Computer Linguistic Course

Final Project on Opinion
Mining /Story2Game
Translator

Instructor: Professor Cercone

Razieh Niazi

all 2010

Table of Contents

Chapter 1: OpinioNn IMIININGooooiiiiie et e e e st ee e e e s sttt e e e s sbteeeeesasbeeeeeensbeeaessnnsteeesennsenas 3
OpinNion MiniNg- SENTIMENT ANGIYSIS .eiiiiiiiiiiiiciiiiieeee e e e e e e e e ee e bt e e e e e aaeeesessabestraraeeaaeaeeesaaannsrrsaesseanns 4
INEFOTUCTION ..ttt ettt ettt e s bt e e a bt e s bt e e s a bt e e s bt e e sabe e e sabeeesabeeesabeeesabeeesabaeesabeeesanseesabeeesaneeenans 4
REIGEEA WOTK. ..ttt ettt ettt s et e s bt e e st et e s bt e e s bb e e s bt e e sabteesabeeesabbeesabeeesabaeesannes 5
oY Yol =To ISTe] Uk o a N @] o [<To1 4 VZ=T-J U PUUURRN 8
(O00] o U 3PP PPPPPPIIN 10
Bl (el CeT e Jo Y=Y I Yo 1V o) o NS UUUUUPN 11
) I 0] o (e Yol =I] o= ql D | = VSO UUUUUROt 11
o) IR ST Y {0l o3 =Tt [o U U RPN 11
c) Sentiment analysis algOrithm ... e e e e e r e e e e e e e e e e anreaaes 15
d) Produce summary Of the OPINIONS ...t e e e e e e e e e st baraeeeeeeeeeeesnansennes 21
oo T T =T o) =TT UL U PUUUPPN 22
Method Summaries generated by JaVa DOC:ccooo ittt e e e et r e e e e e e e e e e s b abraaaeeaaaaaeeeenns 26
F Yoo 1T e 1 P URURUURNt 28
] LT g g 1ol T TP TP OO PSP U PPRTOPI 32
Chapter 2: STOry t0 Sam@ PrOJECtuviiiiiiiiee ettt ettt ee et e e e st e e e s sab b e e e s s b baeeessstaeeeesaassaeeesanssaaeesannssneeenn 33
STONY 2 GAME TrANSIATON coiiiiiiii ittt e e e e e e e e et e e e e e e e e e e s e e s s abtbbaaaeeaaaaaeesaaasnsrssaassaaaaseesesnansrnes 34
N LU W =Y o= dU T I T U EUPR 35
SEMANTIC LADEIING PrOCESS ..oieieiieiiittee ettt e e e e e e e e et b e e e e e e e e e e e e s abtbtaaseeeaaeaeeeesssnstssaasseaaasessesnnnsrnns 36

o T=T T 0 aT=T o | AP UPTPPPRRPPPPRE 36

Chapter 1: Opinion Mining

Opinion Mining- Sentiment Analysis

Introduction

As the Web grows wider, finding information on the Web is much more difficult. People rely on search engines
to find relevant information. The question is what kind of information we can look for through web engines?
The fact is that we are only able to find keyword-based information. Recently, with the growth of social sites,
blogs and forum, with the pervasive access of users to the Internet and vast variety of products and services

available on the web, a new paradigm has been introduced called Opinion Mining.

In opinion mining, we are looking for people opinions about any product, service or any other things. The goal
in opinion mining is to mine opinions expressed in user’s generated contents like review sites, forums, social
networks, discussion groups, blogs and so on.

There are two types of evaluation: Direct opinion and comparisons. In Direct opinion, sentiment expressions
are expressed on some objects like products, services, events and so on. This itself is categorized to several
opinion search queries: 1) Find the opinion of an opinion holder like a person or organization on a topic or
object, 2) find positive/negative opinions on a particular object.[1]

Finding opinions on an object is difficult. Indeed, search engines are not able to handle these kinds of queries.

This is because of the following reasons:

- Ambiguity in natural language. People express their opinion in natural language. Natural language
processing is highly ambiguous, and vague. It has ambiguity in all levels such as lexical, syntactic,
semantic, referential, programmatic...

- Background knowledge: We understand other people talks because we have background knowledge
about their world.

- Semi-structure or unstructured data format: the users’ generated contents are typically represented
as HTML, Text or XML.

- People express their opinions in various styles: There is not any rule to express our opinions. We can
express our opinions in many different ways. See the following example. It represents different

opinions from different reviewers about camera:
Reviewer 1: 1 want to start off saying that this camera is small for a reason.

Reviewer 2: 1'm in high school, and this camera is perfect for what | use it for, carrying it around in my
pocket so | can take pictures whenever | want to, of my friends and of funny things that happen. The
only thing | don't like is the small size (8 MEG) memory card that comes with it. | have to move
pictures off of it every day so | have room for more pictures the next, and | don't have enough money
to buy the 256 MEG card that I've had my eye on for a while.

Reviewer 3: got this as it flew off the shelves.

Review 4: This is the only camera with all these capabilities.

So far, many researches have been conducted on direct opinion mining. The researches have been both at
document (review) and sentence level. However, nothing has been done on Sentiment classification with
regard to the feature’s weight based on the user’s input. The fact is that features of an object do not have the
same weight for the reviewer. Look at the following example:

Reviewer: Camera is so small and light, | can carry it everywhere. | like it but | do not like its battery.

How can we evaluate this review? The reviewer likes the size of the camera but s/he does not like its battery.
What would be the sentiment analysis result at sentence level? Positive or Negative?

One of the best strategies is to give weights to the features. By giving weight, we can highlight the importance
of some features upon other features. Specifying weights for features is totally a user-dependent process.

In this project, | introduce a new paradigm to mine direct opinions and classify them as positive, negative or
neutral. The sentiment analysis is done with respect to the feature’s weight specified by the user. | also
propose a new way to extract features and sentiment analysis. In these approaches, | employ four different
indicators in four levels including Clause level, Phrase level, Word-level, and feature-level. | apply indicators in
decision rules to mine interesting patterns. By applying these indicators, | am getting a high accurate result in
both feature extraction and sentiment analysis.

The rest of this report is organized as follows: First, | will talk about related work and how my work is different
from the existing work. Then, | present the proposed solution. | demonstrate the experimental result in
Section. Section presents evaluation and finally in Section we have conclusion and future work.

Related Work

Several works have been done for sentiment classification. These works are done at either document levels

(reviews) or sentence level.

In [1], the overall sentiment expressions of opinion holders (authors) are analyzed. In this works, data is
reviews from epinions.com on automobiles, banks, movies and travel destinations. The approach has three
steps:

* Part-of-Speech (POS) tagging , building a bi-gram model from reviews if it conforms specific patterns
like JJ NN. (JJ Adjective, NN Noun)
* Use PMI to estimate semantic orientation (SO) of the extracted phrases

* Classify the review by getting the average of SO

The other work is done by [2]. In this work, they use PMI to obtain syntactic relations and other attributes with
SVM.

[3] uses Naive Bayesian classifier with a set of data features/attributes extracted from training sentences

A bootstrapping approach is used in [8]. In this work a precision classifier is first used to automatically identify
some subjective and objective sentences. A set of patterns are then learned from these identified subjective
and objective sentences. Syntactic templates are provided to restrict the kinds of patterns to be discovered,

e.g., <subj> passive-verb. The learned patterns are then used to extract more subject and objective sentences
(the process can be repeated).

