CEP’s (35 out of 50 runs)
like CEP or even FEP. on fi1. These results show that IFEP continues to perform
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Fig. 10. Comparison among IFEP, FEP, and CEP on functfansf2, fio, and f11. The vertical axis is the function value, and the horizontal axis is
the number of generations. The solid lines indicate the results of IFEP. The dashed lines indicate the results of FEP. The dotted lines indidege the res
of CEP. (a) shows the best results, and (b) shows the average results. All were averaged over 50 runs.

at least as well as FEP on multimodal functions with manyhile worse than CEP oryf,. A closer look at the actual

minima and also performs very well on unimodal functionaverage solutions reveals that IFEP found much better solution

and multimodal functions with only a few local minima withthan CEP oryf; (roughly an order of magnitude smaller) while

which FEP has difficulty handling. IFEP achieved performanaly performed slightly worse than CEP d¢f#.

similar to CEP’s on these functions. For the three Shekel functiong;—f-3, the difference be-
For the two unimodal functions where FEP is outperformdsveen IFEP and CEP is much smaller than that between FEP

by CEP significantly, IFEP performs better than CEP fon and CEP. IFEP has improved FEP’s performance significantly
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Fig. 11. Comparison among IFEP, FEP and CEP on functjorsf23. The vertical axis is the function value, and the horizontal axis is the number of
generations. The solid lines indicate the results of IFEP. The dashed lines indicate the results of FEP. The dotted lines indicate the results of CEP. (
shows the best results, and (b) shows the average results. All were averaged over 50 runs.

on all three functions. It performs better than CEPfen the additional parameter used either. The superiority of IFEP

same onfse, and worse onfas. also demonstrates the importance of mixing difference search
It is very encouraging that IFEP is capable of performinggiases (e.g., “step sizes”) in a robust search algorithm.

as well as or better than the better one of FEP and CEPThe population size of IFEP used in the above experiments

for most test functions. This is achieved through a minimalas only half of that of FEP and CEP. It is not unreasonable

change to the existing FEP and CEP. No prior knowledge expect even better results from IFEP if it uses the same

or any other complicated operators were used. There is population size as FEP’s and CEP’s. Ko, \) or (i + A)
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Fig. 12. Number of successful Cauchy mutations in a population when IFEP is applied to fufictibhe vertical axis indicates the number of successful
Cauchy mutations in a population, and the horizontal axis indicates the number of generations. The results have been averaged over 50 runs.
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Fig. 13. Number of successful Cauchy mutations in a population when IFEP is applied to fufictiofhe vertical axis indicates the number of successful
Cauchy mutations in a population, and the horizontal axis indicates the number of generations. The results have been averaged over 50 runs.

evolutionary algorithms where < A, it would be quite natural different generations. It is obvious that Cauchy mutation
to use both Cauchy and Gaussian mutations since a pangiatyed a major role in the population in the early stages of
needs to generate more than one offspring anyway. evolution since the distance between the current search points

It has been mentioned several times in this paper thatd the global optimum was relatively large on average in
Cauchy mutation performs better than Gaussian mutatitre early stages. Hence Cauchy mutation performed better.
because of its higher probability of making large jumps (i.eAs the evolution progressed, however, the distance became
having a larger expected search step size). According to amaller and smaller. Large search step sizes produced by
theoretical analysis, however, large search step sizes woGlduchy mutation tended to produce worse offspring than those
be detrimental to search when the current search points preduced by Gaussian mutation. The decreasing number of
very close to the global optimum. Figs. 12-14 show thsuccessful Cauchy mutations in those figures illustrates this
number of successful Cauchy mutations in a population rehavior.
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Fig. 14. Number of successful Cauchy mutations in a population when IFEP is applied to fufigtiofhe vertical axis indicates the number of successful
Cauchy mutations in a population, and the horizontal axis indicates the number of generations. The results have been averaged over 50 runs.

