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Abstract. We present the next version (ver. 2.1) of the Rough Set Ex-
ploration System – a software tool featuring a library of methods and
a graphical user interface supporting variety of rough-set-based and re-
lated computations. Methods, features and abilities of the implemented
software are discussed and illustrated with examples in data analysis and
decision support.

1 Introduction

Research in decision support systems, classification algorithms, in particular
those concerned with application of rough sets requires experimental verifica-
tion. To be able to make thorough, multi-directional practical investigations and
to focus on essential problems one needs an inventory of software tools that au-
tomate basic operations. Several such software systems have been constructed by
various researchers, see e.g. [13, vol. 2]. That was also the idea behind creation
of the Rough Set Exploration System (RSES).

It is already almost a decade since the first version of RSES appeared. After
several modifications, improvements and removal of detected bugs it was used
in many applications. Comparison with other classification systems (see [12, 1])
proves its value. The RSESlib, which is a computational backbone of RSES,
was also used in construction of the computational kernel of ROSETTA — an
advanced system for data analysis (see [19]).

The first version of Rough Set Exploration System (RSES v. 1.0) in its current
incarnation and its further development (RSES v. 2.0) were introduced approx-
imately four and two years ago, respectively (see [3, 4]). The present version (v.
2.1) introduces several changes, improvements and, most notably, several new
algorithms – the result of our recent research developments in the area of data
analysis and classification systems.

The RSES software and its computational kernel maintains all advantages
of previous versions. The algorithms have been re-mastered to provide better
flexibility and extended functionality. New algorithms added to the library follow
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the current state of our research. Improved construction of the system allows
further extensions and supports augmentation of RSES methods into other data
analysis tools.

The re-implementation of the RSES core classes in JavaTM 2 and removal of
legacy code is further fostered in the RSES v. 2.1. The computational procedures
are now written in Java using its object-oriented paradigms. The migration to
Java simplifies some development operations and, ultimately, leads to improved
flexibility of the product permitting migration of RSES software to operating
systems other than Windows (currently e.g. Linux).

In this paper we briefly show the features of the RSES software, focusing on
recently added algorithms and methods. The changes in GUI and improvements
in existing components are also described. We illustrate the presentation of new
methods with examples of applications in the field of classification systems.

2 Basic Notions

To give the reader a better understanding of the RSES’ description, we bring
here some basic notions that are further used in the presentation of particular
methods.

The structure of data that is the central point of our work is represented
in the form of information system or, more precisely, the special case of an
information system called decision table.

Information system is a pair of the form A = (U, A) where U is a universe
of objects and A = {a1, ..., am} is a set of attributes i.e. mappings of the form
ai : U → Vai

, where Vai
is called value set of the attribute ai. The decision

table is also a pair of the form A = (U, A∪{d}) with a distinguished attribute d.
In the case of decision table the attributes belonging to A are called conditional
attributes or simply conditions and d is called decision. We will further assume
that the set of decision values is finite. The i-th decision class is a set of objects
Ci = {o ∈ U : d(o) = di}, where di is the i-th decision value taken from the
decision value set Vd = {d1, ..., d|Vd|}

A reduct is one of the most essential notions in rough sets. B ⊂ A is a reduct
of information system if it carries the same indiscernibility information as the
whole A, and no proper subset of B has this property. In case of decision tables
a decision reduct is a set of attributes B ⊂ A such that it cannot be further
reduced and carries the same indiscernibility information as the decision.

A decision rule is a formula of the form (ai1 = v1)∧ ...∧(aik
= vk) ⇒ d = vd,

where 1≤ i1 < ... < ik ≤ m, vi ∈ Vai
. Atomic subformulae (ai1 = v1) are called

conditions. We say that the rule r is applicable to an object, or alternatively,
an object matches a rule, if its attribute values satisfy the premise of the rule.
With a rule we can connect some numerical characteristics such as matching and
support, that help in determining rule quality (see [1, 2]).

By cut for an attribute ai ∈ A, such that Vai is an ordered set we will denote
a value c ∈ Vai . With the use of a cut we may replace the original attribute ai

with a new, binary attribute which depends on whether the original attribute
value for an object is greater or lower than c (more in [10]).
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Template of A is a propositional formula
∧

(ai = vi) where ai ∈ A and
vi ∈ Vai

. A generalised template is the formula of the form
∧

(ai ∈ Ti) where
Ti ⊂ Vai . An object satisfies (matches) a template if for every attribute ai

occurring in the template the value of this attribute on the considered object
is equal to vi (belongs to Ti in case of a generalised template). The template
induces in natural way the split of original information system into two distinct
subtables. One of those subtables contains objects that satisfy the template, the
other the remainder. Decomposition tree is a binary tree, whose every internal
node is labelled by a certain template and external node (leaf) is associated with
a set of objects matching all templates in a path from the root to the leaf (see
[10]).

