Fast Evolution Strategies™

Xin Yao and Yong Liu
Computational Intelligence Group, School of Computer Science
University College, The University of New South Wales
Australian Defence Force Academy, Canberra, ACT, Australia 2600
Email: {xin liuy}@csadfa.cs.adfa.oz.au, URL: http://www.cs.adfa.oz.au/ "~ xin

Abstract

Evolution strategies are a class of general optimisation algorithms which are applicable to functions
that are multimodal, nondifferentiable, or even discontinuous. Although recombination operators have
been introduced into evolution strategies, the primary search operator is still mutation. Classical evolu-
tion strategies rely on Gaussian mutations. A new mutation operator based on the Cauchy distribution
is proposed in this paper. It is shown empirically that the new evolution strategy based on Cauchy mu-
tation outperforms the classical evolution strategy on most of the 23 benchmark problems tested in this
paper. The paper also shows empirically that changing the order of mutating the objective variables and
mutating the strategy parameters does not alter the previous conclusion significantly, and that Cauchy
mutations with different scaling parameters still outperform the Gaussian mutation with self-adaptation.
However, the advantage of Cauchy mutations disappears when recombination is used in evolution strate-
gies. It is argued that the search step size plays an important role in determining evolution strategies’
performance. The large step size of recombination plays a similar role as Cauchy mutation.

Keyword — Evolution strategies, function optimisation, Cauchy mutation.

1 Introduction

Among three major branches of evolutionary computation, i.e., genetic algorithms (GAs), evolutionary
programming (EP) and evolution strategies (ESs), ESs are the only one which was originally proposed for
numerical optimisation and is still mainly used in optimisation [2, 3]. The primary search operator in ESs
is mutation although recombinations have been used. The state-of-the-art of ESs is (g, A)-ES [4, 5], where
A > pu > 1. (p,A) means that u parents generate A offspring through recombination and mutation in each
generation. The best p offspring are selected deterministically from the A offspring and replace the parents.
Elitism and probabilistic selection are not used. This paper first considers a simplified version of ESs, 1.e.,
ESs without any recombination. Then ESs with recombination and a different order of mutating objective
variables and strategy parameters are investigated.

ESs can be regarded as a population-based variant of generate-and-test algorithms [6]. They use search
operators such as mutation to generate new solutions and use a selection scheme to test which of the
newly generated solutions should survive to the next generation. The advantage of viewing ESs (and other
evolutionary algorithms, EAs) as a variant of generate-and-test search algorithms is that the relationships
between ESs and other search algorithms, such as simulated annealing (SA), tabu search (TS), hill-climbing,
etc., can be made clearer and thus easier to explore. In addition, the generate-and-test view of ESs makes
it obvious that “genetic” operators, such as crossover (recombination) and mutation, are really stochastic
search operators which are used to generate new search points in a search space. The effectiveness of a
search operator would be best described by its ability to produce promising new points which have higher
probabilities of finding a global optimum, rather than by some biological analogy. The role of test in
a generate-and-test algorithm or selection in ESs is to evaluate how “promising” a new point is. Such
evaluation can be either deterministic or probabilistic.

The (p, A)-ESs use Gaussian mutation to generate new offspring and deterministic selection to test them.
There has been a lot of work on different selection schemes for ESs [7]. However, work on mutations has

*An earlier short version of this paper [1] was presented at the Sixth Annual Conference on Evolutionary Programming,
Indianapolis, USA, 13-16 April 1997. This work is partially supported by a University College Special Research Grant. The
paper has been accepted by the journal Control and Cybernetics.

been concentrated on self-adaptation [2, 5] rather than on new mutations. Gaussian mutations seem to be
the only choice [2, 5]. Recently, Cauchy mutation has been proposed as a very promising search operator
due to its higher probability of making long jumps [8, 9, 10]. In [8, 9], a fast EP based on Cauchy mutation
was proposed. It compares favourably to the classical EP on 23 benchmark functions (up to 30 dimensions).
In [10], the idea of using Cauchy mutation in EAs was independently studied by Kappler. An (14 1) EA
without self-adaptation and recombination was investigated. Both analytical and numerical results on 3
one- or two- dimension functions were presented. It was pointed out that “in one dimension, an algorithm
working with Cauchy distributed mutations is both more robust and faster. This result cannot easily be
generalized to higher dimensions, ...” [10].

This paper continues the work of fast EP [8] and studies fast ESs which use Cauchy mutations. The
idea of Cauchy mutation was originally inspired by fast simulated annealing [11, 12]. The relationship
between the classical ESs (CES) using Gaussian mutation and the fast ESs (FES) using Cauchy mutation is
analogous to that between classical simulated annealing and fast simulated annealing. This paper investigates
multi-membered ESs, i.e., (i, A)-ESs with self-adaptation. Extensive experimental studies on 23 benchmark
problems (up to 30 dimensions) have been carried out. The results have shown that FES outperforms CES
on most of the 23 benchmark problems.

The rest of this paper is organised as follows. Section 2 formulates the global optimisation problem
considered in this paper and describes the implementation of CES. Section 3 describes the implementation
of FES. Section 4 presents and discusses the experimental results on CES and FES using 23 benchmark
problems. Section 5 investiagtes different ES variants. Finally, Section 6 concludes with a few remarks.

2 Function Optimisation By Classical Evolution Strategies

A global minimisation problem can be formalised as a pair (S, f), where S C R" is a bounded set on R”
and f:S — R is an n-dimensional real-valued function. The problem is to find a point x,,;, € S such that
F(Xmin) is a global minimum on S. More specially, it is required to find an X, € S such that

Vx € Sf(xmzn) S f(X)

Here f does not need to be continuous, but it must be bounded. We only consider unconstrained function
minimisation in this paper. Function maximisation can be converted to a minimisation problem easily by
taking a negative sign.

According to the description by Bick and Schwefel [3], the (p, A)-CES is implemented as follows in our
studies:

1. Generate the initial population of g individuals, and set ¥ = 1. Each individual is taken as a pair of
real-valued vectors, (x;,7;), Vi € {1, -, u}.

2. Evaluate the fitness value for each individual (x;,7;), Vi € {1,---, u}, of the population based on the
objective function, f(x;).

3. Each parent (x;,1;), ¢ = 1,-- -, pu, creates A/u offspring on average, so that a total of A offspring are
generated: fori=1,---,p,j=1,---,n,and bk =1,--- A

xi'(7) = %)+ ()N, 1), (1)
n'(G) = mi(i)exp(r'N(0,1) + 7N;(0,1)) (2)

where x;(5), x3'(4), m:(j) and n;'(j) denote the j-th component of the vectors x;, x3’, n; and n;’,
respectively. N(0,1) denotes a normally distributed one-dimensional random number with mean zero
and standard deviation one. N;(0,1) indicates that the random number is generated anew for each

1 _
value of j. The factors 7 and 7' are usually set to (2\/ﬁ) and (v/2n) ' [3].