IX. CONCLUSION for most benchmark problems. Future work on IFEP includes
Be comparison of IFEP with other self-adaptive algorithms

h as [20] and other evolutionary algorithms using Cauchy
tation [21].

he idea of FEP and IFEP can also be applied to other evo-
onary algorithms to design faster optimization algorithms

2]. For (. + A) and (p, A) evolutionary algorithms where
. . . . 2 < A, IFEP would be particularly attractive since a parent
a few local minima. Since FEP and CEP differ only in thei as to generate more than one offspring. It may be beneficial

mutatlo_n_s, Itis quite easy to apply FEP to real-worlq prOblemﬁ'diﬁ‘erent offspring are generated by different mutations [22].
No additional cost was introduced except for the difference in

generating a Cauchy random number instead of a Gaussian APPENDIX

random number. BENCHMARK FUNCTIONS
The paper then analyzes FEP and CEP in depth in terms of

search step size and neighborhood size and explains why PSphere Model

performs better than CEP for most benchmark problems. The

This paper first proposes a fast evolutionary programmiﬁ
algorithm FEP and evaluates its performance on a num
of benchmark problems. The experimental results show tH3
FEP performs much better than CEP for multimodal functioqati
with many local minima while being comparable to CEP i
performance for unimodal and multimodal functions with onl

theoretical analysis is supported by the additional empirical 30

evidence in which the range of initial values was changed. fil@) =" af, —100 < z; < 100
The paper shows that FEP’s long jumps increase the probabil- =l

ity of finding a near-optimum when the distance between the min(f1) = f1(0,...,0) = 0.

current search point and the optimum is large, but decregse g.hwefel's Problem 2.22
the probability when such distance is small. The paper also
investigates the relationship between the neighborhood size 20 20
and the probability of finding a near-optimum in this neighbor-
hood. Some insights on evolutionary search and optimization Ja(x) = Z i + H i —10s2 <10
in general have been gained from the above analyses. =t =t
The above analyses also led to an IFEP which is very simple min(fz) = f2(0,...,0) =0.
yet effective. IFEP uses the idea of mixing search biases 0 schwefel’s Problem 1.2
mix Cauchy and Gaussian mutations. Unlike some switching

algorithms which have to decide when to switch between )

different mutations during search, IFEP does not need to make 30 i
such decision and introduces no parameters. IFEP is robust, f3(z) = Z zj |, —100 < z; < 100
assumes no prior knowledge of the problem to be solved, and i=1 \j=1

performs at least as well as the better one of FEP and CEP min(f3) = f3(0,...,0) = 0.
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D. Schwefel's Problem 2.21 TABLE XI
KowaLIK's FUNCTION fi5
i a; b;I:
. 1 | 0.1957 | 0.25
= ma ; < < — <z <
Salx) IH;LX{|J}Z|, 1 <4< 30}, 100 < z; € 100 5 101947 | o5
min(f4) = f4(0,...,0) = 0. 31017351 1
4 |} 0.1600 2
. , . 5100844 | 4
E. Generalized Rosenbrock’s Function 6 | 00627 | 6
7 | 0.0456 8
8 | 0.0342 10
29 5 9 | 0.0323 12
() = Z [100(ziy1 — 27)” + (25 — 1)?], 10 | 0.0235 | 14
=1 11 | 0.0246 16
—-30<2;<30 min(f5) = f5(1,...,1) =0.
TABLE XII
F. Step Function HARTMAN FUNCTION f19
i (17,],]:1,2,3 & pl]7]:1)213
1] 3 10 30 1 0.3689 0.1170 0.2673
30 2101 10 35 |12 0.4699 0.4387 0.7470
fo(z) =) (lei+05)* =100 < z; < 100 303 10 30| 3 | 01091 08732 0.5547
=1 4101 10 35 {3.2]0.038150 0.5743 0.8828

min(fs) = f6(0,...,0) =0.

K. Generalized Griewank Function
G. Quartic Function i.e. Noise

2 fule 4000 Z HCO <\x_/>

N\ "4 _ 4
fr(x) = ;u’ + randono, 1) 128 <z < 1.28 600 < 2, < 600 mln(fn) _ f11( =0
min(f7) = f7(0,...,0) = 0. L. Generalized Penalized Functions
H. Generalized Schwefel’'s Problem 2.26 2
fra(x) = %{1081ﬂ2(ﬂyl) + Z(yi —1)?
30 =1
min(fs) = f(420.9687, . ..,420.9687) = —12569.5. a0
+ ) ufz;,10,100,4)
I. Generalized Rastrigin’s Function i=1
=50 < z; €50, min(f12) = f12( ,1)=0
30 fis(z) = {sm w3z1) + Z ?[1 + sin?
folz) = Z [7 — 10 cos(2ma;) + 10)],
=1
—5.12 <z; <512 min(fy) = fo(0,...,0) =0. (Brzip)] + (@, — 1?1 + 81112(27rx30)]}
J. Ackley’s Function il
' y + 3 (i, 5,100,4)
7=1

