
Expert system
From Wikipedia, the free encyclopedia

An expert system is software that uses a knowledge base of human expertise for problem
solving, or clarify uncertainties where normally one or more human experts would need
to be consulted. Expert systems are most common in a specific problem domain, and are
a traditional application and/or subfield of artificial intelligence (AI). A wide variety of
methods can be used to simulate the performance of the expert; however, common to
most or all are: 1) the creation of a knowledge base which uses some knowledge
representation structure to capture the knowledge of the Subject Matter Expert (SME); 2)
a process of gathering that knowledge from the SME and codifying it according to the
structure, which is called knowledge engineering; and 3) once the system is developed, it
is placed in the same real world problem solving situation as the human SME, typically
as an aid to human workers or as a supplement to some information system. Expert
systems may or may not have learning components.

Expert systems were introduced by researchers in the Stanford Heuristic Programming
Project, including the "father of expert systems" Edward Feigenbaum, with the Dendral
and Mycin systems. Principal contributors to the technology were Bruce Buchanan,
Edward Shortliffe, Randall Davis, William vanMelle, Carli Scott, and others at Stanford.
Expert systems were among the first truly successful forms of AI software.[1][2][3][4][5][6]

The topic of expert systems also has connections to general systems theory, operations
research, business process reengineering, and various topics in applied mathematics and
management science.

Contents

1 Aspects ■
1.1 Certainty factors■
1.2 Chaining■
1.3 Software architecture■
1.4 End user■
1.5 Explanation system■
1.6 Comparison to problem-solving systems■
1.7 Participants■
1.8 Inference rule■
1.9 Procedure node interface■
1.10 Real-time expert systems■

2 Application ■

Page 1 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

2.1 Advantages and disadvantages ■
2.1.1 Disadvantages■

2.2 Types of problems solved■

3 Shells or Inference Engine■
4 See also■
5 References■
6 Bibliography■
7 External links■

Aspects

Certainty factors

The MYCIN rule-based expert system introduced a quasi-probabilistic approach called
certainty factors, whose rationale is explained below.

A human, when reasoning, does not always make statements with 100% confidence: he
might venture, "If Fritz is green, then he is probably a frog" (after all, he might be a
chameleon). This type of reasoning can be imitated using numeric values called
confidences. For example, if it is known that Fritz is green, it might be concluded with
0.85 confidence that he is a frog; or, if it is known that he is a frog, it might be concluded
with 0.95 confidence that he hops. These certainty factor (CF) numbers quantify
uncertainty in the degree to which the available evidence supports a hypothesis. They
represent a degree of confirmation, and are not probabilities in a Bayesian sense. The CF
calculus, developed by Shortliffe & Buchanan, increases or decreases the CF associated
with a hypothesis as each new piece of evidence becomes available. It can be mapped to
a probability update, although degrees of confirmation are not expected to obey the laws
of probability. It is important to note, for example, that evidence for hypothesis H may
have nothing to contribute to the degree to which Not_h is confirmed or disconfirmed
(e.g., although a fever lends some support to a diagnosis of infection, fever does not
disconfirm alternative hypotheses) and that the sum of CFs of many competing
hypotheses may be greater than one (i.e., many hypotheses may be well confirmed based
on available evidence).

The CF approach to a rule-based expert system design does not have a widespread
following, in part because of the difficulty of meaningfully assigning CFs a priori. (The
above example of green creatures being likely to be frogs is excessively naive.)
Alternative approaches to quasi-probabilistic reasoning in expert systems involve fuzzy
logic, which has a firmer mathematical foundation. Also, rule-engine shells such as

Page 2 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

Drools and Jess do not support probability manipulation: they use an alternative
mechanism called salience, which is used to prioritize the order of evaluation of activated
rules.

In certain areas, as in the tax-advice scenarios discussed below, probabilistic approaches
are not acceptable. For instance, a 95% probability of being correct means a 5%
probability of being wrong. The rules that are defined in such systems have no
exceptions: they are only a means of achieving software flexibility when external
circumstances change frequently. Because rules are stored as data, the core software does
not need to be rebuilt each time changes to federal and state tax codes are announced.