In [9], for subjective or opinion sentence identification, three methods are tried:

* Sentence similarity.
* Naive Bayesian classification.

* Multiple naive Bayesian (NB) classifiers.

For opinion orientation (positive, negative or neutral), it uses a similar method to [1], but with more seed
words (rather than two) and based on log likelihood ratio (LLR). For classification of each word, it takes the
average of LLR scores of words in the sentence and use cutoffs to decide positive, negative or neutral.

[4] uses sum up orientations of opinion words in a sentence. In this work, first sentences that have both topic
phrase and holder candidates are selected. Then, the holder-based regions of opinion are delimited. Using
POS tagger, adjectives, verbs and nouns are selected and their polarities are calculated. Finally the system
combine them to obtain the holder’s sentiment for the whole sentence. For evaluating sentiment words,
authors set a small amount of seed words by hand in two categories: positive and negative. Then, they grow it
by adding words by looking at the synonyms obtained from WordNet . To classify a new word, they use
conditional probability:

argmax P(c | w)
c

= argmax P(c | syn,,syn,....syn,)

Where w is unseen words, c is the class either positive or negative and Syn.is the Wordnet synonym of w. To
extract nouns, adjs and verbs they use POS and unigram models.

Finding clause or phrase polarities based on priori opinion words and classification are proposed in [5]. This
approach has two steps. In the first step, it classifies each phrase as neutral or polar. In the second step, it
takes all steps marked in step one as polar and disambiguities their contextual polarity. In this paper, word
context is a bag of three words. Then, it moves the sentence to phrase level and make a dependency parse
tree. Every node in the tree structure is a surface node. There are no abstract node line VP and NP. There are 5
forms of features which is evaluated in this paper: Word features, Modification Features, Sentence features,
structure features and document features.

POSEs

re port challenge neg)

N T i

The human rightsipes) a substantialipos) to

pobj
interpretation

de%de \p

he US of
1 pobj
and
conj conj

good (pos) evil (neg)
Figure 1: [5] http://www.cs.pitt.edu/~wiebe/pubs/papers/emnlp05polarity.pdf

The existing systems mostly use POS tagging, n-gram models and particular patterns. Some papers like[5] use
a bag of 4 words. There are several problems with these approaches:

- The accuracy of model is increased with a higher degree of n. However, by increasing n in an n-gram
model the number of parameters also increased. For instance if we have a vocabulary of 20,000 words, for
building a bi-gram model we needs 20000*19999 = 400 million parameters.

Model Parameters
Ist order (bigram model): 20,000 x 19,999 =400 million
2nd order (trigram model): 20,0007 x 19,999 = 8 trillion

3th order (four-gram model): 20,0003 x 19,999 = 1.6 x 107

Table 6.1 Growth in number of parameters for n-gram models.

Figure 2: n-gram parameters [10]

For this reason, approaches currently use bi-gram or tri-gram. It is hard to keep up with seven, or eight gram.
The other issue is extracting interesting patterns from n-gram models. Finding interesting patterns is totally
depends on the n in n-gram model. Consider for instance the following instance:

The only thing | don't like is the small size 8 MEG memory card that comes with it

In this sentence, we are interested in the following words (specified with Bold):

The only thing | don't like is the small size 8 MEG memory card that comes with it
Using n-gram model, what n do we need to extract all interesting words in one sequence?

My work is totally different from these works in several ways. | use Penn Treebank and parse the sentence

that is pretty fast. | employ 4 indicators including Clause level, Phrase level, Word level and Feature level in

decision rules. | apply feature’s weight in classification. My algorithm works in any users’ generated content
(free text). | use back propagation technique to fix unrecognized patterns.

Proposed Solution’s Objectives

The objective of this project is summarized as follows:

1) Classifying reviews is done in sentence level. The classification result estimated on each sentence is
positive, negative or neutral.

2) The sentiment analysis is done on any arbitrary data from user’s generated contents like forums,
review sites, social networks sites, and blogs. The data can be represented in any way. It does not
have to be in a specific format like Pros and Cons.

3) The sentiment analysis is sentence-level and feature based. Extracting interesting features play
important roles in the result.

4) Sentiment analysis process uses Penn Treebank and employs 4 indicators in parallel to estimate the
sentiment orientation of the sentences. These indicators are defined in Clause level, Phrase level,
Word level and Feature level.

5) The training and testing algorithms is done on product reviews corpus.

6) For Dataset, | use data sets provided and used in [6]. These datasets were used for sentiment analysis.
It is a feature- labeled corpus and has information on product review like canon, Diaper, iPod, Router
and MP3.

7) For mining opinion words, | used Corpus-based approach. The corpus has negative and positive
reviews in a very specific format for electronics and DVD. Datasets for each review (positive or
negative) are represented in two different files. In order to use these datasets, | have to do several
preprocessing tasks. Figure 4 shows the sample data for each review.

8) Employing weights for features in sentiment classification. Weights are entered by the user. Indeed,

they are user’s independent.

1 electronics_negative.review ‘

Igaps: 1 well:1 it_together:1 a_stack:1 the_cd:1 bottom:1 are_gaps:1 cd:3 constips:1 a_cd:1 to_fit:1

save_your:2 steady_on:1 save:2 picture:1 your_money:2 over:1 a_rug:1 nice:1 advice:1 over_very:1
ii2 slightest_smudge: 1 nice_for: 1 errors: 1 player_doesn't: 1 the_sound: 1 any_price: 1 useless: 1 if_thers
but_i:1 two:1 i:2 even: 1 without: 1 one: 1 inexpensive_cd: 1 cd_cases: 1 breaking_into: 1 break_instantl
failure: 1 people_should: 1 my_software:1 and_save: 1 implying: 1 learn: 1 the_firmware: 1 they_mention::
i:9 bang_for: 1 because_out: 1 well: 1 because_i: 1 <num>_bucks: 1 discs_at:1 that_burned: 1 burned_gc
the_failure: 1 failure: 1 burns: 1 using_the: 1 wasted: 1 cost:1 on_burning: 1 get_one: 1 more_the: 1 succe
live:2 movies_just: 1 it's_crap:1 i_rarely:1 found:1 if:1 horrid: 1 rate_:1 0-50%:1 stutter:1 hope_it's:1r
failure: 1 problems_for: 1 both: 1 in_terms: 1 with_*both*:1 others_it: 1 the_reviews: 1 reviews: 1 proved_
knew:1 say_whoops: 1 beware: 1 this_was: 1 whoops_a:1 cash:1 true...and: 1 contacting: 1 too:1 only_
only_it's: 1 promised: 1 this_purchase: 1 asking_price: 1 original: 1 it's_definitely: 1 i_was: 1 paperwork_yel
pay:1 binding_is: 1 rating_given: 1 has_discouraged: 1 tinstaafl: 1 the_flap:1 and_sleeve:1 cost:2 so:1 o
i_would: 1 cd/dvd_cases: 1 collection: 1 this_brand: 2 over_the:1 so:1 many:1 cd/dvd: 1 worst_quality: 1
product_packages: 1 confidence: 1 always_so:1 amazon.one_mistake: 1 say_i'm:1 once_i: 1 use_it:1 so:
i:5 shipping: 1 shipping_so: 1 for_other:1 the_hand.the: 1 shift: 1 poorly: 1 i_couldnt: 1 nice_asthe: 1 othe
i_can:1 about:1 about_<num>:1 product:2 say:1 spent: 1 i've_only: 1 i_would: 1 never_recommend: 1 i
before_i:2 must: 1 ads: 3 advertised: 1 a_product: 1 having_trouble: 1 buy_another: 1 with_tech: 1 maybe
would_not: 1 work: 1 this_sd:1 gb:1 product_did: 1 kingston: 1 and_sandisk: 1 product:1 sd: 2 fuji_and: 1