3 Contents of RSES v. 2.1

3.1 Input/Output Formats

During operation certain functions belonging to RSES may read and write in-
formation to/from files. Most of these files are regular ASCII files.

Slight changes from the previous RSES versions were introduced in the for-
mat used to represent the basic data entity i.e. the decision table. The new file
format permits attributes to be represented with use of integer, floating point
number or symbolic (text) value. There is also a possibility of using “virtual”
attributes, calculated during operation of the system, for example derived as a
linear combinations of existing ones. The file format used to store decision tables
includes a header where the user specifies size of the table, the name and type
of attributes. The information from header is visible to the user in the RSES
GUI e.g., attribute names are placed as column headers when the table is being
displayed.

RSES user can save and retrieve data entities such as rule sets, reduct sets
etc. The option of saving the whole workspace (project) in a single file is also
provided. The project layout together with underlying data structures is stored
using dedicated, optimised binary file format.

3.2 The Algorithms

The algorithms implemented in RSES fall into two main categories.
First category gathers the algorithms aimed at management and edition of

data structures. It covers functions allowing upload and download of data as
well as derived structures, procedures for splitting tables, selecting attributes
etc. There are also procedures that simplify preparation of experiments, such as
an automated n fold cross-validation.

The algorithms for performing rough set based and classification operations
on data constitute the second essential kind of tools implemented inside RSES.
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Most important of them are:
Reduction algorithms i.e. algorithms allowing calculation of the collections
of reducts for a given information system (decision table). In the version 2.1 the
method for calculation of dynamic reducts (as in [1]) is added.
Rule induction algorithms. Several rule calculation algorithms are present.
That includes reduct-based approaches (as in [2]) as well as evolutionary and
covering methods (cf. [17, 8]). Rules may be based on both classical and dy-
namic reducts. Calculated rules are accompanied with several coefficients that
are further used while the rules are being applied to the set of objects.
Discretisation algorithms. Discretisation permits discovery of cuts for at-
tributes. By this process the initial decision table is converted to one described
with simplified, symbolic attributes; one that is less complex and contains the
same information w.r.t. discernibility of objects (cf. [1, 10]).
Data completion algorithms. As many real-life experimental data contains
missing data, some methods for filling gaps in data are present in RSES. For
more on data completion techniques see [9].
Algorithms for generation of new attributes. New attributes can be gen-
erated as linear combinations of existing (numerical) ones. Such new attributes
can carry information that is more convenient in decision making. The proper
linear combinations are established with use of methods based on evolutionary
computing (cf. [4, 14]).
Template generation algorithms provide means for calculation of templates
and generalised templates. Placed side by side with template generation are the
procedures for inducing table decomposition trees (cf. [11]).
Classification algorithms used to determine decision value for objects with
use of decision rules, templates and other means (cf. [1, 2, 11]). Two major new
classification methods have been added in RSES version 2.1. They belong to
the fields of instance-based learning and artificial neural networks, respectively.
They are described in more detail further in this paper (Sections 4.1 and 4.2).
The classification methods can be used to both verifying classifiers on a test
sample with given decision value and classifying new cases for which we do not
know decision value.

3.3 The RSES GUI

To simplify the use of RSES algorithms and make it more intuitive the RSES
graphical user interface was further extended. It is directed towards ease of use
and visual representation of workflow. Version 2.0 (previous one) undergone some
face lifting. There are some new gadgets and gizmos as well. Project interface
window has not change much (see Fig. 1). As previously, it consists of two
parts. The visible part is the project workspace with icons representing objects
created during our computation. Behind the project window there is the history
window, reachable via tab, and dedicated to messages, status reports, errors
and warnings. While working with multiple projects, each of them occupies a
separate workspace accessible via tab at the top of workplace window.
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Fig. 1. The project interface window