Chaining

Two methods of reasoning when using inference rules are forward chaining and
backward chaining.

Forward chaining starts with the data available and uses the inference rules to extract
more data until a desired goal is reached. An inference engine using forward chaining
searches the inference rules until it finds one in which the if clause is known to be true. It
then concludes the then clause and adds this information to its data. It continues to do this
until a goal is reached. Because the data available determines which inference rules are
used, this method is also classified as data driven.

Backward chaining starts with a list of goals and works backwards to see if there is data
which will allow it to conclude any of these goals. An inference engine using backward
chaining would search the inference rules until it finds one which has a then clause that
matches a desired goal. If the if clause of that inference rule is not known to be true, then
it is added to the list of goals. For example, suppose a rule base contains

(1) IF X is green THEN X is a frog. (Confidence Factor: +1%)1.
(2) IF X is NOT green THEN X is NOT a frog. (Confidence Factor: +99%)2.
(3) IF X is a frog THEN X hops. (Confidence Factor: +50%)3.
(4) IF X is NOT a frog THEN X does NOT hop. (Confidence Factor +50%)4.

Suppose a goal is to conclude that Fritz hops. Let X = "Fritz". The rule base would be
searched and rule (3) would be selected because its conclusion (the then clause) matches
the goal. It is not known that Fritz is a frog, so this "if" statement is added to the goal list.
The rule base is again searched and this time rule (1) is selected because its then clause
matches the new goal just added to the list. This time, the if clause (Fritz is green) is
known to be true and the goal that Fritz hops is concluded. Because the list of goals
determines which rules are selected and used, this method is called goal driven.

Page 3 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

However, note that if we use confidence factors in even a simplistic fashion - for
example, by multiplying them together as if they were like soft probabilities - we get a
result that is known with a confidence factor of only one-half of 1%. (This is by
multiplying 0.5 x 0.01 = 0.005). This is useful, because without confidence factors, we
might erroneously conclude with certainty that a sea turtle named Fritz hops just by virtue
of being green. In Classical logic or Aristotelian term logic systems, there are no
probabilities or confidence factors; all facts are regarded as certain. An ancient example
from Aristotle states, "Socrates is a man. All men are mortal. Thus Socrates is mortal."

In real world applications, few facts are known with absolute certainty and the opposite
of a given statement may be more likely to be true ("Green things in the pet store are not
frogs, with the probability or confidence factor of 99% in my pet store survey"). Thus it
is often useful when building such systems to try and prove both the goal and the
opposite of a given goal to see which is more likely.

Software architecture

The following general points about expert systems and their architecture have been
outlined:

1. The sequence of steps taken to reach a conclusion is dynamically synthesized
with each new case. The sequence is not explicitly programmed at the time that the
system is built.

2. Expert systems can process multiple values for any problem parameter. This
permits more than one line of reasoning to be pursued and the results of incomplete
(not fully determined) reasoning to be presented.

3. Problem solving is accomplished by applying specific knowledge rather than
specific technique. This is a key idea in expert systems technology. It reflects the
belief that human experts do not process their knowledge differently from others,
but they do possess different knowledge. With this philosophy, when one finds that
their expert system does not produce the desired results, work begins to expand the
knowledge base, not to re-program the procedures.