i1 older:1 attempting_to:1 however_they:1 only_work: 1 replacing_however: 1 same_room: 1 they_wou
extend: 1 pretty_much:1 well: 2 look: 1 that_arrived: 1 be_happier: 1 four_of: 1 <num>_bucks: 1 internet_
but_when:1 any_longer.i: 1 wore_off:1 i_was:1 longer.i: 1 was:1 off: 1 of_months:1 i_do:1 first:1 i_don'
jnr:1 reader:1 a_lemon: 1 kodak_card: 1 on_multiple: 1 unit: 1 from_jnr: 1 computer_fails: 1 detect: 1 this_

you_put: 1 books_on:1 stand_that: 1 the_stand: 1 unit_is: 1 the_description: 1 if_you:1 the_whole:1 des
flimsy_product: 1 will_just:1 a_heavy:1 parts_snap:1i'm:2 i'm_afraid: 1 flimsy:2 to_put:1 plastic_and: 1

1 electronics_positive.review ’

the_failure:1 area:1 my_cable:1 shut:1 equipment_due: 1 spike:1 minutes_this:1 and_lcd: 1 down_e:
to_work: 1 breif: 1 usually_an: 1 month_now: 1 no:1 conditioning_usually: 1 good_for: 1 power_adaptel
always: 1 warning: 2 to_tell: 1 sounds: 2 is_happening: 1 the_unit: 2 lot: 1 like_a: 1 what_is: 1 single:1 s
protect_your: 1 probably_satisfy: 1 choice: 1 on_your:1 company: 1 breakage_these: 1 cases_depend
one_can:1 always: 1 recently_according: 1 sd_card:2 amazon_for: 1 product: 1 very:2 problem_one: 1
paid_i'd: 1 wore_out: 1 shell_and: 1 was_a: 1 nicely.so:1 i_paid: 1 case: 1 large_collection: 1 cd's_and:
card_review:1 goes_for: 1 value: 1 great: 1 kingston: 2 kingston_1gb: 1 value_for: 1 great_value: 1 this
wild: 1 use_it:1 sd_card: 1 trail: 1 very:2 game: 1 camera_for: 1 buy_kingston: 1 pictures_and: 1 i_wou
muc:1 card:2 had_no: 1 you_muc:1 delivery: 1 you: 1 problems: 1 was_prompt...thank:1 no:1 i_had:1
cf:1 olympus_and: 1 it_seems: 1 expert: 1 it_takes:1 my:2 though:2 card:3 going_through: 1 though_
get-aways_and: 1 respectable_i've: 1 breeze_pretty: 1 traveling_with: 1 alot:1 use_it: 1 not_bose:1 o
recomend_this:1 and_just: 1 reader: 2 attached_to:1 my_camera: 2 cables:2 case: 1 picture: 1 i_coul
long_as:1 about: 1 device_so: 1 lit: 1 a_bright:1 glow: 1 it_other:1 say:1 about_it: 1 as_long: 1 a_simg
after_reading: 1 about: 1 thinking_about: 1 the_reviews:1 case:1 lot: 1 product: 1 buying_a: 1 <num:>_
i12 products: 1 sandisk_products: 1 highly_recommend: 1 sandisk: 2 very_pleased: 1 fan:1 sandisk_fan
somewhere: 1 replacement_parts: 1 unrelated: 1 linked_to: 1 first_the:1 only_<num>:1 the_volume: 1
i_can:1 shutter_on: 1 rebel_xt:1 lag_or:1 my_camera:2 or_slow:1 cf_card: 1 rate_of:1 no:1 frame: 1
gb:1 pro:1 and_reliable..well: 1 ultra: 1 worth_the:1 worth: 1 stick_pro:1ii:1 fast:1 <num>_gb:1 gb_
and_while: 1 ii_is: 1 ultra_ii:1 was_fine:1 my_camera: 1 quick: 1 i_needed: 1 the_ultimate: 1 down_the:
i_returned: 1 secure_digitial: 1 was_not:1 me:1 mb:1 ultra:1 (sdsdh-512-901):1 to_me: 1 ii:1 item:3
great:1 download: 1 nicely_:1 the_job: 1 nice_product: 1 recommend_this: 1 definitely:1 card: 1 memc
ones: 1 have_several: 1 products: 1 than_my:1 sandisk_products: 1 i:1 than:1 old_ones:1 them_are::
add_on:1 about:1 is_great: 1 the_extra: 1 without_worrying: 1 sdsdh-1024-901:1 love_to:1 for_your

Figure 4: Corpus used for extracting opinion words

Corpus

For this project, | use two types of corpus:

For customer reviews, | use data sets provided and used in [6]. It is used for sentiment analysis. It is a feature-
labeled corpus and has information on product review like canon, Diaper, iPod, Router and MP3. It contains
two files:

= Unlabeled Corpus from Reviews on Canon S100
= Labeled Corpus from Reviews on Canon S100.

[t

small[+1]##] want to start off saying that this camera is small for a reason.

##Some people, in their reviews, complain about its small size, and how it doesn't compare with larger
camera[+3],size[+2]##I'm in high school, and this camera is perfect for what I use it for, carrying it ar
memory[-2]##The only thing I don't like is the small size (8 MEG) memory card that comes with it.
room[-2]##1 have to move pictures off of it every day so I have room for more pictures the next, and
memory[-1][s],battery[-1]##4 larger memory card and extra battery are good things to buy.
pictures[-2]##0ther than that pictures taken in the dark are not as nice as I'd like them,
camera[+3]##I'd say that this camera is perfect.

(t]

compact[+2]##0K, not quite everything...but this camera is so compact that you will have it by your ¢
(t]

size[+2]##1 bought this camera for the same reason many of you are considering it, or have already bc
small[+3]##It is amazingly small, it's hard to believe all that has been packed into this camera.

##] take it with me everywhere,literally,

small[+3],durable[+2]##it is so small that I am able to keep it in my pocket, and I don't have to fear tt
covering[+2]##There is also a small covering for the lens, so you need not worry that the lens will get
picture[+3],small[+2]##The picture quality surprised me, when I first saw this camera I saw how small
picture[+3]##The picture quality of this camera is outstanding {taking its' size and price into considera
##However, I do have a few things to complain about...

battery[-2]##First off, the battery.

battery[-2]##This camera uses a lithium battery, I find lithium batteries to be highly inconvenient; bec
battery[-2]##MNot only is it inconvenient, but also the battery life span is short.

##The longest I've had it work was about 1 hour and 45 minutes.

batteries[-1]##This isn't uncommaon in cameras, though, just as long as you bring your charger and sp:
zoom[-2]##Another problem I had with this camera was the zoom function.

zooms[-2]##Such a small zoom length that you would think that the zoom would be silent since it harc
##NVery wrong.

zoom[-2]##The zoom function on this camera is so loud that sometimes you will be unable to use it if »
start-up[-2]##Even just turning the camera on will move the lens a little, resulting in a noisy start-up.

