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Opening Remarks:

Data Mining has been developed, though vigorously, under rather ad hoc and vague
concepts. For further development, a close examination on its foundations seems
necessary. The central goal in this workshop is to explore various fundamental issues of
data mining. The scope of the workshop includes:

. Theory of Data Mining and Discovery

. Similarity and Dissimilarity of Learning and Discovery

. Logical Foundations

. Modeling for Data Mining

. Sampling and Complexity Reduction

. Uncertainty in Data Mining and Discovery

. Other New and Novel Approaches: The examination of foundation may lead to new
directions
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The proceedings contain 2 invited papers and 25 contributed papers to be presented at the
workshop. Each paper was carefully peer-reviewed. We would like to thanks all the
authors, invited speakers, and attendees for contributing to the success of the workshop.
Special thanks are due to the program committee for help in reviewing the submissions.

This workshop follows the previous highly successful workshops: FDM 2002, held in
Maebashi City, Japan and FDM 2003 in Melbourne, Florida, USA. We expect FDM 2004
to be equally successful.
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A Theory of Parameter Free Data Mining

Ming Li
Canada Research Chair in Bioinformatics
University of Waterloo

Given a collection of genomes, can we derive their evolutionary history?
What about a collection of languages? Or a collection of music scores? Or
a collection of student programming assignments? Or a collection of chain
letters? More generally, given a collection of sequences, can we cluster them
properly? Is there an application-independent information measure which
applies to all such applications?

In this talk, we will present a universal information distance and a general
method to discover similarities between sequences, any type of sequences.
We then apply the theory to infer the evolutionary histories of mammals,
languages, programs (plagiarism detection), and chain letters.

A popular version of this talk can be found in the June 2003 issue (pp.
76-81) of Scientific American, “Chain Letters and Evolutionary Histories”,
by Charles H. Bennett, Ming Li and Bin Ma.

* The word of “Parameter-Free Data Mining” was coined by Keogh-
Lonardi-Ratanamahatana






Bl-directional BYY Learning for Mining Structureswith Projected Polyhedra
and Topological Map

Lei Xu *
Department of Computer Science and Engineering, Chinese University of Hong Kong
Shatin, NT, Hong Kong, P.R. China, Email: Ixu@cse.cuhk.edu.hk

Abstract

Two typesof lear ning structures areinvestigated fromthe
per spective of Bayesian Ying Yang (BYY) harmony learning
with a bi-directional architecture. First, the Kohonen map
type of topology is revisited with a new insight and a new
variant. Next, we explain how the multi-sets modelling for
object detection can be reformed into a topological map of
multi-set-mixture. Third, we show that independent binary
factor analysis can be used to learn a type of Gaussian mix-
ture with 2™ Gaussian densities located on vertices of a
projected hyper polyhedra structurethat are represented via
only m real vectors such that the number of free parame-
ters has been significantly reduced, thus with a much better
generalization ability. Also, an adaptive algorithm is pro-
vided for learning not only all the parametersin this struc-
ture but also determining an appropriate m automatically
during learning. Moreover, another topological type isin-
troduced into this binary factor analysisin a sensethat sim-
ilar objectsare encoded by inner binary codesthat are close
to each other in term of smallest error bits.

1. Introduction

Given data from a world of multiple objects in term of
a set of samples, where each sample x; comes from one of
objects, one widely encountered task is to determine which
object that each sample z; comes from. Using a label £ €
L to denote one object, the task is to assign a correct label
/; to each sample x; that is observed with its label missing,
which is usually said either that x; is encoded by ¢; or that
x; is recognized as coming from the ¢-th pattern.

Provided that each object is simply described by a vector
my that is observed via each sample z after disturbed by a
noise e from a Gaussian G(e|0, 57 1), or equivalently x can

*  The work described in this paper was fully supported by a grant from
the Research Grant Council of the Hong Kong SAR (Project No:
CUHK4225/04E).

Figure 1. Topological structure

be regarded as coming from G (z|m, 53 I). The task of es-
timating every m, from a given set of samples {z;} and the
task of assigning a label £ to each object represented by one
my are closely coupled together, which have been widely
studied either under the name of minimum Mean Square Er-
ror (MSE) clustering analysis in the pattern recognition lit-
erature [ 10] or under the name of Vector Quantization (VQ)
in the literature of image encoding [18]. Both MSE clus-
tering and VQ are usually implemented by the well known
k-mean algorithm, which has been also widely used for var-
ious data mining problems in recent years [11].

Usually, multiple objects are not isolated from each other
but linked with various relations. Among them, an impor-
tant type, that comes from concepts such as ‘similar’, ‘near’,
etc, can be displayed by spatial relationships among ob-
jects located in the Euclidean space. Considering a regular
d-dimensional lattice topology, we attempt to locate each
object £ on one node of the lattice such that objects locat-
ing topologically near should be similar to each other, as
shown in Fig.1. If we can learn from data such a topolog-
ical structure, we will be able to retrieve similar objects or
pattern classes simply from neighbors, which takes an im-
portant roles in tasks of content based retrieval, missing pat-
tern recovering, and tracing temporal patterns as encoun-
tered in bio-informatics, financial engineering.

Intuitively, to build such a topological structure we need
a similarity measure to judge whether two objects are simi-
lar. Even so, a direct placement of all the objects on a lattice
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Figure 2. One member wins, a family gains

under a given similarity measure is computationally a hard
combinatorial problem. Interestingly, this problem has been
implemented approximately in help of a biological brain dy-
namics of self-organization [17], featured by a Mexican hat
type interaction, namely, neurons in near neighborhood ex-
cite each other with learning, while neurons far away in-
hibit each other with de-learning. Computationally, such a
dynamic process can be further simplified by certain heuris-
tic strategies.

One widely used is the well known Kohonen self-
organizing map [14] that implements a strategy of one
member wins, afamily gains  That is, as long as one mem-
ber wins in the winner-take-all competition, all the mem-
bers of a family will gain regardless whether other mem-
bers are strong or not. As shown in Fig.2, with each node
on the lattice associated with a mean vector m, that rep-
resents an object or class, a winner-take-all competition is
made per sample x; to get the winner

(* = argmin ||z; — mgl|?. (1

Then considering a small neighborhood N, of £* that usu-
ally consists of 2¢ knots directly connected to £*, we up-
date

myY = ml?ld + ez — ml?ld),VK € Ny. 2)

As long as an appropriate size Ny is specified, this learning
will finally result in a map on which nodes located near each
other have their corresponding mean vectors being close to
each other too. In the literature, a great number of studies
have been made on applying and extending the Kohonen
map.

In [30], we also get an alternative strategy of strongers
gain and then teaming together. That is, a number of
strongers in competition will be picked as winners who
not only gain learning but also are teamed together to be-
come neighbors. As experimentally demonstrated in
[6], this strategy can speed up self-organization, espe-
cially at the early stage of learning. Also, we can com-
bine it with the Kohonen map strategy by using it at
an early stage and subsequently switching to the Koho-
nen map.

before update after update
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Figure 3. Strongers gain and then teaming to-
gether

In many applications, it is not enough to represent each
object simply by a vector m, or even G(z|m,o}I) af-
ter taking noise in consideration. It is further considered
that each object is described by a parametric distribution

q(x]0¢, £) plus

k
q(0) = Zaﬂs(f —-7),

k
with the constraint ap > 0, Zal =1 O3
=1

where g denotes a priori probability that z comes from the
{-th object. As a result, the MSE clustering task has been
extended to estimate a; and 8, which is equivalent to learn-
ing the dependence structures in the format of

a(x) = ag(xl6r, o). 4)
4

It is usually called finite mixture and learning can be made
in help of the EM algorithm [8, 19, 16].

In [30], the strategies given in Fig.2 and Fig.3 have
been further extended to get topology between objects with
ayq(x|6,, €) as a similarity measure. Specifically, eq.(1) and
eq.(2) are extended as follows:

¥ = argmax[q(z¢|0e, £) ],
old
ap "+
new — _t e Ny,
A 1+ m# Ny ‘
07 = 07" + 1.V, Ing(40¢, €), V0 € Ne, (5)

where #.S denotes the number of elements in S. In this way,
topological maps of various models can be obtained for ap-
plications in complicated situations [30]. When ¢(z|0¢, {) =
G(z|me, X¢), my can be updated by eq.(2) and ¥, is up-
dated as follows:

57 = (1= n0)S¢ + ne (2 — m@ ) (2 — m@ )", (6)

for ¢ € Ny.
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Figure 4. Bayesian Ying-Yang System

In this paper, from the perspective of Bayesian Ying
Yang (BYY) harmony learning with a bi-directional archi-
tecture, we start at revisiting the above topological learn-
ing with a new variant and also an insight on learning reg-
ularization. Then, we explain how the multi-sets modelling
learning, firstly proposed in 1994 [38, 37] for modelling ob-
jects in typical shapes such as lines, circles, and ellipses, as
well as pre-specified templates [38] and [37] in the fields of
computer vision and image recognition, can be formed into
a topological map of multi-set-mixture. Moreover, we show
that independent binary factor analysis can be used to learn
a type of Gaussian mixture with 2" Gaussian densities lo-
cated on vertices of a projected hyper polyhedra structure
that are represented via only m real vectors such that the
number of free parameters has been significantly reduced in
comparison with an ordinary Gaussian mixture and thus a
much better generalization ability is obtained. Furthermore,
an adaptive algorithm is provided for learning not only all
the parameters in this structure but also determining an ap-
propriate m automatically during learning. Also, another
topological type is introduced into this binary factor anal-
ysis in a sense that similar objects are encoded by inner bi-
nary codes that are close to each other in term of smallest
error bits.

2. Bayesian Ying-Yang Harmony L earning
As shownin Fig.4,a BYY system considers coordinately

learning two complement representations of the joint distri-
bution p(z, y):

= q(z|y)q(y), @)

basing on p(z) that is estimated from a set of samples
{24}, while p(y|z), ¢(x|y) and ¢(y) are unknowns but
subject to certain pre-specified structural constraints. In a
compliment to the famous Chinese ancient Ying-Yang phi-
losophy, the decomposition of p(z,y) coincides the Yang
concept with the visible domain by p(z) regarded as a
Yang space and the forward pathway by p(y|z) as a Yang
pathway. Thus, p(x,y) is called Yang machine. Similarly,
q(z,y) is called Ying machine with the invisible domain by
q(y) regarded as a Ying space and the backward pathway
by ¢q(z|y) as a Ying path.

On one hand, we can interpret that each z is generated
from an invisible inner representation y via a backward path
distribution g(z|y) or called a generative model

q(x) = [q(z|y)q(y)n(dy) 8)

that maps from an inner distribution ¢(y). In this case,
p(y|z) is not explicitly specified or said being free to be
specified, while two pre-specified parametric models g(z|y)
and ¢(y) form a backward path to fit the observations of z.
We say that the Ying-Yang system in this case has a back-
ward architecture (shortly B-architecture).

On the other hand, we can interpret that each x is repre-
sented as being mapped into an invisible inner representa-
tion y via a forward path distribution p(y|z) or called a rep-
resentative model

p(y) = [plyle)p(z)p(dr) ©)

that matches the inner density ¢(y). In this case, ¢(z|y) is
not explicitly specified or said being free to be specified.
Forming a forward path, p(x) is estimated from a given
set of samples and then is mapped via pre-specified para-
metric model p(y|z) into p(y) by eq.(9) to match a pre-
specified parametric model ¢(y). We say that the Ying-Yang
system in this case has a forward architecture (shortly F-
architecture).

Moreover, the above two architectures can be combined
with p(y|z), ¢(z]y) and ¢(y) are all pre-specified paramet-
ric models. In this case, we say that the Ying-Yang sys-
tem in this case has a Bi-directional architecture (shortly
Bl-architecture).

The name of BYY system not just came from the above
direct analogy between eq.(7) and the Ying-Yang concept,
but also is closely related to that the principle of mak-
ing learning on eq.(7) is motivated from the well known
harmony principle of the Ying-Yang philosophy, which is
different from making p(z) by eq.(8) fit a set of samples
{24}, under the ML principle [21] or its approximation
[13] as well as simply the least mean square error criterion
[40], and also different from making ¢(y) by eq.(10) satisfy
certain pre-specified properties such as maximum entropy
[4] or matching the following independent density [3]:

q(y) =TI (™). (10)



Under this harmony principle, the Ying-Yang pair by eq.(7)
is learned coordinately such that the pair is matched in a
compact way as the Ying-Yang sign shown in Fig.4. In other
words, the learning is made in a twofold sense that

e The difference between the two Bayesian representa-
tions in eq.(7) should be minimized.

e The resulted entire BY'Y system should be of the least
complexity.

Mathematically, this principle can be implemented by
[36, 31, 30]
max H(6,m), (11)

f,m
H(0,m) = H(pllq) =
[p(ylz)p(z) In [q(z]y)q(y)]u(de) p(dy) — In z,,

where 6 consists of all the unknown parameters in p(y|z),
q(zly), and q(y) as well as p(z) (if any), while m is the
scale parameter of the inner representation y. The task of
determining 6 is called parameter learning, and the task
of selecting m is called model selection since a collection
of specific BYY systems by eq.(7) with different scale val-
ues corresponds to a family of specific models that share
a same system configuration but in different scales. Fur-
thermore, the term Z, = —Inz, imposes regularization
on learning [28, 30, 32], via two types of implementation.
One is called data smoothing that provides a new solution to
the hyper-parameter for a Tikinov-like regularization [22],
and the other is called normalization that causes a new con-
science de-learning mechanism similar to that of the rival
penalized competitive learning (RPCL) [39, 32, 30].

Usually p(z) is fixed at a non-parametric Parzen window
density estimate [9]:

pr(z) = L SN G|z, BT, (12)

where h > 0 is a given smoothing parameter, po(z) =
Pr(2)h—o is simply empirical density. While p(y|z) is ei-
ther free in a B-architecture or a parametric form in a BI-
architecture and thus will be pushed into its least complex-
ity form. E.g., p(y|z) in a B-architecture will be determined
by max,(,|.) H (pl/g), resulting in the following least com-
plexity form:

p(ylz) = 6(y —y(z)), y(z)=arg m;lX[cJ(ﬂfly)q(y)]- (13)

On the other hand, the matching nature of harmony learn-
ing will further push ¢(z|y) and q(y) towards their corre-
sponding least complexity forms, which makes model se-
lection possible, e.g., m is appropriately determined.

Referring details in [30], this least complexity nature in-
troduces a new mechanism that makes model selection im-
plemented either automatically during the following param-
eter learning with m initialized large enough:

max H(#), H(0)=H(H,m), (14)

which makes 6 take a specific value such that m is effec-
tively reduced to an appropriate one, as shown in Fig.5(b).
This feature is not shared by the existing approaches in
the literature. By the conventional approaches, parameter
learning and model selection are made in a two-phase style.
First, parameter learning is made usually under the maxi-
mum likelihood principle. Then, model selection is made
by a different criterion, e.g., AIC [1], MDL [20], etc. These
model selection criteria are usually not good for parame-
ter learning, while the maximum likelihood criterion is not
good for model selection, especially on a small size of train-
ing samples.

0={p, 0,}, 0, under constmint 0=l 0.},0.=0:

—H(H,m) —H(H,m)
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Figure 5. (a) Model selection made after pa-
rameter learning on every m in a given interval
[ma, m.], (b) Automatic model selection with pa-
rameter learning on a value m of large enough.

In certain circumstances. E.g., to compare with the ex-
isting model selection criteria such as AIC, MDL, the BYY
harmony learning by eq.(11) still needs to be implemented
in a two-phase style to make studies comparable. Specif-
ically, the first phase implementation of eq.(11) is made
with m enumerated from small values incrementally. At
each specific m, the inner representation y is pre-specified
to be uniform [30] such that automatic model selection will
not happen during learning by eq.(14) in the first phase, we
need to implement the second phase by the following type
of model selection criteria obtained from this mechanism:

min J(m), J(m)=—H(0", m), (15)
as shown in Fig.5(a).

Moreover, in such a two phase style, parameter learning
for getting 8* can be implemented with eq.(14) replaced by
the following Kullback divergence based parameter learn-
ing:

i = z)p(z nzM x



Particularly, on a B-architecture, the minimization of the
above K L(#) with respect to a free p(y|z) will result in

p(ylz) = %, q(x) = [q(zly)a(y)u(dy),
KL() = [p(z)In %u(dw), (17)

which becomes equivalent to ML learning on ¢(z) when
p(x) = po(x) is given by eq.(12) [36]. In this case, we ac-
tually implement ML learning in the first phase and then
model selection by eq.(15) in the second phase.

Moreover, the implementation of both eq.(14) and
eq.(16) can be made by alternatively performing the fol-
lowing two steps:

Ying-step:
Yang-step:

fix p(z,y), update unknowns in ¢(z, y),
fix ¢(z,y), update unknowns in p(z, y),
(18)

which is called the Ying-Yang alternative procedure. It is
guaranteed that either of —H (f) and K L(f) gradually de-
creases until becomes converged. The details are referred to
[30].

3. Model Selection, L earning Regularization,
and Topological Preservation

The harmony learning by eq.(14) attempts to compress
the representation space via the least complexity nature that
is demonstrated with a winner-take-all (WTA) competition
by eq.(13). This type of parameter learning aims at a com-
pact inner representation with an automatic model selection
by discarding extra representation space during parameter
learning. However, there is no free lunch. The WTA oper-
ation by eq.(13) locally per sample will make learning be-
come sensitive to the initialization of parameters and the
manner that samples are presented, which usually leads to a
local maximum solution for eq.(14).

With a soft competition by p(y|z) in eq.(17) to replace
the WTA competition by eq.(13), the ML learning, or equiv-
alently the KL learning by eq.(16) with a B-architecture and
an empirical density by eq.(12), is regularized with a more
spread inner representation that improves the local maxi-
mum problem. However, there is no free lunch too. It makes
the model selection ability considerably weaken, especially
on a small size of samples. Thus, making model selection by
eq.(15) is needed after parameter learning. However, as dis-
cussed previously in the introduction section, the two phase
style implementation costs computation extensively. Instead
of the two phase style, regularization to the WTA by eq.(13)
may also be imposed to the harmony learning by eq.(14)
such that automatic model selection still occurs via either
some external help or certain internal mechanism.

Externally, we can combine the KL learning by eq.(16)
with the harmony learning by eq.(14), by which we get a
spectrum of learning models. The details are referred to Sec.
23.4.2 in [26]. Another spectrum, that also varies between
model selection ability and regularization ability, can be ob-
tained via internally replacing In(r) by a family of con-
vex functions for divergence measuring. Also, two differ-
ent forms of the term Z, = — In 2, introduce two types of
regularization on learning under the name z-regularization.
The details are referred to Sec.22.6.3 in [25].

Internally, regularization to the WTA by eq.(13) can
be imposed during the harmony learning by eq.(14) via a
constrained p(y|z) in a Bl-architecture. Instead of letting
p(y|z) free to be decided by eq.(13), we consider a BI-
architecture with p(y|x) designed in a structure that will
not lead to the WTA by eq.(13). Specifically, different struc-
tures of p(y|x) will lead to regularization with different fea-
tures, which are shortly summarized under the name BI-
regularization.

Typical examples are discussed as follows:

(a) A collection of ordered winners  We consider that a
collection of winners shares-the-all (STA) instead of
only one winner-take-all (WTA), such that the local
optimal problem can be alleviated. In the cases that y
takes discrete values, we consider

pyled) = Y my)sy —y), (19)

y' €A

where A; consists a collection of values that y’ may
take, with each value denoting a unknown winner,
and the number of winners is decided by an award-
ing scheme, e.g., the number is # A; = 7 for a scheme
of one 1st prize, two 2nd prizes, four 3rd prizes. Cor-
respondingly, 7;(y’) represents the prizes to be pre-
sented to the winners, e.g., 7;(y’) takes the value a;
for the 1st price only at one in Ay, the value ay for
the 2nd price at two in Ay, and the value ag for the
3rd price at four in A;, where we have a; > as > as
and 3 4 m(y") = 1. Specifically, which ones in A
get what prizes are determined by max |,y H (pllq)
that lead to A; consisting of the first 7 largest values
of g(x¢|y)q(y), with the first one for the 1st prize, the
next two for the 2nd prizes, and the rest for the 3rd
prizes. Then, the parameters 6 of q(z+|y)q(y) are up-
dated to increase the following L, (6)

Lapy(0) = > m()Infg(=ly)a)].  (20)
y' €A

In implementation, it can be made via gradient ascend-

ing of either this L, (6) or n:(y') In [q(=|y")q(y")] per
y' € A;. For the latter, those updating rules for the



case with eq.(13) on y; can be directly adopted on ev-
ery y' € A; simply with the learning step size n; re-
placed by mem: (y').

(b) Awinningteam Instead of considering a collection
of winners, we can also consider that competition is
made among teams with each team consisting of indi-
viduals with similar qualifications. Thus, the winner-
take-all is replaced by “all the individuals of the win-
ning team share the all”. In implementation, we still
consider eq.(19) but with a different A; that consists
of one y; plus a set of values of y’ that are close to y;.
Moreover, 7:(y') takes a; at y; and smaller values for
other 3" according to its closeness to y;. E.g., in the
case that y is a binary vector, A; consists of those of 3’
that differ from y; with only one bit. In the case that y
is real, we consider

p(ylz) = G(yly:, hy 1), 1)

with a given hf, > 0 that can be determined in cooper-
ation with a z,-regularization.