4. Evaluate the fitness of each offspring (x;', n’), Vi € {1, .-, A}, according to f(x;').

5. Sort offspring (x;/, "), Vi € {1,---, A} in a non-descending order according to their fitness values, and
select the p best offspring out of A to be parents of the next generation.

6. Stop if the stopping criterion is satisfied; otherwise, ¥ = & + 1 and go to Step 3.

It is worth mentioning that swapping the order of Eq.(1) and Eq.(2) and using n;'(j) to generate x3'(j)
may give better performance for some problems [13]. However, no definite conclusion can be drawn yet.

3 Fast Evolution Strategies

The one-dimensional Cauchy density function centred at the origin is defined by:

1 t
T2 4 22’

fi(z) =

—00 < & < 00,

where ¢ > 0 is a scale parameter [14](pp.51). The corresponding distribution function is

1 1 x
Fy(z) = 5 + 71_arctan (t) .
The shape of fi(#) resembles that of the Gaussian density function but approaches the axis so slowly that
an expectation does not exist. As a result, the variance of the Cauchy distribution is infinite. Figure 1 shows
the difference between Cauchy and Gaussian functions by plotting them in the same diagram. It is obvious
that the Cauchy function is more likely to generate a random number far away from the origin because of
its long flat tails. This implies that Cauchy mutation in FES is more likely to escape from a local minimum
or move away from a plateau.

0.4 T
N(0,1) —
Cauchy, t=1 ----

0.35 - b

r/ \
J !
0.25 |- / \ 4
T ‘\
;
!
rl’ \‘
02 ; \ E
! \
!
0.15 | / \ 4
! N
! \
01 . i
// \‘

0.05 J

4 -2 0 2 4
Figure 1: Comparison between Cauchy and Gaussian distributions.

In order to investigate the impact of Cauchy mutation on ESs, the minimal change has been made to the
CES. The FES studied in this paper is kept exactly the same as the CES described in Section 2 except for
Eq.(1) which is replaced by the following:

xi'(7) = xi(J) + i (5)6; (3)

where 6; is an Cauchy random variable with the scale parameter ¢ = 1 and is generated anew for each value
of j. Tt is worth indicating that Eq.(2) is unchanged in FES in order to keep the modification of CES to a
minimum. 7 in FES plays the role of the scale parameter ¢ not the variance in the Cauchy distribution.

In our experiments, the Gaussian random number was generated according to the following function in

FORTRAN [15] (pp.280).

FUNCTION gasdev(idum)

INTEGER idum

REAL gasdev
C Returns a normally distributed number with zero mean and unit var-
C iance, using rani(idum) as the source of uniform numbers.

INTEGER iset

REAL fac,gset,rsq,vl,v2,ranl

SAVE iset,gset

DATA iset/0/

if(iset.eq.0)then

1 v1=2.*ranl(idum)-1.

v2=2.*ranl(idum)-1.
rsq=v1**2+v2**2
if(rsq.ge.1..or.rsq.eq.0.)goto 1
fac=sqrt(-2.*log(rsq)/rsq)
gset=vixfac
gasdev=v2*fac
iset=1

else
gasdev=gset
iset=0

endif

return

END

The Cauchy random number was generated according to the following FORTRAN function [16] (pp.451).

FUNCTION cauchy(idum)
REAL cauchy

C Returns a Cauchy random number with probability density function
C T(x)=1/(pi*(1+x*x)).
REAL v1,v2

vi=gasdev(idum)
v2=gasdev(idum)
if(v2.ne.0.)then
cauchy=v1/v2
else
cauchy=0.0
endif
return
END

The uniform random generator was generated according to a FORTRAN function given by Press et al.

[15] (pp.271).

4 Experimental Studies

4.1 Test Functions

A set of 23 well-known functions [17, 18, 4, 3, 19, 20] are used in our experimental studies. This relatively
large set is necessary in order to reduce biases in evaluating algorithms. The 23 test functions are listed in
Table 1. The detailed description of each function is given in the appendix. Functions f; to fi3 are high
dimensional problems. Functions f; to fs5 are unimodal functions. Function fs is the step function which
has one minimum and is discontinuous. Function f7 is a noisy quartic function, where random[0,1) is a
uniformly distributed random variable in [0, 1). Functions fs to fiz are multimodal functions where the
number of local minima increases exponentially with the function dimension [18, 4]. Functions fi4 to fa3 are
low-dimensional functions which have only a few local minima [18]. For unimodal functions, the convergence
rate of FES and CES is more important than the final results of the optimisation in this paper, as there are
other methods which are specifically designed to optimise unimodal functions. For multimodal functions
the important issue is whether an algorithm can find a better solution in a shorter time.

4.2 Experimental Setup

The experimental setup was based on Béck and Schwefel’s suggestion [3]. For all experiments, (30,200)-ES
with self-adaptive standard deviations, no correlated mutations, no recombination, the same initial standard

Table 1: The 23 test functions used in our experimental studies, where n is the dimension of the function,
fmin 18 the minimum value of the function, and S C R™. The detailed description of each function is given
in the appendix.

Test function n S frmin
f@) =S, «2 30 [—100, 100]" 0
Falw) = 300y i + Ty |l 30 [-10, 10]" 0
fale) = 300 (1 75)? 30 [—100,100]" 0
fa(z) = max; {|z], 1 < i < n} 30 [—100, 100]™ 0
Fs(2) = S0 100(2 40 — ﬁ)? + (2 — 1)7] 30 [—30, 30)" 0
Jo(x) =0, (Lo +0. 5])° 30 [—100, 100]" 0
fr(z) =31 iz} + random|0, 1) 30 [—1.28,1.28]" 0
fa(z) =0, (zi sm(M)) 30 [=500,500]" -12569.5
fo(z) =570 [#? — 10 cos(2ma;) + 10)] 30 [-5.12,5.12]" 0
fio(®) = =20 exp (—0.2@ / % St x?) —exp (% Sor | cos 271'9:2') 30 [—32,32]" 0
+20+e€

Fin(z) = b ST w? — T, cos (ff) +1 30 [—600,600]" 0
Fia(z) = {105111 (my1) + S0 (i — D)?[1+ 10sin®(ryep1)] 30 [~50, 50]" 0

—I—(yn — 12} + 50 u(a, 10,100, 4),
yz':l-I-%(l‘i—l-l)
k(z; —a)™, x; > a,

w(ag,a, k,m)= < 0, —a < z; < a,
k(—z; —a)™, z; < —a.