Figure 4: the labeled corpus from reviews on Canon S100. Labels were done manually by authors

For building opinion words dictionary, | use another corpus demonstrated in Figure 4. It contains two files:

= Electronic Positive Reviews for building positive opinion words
= Electronic Negative Reviews for building a dictionary of negative opinion words

Datasets are noisy. | have to perform several preprocessing tasks.

The Proposed solution

In sentiment analysis, the main idea is to extract features and determine whether the opinion on the features
is positive, negative or natural. Then, provide an opinion summary of multiple features in a sentence. Based
on the tasks described above, the sentiment analysis process is done in the following steps:

a) Preprocessing Data
Customer reviews corpus which contains data from Reviews on Canon S100 is very noisy. | performed the
following tasks:

= Remove punctuation marks
= Convert words to lowercase

For building opinion words dictionary, | use other corpus demonstrated in figure 4. The problem with this
corpus is that the current data is useless. In order to get it work, | have done the following tasks:

= Tokenize
= Remove stop words
= Build a term-frequency based dictionary
o Example:
= perfect:32 (negative words dictionary)
= Perfect: 272 (positive words dictionary)

WOow!
worked

= Serialize
In order to load the dictionary faster, | serialize the dictionary objects.

b) Feature Extraction

The objective of feature extraction is to extract features from online product reviews. There are two common
formats available on the Web: 1) Pros and Cons format and 2) Free format. The objective of the proposed task
is to extract features from free text. An example of such review is shown in the following figure. The features
have been specified in Bold:

I want to start off saying that this CaM@Xa is small for a reason. Some

people, in their reviews, complain about its small size, and how it doesn't

compare with larger cameras.

I'm in high school, and this camera is perfect for what I use it for, carrying

it around in my pocket so I can take pictures whenever I want to, of my
friends and of funny things that happen.

The only thing I don't like is the small size (8 MEG) IMEMOXY card that
comes with it. I have to move pictures off of it every day so I have XOOIN for
more pictures the next, and I don't have enough money to buy the 256 MEG card
that I've had my eye on for a while.

A larger memory card and extra battery are good things to buy. Other than
that pictures taken in the dark are not as nice as I'd like hem, I'd say
this camera is perfect.

the PhotoStitch software s very cool if you want to do any 360 degree

panorama shots.

Figure 5: Features extracted from users’ generated contents

The following diagram shows the proposed solution to extract features:

Sentence Detector .| Tokenizer | . Part-Of-Speech Tagging |5 ChunkingSentences —
v | [
/.\ddtokenstoa AddPOStagsto Add Chunked
list alList Sentencestoalist

Stemming le | Ignore commonwords tFO'Zeadll_t:)kenfrom %—
oKenslis

v

H v Phrase- leveltag

r
Recognize other .
semanticoriented .
tokensinside the same
base NP ‘

Checkthe tokens's

Checkthetoken’s
word-leveltag

D —

Diagram 1: Proposed algorithm for feature extraction

Addtothe
Feature list

As demonstrated in Diagram 1, in order to extract features, given a free style text, sentences are detected and
words are tokenized. The next step is Part-Of-Speech tagging. POS tagging is the process of making up the
words related to a particular part of speech. The most common POS tags in English in the Word-level are:
noun, verb, adjective, adverb, pronoun, preposition, conjunction and interjection.

In order to obtain semantic orientation of words and find out how words are inter-related together, | employ
chunkers. Chunkers are the process of analyzing a sentence identifying constituents. The chunking process is
done in three levels: Clause-level, Phrase level and Word level. For Feature extraction, | only use Phrase level
and Word level. But for sentiment analysis, | use all three levels as well as feature level as four indicators to
specify the position of each word on the word’s context dimension.

For each token recognized in the sentence, the following task is done to extract features:

If token is a common words, ignore the token, go to the next token

2. Perform stemming. stemming is the process for reducing inflected (or sometimes derived) words to
their stem, base or root form . A stemming algorithm reduces the words "fishing", "fished", "fish", and
"fisher" to the root word, "fish". This is necessary, because for example, the “Camera” and “cameras”
or “Pictures” and “Pictures” introduce the same feature.

3. Use chunker list created in Chunking process, to extract phrases. Table 1 shows a list of phrase tables
from Penn Treebank Tags:

ADJP Adjective Phrase.
ADVP Adverb Phrase.
CONJP Conjunction Phrase.
FRAG Fragment.

INTJ Interjection. Corresponds approximately to the part of speech tag UH

LST List marker. Includes surrounding punctuation.

NAC Not a Constituent; used to show the scope of certain prenominal modifiers within an NP.
NP Noun Phrase.

NX Used within certain complex NPs to mark the head of the NP.

PP Prepositional Phrase.

PRN Parenthetical.

PRT Particle. Category for words that should be tagged RP.

QP Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.
RRC Reduced Relative Clause.

ucp Unlike Coordinated Phrase.

VP Vereb Phrase.

Table 1 : Chunk tags in Phrase level

In the phrase level, | am only interested in Noun phrase (NP) for feature extraction. In phrase level in chunker
list, each phrase contains one or more words. These words are semantically related together. In chunking NP,
the first word in a Noun phrase (NP) is marked as “B-NP” and the other word inside the same phrase (base NP)

is marked as “I-NP”. The following shows an example:

Figure 7 shows a screen shot from the project output:

: Analyzer |: Output - OpinionMining {run) $ x :Tasks

u> Sentences:....The only thing I don't like is the small size 8 MEG memory card that comes with it

Tagged Tokens:
DT, RB, NN, PRP, VEP, RB, VB, VBZ, DT, JJ, NN, CD, NNP, NN, NN, WDT, VBZ, IN, PRP,
% List Size:19

Chunked sentences:
B-NP, I-NP, I-NP, B-NP, B-VP, I-VP, I-VP, BE-VP, B-NP, I-NP, I-NP, I-NP, I-NP, I-NP, I-NP, B-NP, B-VP, B-PP, EB-NP,
List Size:19

Figure 7: A screen shot of the program’s output (for feature extraction)

4. Forthe tokens in the same base NP, | am only interested in extracting tokens whose POS tags are
either NN or NNP. The extracted tokens are features.

c) Sentiment analysis algorithm

Sentiment analysis is done using four indicators:

- Chunking in Clause level

- Chunking in Phrase level

- Chunking in Sentence level

- Feature-level. Features extracted already as described in Section b.

The reason for selecting 4 indicators to perform sentiment analysis is because of the ambiguity levels in
natural language. In spite of some existing algorithm which either use review text in a specific format like
Pros and Cons or have some limitations in sentences, this algorithm works on every user s’ generated
content (Free format), and because of the difficulty layers | have to add extra layers to resolve issues.

| use 4 indicators as | already explained. The proposed algorithm is able to identify words which are
semantically oriented in a sentence. | use clause level by chunking the sentences

S simple declarative clause, i.e. cword and verb inversion.

SBAR Clause introduced by a (possibly empty) subordinating conjunction.

SBARQ Direct question introduced by ¢ word or a phrase. Indirect questions and relative clauses shot
SINV Inverted declarative sentence, i.e. one in which the subject follows the tensed verb or modal
sQ Inverted yes/no question, or m question, phrase in SBARQ.