(c) Competitiveexperts Considering to approximate the
deterministic mapping function that has to be obtained
by eq.(13) via optimization, we consider

plyle) =Y Bi(@)8(y — fi(2,8y/a,)),

=1

Zﬁj(w) =1, Bj(xz) =0, or1,
j=1

from which eq.(13) is simplified into

pylz) = d(y —y(2)),
Y(®) = f+(2)(@|0y|2,5* (2))> (22)
j*(z) = arg m?X[q(wly)q(y)]y:fj(xwylm_j).

That is, there are n experts that competes to perform
the mapping  — y. In this case, its regularization role
can be observed from the perspective that the number
of local maximums in eq.(13) considerably reduces to
simply n possibilities. However, though the obtained
y(z) is a global solution of eq.(13) under the constraint
by eq.(22), it can be far away from the global solution
of eq.(13) with no constraint on p(y|z). This can af-
fect the performance of the learned BYY system too.
One solution is let n to be large enough.

(d) p(y|z) in specific structure  In certain situa-
tions, we know or approximately know the structure
of p(y|x) from considering the optimal inverse struc-
ture of ¢(z|y)q(y). One example is encountered when
both g(z|y) and ¢(y) are Gaussian. In this case, it fol-
lows from eq.(13) that

y(z) =Wz +m. (23)

Another example is using p(y|x) in eq.(17), especially
a Gaussian mixture when ¢(z|y) = G(z|py, Xy),
which was firstly proposed in [32] and has been fur-
ther shown in [15] that this type of regularization actu-
ally performs a RPCL-like learning mechanism.

It also deserves to note that the a joint consideration
on the structure of p(y|x) and the form of the term Z, =
—In 2, may further lead to an improvement. One typical
case is the structure given by either eq.(23) or eq.(22) where
we know an analytic expression of y(z) that is usually dif-
ferentiable with respect to . In this case, with p(z) =
pr(x) by eq.(12) put into eq.(11), we get

H(0,m) = % XL, [G(alw, h*T)x
In[q(z|y(2))q(y(z))]dz — In z,(h)
= & i, Infg(zely)a(ye)] — In 2z (h)

+h2TT[%]z=zn Yt = y(xt)a
Q(r) = q(=|y(z))q(y(z)). (24)

In this case, Z, = Z,(h), data smoothing regularization
acts in the domain of z directly via h and in the domain of y
indirectly via h and Q(x). Ignoring the part of ¢(y(z)), the
above equations returns to the case of Eqn.(30) in [24].

However, the above eq.(24) is not applicable when y(z)
by eq.(13) does not give analytic expression or the ob-
tained expression is too complicated to compute its sec-
ond order derivatives. Instead, we consider eq.(21) and
Zy = Zy(hg, hy), with data smoothing regularization act-
ing in the domain of z directly via h, and in the domain of
y directly via h,. The details are referred to Sec.2(B) in [31]
and Sec.2.2.2 in [30].

3.1. Kohonen Learning, Multi-set Mixture, and
Topological Map

before update after update
O < >
@® Winner @ Neighborhood

Figure 6. A team wins, a team gains

We further consider eq.(19) but with A, being a winning
team and that y = / takes a set of discrete labels with each



discrete label denoting a location index on a lattice topol-
ogy as shown Fig.2. It follows from eq.(19) with y replaced
by / that we have

pla) = Y m(€)sE—1). (25)
'eEA;

In this case, A; can be a winning region that consists of a
set of ¢’ that are located in the neighborhood of £;. To get a
better understanding, we focus at the following special case

¢ = argmax 3 (j) I [a(il6y, o),

JEN,
N 1_77 ]:&
m(])—{%, j#LE N, (26)

where 7:(j) puts a heavy weight at ¢ and much lowered
weight 0 < v < 1 at its neighbors in N,. As shown in
Fig.6, instead of each individual participating the competi-
tion, each node together with its neighbors joints in the com-
petition. Then, the updating is made as in eq.(5) and eq.(6).
That is, we get a strategy that a teamwins, a team gains. At
the beginning, y can be set at a very small value and thus the
situation is similar to the Kohonen map. As learning goes,
v gradually increases such that neighbors take their roles in
the competition. This can avoid that an already organized
part of map is disturbed by an isolated abnormal winner.
Roughly, the Kohonen learning can be regarded as a rough
approximation of this third strategy.

Firstly proposed in 1994 [38, 37], the multi-set mod-
elling learning is proposed for modelling objects in typi-
cal shapes such as lines, circles, and ellipses, as well as
pre-specified templates [38, 37] in the fields of computer
vision and image recognition. Main results and certain his-
toric remarks have been recently summarized in [28] under
the name of multi-set-mixture.

Though topological learning in eq.(5) and eq.(6) applies
to objects in any distribution ¢(z|6,), an efficient implemen-
tation can be made only when each g(z|0,) is Gaussian, i.e.,
eq.(4) is a Gaussian mixture. However, Gaussian mixture
and multi-set-mixture become conceptually equivalent and
exchangeable only on tasks of modelling lines, planes, and
subspaces. For the tasks of modelling circles, ellipses, and
other pre-specified shapes, multi-set-mixture goes far be-
yond Gaussian mixture, for which we need a new technique
to implement its learning.

As shown in Fig.7(a), samples from each object include
one deterministic part plus random noise. The determinis-
tic part is described by S (), a set of finite points or a con-
tinuous set of real points in R?, subject to a parametric set #
of a finite number of unknown parameters to be determined.
Each S(f,) represents a shape such as line, curve, and ellip-
sis, as well as a pre-specified shape. Subject to such a set
S(6y), a sample z is represented by

Z¢ =arg min &(z,y),
g min (z,9)

(a) {b)

Figure 7. Multi-sets mixture

8(1‘,y) = C(@(l‘,y)), 6(1‘,y) =Tr—Y, (27)

where i, is called the best reconstruction of x by S(6),
and e(z, 0¢) = e(z, &) is called the reconstruction error of
S(8¢) per sample . Moreover, (, y) is a given cost mea-
sure for the discrepancy e(x,y) such that e(z,y) > 0 and
e(z,y) = 0if and only if e(x,y) = 0 or = y. The most
widely used e(z, y) is

e(z,y) = e(z,y)"S, "e(z,y), (28)

which is called the Mahalanobis distance with X4 being pos-
itively defined, e.g., it can be obtained from the Riemannian
metric [2] on S(6¢). This e(z,y) degenerates to the square
distance between z,y when ¥, = I. In this case, we call Z
the least square reconstruction of z: by S(6,).

The best modelling of S(6,) to a given set of samples is
made by determining 6, such that

N
n}iﬂ;@(l’,eg), 5(1’,04) = C(@(l‘,eg)) = yé{lgi(r;e)s(xay),
(29)

where €(z, 6¢) denotes the cost between the discrepancy be-
tween x and its best reconstruction ¢ via S(6,). It can get
an explicit expression when the parameter set represents
a line, a plane, a subspace, and a circle [28]. Generally it
is obtained via a minimizing procedure via searching & .
While parameters {6;} can be learned via RPCL learning
[34]:

07 = 011" — he,omiVo,(,00),
Ve,  if€=¢* =argmin;e(zy,6;),

hieg =< —v, £=argmax;ze E(ZUt,ej)y (30)
0, otherwise.

More generally, given a set of samples ), that represents
a contour of a specific shape, we have y + a4, Vy € )y fora
shape resulted from a displacement a ¢, and

S(00) = {\eR(pe)(y + ae) : Yy € Ve}, (31)



where R(¢¢) is a rotation matrix and 6, = {as, ¢¢, \¢}. It
represents a shape resulted from a displacement a ¢, a rota-
tion of an angle ¢, and a scaling by ¢, as shown in Fig.
7(b). Correspondingly, fitting the shape by eq.(29) becomes

mmmellwt XNeR(0)(y +a)l?. (32

Conceptually, a finite mixture can be applied to de-
scribe the above multi-set modelling. However, directly
considering z leads to a mixture of non-Gaussian den-
sities is not easy to implement [36, 35] since we do not
know nonGaussian distributions of z. Instead, we can re-
gard the reconstruction error e(zy,6;) coming from a
Gaussian G(e|0,%y) and as a whole e comes from a
Gaussian mixture g(elf) = Zle a,G(e|0,%y). Con-
sidering the BYY harmony learning by eq.(11), with
plee,0) = plela,Op(lla)p() as p(yle)p(z) and
ae,z,0) = qlale.Oalel)a(l) as qlzly)aly). given
p(z) = po(x) and plelzs,l) = Glele(zs,0¢), h*I) we
have

H = [p(e|z, O)p(€|x)po(x)x
In [q(z|e, £)G(e|0, ¢)ae]ldrdedl = Hp(8) + ct,

| Nk
0) = 5 D D p(ller) [Glele(ws, 60), hT)
t=1 (=1
n[G(e|0, X¢)ay]de (33)
TR
=< 2 2 pllze) In[acGle(x1, 000, )]

t=1 (=1
k

—0.50% Y " a,/Tr[3; ],
(=1

1 N k
= & 2 2Pl [Glele(re, 00, 1°1)
t=1 (=1

Zlnq (z4),

where ¢; is irrelevant to learning, since knowing z; already
means that it does not relate to any other thing.

When h = 0, from the above Hj,(6) we can implement
topological learning on a multi-set mixture by eq.(5) or plus
eq.(26) with ¢(z|0,) replaced by G(e|0, X,). Moreover, ¥,
is still updated by eq.(6) and updating on 6, takes the fol-
lowing specific form

86 (x¢,0¢)
06,
When h # 0, a regularization under the name of data

smoothing takes its action via updating ¥, modified as fol-
lows:

In g(x¢le, £)d

grev = gold — Y, te(w,00), VO € Np. (34)

Enew _ (1 _ )EOld (35)
nt[h2I + (z — m§) (zp — mg' )T, Ve € Ny.

Moreover, the value of A is determined via

max H(Q) H(G) = Hy(6) —Inzy(h),

ZZp e(x,65)), (36)

T=1j=1

N &k
1
= NZZ}) l)z¢)G (ele(x,8), hW*T),

t=1 (=1

where h? can be learned via a gradient ascending on
hnew = pold 4 77 (9) . Details about data smoothing reg-
ularization are referred to [26].

In special case that Ny has only one element, with

OégG( (.Tt, 9{)|0, E[)
iy aeGle(w:,00)]0,5)
and eq.(5) and eq.(6) implemented with n; = nop(€|z:),
we return to an adaptive EM algorithm for max H(#) on

a multi-set mixture. After learning, we can also select the
number & of objects via miny, J(k) with

(37

p(llz) =

k
J(k) = 0.5 ar(|Se| + h*Tr[S7'] — In o)
=1
+1nz,(h). (38)

It should be noted that regarding the reconstruction error
e(z¢,6¢) coming from a Gaussian G(e|0, X ;) works well in
the cases of representing a line, a plane, and a subspace but
only acts as a kind of rough approximation in the cases of
representing of a circle and an ellipse.

Given any point z, its best reconstruction Z, by a cir-
cle is given by the intersecting point of the circle and the
straight line from x to the center of the circle. The error
e(xs,0¢) = ||z — 2¢||* can range from 0 to co when z is
outside the circle but only from 0 to R2 when = is inside the
circle, where R is the radius of the circle. Thus, instead of
G(e|0, X¢), a better representation for g(e|£) is given as fol-
lows:

[ G(el0, %),
atelt) = {Q(nx — &),

where Q(r) > 0 is monotonically decreasmg from Q(0) =

G(0]0,%)) to Q(R?) = 0 subject to fo rydr = 0.5.
For examples, Q(r) can be monotonically decreasmg lin-
early or quadratically.

Moreover, an ellipse can be parameterized as
(z —a)T¢pT Ap(z — a) = R? with A = diag[1, A2, - -, \d]
being a positive diagonal matrix and ¢ is a rotation ma-
trix. Via a transformation 2 = A%%¢(x — a), the el-
lipse in the 2 domain is mapped into a circle 27z = R?
in the z domain. Thus, one way is to turn every sam-
ple z; into 2; = A%5¢(z; — a) and find 2; as the intersect-
ing point of the circle 272 = R? and the straight line from

for z outside the circle,
for z inside the circle,

(39)



2t = A°5¢(z; — a) to the origin 0. Then, we make learn-
ing in the space of z to fit a circle 27z = R? by considering
Izt — 2|12 = ||A®3 ¢ (xs — a) — 2¢||? to determine all the un-
known parameters, which is equivalent to fitting an ellipse
in the original space of z.

This transformation technique applies directly to a
set of samples from only one ellipse. When the sam-
ples come from k ellipses, an ellipse can be param-
eterized as (z — ap)T¢l Aep(z — ap) = R? with
Ay = diag[1, A2, -+, Ag,q) being a positive diagonal ma-
trix and ¢, is a rotation matrix. Via a transformation
ze = AVP¢e(z — ay), the ellipse is mapped into a cir-
cle 2} z¢ = R2.1f we already know z from the ellipse £, we
can turn it into z, s = A?'E'(b(a:t —ay) and then fit it as above
discussed. However, when the information about each sam-
ple from which ellipse is missing, each sample can be
mapped into zp4,f = 1,---,k possible values. A solu-
tion is selecting one with £* = argmax, p(¢|z;). Each
time after parameters are updated the space of z, p(¢|z;)
is also updated by p(¢|x;) = p(€|z¢- ) that can be calcu-
lated in the space of z.

4. Independent Subspace and Binary Factor
Analysis

4.1. Independent Subspace

) =TTa0>")
J=1

: a]n‘* \} :
b V2 é
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Figure 8. Subspace structures spanned by linear
independent base vectors and featured by proba-
bilistic independent coordinate variables

As shown in Fig.8, a typical dependence structure, that
can provide an overall insight on a set of samples in a high
dimensional space z € R¢ with z = [z() .- z(D]T, is
an appropriate linear subspace that covers most of samples.
Such a subspace is featured by the following three ingredi-
ents:

e a set of bases vectors a; € RLj = 1,---,m
that span the subspace, which provides the support on
which data samples can have different specific distri-
butions. To avoid redundance, it is naturally that all

the a; € R j = 1,---,m are mutually linear inde-
pendent. That is,

det[ATA] #0, A=lar, -, amn). (40)

e coordinatesy = [y, - y"™]7T, with each y/) de-
noting the corresponding coordinate on the basis a ; for
representing each z, that is, we have

&=y yPa;, (41)

for representing z € R?. A set of samples from a spe-
cific distribution p(z) is mapped into a inner represen-
tation by a specific distribution ¢(y) supported on a
subspace with a much lower dimension m. To maxi-
mize the representative capacity, redundance between
any pair (9 and y(¥) should be removed. In a proba-
bilistic sense, it means that eq.(10) is satisfied.

e theresidual © — & = e that indicates how well a set
of samples is described by this subspace. e = 0 means
that x is located within the subspace and z is com-
pletely represented by Z, and e # 0 means that z is lo-
cated outside the subspace and Z is a projection of x on
the subspace, with an error e for using Z to represent
x. If the best subspace is found to represent the sam-
ples, we have either e = 0 for every sample when the
samples of x have not been polluted by noise or other-
wise e # 0 describes the noise. This e should be inde-
pendent from y and often regarded as from Gaussian
G(e|0,Y) with ¥ being usually isotopic > = 2T or
sometime diagonal in a complicated situation.

The above discussion is made on assuming that both the ori-
gins of x and y coordinates are located at zero. Generally,
we can get x — p or y — v located at zero. It follows from
x — & = e and eq.(41) that we have

Ay +e, () Ez =0, Ey =0,
r={ Ay+pu+e (b)u = Ex — AEy,

Aly—v)+u+e, (c)v=Eyu=Ez,
A=1lay, -, am], (42)

which, especially the case (a), is widely referred under dif-
ferent names in the literatures. One is called linear genera-
tive model since it describes how z is generated via a linear
model. The other is called latent or hidden model since ¥
is not directly visible from observation. It is also called fac-
tor analysis (FA) model, regarding the components of y as
the underlying factors.

Several typical examples of eq.(42) have been investi-
gated in the past decades, mainly featured by ¢(y (7)) in dif-
ferent distributions.

When y) is a real variable from a Gaussian distribu-
tion G ()]0, \(9) 2), eq.(42) in its case (a) has been widely
studied in the literature of statistics under the name of factor



analysis. Here, we call it Gaussian factor analysis and leave
the name of factor analysis for the general case of eq.(42)
with eq.(10). Particularly, we are lead to principal compo-
nent analysis (PCA) when ¥ = ¢2I. Further studies have
also been made in recent years on Eq.(42) in its case (b)
with y7) being a real variable from a nonGaussian distribu-
tion. One particular example of such g(y /) is the follow-
ing Gaussian mixture:

y=v+e, By=v,
g(eD) =BGy myi, %), (43)

> Bjimji =0, B;i=1,0<p; < 1.
i i

Moreover, when AD2 0, = 1,---,k, we are lead
to the case that (/) is constrained to take only finite iso-
lated points 74, £ = 1,- - - | k (shortly £ is used to denote the
choice y(j ) = ). The details of studies are referred to [29].

4.2. Binary Factor Analysis and Adaptive Algo-
rithm

When y,gj ) is a binary number that comes from a
Bernoulli distribution:

qy@y = () (1 -
€q.(42) of case (b) with e # 0 has been studied under the
name of Binary Factor Analysis (BFA) [33, 31, 30] or mul-
tiple cause model [21, 7].

It follows from eq.(18) that we can obtain an adaptive al-
gorithm that implements parameter learning as follows:

D)=y (44)

The Yang Step

Yt = f(xtaef) = argm;a,xD(y,xt),
D(y,z¢) = In[G(x¢|Ae + p, ) x
[T @ —vy =, ..

T]he Ying Step
(a) £r = yp — ’/old, e = T — 'uold _ AOldEt,
'unew — /J’OM + Nees, phnew — l/old + NEt,
Anew — Aold + nt(SA,
where d A is a step of moving along the ascent
direction of In G(x¢|Ae + p, ¥) subject to eq.(40),
(b) ynew = (1 — ’I]t)EOld + 7’],562, Et = 8,5631,
Ey, ) is general,
diag|E:], X is diagonal,
%Tr[Et]I, ¥ =021,

(¢) updating g(y) by ¢ = o 4 el

pynew - L 45)
_ 1+e

If p(J) new (1 — y () new) 5 () constantly,

(4)

p

0¥ =

discard the component y

where 1n; > 0 is a learning step size, it can be different for
updating different parameters, we simply use the same nota-
tion n; for simplicity, and diag[B] means the diagonal part
of the matrix B.

One example for § A in (a) is

6A = eel, (46)

which makes the computing on updating A very sim-
ple. However, to keep eq.(40) satisfied, we need to com-
pute det[AT A] per updating or frequently. If we find
det[ATA] = 0 constantly, we need to reduce the di-
mension of y from m to m — 1. After such a reduc-
tion, the previous learning result may be disturbed. If still
det[AT A] = 0 constantly, we need to further reduce the di-
mension of y. Such a process will repeat until eq.(40)
becomes always satisfied.

Another example for d A in (a) is same as that introduced
in Sec.5.3(3) in [29] or more clearly in Sec.IV(B) [23]. That
is, we make the following singular value decomposition

A=UDV" =" dju;v],
j=1

U:[’u’h"'aum]a V:[’Ul,"',vm],
vlu=1,vv' =1,

where u; is a d-dimension vector and v; is a m-dimension
vector. It can be observed that det[ AT A] = 0 if any one of
d;,j =1,---,mis zero. Thus, we remove the correspond-
ing u;,v;,y"7) if d; = 0 constantly. This type of dimension
reduction of y makes the previous learning result disturbed
in a minimum extent. To save the computation of making
the SVD decomposition A = UDVT, updating A is re-
placed by updating U, V, D as follows:

Unew _ Uold + 70 (gg; _ UolngUold),
T
= Ol G(z]UDV e + pu, %) = 30l 1o Ty D,

oUu
Vnew — Vold + n(gV _ Voldg$vold)’
1 DvVT )
= 0 nG($t|U6VY e+ u,x) = cel S0 -1yD,
D™ = D" 4 nodiag[US'? ~te,el V], 47)

where the updating on V' and U is made under the con-
straint VIV = Tand UUT = I.

During learning, maximizing Z;nzl VD Inpl) + (1 -
v In (1 — v9))] will also push v () mew (1 — () newy
0 constantly if the dimension y,gj ) is extra [29]. When this
happens, we can remove the corresponding u j, v;, y,

If needed, we may also alternatively implement BFA in
a two stage style. At the first stage, parameter learning is
made either by the ML learning [5, 12, 33] or by the above
learning with every v(/) = 0.5 and 6 A given by eq.(46). In
this case, there is no need to keep eq.(40) satisfied. At the
second stage we select a best number m by

min J(m), J(m) = 0.5dIn o? + J,(m) (48)
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Figure 9. A mixture of 8 Gaussian clusters
with their means located on vertices of a
polyhedra that is obtained by an affine trans-
formation from a cubic.

mln2, v =0.5,

- [V(j) In ()

Jj=1

Jy(m) =

+(1 = v@)In (1 —v¥)], ML learning.

