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Abstract - All intelligent systems are evolutionary.
Simulating evolution provides a method for generating
machine intelligence. To date, there have been three
main efforts insimulating evolution: geneticalgorithms,
evolution strategies, and evolutionary programming,.
The current research focuses on the use of evolutionary
programming for adapting the design and weights of a
multi-layer feed forward perceptron in the context of
machine learning. Specifically, it is desired to evolve
the structure and weights of a single-hidden layas
perceptron such thatit can achieve a high level of play ivn
the game tic-tac-toe without the use of heuristics or
credit assignment algorithms. Conclusions from the
experiments are offered regarding the relative impor-
tance of specific mutation operations, the necessity for
credit assighment procedures and the efficiency and
effectiveness of evolutionary search.

L. INTRODUCTION

Intelligence is that property which allows a system to
adapt its behavior to meet desired goals in a range of
environments. There are three naturally-occurring orga-
nizational forms of intelligence: phylogenetic (arising
within the line of descent), ontogenetic (arising within the
individual) and sociogenetic (arising within the group)
[1,2]. Phylogenetic learning is the most ancient form of
intelligence and gave rise to ontogenetic and sociogenetic
forms. All intelligent systems are evolutionary. Each
possesses a reservoir of learned behavior and a unit of
mutability [2]. It is natural to simulate evolutionary
processes in order to create machine intelligence.

The biological foundation for such simulations is the
neo-Darwinian paradigm [3,4]. This argument asserts
that the history of life can be accounted for by processes
acting on and within populations and species. These
processes are reproduction, mutation, competition and
selection. Reproduction is an obvious property of all
extant species. Mutations in any positively entropic sys-
tern must occur. Competition is a natural consequence of

existing populations expanding to fill a finite resource
space. Selection is the result of competition for the finite
available resources. Under such conditions, evolution
becomes an inevitable process.

Mayr [3] succinctly summarizes some of the more
importantcharacteristics of the neo-Darwinian paradigm.
These include:

1. The individual is the primary target of selection,

2. Genetic variation is largely a chance phenomenon
and siochastic processes play a significant role in evolu-
tion,

3. Genotypic variation is largely a product of recombi-
nation and “only ultimately of mutation,”

4. “Gradual” evolution may incorporate phenotypic
discontinuities,

5.Notall phenotypic changes are necessarily the conse-
quences of ad hoc natural selection,

6. Evolution meanschangesinadaptationand diversity
and not merely a change in gene frequencies, and

7. Selection is probabilistic, not deterministic.
Simulations of evolution, whether they are implemented
as methods of machine learning or simply to solve a
specific problem, should rely on these foundations.

IT . PREVIOUS EFFORTS IN SIMULATED EVOLUTION

Simulated evolution has a long history. Speculation on
the evolutionary nature of intelligence goes back at least
to Cannon [5] and Turing [6], with the first simulations
being performed by Fraser [7,8], Friedberg [9], Friedberg
etal. [10], Bremermann [11], Fogel and colleagues[12,13],
Schwefel and colleagues [14,15], and Holland and col-
leagues [16,17]. More complete descriptions of efforts in
the field canbe found in [18-21,27]. There are three widely
researched paradigms in simulated evolution: genetic
algorithms, evolution strategies and evolutionary pro-
gramming. These approaches can be compared and
contrasted.

The genetic algorithm and evolutionary programming
have some obvious similarities. Both algorithms operate



on a population of candidate solutions, both algorithms
subject these solutions to modifications, and both algo-
rithms employ a selection criterion to determine which
solutions to maintain for future generations. As proposed
in [17], the genetic algorithm differs from evolutionary
programming in the following regards:

1. Genetic algorithms use a coding (e.g., a bit string) of
the parameters to be evolved, not the parameters them-
selves [22],

2. The number of offspring to be created from each
parent is exponentially related to the parent’s fitness
relative to all other members of the current population |17,
pp. 87-88], and

3. Parents create offspring through the use of genetic
operators such as one-point crossover and inversion [17,
pp. B9-120].

In contradistinction, in evolutionary programiming [18]:

1. The representation for a problem follows in a top-
down fashion from the problem. Rather than try lo fita
single coding structure to every problem, cach problemis
regarded as being unigue,

2. The number of offspring per parent is generally
unimportant and successful simulations need not create
more than a single offspring per parent, and

3. Offspring are created through various mutation
operations that follow naturally from the chosen problem
representation. No emphasis is put on specific genetic
operations such as crossover and inversion. Selection is
then made a probabilistic function of fitness.