Table 2: Chunking tags in Clause level

L Sentence Detector J» | Tokenizer ,)L Part-Of-Speech Tagging J,‘_{ Treebank Chunking
v v

Addtokenstoa
list

\

Prunethetree by
applying interesting
patterns inthreelevels: |«

AddPOStagsto
alist

[Build a hierarchy

modelof the sentence
Lin linear form

Start processing
sentiment analysis

algorithm on prunedtree

I

Clause, Phrase and
Words
J
\l/
Extract opinion Words from

linearform of prunedtree

T

Compare against sentiment
dictionary

v

L Score opinionwords

v

Extract semantically related
verbsto opinion Words from
linearform of prunedtree

W

Sentiment
Dictionary

Apply weightsforeach
feature

1
\

A\
{ Score verbs J

|
Wiza

Diagram 2: The proposed sentiment analysis algorithm

The following demonstrates the processing tasks to perform sentiment analysis:

Sentences

Add Chunked
Sentencestoalist

Parsing the chunked
sequences using
\Treebank parser

Sentiment Result:
Positive,
Negative, Nuetral

XiWy

OverallScore {(Sumup)
D)) f@

The process starts from detecting and tokenizing

sentences. Figure 8 shows several sentences example detected by sentence detector module:

Simple Sentences:

- I want to start off saying that this camera is small for a
reason

Complicated sentences:

- Some people 1in their reviews complain about its small size
and how it doesn't compare with larger cameras

- I have to move pictures off of it every day so I have room for
more pictures the next and I don't have enough money to buy
the 256 MEG card that I've had my eye on for a while

- The picture quality surprised me, when I first saw this camera
I saw how small it was an instantly assumed that the picture
quality would not be good--but I was wrong!

- This camera uses a lithium battery; I find lithium batteries

1A . . ' 1 e

Figure 8: Some sample sentences detected by sentence detector module

2. Every detected sentence is given to the tokenizer
module as input and the output is an array of tokenized words in order.

3. Given the sentence and tokenized words, POS tagging
is performed and a POS tag is assigned to each tokenized word. Figure 9 shot shows part-of-speech

Simple Sentences: I want to start off saying that this camera is small for a
reason

Tagged Tokens:
PRP, VBP, TO, VB, IN, VBG, IN, DT, NN, VBZ, JJ, IN, DT, NN,
List Size:1l4

Complicated sentences: This camera uses a lithium battery; I find lithium
batteries to be highly inconvenient; because what if you are on vacation, where
the nearest place to buy batteries is just a gas station--there is no way that
you are going to find lithium batteries there.

Tagged Tokens:
DT, NN, VBZ, DT, NN, NN, PRP, VBP, NN, NNS, TO, VB, RB, JJ, IN, WP, IN, PRP, VEP, IN, NN, WRE, DT, JJS, NN, TO, VB, NNS, VBZ, RB, DT, NN, NN, RB, VBZ,
List Size:d4é

Figure 9: POS tags for each sentence generated by POS tagging module

Given the POS tags and tokenized words, Penn
Treebank chunking is performed on the sentences. Table 1 and 2 show the detailed description about

tags. Figure 10 shows sample example generated from the chunker module:

Simple Sentences:

- I want to start off saying that this camera is small for a reason

Chunked sentences:
B-NP, B-VP, I-VP, I-VP, B-PP, B-VP, B-SBAR, B-NP, I-NP, B-VP, B-ADJP, B-PP, B-NP, I-NP,
List Size:1l4

Complicated sentences:

- This camera uses a lithium battery; I find lithium batteries to be highly
inconvenient; because what if you are on vacation, where the nearest place
to buy batteries is just a gas station--there is no way that you are going
to find lithium batteries there.

Chunked sentences:
BE-NP, I-NP, B-VP, B-NP, I-NP, I-NP, E-NP, B-VP, B-NP, I-NP, B-VP, I-VP, B-ADJP, I-ADJP, E-PP, B-NP, B-SBAR, B-NP, B-V

List Size:46

Figure 10: Chunks list generated by Chunker module

The next step is parsing chunked sentences. By pursing

chunked sentences, we make a hierarchical
tree for each sentence. The tree is represented in a linear form.

Diagram 3 demonstrates how the parsed tree look likes [7].
(S (NP (NNP John))
(VP (VPZ lowves)
(NP (NNP Mary)))
(. 1)

Diagram 3: Parsed tree

The following figures show the generated results from the parser module (Treebank parser):

Simple Sentences:
- I want to start off saying that this camera is small for a reason

TreeBankl.... (TOP (S (NP (NP (DT Some) (NNS people)) (PP (IN in) (NP (PRP{ their) (NNS rewviews)))) (VP (VBP complain) (PP (IN ab¢
TreeBankZ.... {(TOP (5 (NP (NP (DT Some) (NNS people)) (PP (IN in) (NP (PRP{ their) (NNS rewiews)))) (VP (VBP complain) (UCP (PP ({

Complicated sentences:

- This camera uses a lithium battery; I find lithium batteries to be highly
inconvenient; because what if you are on vacation, where the nearest place
to buy batteries is just a gas station--there is no way that you are going
to find lithium batteries there.

TreeBankl....(TOP (& (NP (DT This) (NN camera)) (VP (VBZ uses) (NP (DT a) (NN lithium) (NN battery)) (S (NP (PRP I)} (VP (VBP finc
TreeBankZ....(TOP (& (NP (DT This) (NN camera)) (VP (VBZ uses) (NP (DT a) (NN lithium) (NN battery)) (SBAR (& (NP (PRP I)) (VP (VE

Figure 11: Parsing sentences generated by Treebank parser

The next step is pruning the linear- format tree. This is
done by applying interesting patterns on three indicators containing Clause level, Phrase level and
Word level computed in the previous steps. Figure 12 shows how irrelevant words are pruned from
the parse tree:

Sentence: The quick brown fox jumps over the lazy dog.

Sentences:....The quick browm fox jumps over the lazy dogy

Tagged Tokens:
DT, JJ, JJ, NN, VBZ, IN, DT, JJ, NN,
List Size:$S

Chunked sentences:
B-NP, I-NP, I-NP, I-NP, B-VP, B-PP, B-NP, I-NP, I-NP,
List Size:9

TreeBankl.... (TOP (NP (NP (DT The) (JJ quick) (JJ brown) (NN fox) (NNS jumps)) (PP (IN over) (NP (DT the) (JJ lazy) (NN dog)))))
TreeBank2.... (TOP (8 (NP (DT The) (JJ quick) (JJ browm) (NN fox)) (VP (VBZ jumps) (PP (IN over) (NP (DT the) (JJ lazy) (NN dog)))))
Stack:

(, {, NP, (, NP, (,), (, J7, quick,), (, JJ, brown,), (, NN, fox,), (, NNS, jumsps,),), (, (,), (, WP, (,), (, JJ, lazy,)

, {(, NN, dog,),),)
C:p----(j

List Size:43

Sentence2: | want to start off saying that this camera is small for a reason.