5. Gaussian Densitieson Projected Polyhedra

We can get further insights on BFA from the following
two aspects:

e In a special case with ¥ = ¢2] and v = 0, it im-
plements min4 E||lz — pu — Ay||? subject to y com-
ing from eq.(10) with eq.(44). That is, it minimizes the
residual e = x — Z that x is represented by its projec-
tion = Ay + u on the subspace spanned by the col-
umn vectors of A while the projection is constrained to
take only 0 or 1 according to eq.(44). In other words,
Z can only be the sum of a subset of the column vec-
tors of A.

e ¢(z) that corresponds to eq.(42) is a mixture of 2™
Gaussians with each Gaussian having a same covari-
ance matrix X but its mean locating at one vertex of a
polyhedra, which, as shown in Fig.9, is obtained by an
arbitrary affine transformation from a m dimensional
hypercubic. In this way, 2" mean vectors are obtained
from the m column vectors of A only. Moreover, the
proportion of each Gaussian is simply ¢(y) with m free
parameters instead of 2™ —1 free parameters. Since the
number of free parameters has been reduced signifi-
cantly, this constrained Gaussian mixture gets a better
generalization ability.

Following the BYY harmony learning with a BI-
directional regularization at the special case given by

eq.(19), we consider

pylesd) = > my)y —y),

y' €Ny
1—7, fory =49,
no_ )
ne(y') = {ﬁ, fory’ € Ny buty’' # 9, (49)

where Ny consists of ¥ and a set of values that is different
from 9 by only one bit. The idea is that a vertex 1) and its
neighboring vertices should describe samples that are simi-
lar in certain extent. Thus, the mapping to a vertex is shared
with a small fraction v by its neighboring vertices. Due to
this constraint, we get

¥ =arg mng(z?,a:t),
D@,z)= > myDy,z).  (50)

YyENy

Correspondingly, learning by eq.(45) is implemented with
the following modifications:

Yang — step Instead of getting only one y¢, a set N3
of samples of y is obtained, (&2))
Ying — step each updating is repeated for every

y: € N with ; replaced by 11 (y:).

Moreover, y can be a very small value at the beginning and
then gradually increases as learning goes.

With the above learning, similar patterns will be mapped
onto vertices that are nearby each other. That is, the map-
ping may reserve the topological relation among patterns as
well. As aresult, not only we may use a sample with certain
information missing to reconstruct the corresponding pat-
tern but also we may recall out a number of patterns that are
similar to a particular one.

6. BFA Variants

A binary factor based subspace is also useful to another
important class of applications that each component z ()
only takes 1 or 0. That is, both ¢ and x are binary vectors. In
such cases, the BFA is no longer applicable directly. If using
the probabilities P(y|x) to describe how y is generated from
x, the number of free parameters will be an order of 2™ x 24
which needs a large size of samples to learn. Many efforts
have been made in the current literature to handle this type
of problems. One example is called multiple cause mixture
[21]. It models each bit #(9) =1 — 1, (1 —y;a;;) via binary
a;; and then matches the observed bit 2 with a heuris-
tic cost function. In this setting, the number of free param-
eters reduces significantly to md + m. Also, the ML learn-
ing is proposed on this model [7], with each binary code
z interpreted as Bernoulli via defining the probability that
219) = 1 in help of a generating model 1 — [[,;(1 — y;a;;).



However, the process of learning the values of a; ; is a com-
binatorial optimization that needs to search 2™¢ choices.

We consider that A is a real matrix via the following
structure [27, 29]:

d
( ) (3 l'
q(zly) = [T @ = p)t-
i=1
. 1
(0 —
b T e

f(xtaef) = arg mj‘XD(y,xt),

d
D(yaxt) = IH[H(,U/(Z)) (]_ _ :U/(Z))l zi %
i=1
H(W))y(”(l pi)y1=u),
j=1
d .
Dy, z) = Z[mﬁ’) Inp® + (1= 2”)In (1 — ()]
i=1
+Z D lny J)+(1— (i))]n(l_y(j))], (52)
j=1

with the updating on A still made by eq.(45) withe; = z; —
L.

Though being able to turn a combinatorial enumeration
into gradient based local search, the representation in the
form Hle(u(i))””(l) (1 — p®)1=2“ can not cover mutual
information among the components of x. To improve this
shortcoming, we here propose a generalized BFA that is
able to handle the case that both y and z are binary vec-
tors, still in help of the model eq.(42). We consider an ob-
servation space with noise e. Its dimension n may be dif-
ferent from the dimensions of both z,y. In this space, x
is not directly observable but observed via a set of lin-

ear bases vectors [wy, - --,wq] = W with the coordinates
[a:(l), e ,x(d)]T = =z, respectively, i.e., Wx = 2’ is ob-
served.

In implementation, we get y; by the Yang step in eq.(45)
with z; replaced by z; = Wax;. Then we update ¥ and
q(y9)) by the Ying step (b) in eq.(45). Moreover, we make
other updating as follows:

= W:nt — AEt —
Anew — Aold + 77t€t5tT,
wrew = weld — pepal (53)

After learning, we set up a mapping z; — y; via Wz, = x}
inserted into the Yang step in eq.(45) in place of z;. Also,
we set up a mapping y; — ¥; via £; = argmax, |Wx —
Agy — p||%. This bi-directional binary relation can be ap-
plied to rule based inferences. Also, this generalized BFA
can be directly modified to cover the cases that each z (?)
takes a number of discrete values.

In certain applications, we encounter the so called non-
negative factor analysis problem with both x,y only tak-
ing negative values. Actually, the above BFA and extensions
can be regarded as special examples of this type. Other ex-
amples come from the cases that the components of x are
real positive numbers, which can also be handled by the
BFA via a slight modification

A= [Ol?_]’ az_ew — old + 1 egl) (J)alqjd_ (54)
Alternatively, we can also turn each component of £ =
Ay + p to a nonnegative value via a simple nonlinear trans-
form, e.g., n = £2 [29] with the following modification

() ()

ef =i — (#")?, aiev = afl + mef i) (55)

ij

In addition, the generalized BFA by eq.(53) can also be
directly applied to the cases that the components of x are
real positive numbers.

Again, all the above learning algorithms can be extended
to the case of eq.(51) with D (¢, ;) in eq.(50).

Still, in the updating by eq.(53), eq.(54), and eq.(55), we
need to compute det[AT A] per updating or frequently. If
we find det[AT A] = 0 constantly, we need to reduce the di-
mension of y until eq.(40) become always satisfied.

7. Concluding Remarks

From the perspective of BYY harmony learning with a
bi-directional architecture, the Kohonen map type of topo-
logical structure is revisited with a new insight and a new
variant. Then, it has been further extended to a multi-set
-mixture based topological map for object detection. More-
over, an adaptive BFA algorithm is provided for learning
a type of Gaussian mixture with 2" Gaussian densities lo-
cated on vertices of a projected hyper polyhedra structure
that are represented via only m real vectors, with an appro-
priate m determined automatically during learning. Also,
another topological type is introduced into this projected
hyper polyhedra structure.
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Summary. Mining frequent sequential patterns is a relevant data mining task,
which finds applications such as web mining, bioinformatic data analysis, and text
mining. A further recent step is the exploitation of sequential information for clas-
sification purposes.

In this paper we address the problem of mining sequential classification rules.
Unfortunately, while high support thresholds may yield an excessively small rule set,
the solution set becomes rapidly huge for decreasing support thresholds. In this case,
the extraction process becomes time consuming (or is unfeasible), and the generated
model is too complex for human analysis.

We propose two compact forms to encode the knowledge available in a sequential
classification rule set. These forms are based on the abstractions of general rule,
specialistic rule, and complete compact rule. The forms are obtained by extending
the concept of closed itemset and generator itemset to the the context of sequential
rules. Experimental results show that a significant compression ratio is achieved by
means of both proposed forms.

1 Introduction

Association rules [2] describe the co-occurence among data items in a large amount
of collected data. They have been profitably exploited for classification purposes
[10, 14, 5]. In this case, rules are called classification rules and their consequent
contains the class label. Classification rule mining is the discovery of a rule set in
the training dataset to form a model of data, also called classifier. The classifier is
then used to classify new data for which the class label is unknown.

Data items in an association rule are unordered. However, in many application
domains (e.g., web log mining, DNA and proteome analysis) the order among items
is an important feature. Sequential patterns have been first introduced in [3] as a
sequential generalization of the itemset concept. In [20, 27] efficient algorithms to
extract sequences from datasets are proposed. The algorithms are based on lattice
theory and prefix-projection. In this paper, we propose classification rules based on
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sequential patterns. We define as sequential classification rule an implication where
the antecedent is a sequence and the consequent is a class label. This definition is a
classification specialization of the notion of sequential association rule proposed in
[24] for web logging applications.

In large or highly correlated datasets, rule extraction algorithms have to deal
with the combinatorial explosion of the solution space. This causes (i) the rule ex-
traction process to be frequently unfeasible, and (ii) the solution set to be hardly
understandable by a human being. To cope with this problem, pruning of the gen-
erated rule set based on some quality indexes (e.g., x?2, confidence and support) is
usually performed. In this way rules which are redundant from a functional point
of view [10, 14] are discarded. A different approach consists in generating equiva-
lent representations [4] that are more compact and without information loss. The
compact form in [4] is an extension of the concepts of closure and generator itemset
[19, 16, 17, 18, 15, 6, 25] to the associative classification domain.

In this paper we propose two compact forms to represent sets of sequential
classification rules. These forms are based on the concepts of closed sequence and
generator sequence, and use them to summarize a large rule set with a small num-
ber of compact rules. The first compact form is based on the concept of generator
sequence, which is an extension to sequential patterns of the concept of generator
itemsets [18]. Generator sequences code the minimal and non redundant informa-
tion with respect to all sequences coded into a closed sequence. Based on generator
sequences, we define general sequential rules. The collection of all general sequential
rules extracted from a dataset represents a sequential classification rule cover. A
rule cover encodes all useful classification information in a sequential rule set (i.e.,
is equivalent to it for classification purposes), but does not allow the regeneration
of the complete rule set.

While the notion of generator sequence, to our knowledge, is new, closed se-
quences have been introduced in [23, 21]. A closed sequence is the maximal se-
quence representing all sequences coded in a closure. Based on closed sequences,
we define closed sequential rules. A closed sequential rule is the most specialistic
(i-e., characterized by the longest sequence) rule into a set (closure) of equivalent
rules. Unfortunately, closed sequences, differently from generator sequences, do not
yield a classification rule cover. The second proposed compact form exploits jointly
closed sequences and their associated generator sequences. In particular, to allow
regeneration of the complete rule set, to each closed sequential rule is associated the
complete set of its generator sequences.

We also introduce a specialized type of sequence, the contiguous sequence. A
sequence is contiguous when the items appearing in it are always adjacent (i.e., no
other items are interleaved). Contiguous sequences are interesting in many biological
contexts like DNA and proteome analyis, where the domain of items is characterized
by very low cardinality. All theoretical results presented in this paper hold for both
the general and contiguous sequence domains.

The paper is organized as follows. Section 2 introduces the problem statement
and basic definitions. Sections 3 and 4 describe the compact forms for sequences and
for sequential rules, respectively. Section 5 reports preliminary experimental result
on the compression effectiveness of the proposed techniques. Finally, Section 6 draws
conclusions and outlines future work.
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2 Problem statement

In this section we introduce notation and fundamental definitions for sequential data
mining.

Definition 1 (Sequence). Let T be a set of items. A sequence S on T is an ordered
list of events, denoted S = (e1,e2,...,¢en), where each event e; € S is an item in Z.

In a sequence, each item can appear multiple times, in different events. The
overall number of items in S is the length of S, denoted |S|. A sequence of length n
is called n-sequence.

In this paper we focus on single item sequences. In these sequences, each event
contains a single item. Our definition of sequence is a restriction of the definition
of sequence proposed in [3, 27], where each event contains more items. Single item
sequences seem more adequate for specific application domains where each element
of the sequence is a single symbol (e.g., a word or an aminoacid).

A dataset D for sequence mining consists of a set of sequences. Each sequence in
D is characterized by a unique identifier, named Sequence Identifier (SID). When
dataset D is used for classification purposes, each sequence in D is labeled by means
of a class label c. Hence, dataset D is a set of tuples (SID,S,c), where S is a
sequence identified by the value SID and c is a class label belonging to the set C of
class labels in D. Table 1 reports a very simple sequence dataset, used as a running
example in this paper.

SID|Sequence|Class
O ADCA C1
1 |[ADCBA| co
2 ABE C1
3 |FGHFJ| a
4 |FGIFJ| «

Table 1. Example sequence dataset D

In the following, we introduce the concept of subsequence with constraints.

Definition 2 (Matching function). Let X = (z1,22,...,2) andY = (y1,92,--.,Ym)
be two arbitrary sequences. A function i : {1,...,m} — {1,...,l} is a matching
function from'Y to X if ¢ is strictly monotonically increasing and ¥j € {1,...,m}
118 Yj = Ty (j)-

Definition 3 (Constrained Subsequence). Let ¥ be a set of matching functions
between two arbitrary sequences, and X = (x1,x2,...,21) and Y = (y1,Y2,--,Ym)
two arbitrary sequences. Y is a subsequence of X with respect to W, written as Y Cy
X, iff I € ¥ matching Y to X.

When V¥ is the universe of all possible matching functions, we omit it for the
sake of readability and we say simply that sequence Y is a subsequence of sequence
X.
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A particular type of subsequence relation is the contiguous subsequence relation,
where the elements of sequence Y match with elements of sequence X without gap,
i.e., no other element is allowed to be interleaved. In this case, the matching function
can be characterized as v (j) = offset + j. When the first (last) |Y| elements of X
are equal to the elements of Y in the same order, Y is a prefix (suffix) subsequence
of X.

Consider the example dataset in Table 1. DA is a non-contiguous subsequence
of both sequences ADC A and ADCBA. Sequence DC' is a contiguous subsequence
of ADCA, where the matching function is ¥(j) = 1+ j. Sequence CD is not a
subsequence of any sequence in the example dataset because it is not possible to
build a matching function with respect to Definition 2.

The contiguity constraint is particularly interesting in the biological application
domain. In DNA or proteome, which are long sequences of symbols, there is high
correlation between contiguous elements, but correlation rapidly decreases with dis-
tance. With this rationale, we exploit the contiguity constraint to reduce the problem
complexity and the number of extracted sequences with a low loss of representative-
ness.

The support of a sequence X [3] in a dataset D is the number of sequences in D
that contain X. Formally, sup (X) = Card ({(SID,S) € D: X Cy S}). A sequence
X is frequent with respect to a given support threshold minsup when sup(X) >
minsup.

A sequential rule [3] is an implication in the form X — Y, where X and Y are
sequences in D. X and Y are respectively the antecedent and the consequent of the
rule. In this paper we derive from sequential rules the classification rules to be used
for classification purposes.

Definition 4 (Sequential Classification Rule). A sequential classification rule
in D is an implication v : X — ¢, where X is a sequence in D, and c is a class label
inC.

Differently from general sequential rules, the consequent of a sequential classifi-
cation rule belongs to set C, which is disjoint from Z. We say that arule r : X — ¢
covers (or classifies) a data object d if XCyd. In this case, r classifies d by assigning
to it class label c. Obviously, the contiguity constraint in the rule antecedent yields
contiguous sequential classification rules.

Similarly to associative classification, we measure the quality of a sequen-
tial classification rule » : X — ¢ by means of two quality indexes [10, 14],
named rule support and rule confidence. The indexes measure the estimated ac-
curacy of r in predicting the correct class for a data object d. The rule sup-
port is the number of sequences in D which contain X and are labeled by e,
sup(r) = Card ({(SID, S,c) € D: X Cy S Ac=c;}). The rule confidence is given
by the ratio conf(r) = sup(r)/sup(X). A sequential rule is said to be frequent with
respect to a given support threshold minsup if sup(r) > minsup.

3 Compact Sequence Representations

To tackle with the generation of a large number of association rules, several alter-
native forms have been proposed for the compact representation of frequent item-
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sets. Among them, maximal itemsets [7], closed itemsets [15, 26], free sets [11],
disjunction-free generators [12], and deduction rules [13].

Recently, in [21, 23] the concept of closed itemset has been extended to represent
frequent sequences.

Definition 5 (Closed sequence). An arbitrary sequence X in D is a closed se-
quence with respect to a matching function set W iff Y in D such that (i) X Co Y
and (i) sup(X) = sup(Y).

In [21, 23] the definition of closed sequence was proposed in the case of uncos-
trained matching. In this paper, we address the case of contiguous closed sequence,
when the sequence contains adjacent elements, and non-contiguous closed sequence
when matching is unconstrained.

Intuitively, a closed sequence is the maximal subsequence common to a set of
sequences in D. A closed sequence X is a compact representation of all the subse-
quences Y that are (i) subsets of it, and (ii) included in the same sequences in D. The
closed sequence X which encodes Y is called the sequential closure of Y. A sequence
database D can be encoded by means of the whole set of its closed sequences.

In the example dataset, ADA is a non-contiguous closed sequence, which rep-
resents the sequences ADA, AD, DA, AA, and D contained in sequences 0 and 1.
Instead, ADC is a contiguous closed sequence, also contained in sequences 0 and 1.
ADC, AD, DC, C and D are the sequences represented in it.

To completely characterize closed sequences, in this paper we also extend the
concept of generator itemset [17, 18] to the domain of sequences. A generator se-
quence is the shortest sequence among those represented in a closed sequence.

Definition 6 (Generator sequence). An arbitrary sequence X in D is a generator
sequence with respect to a matching function set W iff Y in D such that (1) Y Co X
and (i) sup (X) = sup (Y).

Analogously to closed sequences, the contiguity constraint yields contiguous gen-
erators, while the absence of constraint gives non-contiguous generators. In the ex-
ample dataset, D and AA are non-contiguous generators for the non-contiguous
closed sequence ADA. C' and D are contiguous generators for the contiguous closed
sequence ADC.

Based on Definition 6, all the sequences represented in a closed sequence X can
be generated starting from every generator sequence in X and “extending” it within
X. In other words if Z is a sequence represented by a closed X and an associated
generator Y Cy X, then Z is contained in X, and Y is contained in Z.

In the context of association rules, the closure for an arbitrary itemset is unique.
The property of uniqueness is lost in the context of sequences for both contiguous
and non-contiguous sequences. Hence, an arbitrary sequence X can be encoded by
a set of closed sequences. We call this set, the closure sequence set of X, denoted
CS(X). From this property it follows that a given generator sequence can generate
different closed sequences.

For example, consider the contiguous closed sequences F'G and F'J in the exam-
ple dataset. The set of generators for F'G is {F', G}, and for F'J is {F, J}. Hence,
generator sequence F' is associated to both closed sequences. Instead, G is a gener-
ator only for F'G while J only for FJ.
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4 Compact Representations of Sequential Classification
Rules

In this section we propose two compact representations to encode the knowledge
available in a sequential classification rule set. These representations are based on
the concepts of closed and generator sequence introduced in the previous section.

The next theorem exploits the concept of sequential closure to characterize a set
of sequential classification rules having the same values for both rule support and
confidence.

Theorem 1. Let r; : M — ¢; be an arbitrary sequential classification rule in D,
where M is a closed sequence in D. Then, Vr; : X — ¢; in D, with ¢; = ¢; and
M € CS(X), is (i) sup(rs) = sup(r;), and (i) conf(r;) = conf(ry).

Proof. By hypothesis, M € CS(X). Hence, for the properties of the sequential clo-
sure presented in Section 3, M and X are contained in the same sequences in D.
Hence, sup(M) = sup(X). Furthermore, rules r; and r; are contained in the same
subset of sequences in D, labeled by class ¢; = ¢;, and thus sup(r;) = sup(r;). It
trivially follows that conf(r;) = conf(r;).

By theorem above, rules with the same consequent, and whose antecedents have
the same sequential closure, are characterized by the same values of support and
confidence. For example, consider the two contiguous rules AD — ¢; and DC — ¢
in the example dataset. These rules have both equal support and confidence since the
contiguous closed sequence ADC belongs to the sequential closure set of both AD
and DC'. Analogously, non-contiguous rules DA — ¢; and AA — ¢; have the same
values of support and confidence, since both sequences DA and AA are encoded in
the non-contiguous closed sequence ADA. We note that the theorem above states a
sufficient but not necessary condition.

In the next section we exploit the theorem above to introduce the concepts of
general and specialistic classification rule. These rules characterize the more general
(shorter) and more specific (longer) classification rules in a given classification rule
set. We then exploit the concepts of general and specialistic rule to define the two
compact forms presented in Section 4.2 and 4.3, respectively.

4.1 General and Specialistic Rule

In associative classification [10, 14, 22], a shorter rule (i.e., a rule with less elements
in the antecedent) is often preferred to longer rules with lower confidence and/or
support with the intent of both avoiding the risk of overfitting, and reducing the
size of the classifier. However, in some applications (e.g., modeling surfing paths in
web log analysis [24]), longer sequences may be more accurate since they contain
more signature information about the user-access patterns. In these cases, longest-
matching rules may be preferred to shorter ones.

To characterize both kind of rules, we propose the definition of specialization of
a sequential classification rule.