There are various expert systems in which a rulebase and an inference engine cooperate
to simulate the reasoning process that a human expert pursues in analyzing a problem and
arriving at a conclusion. In these systems, in order to simulate the human reasoning
process, a vast amount of knowledge needs to be stored in the knowledge base.
Generally, the knowledge base of such an expert system consists of a relatively large
number of "if/then" type statements that are interrelated in a manner that, in theory at
least, resembles the sequence of mental steps that are involved in the human reasoning
process.[7]

Page 4 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

Because of the need for large storage capacities and related programs to store the
rulebase, most expert systems have, in the past, been run only on large information
handling systems. Recently, the storage capacity of personal computers has increased to a
point to which it is becoming possible to consider running some types of simple expert
systems on personal computers.[7]

In some applications of expert systems, the nature of the application and the amount of
stored information necessary to simulate the human reasoning process for that application
is too vast to store in the active memory of a computer. In other applications of expert
systems, the nature of the application is such that not all of the information is always
needed in the reasoning process. An example of this latter type of application would be
the use of an expert system to diagnose a data processing system comprising many
separate components, some of which are optional. When that type of expert system
employs a single integrated rulebase to diagnose the minimum system configuration of
the data processing system, much of the rulebase is not required since many of the
optional components will not be present in the system. Nevertheless, early expert systems
required the entire rulebase to be stored since all the rules were, in effect, chained or
linked together by the structure of the rulebase.[7]

When the rulebase is segmented, preferably into contextual segments or units, it is then
possible to eliminate the portions of the rulebase containing data or knowledge that is not
needed in a particular application. The segmentation of the rulebase also allows the
expert system to be run on or with systems having much smaller memory capacities than
was possible with earlier arrangements, since each segment of the rulebase can be paged
into and out of the system as needed. Segmentation into contextual units requires that the
expert system manage various intersegment relationships as segments are paged into and
out of memory during the execution of the program. Since the system permits a rulebase
segment to be called and executed at any time during the processing of the first rulebase,
provisions must be made to store the data that has accumulated up to that point so that
later in the process, when the system returns to the first segment, it can proceed from the
last point or rule node that was processed. Also, provisions must be made so that data that
has been collected by the system up to that point can be passed onto the second segment
of the rulebase after it has been paged into the system, and data collected during the
processing of the second segment can be passed to the first segment when the system
returns to complete processing that segment.[7]

The user interface and the procedure interface are two important functions in the
information collection process.

Page 5 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

End user

There are two styles of user-interface design followed by expert systems. In the original
style of user interaction, the software takes the end-user through an interactive dialog. In
the following example, a backward-chaining system seeks to determine a set of
restaurants to recommend:

Q. Do you know which restaurant you want to go to?
A. No

Q. Is there any kind of food you would particularly like?
A. No

Q. Do you like spicy food?
A. No

Q. Do you usually drink wine with meals?
A. Yes

Q. When you drink wine, is it French wine?
A. Yes

The system must function in the presence of partial information, since the user may
choose not to respond to every question. There is no fixed control structure: Dialogues
are dynamically synthesized from the "goal" of the system, the contents of the knowledge
base, and the user's responses.

This approach wastes much of the user's time, because it does not allow a priori
volunteering of information that the user considers important. In the previous example,
the user must cycle through the entire series of questions rather than simply providing
that they are looking for a moderately-priced Northern Italian, French or Turkish
restaurant with a large wine selection, not more than 20 minutes driving distance.
Therefore this approach is unlikely to be acceptable to busy users (e.g. a mobile-device
user who needs to obtain information as efficiently as possible). Consequently, it has
fallen into disfavor. Commercially viable systems will try to optimize the user experience
by presenting options for commonly requested information based on a history of previous
queries of the system using technology such as forms, augmented by keyword-based
search. The gathered information may be verified by a confirmation step (e.g., to recover
from spelling mistakes), and now act as an input into a forward-chaining engine. If
confirmatory questions are asked in a subsequent phase, based on the rules activated by
the obtained information, they are more likely to be specific and relevant.

Page 6 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

In an expert system, implementing the ability to learn from a stored history of its previous
use involves employing technologies considerably different from that of rule engines, and
is considerably more challenging from a software-engineering perspective. It can,
however, make the difference between commercial success and failure. A large part of
the revulsion that users felt towards Microsoft's Office Assistant was due to the extreme
naivete of its rules ("It looks like you are typing a letter: would you like help?") and its
failure to adapt to the user's level of expertise over time (e.g. a user who regularly uses
features such as Styles, Outline view, Table of Contents or cross-references is unlikely to
be a beginner who needs help writing a letter).