Many of Holland's [17] original proposals have under-
gone significant revision since first defined. Much of the
current researchin genetic algorithms has forgone the use
of bitstrings (e.g. [23]). Experimentsin[24] haveindicated
the inferiority of the one-point crossover and two-point
crossover to uniform crossover, although these conclu-
sions have received criticism in [25]. Other research [26]
has indicated a greater role for mutation in evolutionary
search than was admitted in [17], and illustrated cases
where crossover can be detrimental to search.

The evolution strategies paradigm [14] is very similar
to that of evolutionary programming., Both methods
operate on a population of solutions, subject those solu-
tions to changes through random mutation and compete
existing solutions with respect to an objective function. In
real-valued parameter optimization, both methods typi-
cally apply Gaussian perturbations to all components
[27,28] and extensions to self-adapting variances of these
perturbations have been made |27,29]. There is no re-
guirement for specific mutation operations that follow the
form of genetic transfer in biota, although Schwetfel [27]
has experimented with various forms of recombination.
Evolutionary programming and evolution strategies both
emphasize phenotypic changes [18,30].

III. METHOD & MATERIALS

The current experiments focus on the use of evolution-
ary programming. Censider the problem of evolving
multi-layered feed forward perceptrons capable of play-
ing tic-tac-toe. The game is well-known but will be
described in detail for completeness. There are two play-
ers and a three by three grid. Initially, the grid is empty.
Each player moves in turn by placing a marker in an open
square. By convention, the first player’s marker is “X" and
the second player’s marker is “0." The first player moves
first. The object of the game is to place three markersina
row. Thisresultsin a win for that player and loss for the
opponent.  Failing a win, a draw may be earned by
preventing the opponent from placing three markers ina
row. [t can be shown by enumerating the game tree that
at least a draw can be forced by the second player.

Attention will be devoted to evolving a strategy for the
first player (an equivalent procedure could be used for the
second plaver). A suitable coding structure must be
selected. Ikmust receivea board patternas inputand yield
a corresponding move as output. The coding structure
utilized in these experiments was a multi-layered
feedforward perceptron (see Figure 1). Each hidden or
output node performs a sum of the weighted input
strengths, subtracts off an adaptable bias term and passes
the result through a sigmeid filter 1/{1+exp(-x)). Onlya
single hidden layer was incorporated. This architecture
was selected because: (1) variations can be shown to be
universal function approximators [31], (2) it was believed
to be adequate for the task, (3) the response to any stimu-
Ius could be evaluated rapidly, and {4) the extension to
multiple hidden layers is obvious,

HIDDEN
LAYER (5]
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Figure 1. A Multi-Layer Feed Forward Perceptron

There were nine input and output units. Each corre-
sponded to a square in the grid. An "X"” was denoted by
the value 1.0, an “0" was denoted by the value-1.0,and an
open space was denoted by the value 0.0. A move was
determined by presenting the current board pattern to the
network and examining the relative strengths of the nine



output nodes. A marker was placed in the empty square
with the maximum output strength. This procedure
guaranteed legal moves. The output from nodes associ-
ated with squares in which a marker had already been
placed wasignored. No selection pressure was applied to
drive the output from such nodes to zero.

The initial population consisted of 50 parent networks.
The number of nodes in the hidden layer was chosen at
random in accordance with a uniform distribution over
the integers [1,..,10]. The initial weighted connection
strengths and bias terms were randomly distributed ac-
cording to a uniform distribution ranging over [-0.5,0.5].
A single offspring was copied from each parent and
modified by two modes of mutation:

1. All weight and bias terms were perturbed by adding
a Gaussian random variable with zero mean and a stan-
dard deviation of 0.05, and

2. With a probability of 0.5, the number of nodes in the
hidden layer was allowed to vary. If a change was
indicated, there was an equal likelihood that a node
would be added or deleted, subject to the constraints on
the maximum and minimum number of nodes (10 and
one, respectively). Nodes to be added were initialized
with all weights and the bias term being set equal to 0.0.

A rule-based procedure that played nearly perfect tic-
tac-toe was implemented in order to evaluate each con-
tending network. Theexecution time with this format was
linear with the population size and provided the opportu-
nity for multiple trialsand statistical results. The evolving
networks were allowed to move first in all games. The
first move was examined by the rule-base with the eight
possible second moves being stored in an array. The rule-
base proceeded as follows:

1. From the array of all possible moves, select a move
that has not yet been played.

2. For subsequent moves:

a} with a 10 percent chance, move randomly, else

b) if a win is available, place a marker in the
winning square, else

c) if a block is available, place a marker in the
blocking square, else

d) if two open squares are in line with an “0”,
randomly place a marker in either of the two squares, else

e) randomly move in any open square.