—50 S Z; S 50, Inin(flg) = flg(l, ceey 1) =0

flo(.’L') = —-20 exp —0.2 where

klz, —a)™,  x; > a,
120 w(x,a,k,m) =<0, —a<zr;<a
— exp<% Z cos 27ra:7¢> +20+e¢ k(—z; —a)™, x; < —a.

1
—32<2; <32, min(fio) = f10(0,...,0) = 0. yi =1+ (i +1).
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TABLE Xl
HARTMAN FUNCTION f2q

i aij,j:l,”-,ﬁ C; pij,jzl,"~,6

1] 10 3 17 35 1.7 8 | 1 [0.1312 0.1696 05569 0.0124 0.8283 0.5886
21005 10 17 0.1 8 14| 1.20.2329 04135 0.8307 0.3736 0.1004 0.9991
31 3 35 1.7 10 17 8 | 3 |0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4| 17 8 0.05 10 0.1 14]3.2]0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

M. Shekel's Foxholes Function TABLE XIV

SHEKEL FUNCTIONS fa1, fo2, fo3
-1 I lag,g=1-,4] ¢
25

1 1 114 4 4 4 |01
fa@) = | +>_ 5 2 (1 1 1 1|02
E ) . \6 ’
500 j=1 J+ Z:izl(ajZ - a”) 318 8 8 8 0.2
—65.536 < z; < 65.536, min(f14) = f1a(—32,-32) & 1 416 6 66,04
513 7 3 7 |o4
where 612 9 2 9 106
(a5;) = 715 5 3 3 [03
(A g 18 1 8 1 |07
-32 -16 0 16 32 =32 --- 0 16 32 916 2 6 2 |05
-32 -32 -32 -32 -32 -16 32 32 32)/)° 10|17 36 7 36105

N. Kowalik's Function

11 5 2
r1 (bz + bﬂ?g)
) = 2 l s o

=1
min(f15) & f15(0.1928,0.1908,0.1231,0.1358)
~ 0.000 307 5.

-0z, L5

7

O. Six-Hump Camel-Back Function

fi6 = 42?7 — 2.1zF + %.’L’? + x1x0 — 4o + 4o},
—-5< ;<5
Zonin = (0.08983, —0.7126), (—0.08983,0.7126)
min(f1g) = —1.031628 5.

P. Branin Function

2
5.1 5

f17($) = <x2 - xf + -z — 6)
v v

+ 10<1 — i) cosxy + 10
8
—5<2 <10, 0<z22<15
Tmin = (—3.14212.275), (3.142,2.275), (9.425,2.425)
min(f17) = 0.398.

Q. Goldstein-Price Function

fis(@) = [1+ (z1 + 22 + 1)*(19 — 14wy + 327 — 14z
+ 6x122 + 323)] X [30 + (221 — 322)?
x (18 — 32z + 1227 + 48z — 36z 22 + 2723) ]
—2<x; £2, min(fis) = f15(0,—1) =3.

R. Hartman’s Family

n

flz) = —Zciexp —

aij(z; — pij)?
=1 1

with n = 3,6 for fio(x) and fao(x), respectively,0 <
z; < 1. The coefficients are defined by Tables XII and XIlI,
respectively.

For fi9(x) the global minimum is equal te-3.86 and it
is reached at the poini.114,0.556,0.852). For foe(x) the
global minimum is—3.32 at the point(0.201, 0.150, 0.477,
0.275,0.311, 0.657).

S. Shekel's Family

m

f@) == [z —a)e—a)’ +a]™

=1

with m = 5,7 and 10 for f»1(z), f22(x) and fa3(x), respec-
tively, 0 < z; < 10.

These functions have five, seven, and ten local minima
for foi1(x), foo(x), and fos(xz), respectively.rioeal opt = @i,
f(Zrocalopt) &= 1/c; for 1 < i < m. The coefficients are
defined by Table XIV.
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