Sentences:....I want to start off saying that this camera is small for a reason

Tagged Tokens:
PRP, VBP, TO, VB, IN, VBG, IN, DT, NN, VBZ, JJ, IN, DT, NN,
List Size:l4

“hunked sentences:
3-NP, B-VP, I-VP, I-VP, B-PP, B-VP, B-SBAR, B-NP, I-NP, B-VP, B-ADJP, B-PP, B-NP, I-NP,
List Size:l4

TreeBankl.... (TOP (S (NP (PRP I)) (VP (VBP want) (S (VP (TO to) (VP (VB starc) (PP (IN off) (S (VP (VBG saying)
TreeBankZ....(TOP (S (NP (PRP I)) (VP (VBP want) (S (VP (TO to) (VP (VB start) (PRT (RP off)) (S (VP (VBC saying

(SBAR (IN that) (S$ (NP (DT this) (NN cas
1) (SBAR (IN that) (5 (NP (DT this) (NN ¢
L

Stack:
(, (, &, (,NP, (,),), (, VP, (, VBP, want,), (, S, (, VP, (,), (, VP, (, VB, staxc,), (, (,), (,

(, VBG, saying,), (, (,), (, 8, (, NP, (,), (, NN, camera,),), (, VP, (, VBZ, is,), (, ADJP,

(, 33, small,),), (, (,), (, NP, (,), (, NN, reason,),), },),),),),),

List Size:89

Figure 12: Pruned tree (all irrelevant words are pruned)

Now that we have the pruned tree, sentiment analysis
is just started. It starts from the inner sentence (tag S), looking for interesting pattern in phrase level
like NP and VP and in the word level like “(,NN, word,) “and “(,NNP, word,)”. Then, it compares the
word against the features list. If it is a feature, it looks for verb phrase and adjective phrase. If it is a
negative verb, it gives a score of -1, otherwise 1 to the verb. The same is done for adjectives. It
compares adjective against the opinion words dictionary. If the word is in a negative dictionary and
has a higher term frequency than positive dictionary, a score of -1 is given to the adjective; otherwise
1. The total opinion score is the sum of verb and adjective scores.

Sentence: | want to start off saying that this camera is small for a reason.

Interesting patterns:
camera,
List Size:l

is,
List Size:l

small,

List Size:l

Sum of Adj: 1
Sum of opinion: 2

Figure 13: extracting interesting patterns from the pruned tree
8. Classification is done based on the following function:

Positive Z>0
—_ Neutral Z=0
f(z) = -
Negative Z<0
Z in this function is sun of opinions for one sentence.
d) Produce summary of the opinions

Features weights easily can be applied in sentiment analysis process. Given a weight W; to the feature i, the

formula is changed as follows:

Score verbs
v [Sentiment
- Wiz Result: Positive,
Score opinion words W Negative,
Overall Score (Sum f(z) Nuetral
. Z;Kﬂ% ap) Nuetral

Apply weights for each
feature Wi=w;

v WY

Figure 14: Applying weights in formula

In order to apply weights, a score of -1 is given to negative verbs and a score of 1 is given to positive verbs. A

weight of 1 is also given to the verbs.

Regarding the opinion words, a score of -1 is given to the bad opinion words, and a score of 1 is given to the
good opinion words. A weight of W;is also given to each feature.

Consider, for instance, the following sentence:
“the size is small but the battery is not good”
Given a weight of 5 to the battery and a weight of 2 to the size, the total score would be:

2*(1*1)+5*(-1*1)= 2-5= -3 - Result: Negative

Experiment Result
Experiment result is summarized in two categories:

= Feature extraction
= Sentiment analysis

As explained already in Corpus section, there are two corpuses available: 1) Unlabeled Corpus from Reviews
on Canon S100 and 2) Labeled Corpus from Reviews on Canon S100.

| performed my feature extraction algorithms on unlabeled corpus. Then, | wrote a program to extract
features from Labeled corpus. Features on labeled corpus were done by authors manually. In some cases
verbs and adjectives are considered as features. Also, features in labeled corpus do not stemmed. For
instance, “picture” and “pictures” are considered as two separate features where as in my feature extraction
algorithm, | perform stemming. | also do not consider verbs and adjectives as features. Figure 15 shows a
screen shot of the features extracted by two different strategies. The red color shows the errors in feature
extraction. The white color represents extra features extracted by the proposed algorithm comparing with the
labeled features. A complete list of features is demonstrated in Appendix.

Labeled Features
battery
best built
buttons
camera
cap
casing
color balance
color rendering
controls
delay
durable
expandability
exposure
features
fits
flash
focus
housing
image quality
images
light
looks

mode

NNs
verb not as a feature

memory
memory expansion
metal case

optical zoom
performance
performs

picture

picture detail

My Features
advantage
amazon
August
auto mode
auto mode point
baby
balance
Battery
battery charger
battery life
battery photography
battery pack
boating
button
calculator watch
camera
cannon
Canon
capture moment
censorship
Christmas
clip max
color rendering
concern
consideration
control
course
crap
default resolution
dinner

download

Figure 15: Features extracted from unlabeled corpus (right side) and labeled corpus (left side)

Relevant

Retrieved

\

Non-retrieved

L

Relevant&Retrieved
Retrieved

_

Precision =

Irrelevant

Relevant&Retrieved
Relevant

Recall =

Due to two different strategies to extract features described above, | am not able to calculate Precision and
Recall and compare two algorithms. However, the following shows the result from the proposed feature
extraction algorithms:

The proposed feature extraction algorithm:

Proposed Feature Features extracted from
Extraction labeled corpus

Table 3: Features extracted by two different strategies
Retrieved= 68 out of 112 retrieved = 68

Regarding the sentiment analysis and finding interesting patterns, | used decision rule learning, general to
specific search. To do this, | performed my algorithm on unlabeled corpus by running the program. As it
classified the opinion, | compared them with the labeled corpus, If they matched, | removed that particular
reviews from unlabeled corpus. Figure 16 shows some of these results :

Labeled Corpus

My Algorithm Manually(Ding and Liu)

. I want to start off sayingthat this camerais small for a
reason o Sma"[+1]
= Sumof opinion: 2
. I'min high school and this camera is perfect for what |

use it for carrying it aroundin my pocket sol can take
pictures whenever lwantto of my friends and of funny

things that happen = camera[+3],size[+2]

= Sum of opinion: 5

= The only thing | don't like is the small size 8 MEG
memory card that comes with it
= Sum of opinion: -1 o memory[_2]
. I have to move pictures off of it every day sol have room
for more pictures the next and | don'thave enough

money to buy the 256 MEG card that I've had my eye on
for awhile

= Sum of opinion: -1 o room [_2]
. I'd say that this camera is perfect
= Sumof opinion: 2 - [+]
. | bought this camera for the same reason many of you camera 3
are considering it or have already bought it it's size

= Sumofopinion: 3 . Slze[+2]

. The picture quality surprised me when | first saw this
camera | saw how small it was an instantly assumed that
the picture quality would not be good but | was wrong

= Sumof opinion: 1

picture[+3]

Figure 16: The proposed sentiment analysis algorithm (left side), Labeled corpus manually (right side)

Method Summaries generated by Java

Doc:

Method Summary

=tatic void

=tatic void

=tatic java.util .Map

=tatic void

=tatic void

=tatic boolean

=tatic void

=tatic veoid

=tatic void

=tatic void

=tatic boolean

=tatic void

void

=tatic void

chunkingSentences ()

Chunking sentences

convertListToMap ()
convert a list to Hashmap structure

deserializableFromFile (java. lang.3tring filename)

Perform desenalization of opinion words

featureExtraction()
Feature extraction method

findHamesInSentences ()
Find names in a text

isBadVerb (java. lang.3tring wverb)

Check if the word 1s negative

loadCommon¥Words ()

Load Stop words

loadDoctoHashMap (java. lang.String filenawe,

Read a file and load it to Hashmap

loadFeatures ()

Load Features from the file

main (java. lang.3tring[] args)

matchFeature (java. lang.3tring mFeature)
Match features

posTags ()
Part of Speech tagging

preprocessText (java. lang.String sentence)

Preprocessing Task

printArray(java.util.List list)

java.util.Map map)

static java.