It was designers’ intention to simplify the operations on data within project.
Therefore, the entities appearing in the process of computation are represented
in the form of icons placed in the upper part of workplace. Such an icon is
created every time the data (table, reducts, rules,...) is loaded from the file. User
can also place an empty object in the workplace and further fill it with results
of operation performed on other objects. Every object appearing in the project
have a set of actions associated with it. By right-clicking on the object the user
invokes a context menu for that object. It is also possible to invoke an action
from the general pull-down program menu in the main window. Menu choices
allow to view and edit objects as well as include them in new computations. In
many cases a command from context menu causes a new dialog box to open. In
this dialog box the user can set values of parameters used in desired calculation.
If the operation performed on the object leads to creation of a new object or
modification of existing one then such a new object is connected with edge
originating in object(s) which contributed to its current state. Placement of
arrows connecting icons in the workspace changes dynamically as new operations
are being performed. In the version 2.1 the user has the ability to align objects in
workspace automatically, according to his/her preferences (eg. left, horizontal,
bottom).
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Fig. 2. Instance based classification in the RSES GUI

An important new GUI feature added in the version 2.1 is the possibility to
display some statistical information about tables, rules and reducts in a graphical
form (see Fig.1).

4 New Methods

In the current version two new classification methods have been added.

4.1 Instance Based Method

As an instance based method we implemented the special, extended version of the
k nearest neighbours (k-nn) classifier [6]. First the algorithm induces a distance
measure from a training set. Then for each test object it assigns a decision based
on the k nearest neighbours of this object according to the induced distance
measure.

The distance measure ρ for the k-nn classifier is defined as the weighted sum
of the distance measures ρa for particular attributes a ∈ A:

ρ(x, y) =
∑

a∈A

wa · ρa(a(x), a(y)).



598 Jan G. Bazan et al.

Two types of a distance measure are available to the user. The City-SVD
metric [5] combines the city-block Manhattan metric for numerical attributes
with the Simple Value Difference (SVD) metric for symbolic attributes.

The distance between two numerical values ρa(a(x), a(y)) is the difference
|a(x) − a(y)| taken either as an absolute value or normalised with the range
amax − amin or with the doubled standard deviation of the attribute a on the
training set. The SVD distance ρa(a(x), a(y)) for a symbolic attribute a is the
difference between the decision distributions for the values a(x) and a(y) in
the whole training set. Another metric type is the SVD metric. For symbolic
attributes it is defined as in the City-SVD metric and for a numerical attribute
a the difference between a pair of values a(x) and a(y) is defined as the difference
between the decision distributions in the neighbourhoods of these values. The
neighbourhood of a numerical value is defined as the set of objects with similar
values of the corresponding attribute. The number of objects considered as the
neighbourhood size is the parameter to be set by a user.

A user may optionally apply one of two attribute weighting methods to im-
prove the properties of an induced metric. The distance-based method is an iter-
ative procedure focused on optimising the distance between the training objects
correctly classified with the nearest neighbour in a training set. The detailed de-
scription of the distance-based method is described in [15]. The accuracy-based
method is also an iterative procedure. At each iteration it increases the weights
of attributes with high accuracy of the 1-nn classification.

As in the typical k-nn approach a user may define the number of nearest
neighbours k taken into consideration while computing a decision for a test
object. However, a user may use a system procedure to estimate the optimal
number of neighbours on the basis of a training set. For each value k in a given
range the procedure applies the leave-one-out k-nn test and selects the value k
with the optimal accuracy. The system uses an efficient leave-one-out test for
many values of k as described in [7].

When the nearest neighbours of a given test object are found in a training set
they vote for a decision to be assigned to the test object. Two methods of nearest
neighbours voting are available. In the simple voting all k nearest neighbours are
equally important and for each test object the system assigns the most frequent
decision in the set of the nearest neighbours. In the distance-weighted voting
each nearest neighbour vote is weighted inversely proportional to the distance
between a test object and the neighbour. If the option of filtering neighbours
with rules is checked by a user, the system excludes from voting all the nearest
neighbours that produce a local rule inconsistent with another nearest neighbour
(see [7] for details).