Explanation system

Another major distinction between expert systems and traditional systems is illustrated by
the following answer given by the system when the user answers a question with another
question, "Why", as occurred in the above example. The answer is:

A. I am trying to determine the type of restaurant to suggest. So far Indian is not a
likely choice. It is possible that French is a likely choice. If I know that if the diner
is a wine drinker, and the preferred wine is French, then there is strong evidence that
the restaurant choice should include French.

It is very difficult to implement a general explanation system (answering questions like
"Why" and "How") in a traditional computer program. An expert system can generate an
explanation by retracing the steps of its reasoning. The response of the expert system to
the question "Why" exposes the underlying knowledge structure. It is a rule; a set of
antecedent conditions which, if true, allow the assertion of a consequent. The rule
references values, and tests them against various constraints or asserts constraints onto
them. This, in fact, is a significant part of the knowledge structure. There are values,
which may be associated with some organizing entity. For example, the individual diner
is an entity with various attributes (values) including whether they drink wine and the
kind of wine. There are also rules, which associate the currently known values of some
attributes with assertions that can be made about other attributes. It is the orderly
processing of these rules that dictates the dialogue itself.

Comparison to problem-solving systems

The principal distinction between expert systems and traditional problem solving
programs is the way in which the problem related expertise is coded. In traditional
applications, problem-related expertise is encoded in both program and data structures. In
the expert system approach all of the problem expertise is encoded mostly in data
structures.

Page 7 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

An example, related to tax advice, contrasts the traditional problem solving program with
the expert system approach. In the traditional approach, data structures describe the
taxpayer and tax tables, while a program contains rules (encoding expert knowledge) that
relate information about the taxpayer to tax table choices. In the expert system approach,
the latter information is also encoded in data structures. The collective data structures are
called the knowledge base. The program (inference engine) of an expert system is
relatively independent of the problem domain (taxes) and processes the rules without
regard to the problem area they describe.

This organization has several benefits:

New rules can be added to the knowledge base or altered without needing to rebuild
the program. This allows changes to be made rapidly to a system (e.g., after it has
been shipped to its customers, to accommodate very recent changes in state or
federal tax codes).

■

Rules are arguably easier for (non-programmer) domain experts to create and
modify than writing code. Commercial rule engines typically come with editors that
allow rule creation/modification through a graphical user interface, which also
performs actions such as consistency and redundancy checks.

■

Modern rule engines allow a hybrid approach: some allow rules to be "compiled" into a
form that is more efficiently machine-executable. Also, for efficiency concerns, rule
engines allow rules to be defined more expressively and concisely by allowing software
developers to create functions in a traditional programming language such as Java, which
can then be invoked from either the condition or the action of a rule. Such functions may
incorporate domain-specific (but reusable) logic.

Participants

There are generally three individuals having an interaction in an expert system. Primary
among these is the end-user, the individual who uses the system for its problem solving
assistance. In the construction and maintenance of the system there are two other roles:
the problem domain expert who builds the system and supplies the knowledge base, and a
knowledge engineer who assists the experts in determining the representation of their
knowledge, enters this knowledge into an explanation module and who defines the
inference technique required to solve the problem. Usually the knowledge engineer will
represent the problem solving activity in the form of rules. When these rules are created
from domain expertise, the knowledge base stores the rules of the expert system.

Page 8 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

Inference rule

An inference rule is a conditional statement with two parts: an if clause and a then clause.
This rule is what gives expert systems the ability to find solutions to diagnostic and
prescriptive problems. An example of an inference rule is:

If the restaurant choice includes French and the occasion is romantic,
Then the restaurant choice is definitely Paul Bocuse.

An expert system's rulebase is made up of many such inference rules. They are entered as
separate rules and it is the inference engine that uses them together to draw conclusions.
Because each rule is a unit, rules may be deleted or added without affecting other rules -
though it should affect which conclusions are reached. One advantage of inference rules
over traditional programming is that inference rules use reasoning which more closely
resembles human reasoning.