Definition 7 (Classification Rule Specialization). Let r; : X — ¢; and r; :
Y — ¢; be two arbitrary sequential classification rules in D. r; is a specialization of
ri iff (1) XCwY, () ¢; = ¢;j, (iit) sup(r;) = sup(r;), and (i) conf(r;) = conf(r;).
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Based on Definition 7, a classification rule r; is a specialization of a rule r; if
r; is more general than r;, i.e., m; has fewer conditions than r; in the antecedent.
Hence, any data object covered by r; can be also covered by r;, while the vice versa
is not true. r; and r; both assign the same class label and have equal support and
confidence.

Definition 7 is based on a similar definition proposed in the context of associative
classification rules [4]. With respect to the definition of specialistic rule proposed in
(10, 14, 22], the definition in [4] is more restrictive. In fact the two rules are required
to have the same confidence, support and class label.

Based on Definition 7, we now introduce the concept of general rule. This is
the rule with the shortest antecedent, among all rules having same class label, rule
support and confidence.

Definition 8 (General Rule). Let R be the set of frequent sequential classification
rules in D, and r; € R an arbitrary rule. 7; is a general rule in R iff fir; € R, such
that r; is a specialization of r;.

In the example dataset, D — c; is a contiguous general rule with respect to the
rules DC — ¢; and ADC — ¢;. Instead, AA — ¢; is a non-contiguous general rule
for the non-contiguous rule ADA — ¢;.

The next lemma formalizes the concept of general rule by means of the concept
of generator sequence. The lemma follows from Definitions 6 and 8.

Lemma 1 (General Rule). Let R be the set of frequent sequential classification
rules in D, and r € R an arbitrary rule. r is a general rule in R iff X is a generator
sequence in D.

Based on Definition 7, we define the concept of specialistic rule.

Definition 9 (Specialistic Rule). Let R be an arbitrary set of frequent sequential
classification rules in D, and r; € R an arbitrary rule. r; is a specialistic rule in R
iff fir; € R such that r; is a specialization of 7;.

Based on the definition above, for a specialistic rule r € R, there is no rule
in R such that r is included in it, and the two rules have both equal support and
confidence. For example, ADC — ¢; is a contiguous specialistic rule in the example
dataset, with support 20% and confidence 50%. The contiguous rules ADCA — ¢
and ADCBA — c¢; which include it have support equal to 20% and confidence
100%.

The next lemma formalizes the concept of specialistic rule by means of the
concept of closed sequence. The lemma follows from Definitions 6 and 9.

Lemma 2 (Specialistic Rule). Let R be the set of frequent sequential classification
rules in D, and r € R an arbitrary rule. v is a specialistic rule in R iff X is a closed
sequence in D.

4.2 Sequential Classification Rule Cover

In this section we present a compact form which is based on the general rules in a
given set R. This form allows the classification of unlabeled data without informa-
tion loss with respect to the complete rule set R. Hence, it is equivalent to R for
classification purposes.
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Intuitively, we say that two rule sets are equivalent if they contain the same
knowledge. When referring to a classification rule set, its knowledge is represented
by its capability in classifying an arbitrary data object d. Note that d can be matched
by different rules in R. Each rule r labels d with a class c. The estimated accuracy
of r in predicting the correct class is usually given by 7’s support and confidence.

The equivalence between two rule sets can be formalized in terms of rule cover.

Definition 10 (Sequential Classification Rule Cover). Let R and Rz C R
be two arbitrary sequential classification rule sets extracted from D. R is a sequential
classification rule cover of R1 if, (i) Ra is minimal, and Vr; € R1 and r; : X — ¢,
Ir; € Ry and 1 : Y — ¢;, such that (it) Y Cy X, (W) ¢; = ¢;, (iv) sup(ri) =
sup(r;), and (v) conf(r;) = conf(r;).

When R2 C R is a classification cover of R1, the two sets classify in the same
way an arbitrary data object d. If a rule r; € R labels d with class ¢, then in Ro
there is a rule r;, not necessarily identical to 7;, which labels d with the same class.
r; and r; have both same support and same confidence. It follows that R; and Ra2
are equivalent for classification purposes.

For a given rule set R, the subset of its general rules is a general classification
rule cover of R. The next theorem proves this property. From the theorem it follows
that this compact representation of R is equivalent to it for classification purposes.

Theorem 2 (Sequential Classification Rule Cover). Let R be the set of fre-
quent sequential rules in D, and G the set of frequent generator sequences in D.
The subset of rules in R having as antecedent the elements of G, is a sequential
classification rule cover of R

CRC={r:G—c|GeGATreR} (1)

Theorem 2 can be proved based on the characteristics of the generator sequences.
Consider an arbitrary rule 7; : X — ¢ in R. Two options are possible. (i) X is a
generator sequence. Hence, r; belongs to CRC. (ii) X is not a generator sequence.
In this case, there must be at least a rule r; : Y — c in R such that Y is a generator
sequence and 7; is a specialization of r; based on Definition 7. Hence, r; belongs to
CRC. From (i) and (ii) it follows that CRC' is a sequential classification rule cover
of R according to Definition 10.

Figure 1 reports the classification rule cover for the example dataset, when rules
are extracted by considering minsup = 1 and enforcing the contiguity constraint. We
note that the sequential classification rule cover set does not allow the regeneration
of the complete rule set.

4.3 Complete Compact Classification Rule Set

In this section we present a compact form to encode a classification rule set, which,
differently from the classification rule cover presented in the previous section, allows
the regeneration of the original rule set R. Hence, it is named complete. The proposed
representation relies on the notions of closed and generator sequences.

In the compact form, both general and specialistic rules are explicitly repre-
sented. All the remaining rules are summarized by means of an appropriate encod-
ing. The compact form consists of a set of elements named compact rules. Each
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Rule |Sup [%]|Conf [%]
E— 40 100
F —c 40 100
I —c 40 100
J—aa 40 100
G—ca 20 100
H—c 20 100

AB — c1 20 100
BA — ca| 20 100
CA—c1 20 100
CB — c2 20 100
A—c 40 66
B— 20 50
B — co 20 50
C—c 20 50
C — co 20 50
D —c 20 50
D — ¢ 20 50
A — o 20 33

Fig. 1. Sequential classification rule cover with contiguity constraint for the example
dataset (minsup = 1)

compact rule includes a specialistic rule, a set of general rules, and encodes a set of
rules that are specializations of them.

Definition 11 (Compact Rule). Let M be an arbitrary closed sequence in D,
and G the set of its generator sequences. Let ¢ € C be an arbitrary class label. Then,
F:(G,M) — c is a compact rule in D.

An arbitrary compact rule F : (G, M) — c represents all the rules r : ¥ — ¢
in D with the following characteristics: r is labeled with the same class as F, and
M belongs to the sequential closure set of Y, i.e., M € CS(Y). Hence, the rule set
represented in F includes: (i) the rule r : M — ¢, which is a specialistic rule since
M is a closed sequence; (ii) the set of rules r : G — ¢,G € G, that are general
rules since G is a generator sequence; (iii) a set of rules r : Y — ¢ that are a
specialization of rules in (ii). For these rules, the antecedent Y is a subsequence of
M (i.e., YCz M), and it completely includes at least one of the generator sequences
in G (ie., 3G € G|GCyY).

Based on the selected matching functions in ¥, a compact rule can represent a
set of contiguous or non-contiguous sequential classification rules. In the example
dataset, the contiguous classification rules C — ¢i1, D — ¢1, AD — ¢1, DC — ¢y,
and ADC — c; are represented in the compact rule ({C, D}, ADC) — c1. Instead,
the non-contiguous classification rules £ — ¢1, AE — ¢1, BE — ¢1, and ABE — ¢
are encoded in the compact rule (({E}, ABE) — c1).
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As stated in the next lemma, the rules represented in a compact rule are char-
acterized by the same values of rule support and confidence. The lemma directly
follows from Definition 11 and Theorem 1.

Lemma 3. Let F : (G, M) — ¢ be an arbitrary compact rule in D. For each rule r
represented in F is (i) sup(r) = sup(M — ¢), and (i) conf(r) = conf(M — c).

We use the concept of compact rule to encode the set R of frequent sequential
classification rules. The next theorem proves that the compact rule set representing
R is minimal and complete, since it represents all the rules in R.

Theorem 3 (Compact classification rule set). Let R be the set of frequent
sequential classification rules in D. Let M be the set of frequent closed sequences,
and G the set of frequent generator sequences in D. The compact rule set

CCRS = {F : (G, M) — c}, (2)

is a minimal, complete representation of R iff Vr : X — c in R such that X € M,
then 3F : (G, M) — ¢ in CCRS with (i) M = X and (ii) G includes all generator
sequences for X.

The theorem above can be proved based on the characteristics of the closed and
generator sequences. The rules in R having as antecedent either a generator or a
closed sequence are explicitly represented in the set CCRS. Hence, the set R can
be generated from the compact rules in CCRS. It follows that the set CCRS is a
complete representation of R. Furthermore, let remove an arbitrary compact rule
from CCRS. Hence, the rules encoded in the compact rule and having as antecedent
either a generator or a closed sequence can not be generated from the set CCRS. It
follows that the set CCRS is a minimal representation of R.

Figure 2 shows the compact classification rule set for the example dataset when
enforcing the contiguity constraint. When minsup = 1, the sequential classification
rule set includes 53 contiguous rules. The corresponding compact rule set includes
14 compact rules. Hence, the compression factor achieved in this case is 26.4%.

5 Experimental results

Preliminary experimental results have been run to evaluate the compression achiev-
able by means of the proposed compact representations. Experiments have been run
by considering the four datasets in Figure 3, where the number of items, sequences,
and class labels for each dataset are reported. The Reuters-21578 news dataset [9]
includes textual data. The other three are biological datasets: DNA and Promot-
ers [9], including collections of DNA sequences, and the Escherichia Coli’s protein
sequences from RCSB Protein Data Bank [8].

We developed an algorithm to extract the compact classification rule set from
a sequential dataset. The sequential classification rule cover representation can be
easily derived from it. Currently, the algorithm focuses on the extraction of the
compact forms with contiguity constraint. However, it can be easily extended to
support the extraction of the compact forms without constraint. The algorithm is
based on a levelwise search [1], and computes the set of frequent closed sequences in
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Compact rule Represented rules Sup [%]|Conf [%]
({G},G) — C1 G—>C1 40 100
{F.G].FG) — o F—a,Goa, FG oo 40 100
{F,J},FJ)— c1 F—c,J—c, FG—c 40 100
E —c, AB — ¢,
({E,AB},ABE) — ¢; BE — oy ABE e, 20 100
({CA}, ADCA) — ¢ oA Zg%fii:’ b 20 100
BA — ¢, CB — c2,
CBA — c2, DCB — ca,
({BA,CB},ADCBA) — c2 ADCB — ¢s, DCBA — ¢, 20 100
ADCBA — c2
PI~>617 GH — C1,
HF — ¢, FGH — ¢y,
({H},FGHFJ) — ¢ | GHF — ¢, HFJ — ¢, | 20 100
FGHF — ¢1, GHFJ — c1,
FGHFJ — ¢
I*>C17 G‘I*>Cl7
IF — ¢, FGI — ¢,
({I},FGIFJ) — 1 GIF — c1, IFJ — c1, 20 100
FGIF — 1, GIFJ — ¢,
FGIFJ — ¢
({A},A) — C1 A—>Cl 40 66
{B}.,B) — B — 20 50
({B},B) — ¢ B — co 20 50
C—>C1,D—>01,AD*>61,
({C, D}, ADC) — ¢1 DO s cr ADC - o 20 50
C"CQ,D"CQ,AD*)CQ,
({C, D}, ADC) — ¢ DO cp, ADT - 0 20 50
({A},A) — C2 A—>CQ 20 33

Fig. 2. Compact classification rule set with contiguity constraint for the example
dataset (minsup = 1).

increasing length. At the k" iteration, the algorithm generates the set of frequent
closed sequences of length k. Each closed sequence is provided of the necessary

Dataset Sequences #|Items #|Classes #
DNA 2000 4 3
Promoters 107 4 2
E. Coli 1186 20 8
Reuters-21578 6490 28982 10

Fig. 3. Datasets.
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information to compute the compact classification rules encoded by it. The algorithm
was coded in standard ANSI C. Experiments were run on an Intel Pentium 4, with
1.5GHz CPU clock rate and 1GByte RAM.

We performed rule extraction for decreasing support thresholds. For each dataset,
in Figure 4 we report the number of rules in the frequent sequential classification
rule set (R), in the classification rule cover (CRC), and in the compact classifica-
tion rule set (CCRS). Figure 4 also shows the compression rate (CF%) achieved by
means of the two compact representations. This index measure the ratio between
the number of rules in the compact form, and in the set R.

Results show that the proposed compact representations yield significant benefits
for low support thresholds. In this case, set R contains a large number of rules, while
both compact forms have a significantly smaller size. For example, with support
0.05%, DNA dataset yields over 4 million rules, but only 110884 compact rules
(with CF about 2.45%, i.e., about 100 times smaller) and 167455 general rules (with
CF about 3.70%). When increasing support, the compact forms get close to the
whole rule set R.

Higher compression rates are achieved in the datasets where the information is
more correlated. In these datasets, especially when considering low support thresh-
olds, a set of subsequences can appear repeatedly in the training dataset. The two
proposed compact representations allow modelling this regularity. Examples are the
collections of DNA sequences (DNA and Promoters datasets), and textual data
(Reuters dataset). A different behaviour characterizes the dataset representing pro-
teins (E. Coli dataset), where the compression rate is lower. This effect is probably
due to the fact that proteome contains less redundant information with respect to
DNA.

We also performed preliminary experiments on classification accuracy by ex-
ploiting the compact forms proposed in this paper. We used a modified version of
L3 algorithm [5], which yielded encouraging accuracy results.

6 Conclusions and future work

In this paper we have introduced two compact representations to encode the knowl-
edge available in a sequential classification rule set. The sequential classification rule
cover is defined by means of the concept of generator sequence and yields a simple
rule set, which is equivalent to the complete rule set. Compact rules are characterized
by a more complex structure, based on closed sequences and their associated genera-
tor sequences. The complete compact rule set, while providing a similar compression
ratio, allows us to regenerate the entire set of frequent sequential classification rules
from the compact form.

Preliminary experiments on textual and biological datasets show that the com-
pression ratio is significant for low support thresholds and correlated datasets. In
this case, traditional techniques would generate a huge amount of classification rules.

As future work, we plan to exploit our compact representations to design an
effective classifier. A promising direction is the integration of both sequential and
associative classification rules, to exploit both the specific characterization provided
by sequential rules and the general representation given by associative classification
rules.
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a) Reuters-21578
sup | sup| CCRS CRC
(%] |labs] # | CFR] | # | CF [%]
0.05 21530639(48336 9.11 [58793| 11.08
0.1 7| 10307| 9345| 90.67 9400 91.20
0.5 33| 1401| 1401| 100.00 1401 100.00

1.0 65 835 835| 100.00 835| 100.00

b) DNA
sup | sup| CCRS CRC
[%] |[abs] # | CFR] | # | CFIA]

0.05 1/4527168(110884 2.45 |167455 3.70
0.10 2| 416657|109044| 26.17 |117647| 28.24
0.20 4| 90551| 65914 72.79 66666 73.62
0.50 | 10| 27006| 26754| 99.07 26765 99.11
1.00 | 20| 12966| 12963| 99.98 12963| 99.98
¢) Promoters

sup| sup| CCRS CRC
[%]|[abs] # | CFR] | # | CF [
1 2(147462{2910 1.97 |4753 3.22
2| 3| 31345|2834 9.04 [3369| 10.75
4 5/ 2509|1884 75.09 |1935| 77.12
8 9| 1013] 985| 97.24 991| 97.83
d) E. Coli
sup | sup| CCRS CRC
[%] |[abs] # | CFR | # | CF %]

0.10 2|825204(359823| 43.60 (368645 44.67
0.20 4|261848|253243| 96.71 |253887| 96.96
0.50 9|126813(126746| 99.96 |126748| 99.95
1.00 | 17| 67134| 67128| 99.99 67128 99.99
2.00 | 34| 43100| 43100| 100.00 43100| 100.00

Fig. 4. Frequent classification rule set (R), sequential classification rule cover
(CRC), and compact classification rule set (CCRS).
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In recent years, support vector machine (SVM) [2][3] has attracted lots of interest for its
capability in solving classification and regression problems. Successful applications of SVM
have been reported in various areas, including but not limited to areas in communication
[4], time series prediction [5], and bioinformatics [1]. In many applications, it is desirable
to know not only the classification decisions but also what leads to the decisions. However,
SVMs offer little insight into the reasons why SVM has made its final results. It is desirable
to develop a rule extraction algorithm to reveal knowledge embedded in trained SVMs and
represent the classification decisions based on SVM classification results by linguistic rules.

Rule extraction from SVM can facilitate data mining clients in many aspects:

e Increase perceptibility from SVM decisions

e Refine initial domain knowledge, for example, remove irrelevant attributes which do
not play a role in rule decision making

e Explain data concepts by linguistic rules to clients

e Find active attributes in decision making

This paper exploits the fact that the decisions from a non-linear SVM classifier could
be decoded into linguistic rules based on the information provided by support vectors and
decision function. Given a support vector of a certain class, cross points between each
line, which is extended from the support vector along each axis, and SVM decision hyper-
curve are searched first. A hyper-rectangular rule is derived from these cross points. The
hyper-rectangle is tuned by a tuning phase in order to exclude those out-class data points.
Finally, redundant rules are merged to produce a compact rule set. Simultaneously, impor-
tant attributes could be highlighted in the extracted rules. Rule extraction results from our
proposed method could follow SVM classifier decisions very well. Comparisons between our
method and other rule extraction methods are also carried out on several benchmark data



sets. Higher rule accuracy is obtained in our method with fewer number of premises in each

rule.
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Abstract data mining project needs to be secured far before the mod-
elling step. More precisely, success depends firstly on the
Despite the existence of data mining standards suchBusiness Understanding, Data Understanding and Data Pre-
as Crisp-DM, SEMMA, PMML, up to date, data mining processing steps which are currently being developed as an
projects are being developed more as an art than as a sci-art.
ence. The process depends completely on the expertise dkccording to [21], one of the essential elements of effective
the data miner since no method is available to make the pro-mining is the availability of domain relevant data: “ your
cess systematic and automatic. This is due to a lack of dataanalysis is only as good as the data you use . The author
mining problem conceptualization. In this sense, a deep un-also establishes, among the common pitfalls of data mining
derstanding of both of the data to be analyzed and the ap-implementation, the following:
plication domain of the results as well as of the data mining
functions is needed. Knowing the meaning of the data to
be analyzed: facts they represent, constraints and context
under which they were captured and the constrains under- ¢ Not having the right data to conduct effective analysis.
neath the data mining functions to be applied, will make it
possible to find out whether the business goals to achieve
are feasible. However, up to date, there is no formal method The question that arises is whether the adequateness of a
to describe this elements in such a way that the quality of Set of data for a problem can be established when prepar-
results quality can be assure. In this paper, we present theind the project plan and how this set of data can be used to
basis for an abstract model to conceptualize these elementsProduce the expected results. Up to date, there is no formal
This setting is a step towards a methodology for data min- methodology to help with this task. In order to do so, a con-

communication among the human resources involved: the

data analyst, the data engineer, the domain expert and the

data miner analytical personnel [18].

Such conceptualization would be the key to establishing

. . ) which business objectives have a chance to be achieved and
Data is the key element of every data mining project. ynder which circumstances, and it would be a first step to-

Data must represent the part of the real world domain that,y5,ds the automatization of the data mining process.

it is going to be analyzed. Moreover, data must be under-opy the experience of expert data miners can help in solv-

stood so that its correctness and adequacy to the problerrpng this task. In order to automatize the process, the set

to be solved can be evaluated. The process of knowledgey factors that the expert takes into account when deciding

creation and enhancement comes from information which\yhich pusiness objectives are feasible or not it would have

is nothing else than data that have been collected, accesseg, pe analyzed. Going deeper into the process it is clear that

formatted and analyzed [21]. Consequently, the success of 3he adequateness of the data is analyzed taking into account

*This work has been partially supported by Ministerio de Educacion y goals to fulfil. Finally, this can pe translated into analyz-
Ciencia (Spain)under project TIN2004-05873 ing whether the data, together with the knowledge extracted

e Not being able to efficiently communicate mining re-
sults within an organization.

e Not using existing data correctly.