Java.

static java.

static java.

static java.

=tatic void

static void

=tatic void

lang.3tring

lang.3tring

lang.3tring

static void

=tatic void

lang.3tring

lang.3tring

static veoid

static veoid

printaArraylist (java.util.List list, java.lang.3tring message)
Print ArrayList

printHashMap (java.util.Map m, int index)
Print Hashmap

prunTree (java. lang.3tring parsedSen)
Pruns the tree

removePunctuations (java. lang.3tring sentence)
Remove punctuation marks from documents

removeStopWords (java. lang.3tring sentence)
Remove stop words

sentimentlnalysis ()
Sentiment Analysis

segquencefnalyzer (java. lang.3tring word)
Find synsets from WordNet

serializableToFile (java.util.Map o, java.lang.String filename)
Perform senalization of opinion words

spansToStrings (opennlp.tools.util.3pan([] spans, java.lang.3tring s)
Convert Span Object to a String

stemming (java. lang.3tring word)
Perform stemming

writeToFile (java.lang.3tring filename, java.util.List<java.lang.3tring> list)
Write a list to a file

writeToFileHashMap (java. lang.3tring filename, java.util.Map m)
Write a hashmap structure to a file

Appendix:

Feature Extraction:

Labeled Features
battery
best built
buttons
camera
cap
casing
color balance
color rendering
controls
delay
durable
expandability
exposure
features NNs
fits verb not as a feature
flash
focus
housing
image quality
images
light
looks

mode
memory
memory expansion
metal case
optical zoom
performance
performs
picture
picture detail

My Features
advantage
amazon
August
auto mode
auto mode point
baby
balance
Battery
battery charger
battery life
battery photography
battery pack
boating
button
calculator watch
camera
cannon
Canon
capture moment
censorship
Christmas
clip max
color rendering
concern
consideration
control
course
crap
default resolution

dinner
download

picture quality
pictures

price

prints

read
resolution
rugged

s100

sharp

shots

small

smaller
smallest
software

tiny

usability

use

weighs

zoom range
auto color balance
auto focus
auto mode
automatic modes
batteries

body

bundled software
cameras

canon s100
capacity

case

color and light
compact

Adj

ease
Ebay
edge
Elph $100
email

example
expandability
exposure
Exposure compensation
file

film

film equivalent
flash

Fool proof
front zipper
function

grip finger
hate

kayaking

king

LCD

LCD color

light

light compact
lithium

lo behold

loh behold
luck

macro
macro/infinity mode
Maine

manual

covering

design

download
drivers
dynamicrange
ease of use

elph s100

fits

fun

functionality

hot

jewel

led

lens

macro

macro mode
manual mode
manual modes
mode

movie mode

on camera controls
panorama mode
panorama modes
panorama setting
photos

pics

pictures of people
price

processing
product

purchase
resolution setting

memory card
metal case -NOT PLASTIC.
mind camera
money
month

mylife

NYC

oil

panorama

person

photo quality paper
PhotoStitch software
pics

picture

practice

price

pricy

print

print computer
problem camera zoom function
quality

razor

rendering
resolution

room thing battery
sale

Santa

screen
Second

size

snow background
story

room
s100
screen

size

smal
snapshots
software
startup

tft

tft screen
use
viewfinder
wait

work

zoom
zooms

sunlight
Tamrac
time
trouble
Turkey
usability

c
wn
|r.

vacation

Viking
Walgreen
Windows

work

XP

Zoom
ZoomBrowser
auto mode
Nova Scotia
Photoshop
room

TFT.

XP usb software
best-built

ease

metal case
picture detail
software
panorama mode

References:

[1] Turney, P.D. (2002), Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification of reviews, Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL'02), Philadelphia, Pennsylvania, 417-424

[2] Mullen T. and Cllier N. (2004), Sentiment Analysis using Support Vector Machines with Diverse
Information Sources, Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP’ 04), 412-418

[3] Wiebe, R. Bruce, and T. O’Hara. (1999). Development and use of a gold standard data set for
subjectivity classifications. Proceedings of 37th Annual Meeting of the Assoc. for Computational
Linguistics (ACL-99), 246—-253

[4] Kim, S.-M. and E.H. Hovy. (2004). Determining the Sentiment of Opinions. Proceedings of the COLING
conference. Geneva, Switzerland.

[5] Wilson, T. and Wiebe, J. and Hoffmann, P. (2005),Recognizing contextual polarity in phrase-level
sentiment analysis,Proceedings of the conference on Human Language Technology and Empirical
Methods in Natural Language Processing,347-354

[6] Opinion Mining, Sentiment Analysis, and Opinion Spam Detection Review Datasets (9 products),
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html (Accessed: Dec 20, 2010)

[7] Treebank, http://en.wikipedia.org/wiki/Treebank (Accessed: Dec 18, 2010)

[8] Rilloff and Wiebe. (2003). Learning Extraction Patterns for Subjective Expressions, Proceedings of the
Empirical Methods in Natural Language Processing (EMNLP 03).

[9] Yu and Hazivassiloglou . (2003). Towards Answering Opinion Questions: Separating Facts from
Opinions and Identifying the Polarity of Opinion Sentence (EMNLP-03).

[10]Manning, C.D., and Schutze, H. (1999). Foundations of Statistical Natural Language Processing, MIT
Press, Cambridge, MA.

Chapter 2: Story to game Project

Story 2 Game Translator

The objective of this project is to translate a story written in natural language to a mobile game.

Here is an example of the story:

Once upon a time there was a king and queen who lived in a golden castle
with their beautiful daughter. One night an ugly ogre captured the
beautiful princess and locked the princess in his tall, dark tower. The
king and gqueen were very sad. They promised to give a bag of gold to the
knight that rescued the princess. All the knights in the land wanted to
rescue the princess. They rode to the ogre's tower.

The ogre was so scary. They rode away as fast as they could. The next day
a friendly dragon was flying over the ogre's tower when he heard the
princess cry for help. The dragon blew the ogre into the ocean. The
dragon put the princess on his back and flew into the sky.

In the end, they flow over the tower and the castle, over the mountains
and caves. The princess was so happy to be free she kissed the dragon.
All at once he turned into a handsome prince and they lived happily ever
AT,

Figure 1: A smaple story

The same algorithm proposed for opinion mining described in Chapter 1 can be used in Story to game project.
Here we have three abstract layers:

= Natural Language
= Resources like images, characters pictures
= Game API (using J2ME)

J2ME standing for Java micro edition is a Java language for mobile devices. The java-enabled devices like
Nokia, Blackberry, Sony Ericsson, and Motorola support J2ME.

In natural language layer, we have text. Each word in the text is considered as an attribute. In contrast, in
Game API using J2ME we have only a restricted number of objects with a variety of methods and arguments.
The primary task in this project is to map words to J2ME objects (See Figure 2). However, due to the limited
amount of time, | only implement the first layer.

Too many attributes

I

\

Word 1 { i Word2 | ee e s o o } Wordn J Natural language layer
\ AN _
A - d
Restricted Objects in J2ZME

Game API

Sprite TiledLayer, AnimatedTile

Images Frames
Resources

Figure 2: Abstract layers in Story2Game project.