Thus, when a conclusion is drawn, it is possible to understand how this conclusion was
reached. Furthermore, because the expert system uses knowledge in a form similar to the
that of the expert, it may be easier to retrieve this information directly from the expert.

Procedure node interface

The function of the procedure node interface is to receive information from the
procedures coordinator and create the appropriate procedure call. The ability to call a
procedure and receive information from that procedure can be viewed as simply a
generalization of input from the external world. In some earlier expert systems external
information could only be obtained in a predetermined manner, which only allowed
certain information to be acquired. Through the knowledge base, this expert system
disclosed in the cross-referenced application can invoke any procedure allowed on its
host system. This makes the expert system useful in a much wider class of knowledge
domains than if it had no external access or only limited external access.

In the area of machine diagnostics using expert systems, particularly self-diagnostic
applications, it is not possible to conclude the current state of "health" of a machine
without some information. The best source of information is the machine itself, for it
contains much detailed information that could not reasonably be provided by the
operator.

The knowledge that is represented in the system appears in the rulebase. In the rulebase
described in the cross-referenced applications, there are basically four different types of
objects, with the associated information:

Classes: Questions asked to the user.1.

Page 9 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

Parameters: Place holders for character strings which may be variables that can be
inserted into a class question at the point in the question where the parameter is
positioned.

2.

Procedures: Definitions of calls to external procedures.3.
Rule nodes: Inferences in the system are made by a tree structure which indicates
the rules or logic mimicking human reasoning. The nodes of these trees are called
rule nodes. There are several different types of rule nodes.

4.

The rulebase echoes a forest of many trees. The top node of the tree is called the goal
node, in that it contains the conclusion. Each tree in the forest has a different goal node.
The leaves of the tree are also referred to as rule nodes, or one of the types of rule nodes.
A leaf may be an evidence node, an external node, or a reference node.

An evidence node functions to obtain information from the operator by asking a specific
question. In responding to a question presented by an evidence node, the operator is
generally instructed to answer "yes" or "no" represented by the numeric values 1 and 0 or
provide a value between 0 and 1, representing a "maybe". Questions which require a
response from the operator other than yes or no or a value between 0 and 1 are handled in
a different manner.

A leaf that is an external node indicates that the data which will be used was obtained
from a procedure call.

A reference node functions to refer to another tree or subtree.

A tree may also contain intermediate or minor nodes between the goal node and the leaf
node. An intermediate node can represent logical operations like "And" or "Or".

The inference logic has two functions. It selects a tree to trace and then it traces that tree.
Once a tree has been selected, that tree is traced, depth-first, left to right.

The word "tracing" refers to the action the system takes as it traverses the tree, asking
classes (questions), calling procedures, and calculating confidences as it proceeds.

As explained in the cross-referenced applications, the selection of a tree depends on the
ordering of the trees. The original ordering of the trees is the order in which they appear
in the rulebase. This order can be changed, however, by assigning an evidence node an
attribute "initial" which is described in detail in these applications. The first action taken
is to obtain values for all evidence nodes which have been assigned an "initial" attribute.
Using only the answers to these initial evidences, the rules are ordered so that the most
likely to succeed is evaluated first. The trees can be further re-ordered because they are
constantly being updated as a selected tree is being traced.

Page 10 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

The type of information solicited by the system from the user by means of questions or
classes should be tailored to the level of knowledge of the user. In many applications, the
group of prospective uses is well-defined and the knowledge level can be estimated so
that the questions can be presented at a level which corresponds generally to the average
user. However, in other applications, knowledge of the specific domain of the expert
system might vary considerably among the group of prospective users.