1 Introduction




from the experts, can be transformed so that just by beinga guide to implementing data mining projects [13][32][7].
the input of a certain data mining algorithm will produce the The Common Warehouse Model for Data Mining (CWM
required patterns. DM) [13] proposed by the Object Management Group, in-
Thus, quality of the data, in this context, is not only related troduces a CWM Data Mining metamodel integrated by the
to the technical quality, let us say, proper model, percentagefollowing conceptual areas: A core Mining metamodel and
of null values, ...but it also has to do with the meaning of metamodels representing the data mining subdomains of
the attributes, precedence of each piece of data, relationshifClustering, Association Rules, Supervised, Classification,
among data, and finally how the data fulfil the requirements Approximation, and Attribute Importance.

of the data mining functions. The Cross-Industry Standard Process for Data Mining
In this paper, we present a first approach towards a system{CRISP-DM), was proposed in 1997 [7] to establish the
atic way to develop data mining project by means of the standard data mining process. CRISP-DM steps include
conceptualization of each factor involved in the proper de- several phases: business understanding, data understanding,
velopment: standard representation of goals to fulfil, tech- data preparation, modelling , evaluation and deployment.
niques to be used, and any information to be analyzed be-AT 1999 SAS Institute proposed the SEMMA methodology
fore the project plan is developed. Thus, independently of integrated by five phases: Sample, Explore, Modify, Model
who the person to develop the problem may be, the tasksand Assess. The data mining process starts by taking a rep-
to be performed together with the inputs, outputs, and risksresentative sample of the target population to which a confi-
will be settled in a standard way. dence level is associated. Then, this sample is explored and
The rest of the paper has been organized as follows. Sectiormnalyzed using visualization and statistical tools in order to
2 presents the related work in which it will be clear that al- obtain a set of significant variables that will become the in-
though some efforts have been made towards a data miningut for a selected model.The selected model is analyzed.
methodology, no such methodology already exists mainly The goal of this step is to determine relationships among
because the conceptualization of the problem is missing.variables. In this phase, both statistical methods (e.g. dis-
In section 3 a deep analysis of problem is done so to dis-criminant analysis, clustering, and regression analysis)and
cover the elements to conceptualize: business domain ordata-oriented methods (e.g. neural networks, decision trees,
the one hand, data mining functions on the other. Sectionassociation rules) can be used. In this process the final phase
4.2 presents a deeper analysis of the data sources as thegonsists of evaluating the model and comparing it with dif-
are the main source of information in a data mining prob- ferent statistical methods and samples.

lem. To end with in section 5 discussion and conclusions All of the above models depend heavily on the analysts
of the research so far as well as future lines of study are(business, domain experts, data miners) knowledge. There

outlined. seems to exist a need for an intermediate level of conceptu-
alization which can provide an interface between the experts
2  Related Work and the clients.

According to Grossman et al. [11] “ although efforts have

he inf . hen d 4 and dbeen done to homogenize terminology and concepts among
In the in ormat_lon.age when at.a generate an Storedgandards more work is required ”. A framework to develop
by modern organizations increase in an extraordinary way,

. K ¢ a unified model for data mining is proposed in [19]. The
data mining tasks [35] becomg anecessary and undamengoal of the model is to provide a uniform data structure for
tal technology. A lot of data mining research has been fo-

: he devel ¢ aloorithms f formi all data mining patterns and operators to manipulate them.
cusing on the development of algorithms for performing e o gel js designed under a three-view architecture (Pro-

Qifferent tasks, i.e. clustering, association and classifica- oo view, model view and data view) that includes a pro-
tion. [27] [36] [22] [34] [29] [30] [17] [4] [25] [5] [24] cess model and data views. The model view contains a set

[14], and on their applications to diverse domains. Though ot mining models with information about mining resuits.

one major challenge in data mining according to [11]is get- All these approaches and standards do not take the seman-
ting researchers to agree on a common standard for presi.s of the data into account
processing tasks, standards related to applying the datfbn the other hand, new techniques to add semantics to data

m@ning process to qp(_arational processes, and systems. Irf‘nining tasks have been proposed. However, the semantics
this sense, the Predictive Model Markup Language(PMML) ¢ yhe"qata in the data mining process has been strongly re-

.[12] prr:)vides seve][al components (Data D(ijctlionary,f I\I/I;n lated to human involvement in the process itself. Data min-
ing Schema, Transformation Dictionary, Models) useful for 1\ qiects involve qualified personnel [18], i.e. business

producing d_ata mining models. The Data Dictionary in- analysts, data analysts, data engineers, domain experts, data
cludes only information about type of data and range of val- miners, knowledge engineers, strategy managers, project

ues. Semantic information is not taken into 'account. managers [20]. A significant contribution to semantic data
Several proposals have been developed in order to offer



has been done by the semantic web community [23][2] any standard to express business objectives in a uniform
[8][31] to enrich web resources with metadata. In the web way? What is a data mining goal? How are data mining
domain, both semantics and mining are combined [2] to im- goals achieved? Which are the requirements of data mining
prove web mining results with ontologies and metadata. In functions? Do we have a standard to establish data mining
order to add semantics to web documents, Berendt et algoals?.
[2] proposed several approaches to extract semantics froniThe main goal is then, to make this process explicit: to gen-
the web to help knowledge engineers. Several studies haverate a method to perform the required tasks in a systematic
been developed for using ontologies to improve web contentway. This method will guarantee the automatic generation
mining. An interesting proposal, called, dealing with a of feasibility plans for each business goal being translated
metadata structure is presented in [1]. Based on case-baseidto data mining goals no matter who the person in charge
reasoning, an approach that enables automatization of preef the process may be. A first step towards this method will
processing and reusability of defined preprocessing casede the definition of certain mechanisms of abstraction to ob-
for data mining applications, is proposed. In this proposal, tain a model of the objectives of the project.
a case is defined in terms of the specification of a data min-The goal of this abstraction is to provide data mining ana-
ing task, the data to be mined and the set of preprocessindyst with a method to systematically describe the goals of
operators to be applied to the dat&/*, the Mining Mart the project. Deeply analyzing any activity of the organi-
MetaModel, is a metamodel designed for a metadata-drivenzation (even external to it) that generate data that will be
software package to perform preprocessing for data mining.potentially used as input in a data mining project as well
as the data themselves and the data mining functions will
3 Analysis of the Problem highlight important concepts that are common in any data
mining project independently of the domain. These aspects
will set the basis for a definition of elements that will make

Business Intelhgenc_e [6] is: * a fairly new term that In- -t possible to represent (to abstract) the business domain that
corporates a broad variety of processes and technologies O the target of the data mining solution

harvest and analyze specific information to help a business
make sound decisions ”.
In this paper we use the term business to refer to any ac- -

tivity developed in a company in the most general sense, | S
no matter the nature and aim of such activity (commercial, | Sl e
governmental, education, ...). Data mining is one of the | = BRI ies
technologies that make Business Intelligence solutions be; "=

implemented. In fact, in any business intelligence solution ~—
should include a data mining project to extract the intel- Poassin P
ligence of the business that will be accordingly deployed.  requremenTs AssESMENT: -
However, data mining projects are being developed more as ~ 2Da@mining goats

4 X OStages (Inputs, autputs, dependencies ‘“".;;7
an art than as an engineering process.

e . << arse ==
ORisks and contingencies plan

The only approach to develop a task in a systematic way is Eicdess i e Busingss Goals Model
described in Crisp-DM. However, complete tasks develop- N

. . mm << refine+enrich model > PROJECT PLAN:
ment is dependant on the data miner expert. | T QData mining goals
Data mining experts have made the process of translating . 4 ngigfsamg‘fﬁfguetﬁﬂi‘s%?;f Bl
business goals into data mining goals, automatic. When do- oStz and BEOER

Feasible Business Geals Model

ing so, the expert does not only take into account data min-
ing techniques but also their constraints, inputs, outputs, the
order in which algorithms will be applied and dependencies Figure 1. Project Plan Definition Process

between inputs and outputs. As part of the process, the ex-

pert automatically evaluates different choices depending on

the intermediate results and/or inputs. The quality of the

overall process will finally determine the quality of the ob- Figure 1 depicts the basic steps, tools and intermediate re-
tained results. sults that underlay the establishment of a systematic method
The first question that arises is: Which is the methodol- to define data mining goals.

ogy to be followed to translate business objectives into dataPrevious to the definition of such a model there is a need to
mining objectives? Unluckily, there is no such methodol- find a standard way to represent all the elements identified
ogy but if we think on how to obtain it new questions will as relevant in the business domain to be analyzed. Manda-
arise: How a business objective is expressed? Do we haveory elements that compose this information are: objectives



and motivations underlying the project, scope of applica- ments or conditions. As it was said in 4.1, every problem
tion of the expected results and structure, content and flowtype will require different kinds of data. In the following,

of the data to be analyzed. Besides, technical elements rewe will describe the different existing problems as well as
lated to the very nature of the data mining project will have their requirements.

to be incorporated to the previous information. The blend- Eliciting, analyzing and graphically depicting concepts is
ing and abstraction of these two pieces of information, will no easy task [10]. The bottom line to business success is
result not only in a model of shared understanding for client to increase the knowledge of decision makers at every level
and data miner but will also be a tool to determine factible of an organization. The process of knowledge creation and
data mining goals and consequently the basis to establistenhancement comes from information which is nothing else
milestones to achieve along the project development. Inthan data that have been collected, accessed, formatted and
figure 1, DMMO (Data Mining Modelling Objects) denotes analyzed [21].

the set of all the compounding elements of the Modelling For data mining to be successful, a good understanding of
Language. Elements of the business domain will be ab-the business objectives that finally establish the require-
stracted using DMMO, generating the Business Objective ments of the system to be developed is needed. Indepen-
Model. Together with this intermediate model, a document dently of how good the data mining techniques can be, a
that we have called Requirements Assesment will be pro-system whose requirements are poorly specified will end up
duced. This is a first approach to project goals in which with a disappointed end user [28]. Both the client and the
special attention is given to critical factors in the develop- data miner play an important role when establishing busi-
ment (risks, constraints, information required, ...). Critical ness goals. The client has to formulate his problem while
factors will depend both on the goals themselves and on thethe data miner tries to understand it in order to be able to
tools and techniques used to achieve them. translate it into data mining functions. During this task, it
The requirement assessment document will be analyzeds relevant to keep in mind the following aspects (inspired
jointly with the client to enrich and refine the previous busi- from software engineering [28]: “ Business domain as well
ness goals model. The resulting model from this analysis isas functional domain of the problem has to be represented
what has been called Feasible Business goals Model in theand understood .

figure. In this model, goals previously identified but ana-

lyzed as not feasible have been removed. From the refined

model and making used once again of DMMO the project 3.1.1 Business domain

plan will be produced almost in a automatic way as the
model will represent relevant aspects both of the domain
and of the tools themselves. Due to the abstraction capa
bility of the elements of DMMO we propose, the plan will

Every data mining project can collectively be described as
data analysis and knowledge extraction to obtain the intelli-
gence of the business. This definition contains the key to un-
contain detail information about: techniques, tools, kind of derstand business objectives in a datg mining pro_Ject: Data.

Data do not only represent the activities or business pro-

data mining to be solved, inputs, outputs, flor of data and de- oo )
pendencies. Thus, risk and contingencies, cost, milestonest€SS€S that have generated.them. Activities are mqugnced
" will be identified. by relevant factors of the business that are also hidden in the
data themselves. Consequently, data implicitly carry impor-
. . ) L tant knowledge about the business that should be extracted
3.1 Setting/Abstracting business objectives to be able to correctly capture the information hidden in
data. Along this section, we will try to highlight which are
A data mining project arises when a given organization these determinant factors so to take them into account in the
needs to solve a set of problems that can be addressed bgbstraction mechanism.
means of data mining techniques. In a data mining project Though talking about intelligence, data mining does not in-
some critical success factors can be identified. However, thevolve deductive processes. On the contrary, it is an induc-
most important factor is related to the clear understandingtive process that analyzes the data to extract knowledge: it
of the business goals. Moreover, once the goals are underaccepts data from different sources, manipulates them and
stood, they must be translated into data mining goals andobtains an output and patterns of knowledge, that if of good
then, into data mining problem types. A data mining expert quality, will be deployed. This is the general setting of the
who knows what type of problems can be solved, and which process no matter the domain or organization we are deal-
are the most suitable techniques, algorithms and tools to beéng with.
applied, is required. In the process of data analysis and knowledge extraction,
However, not only identifying the data mining problems to different perspectives of the data being analyzed are taken
be solved is enough. We should also be able to find out if theinto account: data sources, information content of the data
available data to be analyzed fulfil a set of general require- (knowledge to explain the data), data structure and data



flow. To fully understand the process, all of them must be other, it would provide means to interpret the patterns to be
considered. obtained.
Related to the content, data have to be enriched so that goalkh order to do a mapping between business goals and data
can be fulfilled. Data that are the source of a data mining mining goals, a conceptualization of the data mining func-
project were never designed, captured and stored thinkingtions definition needs to be established for each kind of
they would become the input of the data mining process. problem: constraints, required inputs for each input, rela-
Consequently, an effort is needed to transform them so thationship with the business, expected outputs, techniques that
knowledge can be extracted. However, the aim of any dataare appropriate, .... This conceptualization could be used
mining project is to help the decision maker do a better job. in the business understanding step to establish requirements
Thus, any element that can be determinant when making ao fulfil certain goals.
decision should be analyzed. In this sense, the mayor probRelated to data mining conceptualization, not only each
lem is establishing these elements as it is as equally fatalfunction has to be dealt with. Data are transformed along
to leave one element out as it is to introduce erroneous el-the data mining process in order to obtain the proper re-
ements. In any case, elements that can be decisive whesults. Settled this way, the input data will be transformed
making decisions have to do with the operations developedgenerating intermediate data that will sometimes become fi-
in the company, the internal organization of the company nal results and after more transformations, will produce the
as well as business rules, and finally the external conditionsoutput. Along the process, more data can enter from inter-
related to the business (competitors) and general (political,nal or external sources. Transformations applied over the
social, ..., ) events. In order for the process to be data minerdata will define the process to be developed.
and client independent, this is to say, to be able to obtain theThe data going through the set of transforming steps would
same goals no matter who the experts leading and develophave to comply with the requirements of each transforming
ing the process are, a systematic abstract way to express thiunction. These functions requirements can be divided into
content information is needed. The firsiveaapproachisto  two categories depending on its relation to data semantics.
conceptualize this information to discover the concepts andRequirements that are data semantics independent are the
properties the available data represent with respect to theones related to the function itself regardless of the domain.
business. Only this way, we should be able to establish if Thus, certain algorithms require data to have a special for-
data comply with the requirements of each function within mat or auxiliary structures to run (hierarchies, ....).
the data mining process. Data content is deeply dealt withBesides, there are requirements made by the function to the
in section 4. input data depending on the semantics of the data. Consider,
for example, a clustering function. If demographic clusters
3.2 Setting/Abstracting the data mining functions ~ are required with such an such support, then the data to en-
domain ter will have to be related to demographics. This is why
we say that requirements will be related to data structure as
L . well as to content and both are important when establishing
Lots of classifications of data mining problems can be the goals together with the data flow.

fourtl)clj n th%htergture.. In [7] al.(ljthOI’S despnbg six kinds of On the other hand, data mining patterns cannot be inter-
problems: data description and summarization, Segmema’preted depending only on the function or/and technique

tion, concept despription, classification, .prediction gnd de- used to obtain it. Thus after applying any function, lets take
pgndency analysis. Usually the data mining p_rolectmvolves clustering as an example, a set of patterns is obtained but
diffierent problem types that together will achieve the goals to evaluate their quality and consequently the success of the

pf the prqject. In[16] and [3] the various types ,Of da_ta min- process, not only measures related to the patterns, clusters
ing algorithms such as memory-based reasoning, link analyp, i case, (number of elements, cohesion, ...) are needed

ysIS, deC|S|ontrees,;euraligetw.(fa'rkds., .i.ari.explamed.'DataDut also some values to measure the results according to
mining common tasks are identified: classification, estima- e, expectations. The latter are a mixture of understanding
tion, prediction, affinity grouping, clustering and descrip- the meaning of each pattern, cluster, together with the busi-
tion. Moreover, they explain which data mining techniques ness requirements

a:ehmorﬁ ?‘pproP”.ate for everhy t)k/]pe of prqb_lem. hni The conceptualization of the data mining problems will also
Although in [3] it is stated which data-mining techniques provide a basis for understanding the meaning of the ob-

are best fo_r yvhat types of business ap_p_lications, it starts,ineq patterns, analyzing the features of the instance of the
with data mining objectives already identified. A further de- problem that has been performed.

scription of the proble_m, SO that a mappir?g. could be dong However, data mining problems cannot be analyzed to ab-
between business objectives and data mining problems, s o common features on their own. Data mining prob-

missing. Th|s mapplng_wnl help on t_he one hand to see if lems impose certain requirements to the input data. These
certain business objectives are feasible or not, and, on the



requirements (content, structural, ...) have to be complied
with by the input data to obtain the appropriate result. Con-
sequently, there is a need before deeply analyzing data min-
ing prob|ems to further ana|yze data from different perspec- UsefulnessData analysis experts should be familiar with
tives, including technical, structure and content. the types of problems they are able to solve as well as
with the algorithms, techniques and tools to be used.

Each problem type requires data of a particular nature.
It calls for a team task between a data engineer and a
data analyst [18] to identify the types of data required
for every data mining problem to be solved for fulfill-
ing a project goals. For instance, if a fraud detection
model is to be obtained (a classification model), trans-
actional information as to where frauds occurred as
well as information related to the people involved, will
then be needed. Consequently, the potentiality of the
data for each problem type should be analyzed. It may
happen that a particular attribute considered essential
in some cases it might just be considered obvious in
others.

pretation of the results of a data mining project a lot
easier.

4 Afirst approach to Data Conceptualization

In [26] the key to a data mining successful project is out-
lined: think about the data that you need to gather from the
perspective of the information you want to deliver.
Discovering behaviors, patterns or trends is only possible if
we have data about the domain we want to analyze. How-
ever, having data does not mean that the discovery process
is going to be successful. Data must fulfil a set of critical
requirements in such a way that by analyzing them a partic-
ular problem can be solved.

In this context, good quality data means adequateness of the
data to fulfil a goal. Thus Adequateness can only be ana-
lyzed studying the requirements that goal fulfiiment impose Hence, when facing a data mining project apart from iden-
on data. tifying goals, types of problems to be solved and tech-
nigues to be applied, understanding the available data will
be needed to measure their quality, their degree of inter-

4.1 Critical Requirements of Data =( asure
pretability and their utility.

There are some critical requirements related to data that o
will lead a data mining project to be successful. 4.2 Towards Data typification

Quality Data mining is the process of analyzing a huge
amount of data intended to find useful information for
decision making. However, if there is no useful infor-
mation hidden in the data, it will obviously be impos-

sible to obtain interesting results. As in [7], itis possi-  As in [26], there are three types of data depending on the
ble to figure it out at the very beginning of the project. source which should be used in every data mining project.

During the Data Understanding phase it is possible to Generally, we can find data sources within and outside a
guess first findings or initial hypothesis and their im- pysiness organization.

pact on the remainder of the project. Besides, the ana-
lyst should examine some aspects of the data that may e Transactional data. This is very relevant in a data min-

It is necessary to make use of meta data information
about the data to be analyzed wherever we can. Meta data
should include information not only about the source of the
data but also about the concepts they stand for.

have altered the results of the analysis or could have
even made achieving the goals of the project impos-
sible. Some common aspects to check include [33]:
missing or null values; whether all possible values are
represented; the plausibility and the spelling of values;
attributes providing the same information but in differ-
ent formats.

Interpretation The interpretation of the findings extracted

from the data depends on how well we understand the
data. This understanding is at the same time related
to the context or environment as well as to the domain
they stand for. Data interpretation is closely related
to their semantics. Data by themselves do not mean
much. Making use of meta data information will fa-
cilitate data understanding and would make the inter-

ing project because, as in the case of a business orga-
nization, the data contain information about the activ-
ities the company is involved on. Typically, internal
data is considered more valuable data, because they
reveal true insights into the business and its products
[9]. Therefore, they will represent the customer’s past
behaviour. And, as it is well known, analyzing past
behavior is the best way to predict future ones.

e Collected data. Transactional data about the activities

performed by the business organization is often spread
all over the different databases of the company. Col-
lecting these data is and effort that is worth trying. It
increases the possibility of enriching transactional data
with more information that will, for sure, improve the
quality of the analysis to be carried on.



Both transactional and collected data can be consid-generating them. Enriching the data this way provide an-

ered internal data, as they are coming from the internal alysts with a tool to establish whether relevant data for data

databases of the company. mining functions are available so that feasible data mining
goals can be stated and consequently, so can be business

e External data. Typically, the internal data of the com- objectives.

pany stand for just a subset of the total amount of in-
formation that could be useful for analysis. Therefore, . . .
these data must often be enriched or complemented5 Discussion and Conclusion
with external data sources such as surveys, panels,

micro-marketing tools, . . .. The main reason for data mining to be developed more

as and art than as a science can be found in the lack of
Taking into account the aspects of the domain to be ana-an abstract description of the elements involved: data and
lyzed and whose data we are talking about we distinguishthe domain they represent on the one hand and data min-
three different types of data.[15]. ing functions on the other. Such a conceptualization of the
| problem would make it possible to automatize or at least to
help developers to decide about the feasibility of the goals
to be achieved. In this paper, we have presented a first ap-
proach to such abstraction. Our approach is towards an ab-
stract description of the data involved, domain independent
and goals oriented. Goal oriented means that the abstraction
e Contextual data. These type of data refers to the condi-main aim is to help analyzing goals that will be feasible. For
tions or environment under which whatever individual this purpose the abstraction will have to collect information
event occurs. It provides one additional level of infor- related to the main factors in the process: the business goals
mation complementary to content data, giving a more themselves on the one hand, and the data mining functions
comprehensive view of those factors that could have on the other.
influenced the customers behavior. This kind of in- Thus, data abstraction has to gather all relevant informa-
formation is changing across time so it is important to tion that would be important for the business goals to be
record not only present conditions but those that hap- achieved, this is to say, not only the data itself related to
pened in the past. In the case of a company, this set ofthe activity generating it; factors involved, relationship with
data could include the context of the company (suppli- other activities, external factors influencing the values, ...,
ers, competitors, marketing campaigns, .. .), context of but also capturing and abstracting information related to
the customers (demographics, economics, psychologycontent, transaction and context. On the other hand, data
...) and general context (politics, laws, economics, mining functions abstraction has to include not only the
market, ...). information related to the function itself: technique, kind
) ) ) _ of patterns it generates, but most importantly, requirements
* Analytical data. The integration of data coming from  anq constraints the data has to comply in order to generate
individual events and from the context will be the in-  the proper set of patterns. Both abstractions will provide the
put for analytical processes. The analysis will evaluate gna|yst with enough information to study the adequateness
the relationship between the occurred events under dif- ot the data for a given business problem and at the end, the
ferent circumstances identifying patterns, trends and feasibility of each goal. Not only feasibility will be estab-
behaviors. The results of this analysis will be part of |ished and consequently the project plan, but the model will

analytical information to be incorporated to every in- peln preparing the risk plan since the set of requirements for
telligence process within a company, for instance. each task would be analyzed.