Fis(z) = 0. 1{sm (371'1‘1)—1—ZZ s — D[+ sin?(372i41)] 30 [~50, 50]" 0

(2 — D)[1 + sin®*(27a,)]} + S0, u(x;, 5,100,4)

)

I _ n

Fua(e) = [5 +3 T (m_a”)e] 2 [=65.536, 65.536] 1
11 z1(bi4b;zo n

fis(z) = L [ai - W] 4 [-5,5] 0.0003075
Jio(z) = 423 — 212 + 11‘? + xlxz — 423 + 421 2 [-5,5]" -1.0316285
Jiz(z) = (l‘z i’ﬂgxl + xl 6) +10 (1 — —) cosz1 + 10 2 [—5,10] x [0, 15] 0.398
flg(l‘)z [1—|—(l‘1—|—l‘2—|—1) (19—14l‘1+3l‘1— 14l‘2 2 [—2,2]” 3

+6x122 + 323)] x [30 + (221 — 324)2(18 — 3224

+122% + 48xy — 362120 + 2723)]
fio(w) = =371, eiexp [— 577 aij (e — Pw’)z} 4 [0, 1) -3.86
Fao(z) = = iz ciexp [— Do aij(z - Pij)z} 6 [0, 1] -3.32
() = = Dl — o) (-) + e e
Joa(w) = = 30y [(x = @) (2 — ar) + e] 7! 4 [0, 10" —1/e1
fas(@) = = .0 (@ — ai) (v — @) +] 4 [0, 10" —1/e1

deviations 3.0, and the same initial population were used. All experiments were repeated for 50 runs. The
initial population was generated uniformly at random in the ranges specified in Table 1. The number of
generations for each function was determined after some limited preliminary runs which showed that an ES
would have converged (either prematurely or globally) after certain number of generations. There is little
point running the algorithm longer if it is unlikely to improve the performance further.

4.3 Experimental Results
4.3.1 Unimodal Functions (f;—f7)

Unimodal functions are not the most interesting and challenging test problems for global optimisation algo-
rithms, such as ESs. There are more efficient algorithms than ESs, which are specifically designed to optimise
them. The aim here is to use them to get a picture of the convergence rate of CES and FES. Figures 2
and 3 show the evolutionary process of CES and FES on unimodal functions f;—f7. The final results are
summarised in Table 2.

Table 2: Comparison between CES and FES on f;—f7. The results were averaged over 50 runs. “Mean Best”
indicates the mean best function values found in the last generation. “Std Dev” stands for the standard
deviation.

Function Number of FES CES FEP—-CEP
Generations Mean Best Std Dev Mean Best Std Dev {-test

h 750 25x 107 6.8x107% 3.4x107° 8.6x107° 22.071

f2 1000 6.0x 1072 96x 1073 2.1x1072 22x1073 27.961

f3 2500 14x 1073 53 x107* 1.3x10"* 85x107° 16.537

fa 2500 55x 1073 6.5 x 1074 0.35 0.42 —5.78t

f5 7500 33.28 43.13 6.69 14.45 3.97%

fo 750 0 0 411.16 695.35 —4.181

f7 1500 1.2x107% 58x 1073 3.0x10"% 1.5x 1072 —7.93t

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

In terms of final results, FES performs better than CES on f4, fs and f7, but worse than CES on f1—f3
and f5. No strong conclusion can be drawn here. However, a closer look at the evolutionary processes reveals
some interesting facts. For example, FES performs far better than CES on fs (the step function). It has a
very fast convergence rate and converges to the global minimum every time. This indicates that FES is very
good at dealing with plateaus due to its long jumps. Such long jumps enable FES to move from one plateau
to a lower one easily, while CES would have to wander about a plateau for a long time before 1t can reach a
lower plateau.

FES’s behaviour on f; is also very interesting. According to Figure 2, fi’s value decreases much faster
for FES than for CES in the beginning. This is probably caused by FES’s long jumps, which take it to the
center of the sphere more rapidly. When FES approaches the center, i.e., the minimum, long jumps are less
likely to generate better offspring and FES has to depend on small steps to move towards the minimum. The
smaller central part of the Cauchy distribution, as shown by Figure 1, implies Cauchy mutation is weaker
than Gaussian one at fine-grained neighbourhood (local) search. Hence the decrease of f’s value for FES
slows down considerably in the vicinity of the minimum, i.e., when f; is smaller than 1073. CES, on the
other hand, improves f1’s value steadily throughout the evolution and eventually overtakes FES.

The behaviour of FES and CES on other functions can be explained in a similar way. The probability of
making long jumps by a mutation plays an important role in determining the behaviour of ESs.

4.3.2 Multimodal Functions With Many Local Minima (fs—fi3)

Functions fs—fi3 are multimodal functions with many local minima. The number of local minima increases
exponentially as the function dimension increases [18, 4]. These functions appear to be very “rugged” and
difficult to optimise. Figure 4 shows the 2-dimensional version of fs.

The evolutionary processes of FES and CES for fs—fi3 are shown by Figures 5 and 6. The final results
are summarised in Table 3. Somewhat surprisingly, FES outperforms CES consistently on these apparently

100000

10000

1000

100

10

1

01

0.01

0.001

0.0001

1e-05

le+15

le+12

1e+09

1e+06 [

1000 [

0.001 L L L L 0.001 L
0 200 400 600 800 1000 o 200
'sProblem 1.2
fs (Schwefel’s Problem 1.

1le+06 T T T 1le+08 T
Best of FES —
Best of CES -----

1e+06

10000

100

0.0001
o

500
1
f4 (Schwefel’s Problem 2.21)
100 T T T 100 T
Best of FES —
Best of CES -----
10 | 10 |
1r 1r
01 01|
0.01 0.01
0.001 L L L L 0.001 L
0 500 1000 1500 2000 2500 0 500

Figure 2: Comparison between CES and FES on fi—f4. The

f1 (Sphere Model)

100000 T

T
Bestof FES —
Best of CES -----

10000 -

1000

100

10

1k

01+

0.01

0.001 |-

B 0.0001

L
100

L
200

L
300

L
400

1e-05

T
Average of FES ——
Average of CES -

L L L L
500 600 700 100

f2 (Schwefel’s Problem 2.22)

le+21

L
200

L
300

L L
400 500

L L
600 700

Best of FES —
Best of CES -----

le+18
le+15
le+12
1e+09 ‘v\
1e+06

1000

Average of FES —
Average of CES -----

800 1000

10000

100

L
1000

0.0001

Average of FES —
Average of CES -----

) -
1500 2000 2500 [500

1000

1500

T
Average of FES —
Average of CES ----

horizontal axis is the number of generations.