One application where this is particularly true involves the use of an expert system,
operating in a self-diagnostic mode on a personal computer to assist the operator of the
personal computer to diagnose the cause of a fault or error in either the hardware or
software. In general, asking the operator for information is the most straightforward way
for the expert system to gather information, assuming that the information is or should be
within the operator's understanding. For example, in diagnosing a personal computer, the
expert system must know the major functional components of the system. It could ask the
operator, for instance, if the display is a monochrome or color display. The operator
should, in all probability, be able to provide the correct answer. The expert system could,
on the other hand, cause a test unit to be run to determine the type of display. The
accuracy of the data collected by either approach in this instance probably would not be
that different so the knowledge engineer could employ either approach without affecting
the accuracy of the diagnosis. However, in many instances, because of the nature of the
information being solicited, it is better to obtain the information from the system rather
than asking the operator, because the accuracy of the data supplied by the operator is so
low that the system could not effectively process it to a meaningful conclusion.

In many situations the information is already in the system, in a form that permits the
correct answer to a question to be obtained through a process of inductive or deductive
reasoning. The data previously collected by the system could include answers provided
by the user to less complex questions previously asked for a different reason or results
returned from test units that were previously run.

Real-time expert systems

Industrial processes, data networks, and many other systems change their state and even
their structure over time. Real time expert systems are designed to reason over time and
change conclusions as the monitored system changes. Most of these systems must
respond to constantly changing input data, arriving automatically from other systems
such as process control systems or network management systems.

Representation includes features for defining changes in belief of data or conclusions
over time. This is necessary because data becomes stale. Approaches to this can include
decaying belief functions, or the simpler validity interval that simply lets data and
conclusions expire after specified time period, falling to "unknown" until refreshed. An
often-cited example (attributed to real time expert system pioneer Robert L. Moore) is a
hypothetical expert system that might be used to drive a car. Based on video input, there

Page 11 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

might be an intermediate conclusion that a stop light is green and a final conclusion that it
is OK to drive through the intersection. But that data and the subsequent conclusions
have a very limited lifetime. You would not want to be a passenger in a car driven based
on data and conclusions that were, say, an hour old.

The inference engine must track the times of each data input and each conclusion, and
propagate new information as it arrives. It must ensure that all conclusions are still
current. Facilities for periodically scanning data, acquiring data on demand, and filtering
noise, become essential parts of the overall system. Facilities to reason within a fixed
deadline are important in many of these applications.

An overview of requirements for a real-time expert system shell is given in.[8] Examples
of real time expert system applications are given in [9] and.[10] Several conferences were
dedicated to real time expert system applications in the chemical process industries,
including.[11]

Application

Expert systems are designed to facilitate tasks in the fields of accounting, medicine,
process control, financial service, production, human resources, among others. Typically,
the problem area is complex enough that a more simple traditional algorithm cannot
provide a proper solution. The foundation of a successful expert system depends on a
series of technical procedures and development that may be designed by technicians and
related experts. As such, expert systems do not typically provide a definitive answer, but
provide probabilistic recommendations.

An example of the application of expert systems in the financial field is expert systems
for mortgages. Loan departments are interested in expert systems for mortgages because
of the growing cost of labour, which makes the handling and acceptance of relatively
small loans less profitable. They also see a possibility for standardised, efficient handling
of mortgage loan by applying expert systems, appreciating that for the acceptance of
mortgages there are hard and fast rules which do not always exist with other types of
loans. Another common application in the financial area for expert systems are in trading
recommendations in various marketplaces. These markets involve numerous variables
and human emotions which may be impossible to deterministically characterize, thus
expert systems based on the rules of thumb from experts and simulation data are used.
Expert system of this type can range from ones providing regional retail
recommendations, like Wishabi, to ones used to assist monetary decisions by financial
institutions and governments.

While expert systems have distinguished themselves in AI research in finding practical
application, their application has been limited. Expert systems are notoriously narrow in
their domain of knowledge — as an amusing example, a researcher used the "skin

Page 12 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

disease" expert system to diagnose his rustbucket car as likely to have developed measles
— and the systems are thus prone to making errors that humans would easily spot.
Additionally, once some of the mystique had worn off, most programmers realized that
simple expert systems were essentially just slightly more elaborate versions of the
decision logic they had already been using. Therefore, some of the techniques of expert
systems can now be found in most complex programs without drawing much recognition.