The above described classifications are not independent off N€ Paper has presented a deep analysis of the approach
each other. On the contrary, they are complementary ang@nd a first Qata typification hqs_been prgsented. We are cur-
different since the criteria to classify the data is also differ- '€ntly working on the data mining function global abstrac-
ent. The effective integration of these data types will lead 10N Once the concepts to abstract will pe clgar, our next
the data mining project to be successful. goal fqr the data mining model to be obtained is the repre-
The principles towards the first steps to data abstraction layS€ntation of the elements in a standard way.

underneath these typifications. This is just a first approach

to data abstraction but the important point to be highlighted 6  Acknowledgments

is that any of the classifications presented above do include

information about the gathered data related not only to the  The research has been partially supported by Ministerio
data themselves but to the organization and/or activitiesde Educacion y Ciencia (project TIN2004-05873) and by

e Content data. It consists of data related to individua
events, for instance, interactions with the users. It is
fact oriented since it records the details or facts of cus-
tomer encounters. It reflects an activity that has oc-
curred.
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Abstract.

A new approach to missing attribute values, based on
the idea of an attribute-concept value, is studied in the
paper. This approach, together with two other approaches
to missing attribute values, based on "do not care"
conditions and lost values are discussed using rough set
methodology, including attribute-value pair blocks,
characteristic sets, and characteristic relations.
Characteristic sets are generalization of elementary sets
while characteristic relations are generalization of the
indiscernibility relation. Additionally, three definitions of
lower and upper approximations are discussed and used
for induction of certain and possible rules.

1. Introduction

In this paper data sets are presented in the form of
decision tables, where columns are labeled by variables
and rows by case (or example) names. Variables are
categorized into independent variables, also called
attributes, and dependent variables, also called decisions.
Usually decision tables have only one decision. The set of
all cases that correspond to the same decision value is
called a concept (or a class).

In most papers on rough set theory it is assumed that
values, for all variables and all cases, are specified. For
such tables the indiscernibility relation, one of the most
fundamental ideas of rough set theory, describes cases that
can be distinguished from each other.

However, in many real-life applications, data sets have
missing attribute values, or, in different words, the
corresponding decision tables are incompletely specified.
For simplicity, incompletely specified decision tables will
be called incomplete decision tables.

In data mining two main strategies are used to deal
with missing attribute values. The former strategy is based
on conversion of incomplete data sets (i.e., data sets with
missing attribute values) into complete data sets and then
acquiring knowledge, e.g., by rule induction or tree
generation from complete data sets. In this strategy
conversion of incomplete data sets to complete data sets is
a preprocessing to the main process of data mining. In the
later strategy, knowledge is acquired from incomplete data
sets taking into account that some attribute values are
missing. The original data sets are not converted into
complete data sets.

Typical examples of the former strategy include [4,
11]:

* replacing missing attribute values by the most common
(most frequent) value of the attribute,

e replacing missing attribute values restricted to the
concept. For each concept missing attribute values are
replaced by the most common attribute value restricted
to that concept,

 for numerical attributes, missing attribute value may be
replaced by the attribute average value,

 for numerical attributes, missing attribute value may be
replaced by the attribute average value restricted to the
concept,

 assigning all possible values of the attribute. A case
with a missing attribute value is replaced by a set of new
examples, in which the missing attribute value is
replaced by all possible values of the attribute,

* assigning all possible values of the attribute restricted to
the concept,

e ignoring cases with missing attribute values. An
original data set, with missing attribute values, is
replaced by a new data set with deleted cases containing
missing attribute values,

* considering missing attribute values as special values.



The later strategy is exemplified by the C4.5 approach
to missing attribute values [18] or by a modified LEM2
algorithm [10, 13]. In both algorithms original data sets
with missing attribute values are not preprocessed, i.e.,
data sets are not preliminarily converted into complete
data sets.

Note that from the view point of rough set theory, in the
former strategy the conventional indiscernibility relation
may be applied to describe the process of data mining
since, after preprocessing, the data set is complete (has no
missing attribute values). Furthermore, lower and upper
approximations, other basic ideas of rough set theory, are
also conventional.

In this paper we will concentrate on the later strategy
used for rule induction, i.e., we will assume that the rule
sets are induced from the original data sets, with missing
attribute values, not preprocessed as in the former strategy.

We will assume that there are three reasons for decision
tables to be incomplete. The first reason is that an
attribute value, for a specific case, is lost. For example,
originally the attribute value was known, however, due to
a variety of reasons, currently the value is not available.
Maybe it was recorded but later it was erased. The second
possibility is that an attribute value was not relevant—the
case was decided to be a member of some concept, i.e.,
was classified, or diagnosed, in spite of the fact that some
attribute values were not known. For example, it was
feasible to diagnose a patient in spite of the fact that some
test results were not taken (here attributes correspond to
tests, so attribute values are test results). Since such
missing attribute values do not matter for the final
outcome, we will call them "do not care" conditions. The
third possibility is a partial "do not care" condition: we
assume that the missing attribute value belongs to the set
of typical attribute values for all cases from the same
concept. Such a missing attribute value will be called an
attribute-concept value. Calling it concept "do not care"
condition would be perhaps better, but this name is too
long.

The main objective of this paper is to study incomplete
decision tables, assuming that in the same decision table
some attribute values may be lost, some may be "do not
care" conditions, and some may be attribute-concept
values. Decision tables with lost values and "do not care"
conditions were studied in [7-9, 12].

For such incomplete decision tables there are three
special cases: in the first case all missing attribute values
are lost, in the second case all missing attribute values are
"do not care" conditions, and in the third case all missing
attribute vales are attribute-concept values. Incomplete
decision tables in which all attribute values are lost, from
the viewpoint of rough set theory, were studied for the first

time in [13], where two algorithms for rule induction,
modified to handle lost attribute values, were presented.
This approach was studied later in [20-22], where the
indiscernibility relation was generalized to describe such
incomplete decision tables.

On the other hand, incomplete decision tables in which
all missing attribute values are "do not care" conditions,
again from the view point of rough set theory, were
studied for the first time in [4], where a method for rule
induction was introduced in which each missing attribute
value was replaced by all values from the domain of the
attribute. Originally such values were replaced by all
values from the entire domain of the attribute, later by
attribute values restricted to the same concept to which a
case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute
values being "do not care conditions", were extensively
studied in [14, 15], including extending the idea of the
indiscernibility relation to describe such incomplete
decision tables.

Rough set methodology for incomplete decision tables
with missing attribute values of the type attribute-concept
values is presented in this paper for the first time, though
it was briefly mentioned in [10].

In general, incomplete decision tables are described by
characteristic relations, in a similar way as complete
decision tables are described by indiscernibility relations
[7].

For complete decision tables, once the indiscernibility
relation is fixed and the concept (a set of cases) is given,
the lower and upper approximations are unique.

For incomplete decision tables, for a given
characteristic relation and the concept, there are three
different possible ways to define lower and upper
approximations, called singleton, subset, and concept
approximations [7]. The singleton lower and upper
approximations were studied in [14, 15, 20-22]. Similar
ideas were studied in [2, 19, 23-25]. In this paper we
further discuss applications to data mining of all three
kinds of approximations: singleton, subset and concept.
As it was observed in [7], singleton lower and upper
approximations are not applicable in data mining.

The next topic of this paper is demonstrating how
certain and possible rules may be computed from
incomplete decision tables. An extension of the well-
known LEM2 (Learning from Examples Module, version
2) rule induction algorithm [1, 5], called MLEM2, was
introduced in [6]. LEM2 is a component of the LERS
(Learning from Examples based on Rough Sets) data
mining system. Originally, MLEM?2 induced certain rules
from incomplete decision tables with numerical attributes
and with missing attribute values interpreted as lost.



Using the idea of lower and upper approximations for
incomplete decision tables, MLEM2 was further extended
to induce both certain and possible rules from a decision
table with some numerical attributes and with some
attribute values being lost and some attribute values being
"do not care" conditions.

2. Complete data: elementary sets and
indiscernibility relation

An example of a decision table, taken from [10], is
presented in Table 1.

Table 2. An example of a complete decision table

Attributes Decision

Temperature | Headache| Nausea Flu
1 high yes no yes
2 | very_high yes yes yes
3 high no no no
4 high yes yes yes
5 high yes yes no
6 normal yes no no
7 normal no yes no
8 normal yes no yes

Rows of the decision table represent cases, while
columns are labeled by variables. The set of all cases will
be denoted by U. In Table 1, U = {1, 2, ..., 8}.
Independent variables are called attributes and a
dependent variable is called a decision and is denoted by d.
The set of all attributes will be denoted by A. In Table 1,
A = {Temperature, Headache, Nausea}. Any decision
table defines a function p that maps the direct product of U
and A into the set of all values. For example, in Table 1,
p(1, Temperature) = high. Function p describing Table 1
is completely specified (total). A decision table with
completely specified function p will be called completely
specified, or, for the sake of simplicity, complete.

Rough set theory [16, 17] is based on the idea of an
indiscernibility relation, defined for complete decision
tables. Let B be a nonempty subset of the set A of all
attributes. The indiscernibility relation IND(B) is a
relation on U defined for x, y € U as follows

(x, y) € IND(B) if and only if p(x, a) = p(y, @)
for all a € B.

The indiscernibility relation IND(B) is an equivalence
relation. Equivalence classes of IND(B) are called

elementary sets of B and are denoted by [x];. For

example, for Table 1, elementary sets of IND(A) are {1},
{2}, {3}, {4, 5}, {6, 8}, {7}. The indiscernibility relation
IND(B) may be computed using the idea of blocks of
attribute-value pairs. Let a be an attribute, i.e., a € A and
let v be a value of a for some case. For complete decision
tables if # = (a, v) is an attribute-value pair then a block of
t, denoted [t], is a set of all cases from U that for attribute
a have value v. For Table 1,

[(Temperature, high)] = {1, 3, 4, 5},
[(Temperature, very_high)] = {2},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {1, 2,4, 5, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6},
[(Nausea, yes)] = {2, 4, 5, 7}.
The indiscernibility relation IND(B) is known when
known are all elementary blocks of IND(B). Such
elementary blocks of B are intersections of the

corresponding attribute-value pairs, i.e., for any case x €
U’

[x]p =N {l(@, p(a,v))] | a € B}

We will illustrate the idea how to compute elementary
sets of B for Table 1 and B = A.

[1], = [(Temperature, high)] N [(Headache, yes)] N
[(Nausea, no)] = {1},

[2], = [(Temperature, very_high)] N [(Headache, yes)]
M [(Nausea, yes)] = {2},

[3], = [(Temperature, high)] N [(Headache, no)] N
[(Nausea, no)] = {3},

(4], = [5], = [(Temperature, high)] N [(Headache, yes)]
N [(Nausea, yes)] = {4, 5},

(6], = [8], = [(Temperature, normal)] N [(Headache,
yes)] M [(Nausea, no] = {6, 8},

[71, = [(Temperature, normal)] N [(Headache, no] N
[(Nausea, yes)] = {7}.



3. Incomplete data: characteristic sets and
characteristic relations

For data sets with missing attribute values, the
corresponding function p is incompletely specified
(partial). A decision table with incompletely specified
function p will be called incompletely specified, or
incomplete.

In the sequel we will assume that all decision values are
specified, i.e., they are not missing. Also, we will assume
that all missing attribute values are denoted by "?", by "*"
or by "-", lost values will be denoted by "?", "do not care"
conditions will be denoted by "*", and attribute-concept
values by "-". Additionally, we will assume that for each
case at least one attribute value is specified.

Incomplete decision tables are described by
characteristic relations instead of indiscernibility relations.
Also, elementary sets are replaced by characteristic sets.
An example of an incomplete table is presented in Table 2.

Table 1. An example of an incomplete decision
table

Attributes Decision

Temperature | Headache| Nausea Flu
1 high - no yes
2 | very_high yes yes yes
3 ? no no no
4 high yes yes yes
5 high ? yes no
6 normal yes no no
7 normal no yes no
8 - yes * yes

For incomplete decision tables the definition of a block
of an attribute-value pair must be modified.

e If an attribute a there exists a case x such that p(x, a) =
7, i.e., the corresponding value is lost, then the case x
should not be included in any block [(a, v)] for all
values v of attribute a.

e If for an attribute a there exists a case x such that the
corresponding value is a "do not care" condition, i.e.,
p(x, a) = *, then the corresponding case x should be
included in blocks [(a, v)] for all specified values v of
attribute a.

e If for an attribute a there exists a case x such that the
corresponding value is a attribute-concept value, i.e.,
p(x, a) = —, then the corresponding case x should be

included in blocks [(a, v)] for all specified values v of
attribute a that are members of the set V(x, a), where

V(x, a) ={p(y, @) Iy E U, p(y, d) = p(x, d)},

and d is the decision.

These modifications of the definition of the block of
attribute-value pair are consistent with the interpretation of
missing attribute values, lost, "do not care" conditions, and
attribute-concept values. Also, note that the attribute-
concept value is the most universal, since if V(x, a) = @,
the definition of the attribute-concept value is reduced to
the lost value, and if V(x, a) is the set of all values of an
attribute a, the attribute-concept value becomes a "do not
care" condition.

For Table 2, for case 1, p(1, Headache) = —, and V(1,
Headache) = {yes}, so we add the case 1 to [(Headache,
yes)]. For case 3, p(1, Temperature) = ?, hence case 3 is
not included in either of the following sets: [(Temperature,
high)], [(Temperature, very_high)], and [(Temperature,
normal)]. Similarly, p(5, Headache) = ?, so the case 5 is
not included in [(Headache, yes)] and [(Headache, no)].
Also, p(8, Temperature) = —, and V(8, Temperature) =
{high, very_high}, so the case 8 is a member of both
[(Temperature, high)] and [(Temperature, very_high)].
Finally, p(8, Nausea) = *, so the case 8 is included in both
[(Nausea, no)] and [(Nausea, yes)]. Thus,

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very_high)] = {2, 8},
[(Temperature, normal)] = {6, 7},
[(Headache, yes)] = {1, 2, 4, 6, 8},
[(Headache, no)] = {3, 7},

[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2,4, 5,7, 8}.

For a case x € U, the characteristic set K(x) is defined
as the intersection of the sets K(x, a), for all a € B. If p(x,
a) is specified, then K(x, a) is the block [(a, p(x, a)] of
attribute a and its value p(x, a). If p(x, a) = * or p(x, a) = ?
then the set K(x,a) = U. If p(x,a) = —, then the
corresponding set K(x, a) is equal to the union of all blocks
of attribute-value pairs (a, v), where v € V(x, a). The way
of computing characteristic sets needs a comment. For
both "do not care" conditions and lost values the
corresponding set K(x, a) is equal to U because the
corresponding attribute a does not restrict the set Ky(x): if
p(x, a) = *, the value of the attribute a is irrelevant; if p(x,
a) = 7, only existing values need to be checked. However,



the case when p(x, a) = — is different, since the attribute a
restricts the set Ky(x). Furthermore, the description of

Ky(x) should be consistent with other (but similar) possible

approaches to missing attribute values, e.g., an approach in
which each missing attribute value is replaced by the most
common attribute value restricted to a concept. Here the
set V(x, a) contains a single element and the characteristic
relation is an equivalence relation. Our definition is
consistent with this special case in the sense that if we
compute a characteristic relation for such a decision table
using our definition or if we compute the indiscernibility
relation as for complete decision tables using definitions
from Section 2, the result will be the same. For Table 2
and B=A,

K,(1)={1,4,5,8M{1,2,4,6,8t N {1,3,6,8} =

{1, 8},
K,(2)={2,8}N{1,2,4,6,8, N{2,4,5,7,8} =

2,85,
K,3)=UN{3,73N{1,3,6,8 ={3},

K,(4)={1,4,5,8N{1,2,4,6,8} N{2,4,5,7,8} =

4,85,
K,5= {1,458 NU N{2,4,57,8}={4,5,8},

K,6)= {6,7y N {1,2,4,6,81 N{1,3,6,8} = {6},
K,(7)= {6,7y N {3,7} N{2,4,5,7,8} = {7}, and
K,8)= ({1,4,5,8U{2,8)N{1,2,4,6,8} NU=

{1,2,4,8}.

The characteristic set K4(x) may be interpreted as the

smallest set of cases that are indistinguishable from x using
all attributes from B, and using given interpretation of
missing attribute values. Thus, K,(x) is the set of all cases
that cannot be distinguished from x using all attributes.
Also, note that the previous definition is an extension of a
definition of Ky(x) from [7-9, 12]: for decision tables with
only lost values and "do not care" conditions, both
definitions are identical.

The characteristic relation R(B) is a relation on U
defined for x, y € U as follows

(x,y) ER(B) if and only if y € Ky(x).

The characteristic relation R(B) is reflexive but—in
general —does not need to be symmetric or transitive.
Also, the characteristic relation R(B) is known if we know
characteristic sets K(x) for all x € U. In our example, R(A)

={(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4),
(5,5),(5,8),(6,6),(7,7), (8, 1), (8,2),(8,4), (8, 8)].

For decision tables, in which all missing attribute
values are lost, a special characteristic relation LV(B) was
defined by J. Stefanowski and A. Tsoukias in [21], see also
[20, 22]. Characteristic relation LV(B) is reflexive,
but—in general—does not need to be symmetric or
transitive.

For decision tables where all missing attribute values
are "do not care" conditions a special characteristic
relation DCC(B) was defined by M. Kryszkiewicz in [14],
see also, e.g., [15]. Relation DCC(B) is reflexive and
symmetric but—in general —not transitive.

Obviously, characteristic relations LV(B) and DCC(B)
are special cases of the characteristic relation R(B). For a
completely specified decision table, the characteristic
relation R(B) is reduced to IND(B).

4. Lower and upper approximations

For completely specified decision tables lower and
upper approximations are defined using the indiscernibility
relation. Any finite union of elementary sets of B is called
a B-definable set. Let X be any subset of the set U of all
cases. The set X is called concept and is usually defined as
the set of all cases defined by a specific value of the
decision. In general, X is not a B-definable set.
However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X,
denoted by BX and defined as follows

xEUINZCX}.

The second set is called an B-upper approximation of
X, denoted by BX and defined as follows

HKEUIX;NX2D}.

The above way of computing lower and upper
approximations, by constructing them from singletons x,
will be called the first method. The B-lower
approximation of X is the greatest B-definable set,
contained in X. The B-upper approximation of X is the
least B-definable set containing X.

As it was observed in [16], for complete decision tables
we may use a second method to define the B-lower
approximation of X, by the following formula

U{lxly Ix€U, [x]; CX}

and the B-upper approximation of x may de defined, using
the second method, by

U{lx]p IXEU, [x]; N X =0).



For Table 1 and B = A, A-lower and A-upper
approximations are:

A{1,2,4,8}={1,2},
A{3,5,6,7}={3,7},
A{1,2,4,8 ={1,2,4,5,6,8},
A4{3,5,6,7}=43,4,5,6,7, 8}.

For incompletely specified decision tables lower and
upper approximations may be defined in a few different
ways. To begin with, the definition of definability should
be modified. Any finite union of characteristic sets of B is
called a B-definable set. Following [7], we suggest three
different definitions of approximations. Again, let X be a
concept, let B be a subset of the set A of all attributes, and
let R(B) be the characteristic relation of the incomplete
decision table with characteristic sets K(x), where x € U.
Our first definition uses a similar idea as in the previous
articles on incompletely specified decision tables [14, 15,
20-22], i.e., lower and upper approximations are sets of
singletons from the universe U satisfying some properties.
Thus we are defining lower and upper approximations by
analogy with the above first method, by constructing both
sets from singletons. We will call these definitions
singleton. A singleton B-lower approximation of X is
defined as follows:

BX={x€UIKy,x)CX}.
A singleton B-upper approximation of X is
BX ={xEUIK,mNX=0D}.

In our example presented in Table 2 let us say that B =
A. Then the singleton A-lower and A-upper
approximations of the two concepts: {1, 2, 4, 8} and {3, 5,
6, 7} are:

A{1,2,4,8}={1,2,4,8},
A{3,5,6,7}={3,6,7},
A4{1,2,4,8={1,2,4,5,8},
A4{3,5,6,7}=13,5,6,7}.