vertical axis

L
1000

L
1500

1s the function value

L
2000 2500

and the

Rosenbrock’s Fun

fs (Generalized

ction)

T
Average of FES —
Average of CES -----

1000

L
2000

3000

L
4000

L
5000

L
6000

L
7000

1e+06 T T T T T 1e+06
Best of FES —
Best of CES -

100000 100000
10000 H 10000
1000 1000
100 100

w0F T e B 10 |
1 1
0 1000 2000 3000 4000 5000 6000 7000 0
fs (Step Function)
100000 T T T T T T T 1e+06
Best of FES —
Best of CES -
100000
10000 E
10000
1000 B
1000
100 B
100
10 1 10
1
1]
01
0.1 B
0.01
0.01 . . .
0 100 200 300 400 500 600 700 0.001 o
f7 (Quartic
10000 T T T T T T T 10000
Best of FES —
Best of CES -
1000 R 1000
100 | E 100
10 B 10
1 R 1
01 R 01
001 N n 0.01
0 200 400 600 800 1000 1200 1400 0

Figure 3: Comparison between CES and FES on f;—f7.The vertical axis is the function value

Average of FES —
Average of CES ----

100

200

Function with Noise)

300

400

500

600

700

Average of FES —
Average of CES -----

horizontal axis is the number of generations.

200

400

600

800

L
1000

L
1200

L
1400

and the

l
'.0 i
1000 - il 0.
Tl N il
.~. ,M:.i;'.;,l:',g?;".,, é”"""”""""’%\//”"'.”" b,
L \ \
500 “ \ ,,; , q&&‘ i

w I
il

e‘ ”%Q&
N\ Q
b \

0
.I, m, lm,
i i[r

il '///m
llll:".': ¢ i
0,' ’,/

0
' 1 ’ "'0'," :mm'

-500

-1000

500

-500

500 -500

Figure 4: The 2-dimensional version of fs.

difficult functions. Figures 5 and 6 show that CES stagnates rather early in search and makes little progress
thereafter, while FES keeps finding better function values throughout the evolution. It appears that CES is
trapped in one of the local minima and is unable to get out due to its more localised Gaussian mutation.
FES, on the other hand, has a much higher probability of making long jumps and thus is easier to get out
of a local minimum when trapped. A good near (global) minimum is more likely to be found by FES.

Table 3: Comparison between CES and FES on fs—f13. The results were averaged over 50 runs. “Mean Best”
indicates the mean best function values found in the last generation. “Std Dev” stands for the standard
deviation.

Function Number of FES CES FES—CES
Generations Mean Best Std Dev Mean Best Std Dev {-test
fs 4500 —12556.4 32.53 —7549.9 631.39 —56.10f
fo 2500 0.16 0.33 70.82 2149 —23.191
fio 750 1.2%x 1072 1.8x 1073 9.07 2.84 —22.51]L
fi1 1000 3.7x 1072 5.0x 1072 0.38 0.77 —3.11f
fi2 750 28x%x107% 81x 1077 1.18 1.87 —4.45]L
fis 750 47x107° 1.5x 1075 1.39 3.33 —2.941

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

4.3.3 Multimodal Functions With a Few Local Minima (fi4—fs3)

The evolutionary processes of FES and CES on functions fi4—f23 are shown by Figures 6, 7 and 8. The final
results are summarised in Table 4. Although these functions are also multimodal functions, the behaviour
of FES and CES on them are rather different from that on multimodal functions with many local minima.
There 18 no consistent winner here. For functions fi4 and fi15, FES outperforms CES. However, FES is
outperformed by CES on functions f;; and f22. No statistically significant difference has been detected
between FES’s and CES’s performance on other functions. In fact, the final results of FES and CES were
exactly the same for fis, f1i7 and fig although the initial behaviours were different.

At the beginning, it was suspected that the low dimensionality of functions f14—f23 might contribute
to the similar performance of FES and CES. Hence another set of experiments were carried out using the

-4000 T
Bestof FES —
Best of CES -----

5000 |\ g

-6000

-7000

-8000

-9000

-10000

-11000

-12000

500

f1 (Generalized

-13000 L L
10 100 1000
fo (Generalized
1000 T T T T
Best of FES —
Best of CES -----
100 | Bl
10 | 4
0 500 1000 1500 2000 2!
25 T T T T T T
Best of FES —
Best of CES -----
20 b 4
15 - 4
wr T 4
0 100 200 300 400 500 600 700
1000 T T T

T
Best of FES —

Best of CES ----
100 1
10 B
1 4
01 4
0.01 L L L L
200 400 600 800

1000

-4000

-5000

-6000

-7000

-8000

-9000

-10000

-11000

-12000

fs (Generdized Schwefel’s Problem 2.26)

T
Average of FES ——
Average of CES -

-13000
10

L
100

L
1000

Rastrigin’s Function)
1000 : . ‘ ‘
Average of FES ——
Average of CES -----
100 | |
10]
il 4
0.1 L . . ‘
o 500 1000 1500 2000 2500

f10 (Ackley’s Function)

T T
Average of FES —
Average of CES -----

Griewank

1000

Function)

500 600 700

T
Average of FES —
Average of CES ----

L L L
0 200 400 600

L
800 1000

Figure 5: Comparison between CES and FES on fs—f11. The vertical axis is the function value and the

horizontal axis is the number of generations.

10

f12 (Penalised Function P8)

le+12 T T T T T T

T T
Bestof FES — Average of FES —
Best of CES ----- Average of CES -----

1e+09 T T T T T T

1e+09
1e+06

1e+06

1000

1000

0.001
0.001

1e-06

1e-06

L L L L L L L L L L L L L L
100 200 300 400 500 600 700 100 200 300 400 500 600 700

f 13 (Penalised Function P16)
le+18 T T T T T T T le+18 T T T T T T T
Best of FES — Average of FES ——
Best of CES - Average of CES -
1le+15 le+15

le+12 le+12

1e+09 1e+09
1le+06 le+06
1000 1000

0.001 0.001

16-06 L L L L L L L 16-06 L L L L L L L
0 100 200 300 400 500 600 700 4 100 200 300 400 500 600 700

f 14 (Shekel’s Foxholes Function)

625 T T T T T T T 625 T T T T T T T
Best of FES — Average of FES —
Best of CES ---- Average of CES -----
L L L L L L L L L
25 30 35 40 45 50 30 35 40 45 50

f1s (Kowalik’s Function)

T T T T T T

01 Best of FES — 7 Average of FES ——

Best of CES ---— 3 Average of CES ----
1k 1
001 | 1 o1l i
0.01 | B

0.001 | |
0.001 | N
.
1 10 100 1000 1 10 100 1000

Figure 6: Comparison between CES and FES on fi2—fi5. The vertical axis is the function value and the
horizontal axis is the number of generations.