An example and a good demonstration of the limitations of an expert system is the
Windows operating system troubleshooting software located in the "help" section in the
taskbar menu. Obtaining technical operating system support is often difficult for
individuals not closely involved with the development of the operating system. Microsoft
has designed their expert system to provide solutions, advice, and suggestions to common
errors encountered while using their operating systems.

Another 1970s and 1980s application of expert systems, which we today would simply
call AI, was in computer games. For example, the computer baseball games Earl Weaver
Baseball and Tony La Russa Baseball each had highly detailed simulations of the game
strategies of those two baseball managers. When a human played the game against the
computer, the computer queried the Earl Weaver or Tony La Russa Expert System for a
decision on what strategy to follow. Even those choices where some randomness was part
of the natural system (such as when to throw a surprise pitch-out to try to trick a runner
trying to steal a base) were decided based on probabilities supplied by Weaver or La
Russa. Today we would simply say that "the game's AI provided the opposing manager's
strategy."

Advantages and disadvantages

Compared to traditional programming techniques, expert-system approaches
provide the added flexibility (and hence easier modifiability) with the ability to
model rules as data rather than as code. In situations where an organization's IT
department is overwhelmed by a software-development backlog, rule-engines, by
facilitating turnaround, provide a means that can allow organizations to adapt more
readily to changing needs.

■

In practice, modern expert-system technology is employed as an adjunct to
traditional programming techniques, and this hybrid approach allows the
combination of the strengths of both approaches. Thus, rule engines allow control
through programs (and user interfaces) written in a traditional language, and also
incorporate necessary functionality such as inter-operability with existing database
technology.

■

Page 13 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

Disadvantages

The Garbage In, Garbage Out (GIGO) phenomenon: A system that uses expert-
system technology provides no guarantee about the quality of the rules on which it
operates. All self-designated "experts" are not necessarily so, and one notable
challenge in expert system design is in getting a system to recognize the limits to its
knowledge.

■

An expert system or rule-based approach is not optimal for all problems, and
considerable knowledge is required so as to not misapply the systems.

■

Ease of rule creation and rule modification can be double-edged. A system can be
sabotaged by a non-knowledgeable user who can easily add worthless rules or rules
that conflict with existing ones. Reasons for the failure of many systems include the
absence of (or neglect to employ diligently) facilities for system audit, detection of
possible conflict, and rule lifecycle management (e.g. version control, or thorough
testing before deployment). The problems to be addressed here are as much
technological as organizational.

■

Types of problems solved

Expert systems are most valuable to organizations that have a high-level of know-how
experience and expertise that cannot be easily transferred to other members. They are
designed to carry the intelligence and information found in the intellect of experts and
provide this knowledge to other members of the organization for problem-solving
purposes.

Typically, the problems to be solved are of the sort that would normally be tackled by a
professional, such as a medical professional in the case of clinical decision support
systems. Real experts in the problem domain (which will typically be very narrow, for
instance "diagnosing skin conditions in teenagers") are asked to provide "rules of thumb"
on how they evaluate the problem — either explicitly with the aid of experienced systems
developers, or sometimes implicitly, by getting such experts to evaluate test cases and
using computer programs to examine the test data and derive rules from that (in a strictly
limited manner). Generally, expert systems are used for problems for which there is no
single "correct" solution which can be encoded in a conventional algorithm — one would
not write an expert system to find the shortest paths through graphs, or to sort data, as
there are simpler ways to do these tasks.

Simple systems use simple true/false logic to evaluate data. More sophisticated systems
are capable of performing at least some evaluation, taking into account real-world
uncertainties, using such methods as fuzzy logic. Such sophistication is difficult to
develop and still highly imperfect.