3. Continue with (2} until the game is completed.

4, Continue with (1) until games with all eight possible
second moves have been played.

The 10 percent chance for moving randomly was incor-
porated to maintain a variety of play in an analogous
manner to a persistence of excitation condition. This
feature and the restriction that the rule-base only looks
one move ahead makes the rule-base nearly perfect, but
beatable.

Each network was evaluated over four sets of these

eight games. The payoff function varied in several sets of
experiments. Due to space limitations, only the experi-
ments with the payoff function [+1, -10, 0] will be de-
scribed here, where the entries are the payoffs for win-
ning, losing and playing to a draw, respectively. Other
results are described in [18]. The maximum possible score
over any four sets of games was 32. Buta perfect score in
any generation did not necessarily indicate a perfectalgo-
rithm because of the random variation in play generated
by step 2a, above. After competition against the rule-base
was completed for all networks in the population, a sec-
ond competition was held in which each network was
compared to 10 other randomly chosen networks. If the
score of the chosen network was greater than or equal to
its competitor, itreceived a win. Those networks with the
greatest number of wins were retained to be parents of the
next generation. Twenty trials were conducted. Evolu-
tion was halted after 800 generations in each trial.

IV. EXPERIMENTAL RESULTS

Themeanlearning rate overall 20 trials whenusing [+1,
-10, 0} is indicated in Figure 2. There is an initially rapid
increase in performance as strategies that lose are quickly
purged from the evolving population. After this first-
order conditionis satisfied, optimizationcontinuesto sort
out strategies with the greatest potential for winning
rather than drawing. The approximate 95 percent confi-
dence limits around the mean are close to the average
performance acrossall 20 trials. Figure 3indicates the tree
of possible games when competing the best evolved net-
work from the first trial against the rule-based player,
omitting random moves from step 2a. The tree is typical
of the results across all trials. This selected network
possessed 10 hidden nodes. Itdoes not force a wininany
branch of the tree when the rule-base makes no errors. But
it also never loses.

V. CONCLUSIONS

These results and those offered in [18] indicate a capa-
bility for general problem solving. No information re-
garding the object of the game was offered to the evolu-
tionary program. No hints regarding appropriate moves
were given, nor were there any attempits to assign values
to various board patterns. The final outcome (win, lose,
draw) was the only available information regarding the
quality of play. Heuristics regarding the environment
were limited to:

1. There were nine inputs,

2. There were nine cutputs, and

3. Markers may only be placed in empty squares.

Evolutionary programming was able to adjust the ar-
chitecture and connections of the single hidden layer
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Figure 2. The Mean and Upper/Lower Confidence Limits of the Best Players' Scores
Averaged Over All 20 Trials Using the Payoff Function {+1, -10, 0}.
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perceptronsin order toadapt behaviorinlight of the given
goal. While single hidden layer networks were sufficient
for tic-tac-toe, other problems may be more easily ad-
dressed by more complex stimulus-response structures.
But the evolutionary procedure is robust and no funda-
mental alteration of the basic algorithm is required to
address problems of arbitrary complexity.

The results also illustrate how connectionist and rule-
based systems can be supplemented with evolutionary
learning. Testing the effectiveness of the evolving net-
works provided an absolute measure of performance.
Evolution may surpass the performance of the available
rule-base and then continue to generate even more effec-
tive strategies.

If it were desired to create a truly perfect tic-tac-toe
algorithm using neural coding structures, a population of
evolved first players could be put in competition against
a population of evolved second players, with evolution-
ary programming essentially generating aminimax search
over both populations. Alternatively, a single coding
structure could be required to act both as first and second
player. Or, following [32,33], the coding structure could
be an explicit rule base of conditions and actions. Evelu-
tionary programming does not restrict the form of the
stimulus-response coding; the researcher is free to selecta
structure that appears most suitable for the task.

As recently as [34], it was still claimed that mutation
does not generally advance a search for optimal solutions
and that such searches require carefully structured rules
of recombination. These claims are not correct. As indi-
cated in the above experiments, abstractions of specific
genetic mechanisms such as crossover, inversion and
other recombinatory methods are not required for suc-
cessful evolution. This follows similar evidence pre-
sented in other evolutionary studies ([20,28,35] and oth-
ers).

In expressing his belief that intelligent, conscious sys-
temns could not arise strictly through evolution, Penrose
[36] stated, “Any selection process of [the type illustrated
by evolution] could act only on the oufput of the algo-
rithms and not directly on theideas underlying the actions
of the algorithms. Thisis not simply extremely inefficient;
I believe that it would be totally unworkable.” The evi-
dence reported here indicates that not only is such a
method workable, it is also efficient.
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