11

-0.5

-0.6

07 |

-0.8

-0.9

-3.2

-3.3

3.4

-35

-3.6

3.7

-3.8

-3.9

Figure 7: Comparison between CES and FES on fis—fi9.

f 16 (Six-hump Camel-back Function)

T T T T T
Best of FES
Best of CES

Best of FES
Best of CES

Best of FES
Best of CES

Best of FES —

Best of CES

horizontal axis is the number of generations.

30

Average of FES
Average of CES

f17(Brain)

35 -

25 -

15 -

05 -

Average of FES
Average of CES

Average of FES
Average of CES

f 10 (Hartman-3)

T
Average of FES
Average of CES

12

The vertical axis is the function value

40 45

50

and the

f 20 (Hartman-6)

16 T T T T o T T T T
\ Best of FES —— Average of FES ——
Best of CES - Average of CES -
18
2k
22 |
2.4
-2.6
2.8 |
s
32
34 35
0 20 40 60 80 100 o 20 40 60 80 100
f 21 (Shekel-5)
0 T T T T T T T T T o T T T T T T T T T
Bestof FES — S Average of FES ——

Best of CES - Average of CES -

0 5 10 15 20 25 30 35 40 45 50
0 T T T T T T T T T
Best of FES — Average of FES —
Best of CES --—--- Average of CES -----
s T B 8 e e
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
f 23 (Shekel-10)
0 T T T T T T T T T 0 T T T T T T T T T
Best of FES — > Average of FES —
Best of CES ----- N3 Average of CES --—---
3 3+
4 4+
-5 5 F
6 6
-7 7rF
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 8: Comparison between CES and FES on fop—f23. The vertical axis is the function value and the
horizontal axis is the number of generations.

13

Table 4: Comparison between CES and FES on fi4—fo3. The results were averaged over 50 runs. “Mean
Best” indicates the mean best function values found in the last generation. “Std Dev” stands for the standard
deviation.

Function Number of FES CES FES—CES
(GGenerations Mean Best Std Dev Mean Best Std Dev {-test
fia 50 1.20 0.63 2.16 1.82 —3.917
fis 2000 9.7x 1074 42x107% 12x 1073 1.6x10°5 —4.36
fie 50 —-1.0316 6.0x 107 —1.0316 6.0x 10~° 0
fir 50 0.398 6.0 x 1078 0.398 6.0 x 1078 0
fis 50 3.0 0 3.0 0 0
fio 50 —3.86 4.0 x 1073 —3.86 1.4 x 1075 1.30
f20 100 —3.23 0.12 —3.24 5.7 % 1072 0.93
for 50 —5.54 1.82 —6.96 3.10 2.81f
fas 50 —6.76 3.01 ~8.31 3.10 2.501
fo3 50 —~7.63 3.27 —8.50 3.14 1.25

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

5-dimensional version of functions fg—f13. The same pattern as that shown by Figures 5 and 6 was observed.
This result shows that dimensionality is not one of the factors which affect FES’s and CES’s performance on
functions fia—fo3. The characteristics of these functions are the factors. One of such characteristics might
be the number of local minima. Unlike functions fs—fi3, all these functions have just a few local minima.
The advantage of FES’s long jumps might be weakened in this case since there are not many local minima to
escape. Also, fewer local minima imply that most of the optimisation time would be spent on searching in one
of the local minima’s “basin of attractions,” where there is only one minimum. Hence, CES’s performance
would be very close to or even better than FES’s.

Since the goal of FES is to minimise multimodal not unimodal functions, FES’s worse performance on
functions f21; and fzs warrants a closer examination. Among 16 multimodal functions tested in this paper,
these two were the only cases where FES was outperformed by CES. (Only statistically significant difference
is considered in this paper.) Figure 9 shows the 2-dimensional version of function fa;. The shape of fas
is similar. It can be seen from the figure that fs; is rather spiky with some small but deep local minima
scattered on a relatively flat area. These small but deep “spikes” cause some difficulties to FES. Neither
FES’s nor CES’s result was close to the global minimum. Both of them seemed to be trapped in some local
minimum. However, FES suffered more. This fact appears to contradict our previous discussion which says
FEP’s long jumps are beneficial, but it does not. Recall the analysis of FEP’s and CEP’s behaviours on f;
in Section 4.3.1. It is not difficult to see that long jumps are not always beneficial. It is detrimental when
the search points are already close to the global minimum. This turns out to be the case with functions fo;
and fzz.

For functions fs; and fso, the range of z;’s are relatively small. Some of the points in the initial
populations are already very close to the global minimum. After a few generations, the whole population
will be close to the global minimum. In such a situation, long jumps will no longer be beneficial. This can
be verified both analytically and empirically. The detailed results were presented elsewhere [9].

4.4 Related Work on Fast Evolutionary Programming

Similar to FES, fast evolutionary programming (FEP) [8, 9] also uses Cauchy mutation. FEP has been
tested on the same 23 benchmark functions as described by Table 1. Comparing those results [8, 9] with
the results obtained from the current study, it is clear that the difference between FES and CES is very
similar to the difference between FEP and CEP. Similar evolutionary patterns were observed from FEP and
CEP for the three function categories. The only exceptions were f3, f5, fis and fo3. For f3, FES performed
worse than CES, while FEP performed better than CEP. For f5, FES also performed worse than CES, while
there was no statistically significant difference between FEP and CEP. For f15, FES performed better than
CES, while there was no statistically significant difference between FEP and CEP either. For fo3, there
was no statistically significant difference between FES and CES, but FEP performed worse than CEP. In

14

10

Figure 9: The 2-dimensional version of function fa; (Shekel-5).

general, the relationship between FES and CES is very similar to that between FEP and CEP. Since the
major difference between EP and ES is their selection schemes, the results of FES and FEP indicate that
Cauchy mutation is a very robust search operator which can work with different selection schemes. In fact,
FES’s performance can be further improved by mixing Cauchy and Gaussian mutations. Such improvement
has been proven to be very successful in the case of FEP [9].