Note that 4 {3, 5, 6, 7} = {3, 5, 6, 7}. However, the
set {3, 5, 6 7} is not A-definable, so a set of rules, induced
from {3, 5, 6, 7}, cannot cover precisely this set. In
general, singleton approximations should not be used for
data mining.

The second method of defining lower and upper
approximations for complete decision tables uses another
idea: lower and upper approximations are unions of

elementary sets, subsets of U. Therefore we may define
lower and upper approximations for incomplete decision
tables by analogy with the second method, using
characteristic sets instead of elementary sets. There are
two ways to do this. Using the first way, a subset B-lower
approximation of X is defined as follows:

BX=U{K,x) Ix€EU,Ky(x) CX}.
A subset B-upper approximation of X is
BX =U{K,(x) I xEU,Ky(x) N X# O }.

Since any characteristic relation R(B) is reflexive, for
any concept X, singleton B-lower and B-upper
approximations of X are subsets of subset B-lower and B-
upper approximations of X, respectively. For the same the
decision presented in Table 2, the subset A-lower and A-
upper approximations are:

A{1,2,4,8}={1,2,4,8},
A{3,5,6,7}={3,6,7},
A{1,2,4,8 ={1,2,4,5,8},
A4{3,5,6,7}=43,4,5,6,7, 8}.

The second possibility is to modify the subset definition
of lower and upper approximation by replacing the
universe U from the subset definition by a concept X. A
concept B-lower approximation of the concept X is defined
as follows:

BX = U{K,(x) IXE X, K,() CX }.

Obviously, the subset B-lower approximation of X is
the same set as the concept B-lower approximation of X.
A concept B-upper approximation of the concept X is
defined as follows:

BX =U{K,(0) I xEX,Ky() N X£B } =
U{Ky(x) | x € X}.
The concept B-upper approximation of X are subsets of
the subset B-upper approximations of X. For the decision

presented in Table 2, the concept A-lower and A-upper
approximations are:

A{1,2,4,8}={1,2,4,8},
A{3,5,6,7}={3,6,7},
A{1,2,4,8 ={1,2,4,8},
A4{3,5,6,7} = {3,4,5,6,7,8)}.

For complete decision tables, all three definitions of
lower approximations, singleton, subset and concept,
coalesce to the same definition. Also, for complete



decision tables, all three definitions of upper
approximations coalesce to the same definition. This is
not true for incomplete decision tables, as our example
shows.

5. Rule induction

The same idea of blocks of attribute-value pairs is used
in the rule induction algorithm LEM2. LEM?2 explores the
search space of attribute-value pairs. Its input data file is a
lower or upper approximation of a concept, so its input
data file is always consistent. Rules induced from the
lower approximation of the concept certainly describe the
concept, so they are called certain. On the other hand,
rules induced from the upper approximation of the concept
describe the concept only possibly (or plausibly), so they
are called possible [3].

Rules in LERS format (every rule is equipped with three
numbers, the total number of attribute-value pairs on the
left-hand side of the rule, the total number of examples
correctly classified by the rule during training, and the
total number of training cases matching the left-hand side
of the rule) induced from Table 2 using concept
approximations are:

the certain rule set:

2,3,3
(Temperature, high) & (Headache, yes) -> (Flu, yes)

1,2,2
(Temperature, very_high) -> (Flu, yes)

1,2,2
(Temperature, normal) -> (Flu, no)

1,2,2
(Headache, no) -> (Flu, no)

and the possible rule set:

2,3,3
(Temperature, high) & (Headache, yes) -> (Flu, yes)

1,2,2
(Temperature, very_high) -> (Flu, yes)

2,1,3
(Temperature, high) & (Nausea, no) -> (Flu, no)

1,2,2

(Temperature, normal) -> (Flu, no)

1,2,2
(Headache, no) -> (Flu, no)

6. Conclusions

Three approaches to missing attribute values are
presented in a unified way. The main applied tool is a
characteristic relation, a generalization of the
indiscernibility relation. It is shown that all three
approaches to missing attribute values may be described
using the same idea of attribute-value blocks. Moreover,
attribute-value blocks are useful not only for computing
characteristic sets but also for computing characteristic
relations, lower and upper approximations, and, finally for
rule induction. Additionally, using attribute-value blocks,
it is quite easy to combine a few strategies to handle
missing attribute values within the same data set. Thus,
the entire data mining process, starting from computing
characteristic relations and ending with rule induction,
may be implemented using the same simple tool: attribute-
value blocks.
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Abstract

This paper proposes a fuzzy data-mining algorithm
for extracting both association rules and membership
functions from quantitative transactions. The number of
membership functions for each item is not predefined, but
can be dynamically adjusted. A GA-based framework for
finding membership functions suitable for mining
problems is proposed. The encoding of each individual is
divided into two parts. The control genes are encoded
into bit strings and used to determine whether
membership functions are active or not. The parametric
genes are encoded into real-number strings to represent
membership functions of linguistic terms. The fitness of
each set of membership functions is evaluated using the
fuzzy-supports of the linguistic terms in the large 1-
itemsets and the suitability of the derived membership
functions. The suitability of membership functions
considers overlap, coverage and usage factors.

1. Introduction

Data mining is most commonly used in attempts to
induce association rules from transaction data.
Transaction data in real-world applications, however,
usually consist of quantitative values. Designing a
sophisticated data-mining algorithm able to deal with
various types of data presents a challenge to workers in
this research field.

Recently, fuzzy set theory has been used more and
more frequently in intelligent systems because of its
simplicity and similarity to human reasoning. In [4], we
proposed a mining approach that integrated fuzzy-set
concepts with the apriori mining algorithm [1] to find
interesting itemsets and fuzzy association rules in
transaction data with quantitative values. In that paper,
the membership functions were assumed to be known in
advance. The given membership functions may, however,

have a critical influence on the final mining results. This
paper thus modifies the previous algorithm and proposes
a new fuzzy data-mining algorithm for extracting both
association rules and membership functions from
quantitative transactions.

In the past, Srikant and Agrawal proposed a mining
method [7] to handle quantitative transactions by
partitioning the possible values of each attribute. Hong et
al. proposed a fuzzy mining algorithm to mine fuzzy rules
from quantitative data [4]. They transformed each
quantitative item into a fuzzy set and used fuzzy
operations to find fuzzy rules. Wang et al. used GAs to
tune membership functions for intrusion detection
systems based on similarity of association rules [11].
Kaya et al. [6] proposed a GA-based clustering method to
derive a predefined number of membership functions for
getting a maximum profit within an interval of user
specified minimum support values. In this paper, we will
try to derive an unknown number of membership
functions from quantitative transactions by using a
divide-and-conquer genetic strategy.

2. A GA-Based Mining Framework

In this section, the fuzzy and GA concepts are used to
discover both useful association rules and suitable
membership functions from quantitative values. A GA-
based framework for achieving this purpose is proposed
in Figure 1.

The proposed framework is divided into two phases:
mining membership functions and mining fuzzy
association rules. Assume the number of items is m. In the
phase of mining membership functions, it maintains m
populations of membership functions, with each
population for an item | (1 < j < m). Each chromosome
in a population represents a possible set of membership
functions for that item. Next, in the phase of mining fuzzy
association rules, the sets of membership function for all
the items are gathered together and used to mine the
interesting rules from the given quantitative database. Our
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fuzzy mining algorithm proposed in [5] is adopted to
achieve this purpose.
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Figure 1: The proposed GA-based framework for fuzzy mining

3. Chromosome Representation

Several possible encoding approaches in GAs have
been described in [2, 8, 9, 10]. In this paper, we adopt the
encoding approach similar to that in [8]. Each individual
is divided into two parts, control genes and parametric
genes. In the first part, control genes are encoded into bit
strings and used to determine whether parametric genes
are active or not. In the second part, each set of
membership functions for an item is encoded as
parametric genes with real-number schema.

Assume the membership functions are triangular. Three
parameters are thus used to represent a membership
function. Each parametric gene thus consists of three real
values. Figure 2 shows an example for item Ij, where Rj,
denotes the membership function of the k-th linguistic
term and Mikp indicates the p-th parameter of fuzzy region

Rjk‘

Membership
value 1 le Rig Rj|

M1 f2 Tia1Tas T2 Tjn Tz Tjz Quantity
Figure 2: The set of membership functions for item l;

The parametric genes of item | j can be represented as a
string of Fjyilj1oljasljzaljz2ljos - Finfjieljis, Where Iz = oo,
The control genes of Item I; can be represented as a bit
string of bjbj,...0;r, where T is the maximum possible
number of linguistic terms. The bit by indicates whether
the i-th membership function is active or not. If b;=1, the
i-th membership function is active, meaning it will be
used in the later fuzzy mining process. If b;=0, it is
inactive. All the individuals in the same population thus
have the same string length. Below, an example is given
to demonstrate the process of encoding membership
functions.

Example 1: Assume there are four items in a
transaction database: milk, bread, cookies and beverage.
Also assume a possible set of membership functions for
Item milk is given as shown in Figure 3.

milk
Membership L . .
value ow Middle High
0 3 4 5 9 11 13 Quantity
Figure 3: An example of a possible set of membership functions
for Ttem milk

There are three active linguistic terms, Low, Middle,
and High, for this item. According to the proposed
encoding scheme, the individual for representing the set
of membership functions in Figure 3 is encoded as shown
in Figure 4.

Control Genes Parametric Genes

f_/%
[1]1]1]3]4]5]5]9 [11] 9]13]wo]|

€111 €112 C111 €113 C19p C1p1 G133 C132 C1as

Low Middle High
Figure 4: The chromosome representation for the set of
membership functions in Figure 3

4. Mining Membership Functions and Fuzzy
Association Rules

4.1 Initial Population

A genetic algorithm requires a population of feasible
solutions to be initialized and updated during the
evolution process. As mentioned above, each individual
within the population is a set of triangular membership
functions for a certain item. Each membership function
corresponds to a linguistic term in the item. The initial set



of chromosomes is randomly generated with some
constraints of forming feasible membership functions.

4.2 Fitness and Selection

In order to develop a good set of membership functions
from an initial population, the genetic algorithm selects
parent sets of membership functions with high fitness
values for mating. An evaluation function is defined to
qualify the derived sets of membership functions. Before
the fitness of each set of membership functions is
formally described, several related terms are first
explained below.

The overlap ratio of two membership functions Ry and
Rji (k <)) is defined as the overlap length divided by the
minimum of the right span of Rjx and the left span of R;.
That is,
overlap (R k. R i)

overlap_ra tio( R j ,R jj ) = — ,
min(Cjk3 —Cjk2, Cji2 = Cji1)

where overlap(Rj, Rji) is the overlap length of Ry and Rji.

If the overlap length is larger than the minimum of the
above two half spans, then these two membership
functions are thought of as a little redundant. Appropriate
punishment must then be considered in this case. Thus,
the overlap factor of the membership functions for an
item I; in the chromosome Cg is defined as:

> [max((—
kei min(Cj; —Cy,,Cji, —Cjiy)
Rj,.Rj are active

overlap(R;,R;)

1D =11

The coverage ratio of membership functions for an item
lj is defined as the coverage range of the functions
divided by the maximum quantity of that item in the
transactions. The more the coverage ratio is, the better the
derived membership functions are. Thus, the coverage
factor of the membership functions for an item Ij in the
chromosome Cj is defined as:

1

coverage_factor(Cq) = range(Rj, .., Rj) '

max(l j)

where range(Rjs, Rjz, ..., Rji) is the coverage range of the
active membership functions, | is the number of active
membership functions for I;, and max(l;) is the maximum
quantity of I;in the transactions.

The usage ratio of membership functions for an item I
is defined as the number of large-1 itemsets for I; divided
by the number of active linguistic terms. Note that the
maximum possible number of large-1 itemsets for an item
is the number of its active linguistic terms. The more the
usage ratio is, the better the derived membership
functions are. Thus, the usage factor of the membership

functions for an item I; in the chromosome Cj is defined
as:

ICq
max(| Ly 1)
where I is the active linguistic terms of chromosome Cg,
and max(| LlCq |, 1) is the maximum of the number of large-
1 itemsets and 1.

The suitability of the set of membership functions in a
chromosome Cy is thus defined as k;*overlap_factor(Cgy)+
k.*coverage_factor(Cq)+ ks*usage_factor(C,), where ki,
Ko, k3 are weighting factors.

The fitness value of a chromosome Cy is then defined as:

> fuzzy _support(X)

f(C :xeL,cq >
(Cy) suitability(C,)

usage_facor(C, )=

where Llcq is the set of large 1-itemsets obtained by using
the set of membership functions in Cg and
fuzzy_support(X) is the fuzzy support of the 1-itemset X
derived from Cg in the given transaction database.

The suitability factor used in the fitness function can
reduce the occurrence of the two bad kinds of
membership functions shown in Figure 5, where the first
one is too redundant, and the second one is too separate.
It can also help generate an appropriate number of
membership functions for an item.

(a) Redundant membership functions (b) Separate membership functions

Low Middle High Low Middle High
0 5 89 Quantity 0 5 20 25 Quantity

Figure 5: Two bad sets of membership functions

The overlap factor in suitable(C,) is designed for
avoiding the first bad case, and the coverage factor is for
the second one.

4.3 Genetic Operators

Genetic operators are important to the success of
specific GA applications. In our approach, different
crossover operators are performed for control genes and
parametric genes. For control genes, the single-point
crossover and the binary one-point mutation operators
are used. For parametric genes, the max-min-
arithmetical (MMA) crossover operator proposed in [3]
and the one-point mutation for real numbers are used.
The max-min-arithmetical (MMA) crossover operator
proceeds as follows. Assume there are two parent
chromosomes with their parametric genes as



Cl =(Cyueies Cpy ey Cy ) -

The max-min-arithmetical (MMA) crossover operator
will generate the following four candidate chromosomes
from them.

t+1 _ t+1 t+1 t+1
Lci=(,...cy',nc')s

where ¢! =dc, + (1-d)c,,
2.Ct = (el et e,

where ¢! =dc, + (1-d)c,
3G =y, Gy s G ) s

where ¢i/' = min{c,,c,}»

t+1 t+1 t+1 t+1
4.CM=(cy, . Cils e Cir )

where C}J‘l = max{ Cp» C;]}

where the parameter d is either a constant or a variable
whose value depends on the age of the population. The
best two chromosomes of the four candidates are then
chosen as the offspring.

The one-point mutation operator for real numbers will
create a new fuzzy membership function by adding a
random value £ (may be negative) to one parameter of an
existing linguistic term, say Rj. Assume that rj
represents a parameter of Ry. The parameter of the newly
derived membership function may be changed to rj, + &
by the mutation operation. Mutation at a parameter of a
fuzzy membership function may, however, disrupt the
order of the resulting fuzzy membership functions. These
fuzzy membership functions then need rearrangement
according to their values. An example is given below to
demonstrate the mutation operation.

Example 2: Continuing from Example 1, assume the
mutation point is set at C1p, and the random value € is set
at 3. The mutation process is shown in Figure 6.

MleIk
C, 3,4,5 5 911, 9 13,
%/_/
Low Middle High
Mutation
MF ping
NeW 37 4’ 5’ 5’ Q’ g’ 9’ 13’ 0
——
out of sequence
Rearrange
MP e
NeW 3> 4’ 5’ S,Q:Q, 95 13,@

Figure 6: A mutation operation

5. The Proposed Mining Algorithm

According to the above description, the proposed
algorithm for mining both membership functions and
fuzzy association rules is described below.

The proposed mining algorithm:

INPUT: A body of n quantitative transaction data, a set of
m items, a maximum possible number T of
linguistic terms, a support threshold o, a
confidence threshold A, and a population size P.

OUTPUT: A set of fuzzy association rules with its

associated set of membership functions.

STEP 1: Randomly generate m populations, each for an
item; Each individual in a population represents
a possible set of membership functions for that
items.

STEP 2: Encode each set of membership functions into a
string representation in the way mentioned
above.

STEP 3: Calculate the fitness value of each chromosome
in each population by the following substeps:

STEP 3.1: For each transaction datum D, i=1 to n,
and for each item lj, j=1 to m, transfer the
quantitative value VE') into a fuzzy set
f j(') represented as:

R, R; R;
using the corresponding membership
functions represented by the
chromosome, where R is the k-th
fuzizy region (term) of 1tem lj, j(ll) Is

Vit s fuzzy membership value in
region Rjk ,and | (= [lj|) is the number of
active linguistic terms for I;.
STEP 3.2: For each item region Rj, calculate its
scalar cardinality on the transactions as
follows:

n
- (i)
count;, = z fi -
i=1

STEP 3.3: For each Ry, 1 <j <mand 1<k <|I;],
check whether its county over n is larger
than or equal to the minimum support
threshold a. If Ry satisfies the above
condition, put it in the set of large 1-
itemsets (L;). That is:

L: = {Ry | county /n>a, 1<j<m
and 1 <k<| ;] }.

STEP 3.4: Set the fitness value of the chromosome as
the sum of the fuzzy supports (the scalar

cardinalities / n) of the fuzzy regions in L;
divided by suitability(C,). That is:



> fuzzy _ support (X)
Xel,

f(Cq)=
€q) suitability(C )

STEP 4: Execute crossover operations on each population.

STEP 5: Execute mutation operations on each population.

STEP 6: Using the selection criteria to choose individuals
in each population for the next generation.

STEP 7: If the termination criterion is not satisfied, go to
Step 3; otherwise, do the next step.

STEP 8: Gather the sets of membership functions, each of
which has the highest fitness value in its
population.

The sets of the best membership functions gathered
from each population are then used to mine fuzzy
association rules from the given quantitative database.
Our fuzzy mining algorithm proposed in [5] is then
adopted to achieve this purpose. It first transforms each
quantitative value into a fuzzy set of linguistic terms
using the derived membership functions. It then calculates
the scalar cardinality of each linguistic term on all the
transaction data. The mining process based on fuzzy
counts is then performed to find fuzzy association rules.

6. An Example

In this section, an example is given to illustrate the
proposed mining algorithm. Assume there are four items
in a transaction database: milk, bread, cookies and
beverage. The data set includes the six transactions shown
in Table 1.

Table 1. Six transactions in this example
TID Items
T1 (milk, 5); (bread, 10); (cookies, 7); (beverage, 7).
T2 (milk, 7); (bread, 14); (cookies, 12).
T3 (bread, 15); (cookies, 12); (beverage, 10).
T4 (milk, 2); (bread, 5); (cookies, 5).
T5 (bread, 9).
T6 (milk, 13); (beverage, 12).

Assume the maximum possible number (T) of fuzzy
regions for each item is set at 4. The actual number of
membership functions of each item will be derived by the
proposal mining algorithm. Four populations are
randomly generated, each for one item. Assume the
population size is 10 in this example. Each population
then includes 10 individuals. Each individual in the first
population is a set of membership functions for item milk.
Similarly, an individual in the other populations is a set of
membership functions respectively for bread, cookies,
and beverage.

Each set of membership functions for an item is
encoded into a chromosome according to the proposed
representation. Assume the ten individuals in each of the
four populations are randomly generated. The fitness
value of each chromosome is then calculated. Take the
chromosome C; in Population; as an example. The
membership functions in C; for cookies are represented as
(1111,035, 3510, 6 13 16, 15 20 20). The
quantitative value of each item in each transaction datum
is transformed into a fuzzy set according to the active
membership functions represented by that chromosome.
Take the first item in transaction T1 as an example. The
contents of T1 include (milk, 5), (bread, 10), (cookies, 7),
and (beverage, 7). The amount “7” of item cookies is then
converted into the fuzzy set:

0 0.6 0.14 0
cookies.Low cookies.LowMiddle cookies.MiddleHigh  cookies.High
by using the membership functions in C; in Populations.
The fuzzy count of any fuzzy region is checked against
the predefined minimum support value o. Assume in this
example, a is set at 0.25. Two large 1-itemset,
cookies.LowMiddle and cookies.MiddleHigh, are thus
derived from the membership functions of C; in
Populations. The fuzzy support of cookies.LowMiddle and
cookies.MiddleHigh are 0.266 and 0.31. The suitability of
C, is  calculated as  overlap_factor(C,) +
coverage_factor(C,) + usage_factor(C;)=3 (=(0+0+0
+0+0+0)+ 1+ 2). The fitness value of C; is thus
(0.266 + 0.31)/3 (= 0.192). The fitness values of all the
chromosomes in the four populations are calculated with

their results shown in Table 2.

Table 2. The fitness values of all the chromosomes in the four
initial populations

Population; f Population, f
C; 0 C, 0.286
C, 0.084 C, 0.104
Cs 0 Cs 0.177
Cy 0.057 Cy 0.200
Cs 0 Cs 0
Ce 0.043 Ce 0.253
C, 0 C, 0.070
Cs 0 Cs 0.242
Co 0 Co 0.183
Cyo 0 Cio 0.074

Populations f Population, f
C; 0.192 C; 0.049
C, 0.073 C, 0.075
Cs 0.077 Cs 0.065
Cy 0.240 Cy 0
Cs 0.066 Cs 0.044
Cs 0.044 Cs 0.062
C, 0 C, 0.058
Cs 0.065 Cs 0.060
Co 0 Co 0.060
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The crossover and mutation operators are then

executed on the populations to generate possible offspring.