Natural Language Layer

Given two many words in this layer the primary task is to obtain key features. What are key features? Key
features are words that cam map to the Game API. They are represented as a tuple of <subject, verb, object>.
To achieve this approach, insignificant words must be pruned from the sentences. In order to prune
insignificant words , we can use the same algorithm proposed in Chapter 1. Diagram 1 shows the steps
implemented to prune insignificant words:

Sentence Detector }, ‘_,| Tokenizer }» ‘\,{ Part-Of-Speech Tagging }, _____-| TreebankChunking }7
) Sentences
A \L' ‘I/
Addtokenstoa Add POS tagsto Add Chunked
list alist Sentencestoalist

[Prunethe tree by

applying interesting ‘ Build a hierarchy Parsing the chunked
patterns inthree levels: < model of the sentence [< sequences using =
Clause, Phrase and ‘ in linear form | Treebank parser

Words

J

, Start Semantic labeling of
the significantwords

Diagram 1: Steps implemented to prune the insignificant words

The description about each module has been presented in Chapter 1.

The only part that is new in Story2Game project and not described in Chapter 1 is “semantic labeling of the
significant words”. By performing this module, indeed, we are able to map the significant words to the game
APl objects. | will discuss about Semantic Labeling Process later in the next section

Semantic Labeling Process

Since we have the pruned tree, we can perform semantic labeling process. We have a limited number of labels
here. Indeed, labels are defined in the domain of a game. Table 1 shows some of these labels.

Action Move, walk, fast, capture,lock
Instrument Toy, gun,

Agent Nouns

Collision hit

Emotion Sad, happy

Table 1: Words mapped to the semantic labels (initial seed)

Words in Table 1 are considered as initial seed. We can obtain more words for each label by getting the
synonyms from WordNet dictionary.

After mapping words in pruned tree to semantic labels, we can build a conceptual graph. Semantic labels
specify conceptual relationship in conceptual graph. Given the conceptual relations, we are able to perform a
Java script code.

Here is a rough idea about semantic labeling. The process needs to be trained for a specific story.

Experiment

Given the following story, we are only interested in mining the following words described as Bold in Figure 3.

Once upon a time there was a king and queen who lived in a
golden castle with their beautiful daughter. one night an ugly
ogre captured the beautiful princess and locked the princess
in his tall, dark tOwer. The king and queen were very sad.

Figure 3: Significant Words

By performing the proposed algorithm on sentences, we can prune the parse tree. Figure 4 demonstrates the
pruned tree generated by the program.

Sentences:....0Once upon a time there was a king and queen who

Tagged Tokens:
BB, IN, DT, NN, EX, VBED, DT, NN, CC, NN, WP,
List Size:ll

Chunked sentences:
B-SBAR, I-SBAR, B-NP, I-NP, B-NP, B-VP, B-NP, I-NP, I-NP, I-NP, O,
List Size:1ll

Features...
gold knight, help, ,
List Size:3

TreeBankl....{(TOP (S (ADVP (RB Once)) (PP (IN upon) (NP (DT a) (NN time))) (NP (EX there)) (VP {(VBD was) (NP (DT a) (NN king) (CC and) (NN cueen) (WP -
TreeBankZ.... (TOP (8 (ADVP (RE Once)) (PP (IN upon) (NP (DT a) (NN time))}) (NP (RB there)) (VP (VBD was) (NP (DT a) (NN king) (CC and) (NN queen) (WP -
Stack:

i, (, 8, (, aDVP, {,),), &, (,), (, NP, {,), (, NN, time,),),), (, NP, (,),), (, VP, (, VBD, was,), (, NP, (,), {(, NN, king,), (,), (, NN
List Size:5Z

Sentences:....lived in a golden castle with their beautiful daughter

Tagged Tokens:
VEN, IN, DT, JJ, NN, IN, PRP$, JJ, NN,
List Size:9

Chunked sentences:
E-VP, B-PP, B-NP, I-NP, I-NP, E-PP, B-NP, I-NP, I-NP,
List Size:9

Features. ..
gold knight, help, ,
List Size:3

TreeBankl.... (TOP (VP (VBN lived) (PP {(IN in) (NP (DT a) (JJ golden) (NN castle})) (PP (IN with) (NP (PRP{ their) {(JJ beautiful) (NN daughter)))))
TreeBankZ.... (TOP (VP (VBN lived) (PP {(IN in) (NP (NP (DT a) {(JJ golden) (NN castle)) (PP (IN with) (NP (PRP{ their) (JJ beautiful) (NN daughter)))}})
Stack:

(., {, VP, (, VBN, lived,), (, (,), (, NP, (,), (, JJ, golden, }, {(, NN, castle,),),), &, &,), (, NP, (,), (, JJ, beautiful,), {, NN, daughter
List Size:43

Sentences:....ugly ogre captured the beautiful princess and locked the princess in his tall dark tower

Tagged Tokens:
JJ, NN, VED, DT, JJ, NN, CC, VBD, DT, NN, IN, PRP¢, JJ, JJ, NN,
List Size:1lS

Chunked sentences:
E-NP, I-NP, B-VP, B-NP, I-NP, I-NP, 0, B-VP, B-NP, I-NP, E-PP, E-NP, I-NP, I-NP, I-NP,
List Size:1lS

Features...
gold knight, help, ,
List Size:3

TreeBankl. ... (TOP (S (NP {(JJ ugly) (NN ogre)) (VP (VP (VBD captured) (NP (DT the) {(JJ beautiful) (NN princess))) (CC and) (VP (VBD locked) (NP (DT the
TreeBankZ. ... (TOP (S (NP {(JJ ugly) (NN ogre)) (VP (VP (VBN captured) (NP (DT the) ({(JJ beautiful) (NN princess))) (CC and) (VP (VBD locked) (NP (DT the
Stack:

(., (., 8, (, NP, (, JT, ugly,), (, NN, ogre,),), (, VP, (, VP, {, VBD, captured,), (, NP, {,)}, (, JJ, beautiful,), (, NN, princess, },)},)}, (,)
List Size:78

Sentences:....The king

Tagged Tokens:
DT, NN,
List Size:Z

Chunked sentences:
E-NP, I-NP,
List Size:Z

Features. ..
gold knight, help, ,
List Size:3

TreeBankl.... (TOP (NP (DT The) (NN king)))
TreeBankZ....(TOP (8 (NP (DT The)) (CONJP (NN king))))
Stack:

(, (, WP, {,), {, NN, king,),), },
List Size:1ll

Sentences:and queen were wvery sad

Tagged Tokens:
CC, NN, VBED, BB, 17,
List Size:S§S

Chunked sentences:
0, B-NP, BE-VP, B-ADJP, I-ADJP,
List Size:§

Features. ..
gold knight, help,
List Size:3

4

TreeBankl.... (TOP (8 (CC and) (NP (NN cueen)) (VP (VBD were)
TreeBankZ. ... (TOP (8§ (NP (DT and) (NN cueen)) (VP (VBD were)
Stack:

(, ¢, 8, ¢,), (, NP, {, NN, cqueen,),), (, VP,
List Size:30

(ADJP
(ADJP

{, VBD, were,),

{, ADJP,

(RB wery)
(BB wery)

.

(JT sad)i)))
(JT sad))id)

Vv, t, JJ, sad,

Figure 4: Pruned tree generated from story sentences