5 Other Variants of Evolution Strategies

The previous sections only present some results with a simple version of evolution strategies. This section
investigates

1. whether changing the order of mutating objective variables and strategy parameters would make much
difference between CES’s and FES’s performance,

2. whether FES still performs better if a different scale parameter ¢ is used in the Cauchy distribution,
and

3. whether FES still performs better if recombination is used.

5.1 The Order of Mutations

We have run the experiments with a different order of mutating objective variables and strategy parameters.
Table 5 shows the results of CES and FES, where the strategy parameter (Eq.2) was mutated first, for the
three representative functions. No recombination was used in CES and FES.

For f1, which is a typical function in the first group of the 23 benchmark functions, FES was outperformed
by CES significantly. For f1g, which 1s a typical function in the second group, FES performed significantly
better than CES. For fa3, which is a typical function in the third group, FES was again outperformed by CES.
These observations are the same as what we observed when we mutated the objective variables first. That
is, changing the order of mutation has little impact on the observations we made in Section 4 about CES’s
and FES’s relative performance, although their absolute (i.e., individual) performance may have changed
slightly.

5.2 Cauchy Mutation with a Different Scale Parameter

All the previous experiments assumed scale parameter ¢ = 1 in the Cauchy distribution. Tables 6 and 7
show the results of CEP and FEP on f;y when different values of the scale parameter were used. Table 6

15

Table 5: Comparison between CES and FES with no recombination (only changing the order of Eq.1 and
Eq.2) on fi1, fio and faz. The results were averaged over 50 runs.

F Gen's FES CES FES—CES
Mean Best Std Dev Mean Best Std Dev {-test
£ 750 20x 107 23x 1075 24x10°° 2.8x 107° 52471
fio 750 1.0x 1072 9.4 x 10~* 8.50 2.89 —920.75"
faz 50 ~8.86 2.92 —9.75 2.19 1761

The value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

shows the results when the objective variables were mutated first, while Table 7 shows the results when the
strategy parameters were mutated first. It is interesting to note that FES still outperforms CES for both
t = 0.5 and t = 1.5. However, the performance of FES deteriorates as ¢t increases for this particular problem.
A general conclusion about the relationship between the scale parameter and the algorithm’s performance
is difficult to draw because 1t is problem-dependent.

Table 6: Comparison between CES and FES for different scale parameters with no recombination. Objective
variables were mutated first. The experiment was based on 50 runs using fi¢.

Scaling Gen’s FES CES FES—CES
Mean Best Std Dev Mean Best Std Dev {-test
0.5 750 59 % 1073 7.5x107* 9.72 2.75 —925.01F
1.0 750 1.2x107% 1.8x1073 9.07 2.84 —22.511
1.5 750 0.42 2.82 7.61 2.83 —14.92f

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

Table 7: Comparison between CES and FES for different scale parameters with no recombination. Strategy
parameters were mutated first. The experiment was based on 50 runs using fig.

Scaling Gen’s FES CES FES—CES
Mean Best Std Dev Mean Best Std Dev {-test
0.5 750 52 x 1073 4.4 x 1074 8.47 3.07 —19.52f
1.0 750 1.0x 1072 94 x10~* 8.50 2.89 —20.75%
1.5 750 0.81 3.95 6.79 2.74 —9.29f

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

5.3 Evolution Strategies with Recombination

Although evolution strategies emphasise mutation, they do use recombination. The current wisdom is to
use discrete recombination on the objective variables and global intermediate recombination on the strategy
parameters. Table 8 shows the results of CES and FES with aforementioned recombinations. The same
recombinations were implemented for both algorithms.

The results in Table 8 reveal that FES performed poorly against CES for all three functions when recom-
bination was used. The introduction of recombination to FES has significantly worsened FES’s performance,
while CES’s performance improved greatly using the recombinations. Our preliminary analysis of such phe-
nomena indicates that the search step size of different operators plays an important role in determining the
performance of an algorithm. As pointed out earlier [9], Cauchy mutation has a much larger search step size
than Gaussian mutation. A large search step size is beneficial when the current search point is far away from

16

Table 8: Comparison between CES and FES with recombination (discrete recombination on the objective
variables and global intermediate recombination on the strategy parameters). The strategy parameters were
mutated first. All results were averaged over 50 runs.

F Gen’s FES CES FES—CES
Mean Best Std Dev Mean Best Std Dev {-test
fi 750 27.94 34.52 22x107% 24x10°° 5.721
fio 750 4.64 1.49 3.4x1073% 24 x10~% 92.031
f2z 50 —10.34 0.63 —10.54 1.4 x 1074 2.291

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

the global optimum, which is often the case at the beginning of search. When the current search point is
close to the global optimum, which is likely towards the end of search, large search step sizes are detrimental
to search.

The two recombinations implemented in our experiments have very large search step sizes, especially the
global intermediate recombination. Using both Cauchy mutation and these recombinations imply a huge
search step size which would be undesirable for the functions we studied. That 1s why the introduction of
recombination into FES brought no benefit at all. On the other hand, Gaussian mutation’s search step size
is relatively small. The introduction of recombination into CES greatly increased CES’s search step size
and thus its performance. In a sense, introducing recombination to CES has a similar effect as replacing
Gaussian mutation by Cauchy mutation. Both increase the algorithm’s search step size.

To support our arguments and preliminary analysis, another set of experiments were carried out where
only the discrete recombination was used on both objective variables and strategy parameters in FES. (The
search step size of the discrete recombination is much smaller than the global intermediate recombination.)
CES was kept the same as before. Table 9 shows the results of the experiment. It is clear that FES’s
performance has improved dramatically after this minor change. The results demonstrate that the search
step size of Cauchy mutation is sufficiently large. There might not be any benefit of using recombination on
the strategy parameters.

Table 9: Comparison between CES and FES with recombination (discrete recombination on the objective
variables and global intermediate recombination on the strategy parameters for CES, and discrete recombi-
nation on both objective variables and strategy parameters for FES). The strategy parameters were mutated
first. All results were averaged over 50 runs.

F Gen’s FES CES FES—CES
Mean Best Std Dev Mean Best Std Dev {-test

£ 750 13x107* 1.8x 1075 22x10-° 24x10~° 39.671
fio 750 83x 1073 6.6x 1074 34x1073 24x10~* 49.87f
faz 50 ~10.22 1.03 ~10.54 1.4x 1074 2.151

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

5.3.1 The Impact of Different Scale Parameters

Table 10 shows the impact of the scale parameter in Cauchy distribution on FES’s performance when
recombination is used. It indicates that different scale parameters did not change the global picture very
much, although it did affect FES’s performance slightly.