Page 14 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

Shells or Inference Engine

A shell is a complete development environment for building and maintaining knowledge-
based applications. It provides a step-by-step methodology, and ideally a user-friendly
interface such as a graphical interface, for a knowledge engineer that allows the domain
experts themselves to be directly involved in structuring and encoding the knowledge.
Examples of shells include Drools, CLIPS, JESS, d3web, G2, eGanges, and OpenKBM
(initially developed as a replacement for G2).

See also

AI productions■
Artificial neural
network

■

Action selection
mechanism

■

Business Intelligence■
Business rules engine■
Case-based reasoning■
Connectionist expert
system

■

Decision support
system

■

Data Mining■
Fuzzy cognitive map■
Heuristic (computer
science)

■

Knowledge
Acquisition and
Documentation
Structuring

■

Knowledge base■
Knowledge
engineering

■

Machine learning■
OPS5■
Production system■
Rete algorithm■
Ripple down rules■
Self service software■
Type-2 fuzzy sets
and systems

■

References

^ ACM 1998, I.2.11.
^ Russell & Norvig 2003, pp. 22−242.
^ Luger & Stubblefield 2004, pp. 227–3313.
^ Nilsson 1998, chpt. 17.44.
^ McCorduck 2004, pp. 327–335, 434–4355.
^ Crevier 1993, pp. 145–62, 197−2036.
^ a b c d 7. One or more of the preceding sentences incorporates text from a publication now in
the public domain: Ashford 1988
^ "Process Control Using a Real Time Expert System", R. Moore, H. Rosenof, and G.
Stanley, Proc. International Federation of Automatic Control (IFAC), Estonia, USSR, 1990
(http://www.gregstanleyandassociates.com/whitepapers/IFAC_Estonia_1990_Paper_Reforma

8.

^ "Experiences Using Knowledge-Based Reasoning in On-line Control Systems", G.M.
Stanley, Proc. International Federation of Automatic Control (IFAC) Symposium on
Computer-Aided Design in Control Systems, Swansea, UK, July, 1991
(http://www.gregstanleyandassociates.com/whitepapers/IFAC91objectPaper.pdf)

9.

Page 15 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

^ "Real World Model-based Fault Management", R. Kapadia, G. Stanley, and M. Walker,
Proceedings of the 18th International Workshop on the Principles of Diagnosis (DX-07),
Nashville, TN, USA, June, 2007 (http://www.gregstanleyandassociates.com/dx07-final-
submission.pdf)

10.

^ Proc. International Federation of Automatic Control (IFAC) Symposium on On-line Fault
Detection and Supervision in the Chemical Process Industries, Newark, Delaware, April,
1992

11.

Bibliography

Ignizio, James (1991). Introduction to Expert Systems. ISBN 0-07-909785-5.■
Giarratano, Joseph C. and Riley, Gary (2005). Expert Systems, Principles and
Programming. ISBN 0-534-38447-1.

■

Jackson, Peter (1998). Introduction to Expert Systems. ISBN 0-201-87686-8.■
Walker, Adrian et al. (1990). Knowledge Systems and Prolog. Addison-Wesley.
ISBN 0-201-52424-4.

■

Darlington, Keith (2000). The Essence of Expert Systems. Pearson Education.
ISBN 0-13-022774-9.

■

US patent 4763277 (http://v3.espacenet.com/textdoc?
DB=EPODOC&IDX=US4763277) , Ashford, Thomas J. et al., "Method for
obtaining information in an expert system", published 1988-08-09, issued 1988-08-
09

■

External links

Artificial Intelligence (http://www.dmoz.org/Computers/Artificial_Intelligence//) at
the Open Directory Project

■

Retrieved from "http://en.wikipedia.org/wiki/Expert_system"
Categories: Artificial intelligence | Decision theory | Expert systems | Information
systems

This page was last modified on 28 February 2011 at 20:37. ■
Text is available under the Creative Commons Attribution-ShareAlike License;
additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-
profit organization.

■

Page 16 of 16Expert system - Wikipedia, the free encyclopedia

3/6/2011http://en.wikipedia.org/wiki/Expert_system