The k-nn classification approach is known to be computationally expensive.
The crucial time-consuming task is searching for k nearest neighbours in a train-
ing set. The basic approach is to scan the whole training set for each test object.
To make it more efficient an advanced indexing method is used [15]. It acceler-
ates searching up to several thousand times and allows to test datasets of a size
up to several hundred thousand of objects.
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Table 1. Classification error of k-nn classifiers with the estimation of the optimal value
of k from a training set

Nearest neighbors voting Simple Dist-weighted Simple Dist-weighted
Filtering with rules No filtering No filtering Filtering Filtering

Dataset Trn set Test set est. k error est. k error est. k error est. k error

segment 1 540 770 1 2,47% 1 2,47% 1 2,47% 4 2,73%

splice (DNA) 2 000 1 186 1 5,99% 1 5,99% 1 5,99% 1 5,99%

chess 2 131 1 065 1 2,45% 1 2,45% 1 2,45% 20 1,6%

satimage 4 435 2 000 5 9,45% 4 9,85% 5 9,45% 4 9,35%

mushroom 5 416 2 708 1 0% 1 0% 1 0% 1 0%

pendigits 7 494 3 498 1 2,84% 5 2,26% 1 2,84% 4 2,29%

nursary 8 640 4 320 13 1,95% 15 0,75% 19 0,91% 13 0,31%

letter 15 000 5 000 1 3,22% 5 2,92% 1 3,22% 8 2,82%

census94 30 162 15 060 27 15,95% 151 16,44% 76 16,27% 160 16,29%

shuttle 43 500 14 500 1 0,06% 3 0,06% 1 0,06% 2 0,05%

Table 1 presents the classification accuracy for 10 data sets from the UCI
repository [21]. The data sets provided as a single file (segment, chess, mush-
room, nursery) have been randomly split into a training and a test part with
the ratio 2 to 1. The remaining data sets (splice, satimage, pendigits, letter, cen-
sus94, shuttle) have been tested with the originally provided partition. In the
experiment the City-SVD metric with the distance based attribute weighting
method were used. We tested four k-nn based classifiers: all combinations of
simple and distance weighted voting with and without filtering neighbours with
rules. To make the results comparable all classifiers were tested with the same
instance of a distance measure and the same partition for each data set. The
values of k used in the experiments were selected from the range between 1 and
200 by the procedure delivered with the system.

The results from Table 1 show that the accuracy of the k-nn classifiers is
comparable to other well-known classifiers like C5.0 [7]. The classification error
is similar for different parameter setting but in general the k-nn with distance-
weighted voting and rule-based filtering seems to have a little advantage over
the k-nn classifiers with the other setting.

4.2 Local Transfer Function Classifier

Local Transfer Function Classifier (LTF-C) is a neural network solving classi-
fication problems [16]. Its architecture is very similar to this of Radial Basis
Function neural network (RBF) or Support Vector Machines (SVM) – the net-
work has a hidden layer with gaussian neurons connected to an output layer of
linear units. There are some additional restrictions on values of output weights
that enable to use an entirely different training algorithm and to obtain very
high accuracy in real-world problems.

The training algorithm of LTF-C comprises four types of modifications of
the network, performed after every presentation of a training object:
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1. changing positions (means) of gaussians,
2. changing widths (deviations) of gaussians, separately for each hidden neuron

and attribute,
3. insertion of new hidden neurons,
4. removal of unnecessary or harmful hidden neurons.

As one can see, the network structure is dynamical. The training process starts
with an empty hidden layer, adding new hidden neurons when the accuracy
is insufficient and removing the units which do not positively contribute to the
calculation of correct network decisions. This feature of LTF-C enables automatic
choice of the best network size, which is much easier than setting the number
of hidden neurons manually. Moreover, this helps to avoid getting stuck in local
minima during training, which is a serious problem in neural networks trained
with gradient-descend.

LTF-C shows a very good performance in solving real-world problems. A
system based on this network won the first prize in the EUNITE 2002 World
Competition “Modelling the Bank’s Client behaviour using Intelligent Technolo-
gies”. The competition problem was to classify bank customers as either active
or non-active, in order to predict if they would like to leave the bank in the near-
est future. The system based on LTF-C achieved 75.5% accuracy, outperforming
models based on decision trees, Support Vector Machines, standard neural net-
works and others (see [20]) .

LTF-C performs also very well in other tasks, such as handwritten digit
recognition, breast cancer diagnosis or credit risk assessment (details in [16]).

5 Perspective

The RSES toolkit will further grow as new methods and algorithms emerge.
More procedures are still coming from current state-of-the-art research. Most
notably, the work on a new version of the RSESlib library of methods is well
under way. Also, currently available computational methods are being integrated
with DIXER - a system for distributed data processing.

The article reflects the state of software tools at the moment of writing, i.e.
beginning of March 2004. For information on most recent developments visit the
Web site [18].
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