6 Conclusions

This paper proposes a new (u, A\)-ES algorithm (i.e., FES) using Cauchy mutation. Extensive empirical
studies on 23 benchmark problems (up to 30 dimensions) were carried out to evaluate the performance of

17

Table 10: Comparison between CES and FES with recombination (discrete recombination on the objective
variables and global intermediate recombination on the strategy parameters for CES, and discrete recom-
bination on both objective variables and strategy parameters for FES), when a different scale parameter is
used. The strategy parameters were mutated first. All results were averaged over 50 runs on fig.

Scaling Gen’s FES CES FES—CES
Mean Best Std Dev Mean Best Std Dev {-test
0.5 750 42x 1073 3.0x107* 1.7x1073 9.7x107° 59.03F
1.0 750 83x 1073 66x107* 34x1073 24x107* 49.871
1.5 750 1.21 4.78 53x 1073 3.2x 1074 178t

tThe value of ¢ with 49 degrees of freedom is significant at & = 0.05 by a two-tailed test.

FES. For multimodal functions with many local minima, FES outperforms CES consistently. For unimodal
functions, CES appears to perform slightly better. However, FES is much better at dealing with plateaus.
For multimodal functions with only a few local minima, the performance of FES and CES is very similar.

The main reason for the difference in performance between FES and CES is due to the difference in their
probabilities of making long jumps. Long jumps are beneficial when the current search points are far away
from the global minimum, while detrimental when the current search points get close to the global minimum.
Recent analytical results and further empirical studies [9] support the preliminary analyses presented in this
paper.

According to recent work on analysing EAs using step sizes of search operators [21], the impact of a
search operator on the algorithm’s search depends heavily on its search step size. It may be conjectured
that recombination would play a major role in FES only if its search step size is larger than that of Cauchy
mutation.

7 Appendix: Benchmark Functions
7.1 Sphere Model

30
fi(z) =) 2}
i=1
—100 < 2; <100, min(fy) = f1(0,...,0)=0

7.2 Schwefel’s Problem 2.22

30 30
Fo(x) = il + I il
i=1 i=1
—10 < 2; <10, min(fz) = f2(0,...,0)=0
7.3 Schwefel’s Problem 1.2

)

fs(z) = Z >

ji=1

—100 < z; < 100, min(fs) = f5(0,...,0) =0

7.4

7.5

7.6

7.7

7.8

7.9

Schwefel’s Problem 2.21
fale) = max{|z;], 1 << 30}
—100 < z; < 100, min(fa) = fa(0,...,0) =0

Generalised Rosenbrock’s Function

29

Ja) = S 00(i41 — a2)” + (2 — 1))

i=1

30 < 2; <30, min(fs) = fs(1,...,1)=0
Step Function

30

folz) =3 (lwi +0.5))°

i=1

—100 < z; < 100, min(fs) = f5(0,...,0) =0
Quartic Function with Noise

30
fr(z) = Z iz} + random[0, 1)

i=1

—1.28 < ; < 1.28, min(f7) = f-(0,...,0)=0

Generalised Schwefel’s Problem 2.26

fs(z) = — i (xl sin (\/M))

i=1

—500 < z; < 500, min(fs) = fs(420.9687, .. .,420.9687) = —12569.5

Generalised Rastrigin’s Function

30

fo(z) = Z[xlz — 10 cos(2mz;) + 10)]

i=1

—5.12 < x; <5.12, min(fo) = fo(0,...,0) =0

7.10 Ackley’s Function

30 30
1 1
fio(®) = =20 exp (—0.2 30 ;_1 J:ZZ) — exp (% ;_1 oS 271'1‘2') +20+e

=32 < 2; <32, min(fio) = f10(0,...,0)=0

19

7.11 Generalised Griewank Function

Jule 4000 Z HCOS()

—600 < x; < 600, min(fi1) = f11(0,...,0) =0

7.12 Generalised Penalised Functions

i=1

29
fia(z) = 30 {105111 (Tmy1) + Z [1 + 10 sinz(wyiH)] + (yn — 1)2}

30
+> u(w, 10,100, 4)

i=1

—50§ Ty S 50, Hlin(flz) :flz(l,...,l):O

29

fis(z) = 0.1 {Sin2(71'3l‘1 + Z(m — 1)2[1 + Sin2(3ﬂ'l‘i+1)] +(zn — D[+ sin2(27rx30)]}

+ > u(wi,5,100,4)

i=1

—50 S Ty S 50, Hlin(flg) = f13(1, ceey 1) =0

where
k(z; —a)™, x; > a,

w(ag,a, k,m)= < 0, —a < z; < a,
k(—z; —a)™, ; < —a.

1
yi:1+1(l‘i+1)

7.13 Shekel’s Foxholes Function

. 25 1 B
fra(z) = [500 Zj+2?:1(xi_a”)6]

j=1

—65.536 < x; < 65.536, min(f14) = f1a(—32,-32) ~ 1

where
“)=\ 32 —32 —32 —32 —32 —16 ... 32 32 32

7.14 Kowalik’s Function

11 2
_ 21 (b7 4 bixs)
fute) = 3 o~

i=1

—5<x; <5, min(fi5)~ f15(0.1928,0.1908,0.1231,0.1358) ~ 0.0003075

20

Table 11: Kowalik’s Function fi5

i a; byt
1 | 0.1957 | 0.25
2 101947 | 0.5
3101735 | 1
4 10.1600 | 2
5 100844 | 4
6 |0.0627 | 6
7 10.0456 | 8
8 |0.0342 | 10
9 |0.0323 | 12
10 | 0.0235 | 14
11 | 0.0246 | 16

7.15 Six-hump Camel-Back Function

4

1
fro = 4x? — 2127 + af + 2120 — 423 + 42

3
—5<z; <5
Zmin = (0.08983, —0.7126), (—0.08983,0.7126)
min(f1g) = —1.0316285

7.16 Branin Function

51 5, 5 ’ 1
fir(z) = xz—mx1+;x1—6 + 10 1_8_71' cosxy + 10

—5< 2 <10, 0<ay <15
Tmin = (—3.142,12.275), (3.142,2.275), (9.425,2.425)
min(f17) = 0.398

7.17 Goldstein-Price Function
fis(x) = [1+ (21 +2s+ 1)*(19 — 1day + 327 — 142y + 62122 + 323)]
x[30 4 (221 — 322)?(18 — 3221 + 1227 4 4819 — 367120 + 2722)]

—2 <2 <2, min(fig) = fis(0,—-1) =3

7.18 Hartman’s Family

4 n
_Zciexp[Zaw sz]

i=1 ji=1

with n = 3,6 for fis(x) and fog(z), respectively, 0 < x; < 1. The coefficients are defined by Tables 12 and

13, respectively.
For fig(x) the global minimum is equal to —3.86 and it is reached at the point (0.114,0.556,0.852). For
fao(x) the global minimum is —3.32 at the point (0.201,0.150,0.477,0.275,0.311,0.657).

21

Table 12: Hartman Function fig

i aij,j:1,2,3 C; pij,j21,2,3
1 3 10 30 1 0.3689 0.1170 0.2673
2101 10 35 |12 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4101 10 35 | 3.2 | 0.038150 0.5743 0.8828
Table 13: Hartman Function faq
aijajzla"'a6 Ci pl]ajzlaa6

10 3 17 35 1.7 8 1 101312 0.1696 0.5569 0.0124 0.8283 0.5886
0.06 10 17 01 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 35 17 10 17 8 3 10.2348 0.1415 0.3522 0.2883 0.3047 0.6650
17 8 0.06 10 0.1 14 3.2 04047 0.8828 0.8732 0.5743 0.1091 0.0381

NN VI

7.19 Shekel’s Family

m

f@) == lw—a)@—a) +e]™

i=1

with m = 5,710 for fo1(2), foo(z) and foz(x), respectively, 0 < z; < 10.

Table 14: Shekel Functions fa1, fas, fos

¢
0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5

Ai5,] = 1a"'a

4

© | ~1 | T o N =~

~1 o ot e o o —
N ot o1 o 0o —

-1 o | w0 —
NCITS FUCISY BN TR e RN I

—_
o
o
[
o
[

These functions have 5, 7 and 10 local minimafor fo1(2), foo(2), and fos(2), respectively. Ziocai_opt & a4,
F(@10cai_opt) & 1/¢; for 1 < i < m. The coefficients are defined by Table 14.

Acknowledgement — The authors are grateful to Professors Zbigniew Michalewicz and Marc Schoe-
nauer for their constructive comments on the earlier version of this paper.

References

[1] X. Yao and Y. Liu, “Fast evolution strategies,” in Evolutionary Programming VI: Proc. of the Sixzth
Annual Conference on Evolutionary Programming (P. J. Angeline, R. G. Reynolds, J. R. McDonnell,
and R. Eberhart, eds.), vol. 1213 of Lecture Notes in Computer Seience, (Berlin), pp. 151-161, Springer-
Verlag, 1997.

[2] D. B. Fogel, “An introduction to simulated evolutionary optimisation,” IEEE Trans. on Neural Net-
works, vol. 5, no. 1, pp. 3-14, 1994.

22

[3]
[4]
[5]
[6]
[7]

(8]

[9]

T. Back and H.-P. Schwefel, “An overview of evolutionary algorithms for parameter optimization,”
Evolutionary Computation, vol. 1, no. 1, pp. 1-23, 1993.

H.-P. Schwefel, Fvolution and Optimum Seeking. New York: John Wiley & Sons, 1995.

T. Back and H.-P. Schwefel, “Evolutionary computation: an overview,” in Proc. of the 1996 IEEFE Int’l
Conf. on Fvolutionary Computation (ICEC’96), Nagoya, Japan, pp. 20-29, IEEE Press, New York, NY
10017-2394, 1996.

X. Yao, “An overview of evolutionary computation,” Chinese Journal of Advanced Software Research
(Allerton Press, Inc., New York, NY 10011), vol. 3, no. 1, pp. 12-29, 1996.

T. Back, Fvolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996.

X. Yao and Y. Liu, “Fast evolutionary programming,” in Evolutionary Programming V: Proc. of the
Fifth Annual Conference on Fvolutionary Programming (L. J. Fogel, P. J. Angeline, and T. Back, eds.),
(Cambridge, MA), pp. 451-460, The MIT Press, 1996.

X. Yao, G. Lin, and Y. Liu, “An analysis of evolutionary algorithms based on neighbourhood and
step sizes,” in Evolutionary Programming VI: Proc. of the Siwzth Annual Conference on Evolutionary
Programming (P. J. Angeline, R. G. Reynolds, J. R. McDonnell, and R. Eberhart, eds.), vol. 1213 of
Lecture Notes in Computer Science, (Berlin), pp. 297-307, Springer-Verlag, 1997.

C. Kappler, “Are evolutionary algorithms improved by large mutations?,” in Parallel Problem Solving
from Nature (PPSN) IV (H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, eds.), vol. 1141
of Lecture Notes in Computer Science, (Berlin), pp. 346-355, Springer-Verlag, 1996.

H. H. Szu and R. L. Hartley, “Nonconvex optimization by fast simulated annealing,” Proceedings of

IEEE, vol. 75, pp. 1538-1540, 1987.
X. Yao, “A new simulated annealing algorithm,” Int. J. of Computer Math., vol. 56, pp. 161-168, 1995.

D. K. Gehlhaar and D. B. Fogel, “Tuning evolutionary programming for conformationally flexible molec-
ular docking,” in Evolutionary Programming V: Proc. of the Fifth Annual Conference on Evolutionary
Programming (L. J. Fogel, P. J. Angeline, and T. Béck, eds.), pp. 419-429, MIT Press, Cambridge, MA,
1996.

W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2. John Wiley & Sons, Inc.,
2nd ed., 1971.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN,
2 edn. Cambridge CB2 1RP, UK: Cambridge University Press, 1992.

L. Devroye, Non-Uniform Random Variate Generation. New York, NY 10010: Springer-Verlag, 1986.

D. B. Fogel, System Identification Through Simulated FEvolution: A Machine Learning Approach to
Modeling. Needham Heights, MA 02194: Ginn Press, 1991.

A. Torn and A. Zilinskas, Global Optimisation. Berlin: Springer-Verlag, 1989. Lecture Notes in Com-
puter Science, Vol. 350.

L. Ingber and B. Rosen, “Genetic algorithms and very fast simulated reannealing: a comparison,” Mathl.
Comput. Modelling, vol. 16, no. 11, pp. 87-100, 1992.

A. Dekkers and E. Aarts, “Global optimization and simulated annealing,” Math. Programming, vol. 50,
pp. 367-393, 1991.

G. Lin and X. Yao, “Analysing crossover operators by search step size,” in Proc. of the 1997 IEEFE Int’l
Conf. on Evolutionary Computation (ICEC’97), Indianapolis, USA, pp. 107-110, IEEE Press, New
York, NY, April 1997.

23