The best ten chromosomes in each population are then
selected as the next generation. The same procedure is
then executed until the termination criterion is satisfied.
The best chromosome (with the highest fitness value) is
then output as the membership functions for deriving
fuzzy association rules. After the evolutionary process
terminates, the final set of membership functions for each
item is shown in Figure 7.

milk bread

Low Middle High Low Middle High

1

3 § 10 13 1516 20 Quantity 0 6 0 14 18 Quantity

cookies beverage

Low Middle High 1 Low High

8 10 12 15 16 20 Quantity 0 910 L Quantity

Figure 7: The final set of membership functions

After the membership functions are derived, the fuzzy
mining method proposed in [5] is then used to mine fuzzy
association rules from the quantitative database.

7. Experimental Results

In this section, experiments made to show the
performance of the proposed approach are described.
They were implemented in Java on a personal computer
with Intel Pentium 4 2.00GHz and 256MB RAM. 64
items and 10000 transactions were used in the
experiments. In each data set, the numbers of purchased
items in transactions were first randomly generated. The
purchased items and their quantities in each transaction
were then generated. An item could not be generated
twice in a transaction. The initial population size P is set
at 50, the crossover rate p.is set at 0.8, and the mutation
rate Pp is set at 0.01. The parameter d of the crossover
operator is set at 0.35 according to [3] and the minimum
support « is set at 400.

After 500 generations, the final membership functions
are apparently much better than the original ones. For
example, the initial membership functions of some four
items among the 64 items are shown in Figure 8.

Initial Membership Functions

tem, Item,

0 2 6 11
2 4

Figure 8: The initial membership functions of some four items

In Figure 8, the membership functions have the bad
types of shapes that are defined in the previous section.
After 500 generations, the final membership functions for
the same four items are shown in Figure 9. It is easily
seen that the membership functions in Figure 9 is better
than those in Figure 8. The two bad kinds of membership
functions don’t appear in the final results. The adopted

fitness function thus works.
500 Generations

Item, Item,

0.0 20 40 5.0 8.0 110 00 105 209 324400 100 10.16

Item, Item,

o 30 60 8.0 100 11.0 o 30 40 6.0 9.0
Figure 9: The final membership functions of some four items
after 500 generations

The average fitness values of the chromosomes in
population; along with different numbers of generations
are shown in Figure 10. As expected, the curve gradually
goes upward, finally converging to a certain value. The
other populations have similar behavior.

Average Fitness Values
o
N o
o N
——

0 50 100 150 200 250 300 350 400 450 500

Generations

Figure 10: The average fitness values along with different
numbers of generations in population;



8. Conclusion and Future Works

In this paper, we have proposed a GA-based fuzzy
data-mining algorithm for extracting both association
rules and membership functions from quantitative
transactions. The number of membership functions for
each item is not predefined, but can be dynamically
adjusted. Since the fitness of each set of membership
functions is evaluated by the fuzzy-supports of the
linguistic terms in the large 1-itemsets and the suitability
of the derived membership functions, the derivation
process can easily be done by the divide-and—conquer
strategy. The experimental results show that the proposed
fitness function works. Our approach can reduce human
experts' intervention during the mining process, thus
saving much acquisition time. In the future, we will
continuously attempt to enhance the GA-based mining
framework for more complex problems.
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Abstract

Rough set theory has attracted much attention in
modeling with imprecise and incomplete information. A
generalized approximation space, called fuzzy probability
approximation space has been proposed by introducing
probability into fuzzy approximation space. The nove
definition combines three types of uncertainty into a
model. Information or knowledge is considered as a
partition of the universe in rough set framework. We
introduce novel entropy to measure knowledge quantity
implied in fuzzy probability approximation space. It’s
shown that the information measure for fuzzy probability
approximation space is a rational extenson of the
Shannon’soneand it will degrade to Shannon s entropy in
case where attributes are nominal and objects are
equality-probable. Then a uniform information measure
for Pawlak’s rough set model, fuzzy rough set model and
fuzzy probability rough set modd is formed based on
Yager s entropy.

1 Introduction

Rough set methodology has been witnessed great
success in modeling imprecise and incomplete
information. Rough set methodology presents a novel
paradigm to deal with uncertainty and has been gpplied to
feature selection [1, 2], knowledge reduction [3], rule
extraction [4,5,6], uncertainty reasoning [7,8] and
granularity computing [9,10,39,43,44,45].The Pawlak’s
rough set model doesn’t consider uncertainty induced by
fuzziness and probability in applications. Some
generdizations of Pawlak’s model were proposed where

fuzzy sets and fuzzy relations exist. Rough set theory and
fuzzy set theory were put together, rough-fuzzy sets and
fuzzy-rough sets were defined in [11,12]. The properties
and axiomatization of fuzzy rough set theory [13-17] were
andyzed in detaill. And the generalized methods were
gpplied to mining stock price [18], vocabulary for
information retrieval [19] and fuzzy decision rules [20,
21].

The norma rough set modes, both Pawlak’s rough set
model and fuzzy rough set model, implicitly take an
assumption that the objects are equality-probable.
However, in practice it is not necessary that the objects
are uniformly distributed. A probability distribution may
be defined over U. A theory on probability approximation
space or a probability rough set model is desirable in this
case.

Given a universe U, a probability distribution on U, and
some nominad, read-valued or fuzzy attributes, it’s
interesting in constructing a measure to compute the
discernibility power of a family of attributes or
eguivalence relations, which can lead to likelihood to
compare the knowledge quantity generated by different
atributes or relaions. It will help us find the important
atribute set and redundancy of information system.
Shannon [22] defined an information measure of a
random variable within the frame of communication
theory. Forte and Kampe [23, 24] gave the axiomatic
information measure, where the word “information” was
associated both to measures of events and measures of
partitions and suggested that the uncertainty measure is
associated to a family of partitions of a given referentia
space. In [26, 27]a measure, suiteble to operate on



domains over which fuzzy equivalence relaions have
been defined, was introduced, where the semantics of
fuzzy events was taken into account. Uncertainty measure
on fuzzy partitions generated by fuzzy equivalence
relations was analyzed in documents [28, 29].

In rough set framework, attributes are called knowledge
which is used to classify the elements into indiscernible
clusters. Knowledge introduced by an attribute set implies
in the partitions of areferential universe. More knowledge
will lead to a finer partition, and then we can get a more
perfect approximation of a subset in universe. Therefore
knowledge decreases uncertainty in characterizing the
concepts. Diminishment of uncertainty can be considered
as an increase of knowledge. In this paper we will unify
the representation and use the term “knowledge”, instead
of uncertainty. First we use Shannon’s entropy to compute
the knowledge quantity introduced by nominal attributes
or crisp equivdence relaions, then an extension
information measure will be presented, which is suitable
for the case where fuzzy attributes or fuzzy relaions are
defined. Based on the extension, the problem of
measuring the information in fuzzy approximation spaces
issolved.

The rest of the paper is organized as follows: we will
review some definitions about fuzzy rough set model and
give fuzzy probability rough set modd in section 2.
Section 3 introduced an extended information measure for
fuzzy equivdence relation and fuzzy partition. Then we
apply the proposed information measures to fuzzy
probability approximation space section 4. The
conclusion isgiven in section 5.

2 Fuzzy probability approximation space

In this section we will integrate three types of
uncertainty — probability, fuzziness and roughness
together, and present the definition of fuzzy probability
approximation space.

Definition 1 Given a non-empty finite set X, R is a
relation defined on X, denoted by a reation matrix
M(R):

gfn fo - r1n'_(:j
_Glhy Ty o Ipp+
MR)=¢™ T T+
grnl Mo - rnnE

where rijT [0, 1] istherelationvalueof x; and x;.

R is a fuzzy equivalence relation, if " x,y,zl X,
R satisfies )
1) Reflectivity: R(x,x)=1 " xl U;
2) Symmetry:  R(x,y)=R(Y,X), "%yl U;
3) Transitivity: R(x,Z)3 m)i/n{ R(x, ¥), R(y, 2)} .

Given arbitrary set X, R is a fuzzy equivaence relation
defined on X. " x,yl X, some operations on relation
matrices are defined as
1) R=R U R(XxY)=Ro(xy), "xyl X;

2) R=RUR, U R(xy)=max{R(x,¥), Ro(x )}
3) R=RNR, U R(xy)=min{Ri(x ¥), Ry(x )}
4 RI R U R(XY)ER(XY).

A crigp equivalence reation will generate a crigp
partition and a fuzzy equivaence relation generaes a
fuzzy partition.

Definition 2 The fuzzy equivalence classes generated by
afuzzy equivdencerelation Ris defined as

U/R={[x]5}HL,

irg r, U
where [Xi]ﬁ :i'_1+'_2+...+ﬂ'_
TX X2 an\;

Example 1. Given an object set X ={X;,X,,X3}, R, is
fuzzy equivalencerelationon X asfollows:

2l 09 0
R =¢09 1 O-
S0 0 1y

Then the fuzzy equivalence classes are

[X]r ::i 09,00
T% X2 X3

[X2]R, :}%"'i"'iu-
TX X X3



[)(3]R1 ::£+£+iu
TX X2 X3
Theorem 1. Given abitrary set X, R is a fuzzy
equivaence relation defined on X. The fuzzy quotient set
of X by relation Risdenoted by X. " xyT X , we have
1) RxY=0 U [x]gN[ylg=0

2 UlMg=1

3 [Mr=[ylr P Rxy)=1

Definition 3 A threetuple <U,P,R> is a fuzzy
probability approximation space (shortly, FPAS) or a
fuzzy probability information system (FPIS), where U isa
nonempty and finite set, called the universe, P is the
probability distribute over U, R is a family of fuzzy
equivaencerelationsdefined on U .

Definition 4 Given a fuzzy probability approximation

space <U,P,R>, X isafuzzy subset of U. The lower
approximation and upper approximation, denoted by

EX and TFEX,aredefinedas
j[mllt;x (X)=U{mx(y)U(1; R(x,y)):yl U},x1 U
%mgx(x)=0{(mx (YYUR(x, y):yT U},xiU

These definitions are the rational extension of some
models. Let’'s derive the other model from these
definitions.

Case 1 X is acrisp subset and R is a crisp equivaence
relation on U:

Max (X) =10 "yi U,m () U@- R(x,y)) =1

O "ylU:yl X® (x,y)I R
O "yl X® yi [Xg
O [Xgl X

Mo (0 =10 $yT U:my(y) =LR(x,y) =1
O XN[Xgtf
In this case these definitions are consistent with
Pawlak, rough set model.

Case 2 X is a fuzzy subset of U and R is a crisp
equivaencerelation on U:

Mgy (X) = UMy (y) U(@- R(x,y)): yT U}
=Umy (y):R(x,y) =1
=U{mx(Y):yT [X]R}

Mg, () = U m (Y) UR(x,y) : yT U}
=Um (y):R(x,y) =3
=Umy (y): vyl [X]g}

In this case, the rough sets are called rough fuzzy sets.

Case 3 X is asubset of U and R is a fuzzy equivaence
relation on U:

Mex (X) = min{m, (y)U(1- R(x,y)): yl U}
= ryi}p{l- R(x,y)}

Mo (X) =max{r, (y) U(l- R(x,y)):yl U}
= max R(x,y)

yl X

From the above analysis we can conclude that the
definitions of lower and upper approximations of fuzzy
st in fuzzy information system are the rationd
generalizations of classic model. Fuzzy probability
information system (FPIS) is the general case of the other
rough set model. FPIS will degenerate to the normal fuzzy
information system if probability distribution is uniform
and fuzzy information system will degenerates to
Pawlak’s rough set model if equivalence ration is crigp
and X isthe crisp subset of U.

The membership of an object xT U, belonging to
the fuzzy positive region is defined as

Meos, (d) = XSUp Mgy (x)-

fursd
Definition 5 Given a fuzzy probability information
system <U, P, A>, B and d are two subset of attribute set
A, the dependency degree of d to B is defined as

95 (d) = 3 POIMbos, (@) (¥ -
XU

The difference between fuzzy approximation space
and fuzzy probability approximation space is introducing
probability distribute over U. Thisleads to a more generd
generalization of Pawlak’s rough set model. In classic
rough set model take the equality-probability assumption.



Sop(x)=1/n, i=42 -+, n.Then
gg(d) = o P(X)Mpos, () (X)
X U
1,
== a Meos, (g) (X)
Ny
é rnPOSB(d)(X)
ST
U |

This formula is the same as tha in fuzzy rough set

model [30], which shows tha the fuzzy probability
approximation space will degrade to a fuzzy
approximation space when the equality-probability
assumption is taken.

Definition 6 Given afuzzy information system <U, A, V,
f>, Bl A, al B, if U/B=U/(B-a), we say
knowledge a is redundant or superfluous in B. otherwise,
we say knowledge a is indigpensable. If any a belonging
to B isindispensable, we say B isindependent. If attribute
subset Bi A isindependent and U/B=UJ/A, we say B
isareduct of A.

Definition 7 Given afuzzy information system <U, A, V,
f>, A=CUd.Bisasubset of C. "al B, ais

redundant in B relaive to d if gg ,(d)=gg(d) ,

otherwise a is indispensable. B is independent if " al B
is indispensable, otherwise B is dependent. B is a subset
of C. Bisareductof Cif B sdtisfies.

1) gg(d)=gc(d);

2) "al Bigg.a(d)<gs(d).

Comparing the fuzzy probability approximation space
with fuzzy approximation space we find that the central
difference is in the function of dependency. In fuzzy
approximation space, we assume the objects are
uniformly distributed and p(x;) =1/|U |. In the fuzzy
probability approximation space the probability of x;
is p(x) - When the probability p(x,) =1/|U |, the fuzzy
probability approximation space degrades to a fuzzy
approximation space, and if the equivalence relation and
the object subset to be approximated are both crisp, we
get aPawlak’s approximation space.

In applications the probability can be considered as a

weight of the object. Probability is only one of the
weighting methods. Weighting gives us anove dimension
to inject information out of data into processing, which
can integrate the prior information with data

3 Information on fuzzy equivalencerelations

Shannon’s information measure just works in the case
where a crigp equivaence relation or a crisp partition is
defined, which is suitable for Pawlak’s rough set model.
In this section we will give a novel formula to compute
Shannon’s entropy for crisp relation matrix representation,
and then a generalization of the entropy is proposed for
fuzzy relation matrices. Furthermore, we will present
another generdization for probability fuzzy information
systems and use the proposed entropies to measure the
information in fuzzy probability approximation spaces.

3.1 Shannon’s entropy measures in relation matrix
form for crisp equivalencerelations

Given an information system <U, A, V, f>, Arbitrary
relation Ri U’ U ® {0, I} can be denoted by a relation

matrix M(R):

&y T rlng
_Glyy Ty v Tpp+
MR)=¢™ 7 T+
grnl Mo o rnnB

where r; is the relaion value between element x; and

x;. If Ris an equivalence relation we say M(R) is an

equivalence reation matrix.

An equivalence rel ation matrix satisfies:

1) Reflectivity: R(x,x) =1, "xI U;

2) Symmetry: R(x,y)=R(Y,x), " xyl U;

3) Trangtivity: R(x,y) =1 R(y,2=1b R(x2).
Given an arbitrary set X, R X~ X, "x,yl X ,some

operations on relation matrix are defined as

1) R=R U R(XY)=Ro(xy), "xyl X;



2) R=RUR, U R(xy)=max{Ry(xY), Rp(x )}
3) R=RNR, U R(xy)=min{Ri(xY), Ry (X, )}
4) R R U RMXY)ER(XY).

There are some properties between crisp attribute set and
relations induced by the corresponding attributes:
1) A=BP R, =Rg;
2) AEBP R, Rg;
3) C=AUBP R. =R,NR;.

The equivaence class contained x; with respect to
relation R is denoted by

il =2

TX X XK\;

where r; =0 or 1. The cardindity of [x]g is defined

as

n
I[%1r |:é Fij -

j=1
Definition 8 Given an information system <U, A, V, >,
arbitrary eguivalence relation R on U, denoted by a
relation matrix M(R), then we define the information
measure for relation R as

n

H(R)=- T4 logh,

i=1

where %,

_Ixlr
—

Theorem 2 Given an information system <U, A, V, >,
Bi A, Ry is an equivdence relation generated by
attributes B on U. H(B) is computed as Shannon’s one

and H(Rg) is computed as definition 8. Then
H(B)=H(Rg) .
Proof. Straightforward.

Example 3. Assumed there are an information system
with three objects, An equivaence relation matrix defined
ontheuniverseis

d 1 0§
M(R)=gl 1 0-.
S0 0 1y

The eguivalence classes are {x;,x,} and {xz}. Then
the information quantity is

1.2 1,2 1 1
H(R)=- log=- - Zlog<- Zlog=
(R)=-3l005- - gloag-3loog

The computation is the same as Shannon’ onein this case.

Theorem 3 Given an information system <U, A, V, f>,
E,BI A, Rz, Rg is two equivalence relation
generated by attributesE and B. [x;]g and [x;]g isthe
eguivaence classes induced by E and B. The joint entropy
of Eand Bis

4 1ogllxleNlxls|

—1

H(EB) = H(RERB)‘-

Theorem 4 Given an information system <U, A, V, f>,
E,Bi A, Rz, Ry is two equivdence relation
generated by attributesE and B. [x]g and [x]g isthe
eguivaence classes induced by E and B. The conditiona
entropy E conditionedto B H (E | B) is

H(EIB) = H(Re |Ry) = - - § log!SIeNX]a,

i=1 I[x1e |

Here the novel computational formulae of Shannon’s
information will bring great advantage to generdize them
to fuzzy cases.

3.2 Information measure on fuzzy equivalence
relations

As we know, fuzziness exists in many real-world
applications. Pawlak’s rough set modd just works in the
crigp case. D. Dubois etc. generalized the modd to the
fuzzy case. In this section we will present ageneralization
of Shannon’s entropy. The novel measure has a same form
as Shannon’s one and can work in the case where a fuzzy
equivalencerdation is defined.

Given a finite st U, A is a fuzzy or red-vaued



attribute set, which generates a fuzzy equivaence relation

R, onU.The fuzzy relation matrix M(R,) is denoted

by
&y e o r1n'_(:j
MR =g 7T
grnl Fho - rnn%ﬂ

where r; T [0, 1] istherelationvaueof x and X;.

Definition 9 The fuzzy quotient set generaed by the
fuzzy equivalencereation is defined as

U/R={[x]z}Hu

Definition 10 The cardinadlity |[x]5z]of [x]5z is

defined as
g
X1z Fa r -
j=1
] v
As shown in example 1, [xl]Rl :ii+%+£'
1% X X3

then |[x][F1+09+0=19.
Definition 11 Information quantity of the fuzzy attribute
set or the fuzzy equivaence relation isdefined as

=

1

H(A) =H(Ry) =- -

alog

=1

X: | =
where %, - Ilxilg ] l.

This measure has the same form as the Shannon’s one
defined as definition 8. But it has been generalized to the
fuzzy case.

The formula of information measure forms a map:

H:R® A", where Ris a equivalence relaion matrix,

A" isthe non-negative rea-number set. This map builds

a foundation on that we can compare the discernibility
power, partition power or gpproximating power of
multiple fuzzy eguivalence relations. Entropy vaue
increases monotonously with the discernibility power or
the knowledge’s fineness. So the finer partition is, the
greater entropy is, and the more significant attribute set is.

Definition 12 Given a fuzzy information system <U, A

Vv, f>, A is the fuzzy attribute set. B, E ae two
subsets of A. [x]5 and [x]z are fuzzy equivalence

classes containing x; generated by B, E, respectively.

Thejointentropyof B and E isdefined as

H(EB) = H(ReR;) =- %éﬂ |OQM
i=1

Definition 13 Given a fuzzy information system <U, A

Vv, f>, A is the fuzzy attribute set. B, E ae two
subsets of A. [x]5 and [x]z are fuzzy equivalence

classes containing x; generated by B, E, respectively.

The conditional entropy of E conditioned to B is
defined as

H(E|I§):-Eén |0g|[xi]|§ Nlxlg |

i=1 %15 |

=)

Theorem 5 H(E|B) = H(BE)- H(B)

Theorem 6

1) H(I?QA)3 0,“="holdsif andonly if ry =1, "i,"j;
2) H(RyRg)® ma{H(R,), H(Rg)};

3) Ryl Ry U H(R\Rg) =H(R,)-

4) Ryl Ry U H(Ry|R,)=0



Proof. Straightforward.

33 Information measures on fuzzy probability
equivalencereation

Shannon’s entropy and the proposed measure work on
the assumption that dl the objects are equality-probable.
In this section we will give a generalizetion where a
probability distribution is defined on U.

Given afuzzy probability information system <U, A vV,
f, P>, A is the fuzzy attribute set , which generates a
family of fuzzy equivdence rdaions on U, P is the
probability distribution over U, p(x;) is the probability
of object x;. An arbitrary fuzzy equivalence relation
Ry | U”U generated by attributes B is denoted by a

relation matrix M (I?QB):

gﬁl 2 = M0

=  _ Gl Ty -+ Ipp+
MRe)=¢™ 7 . T+
grnl Mo - rnnB

where r; T [0, 1] is the relation value of x; and X;.

The fuzzy quotient set by the fuzzy equivaence relation
is.

U/R={[x]z}% where
[Xi]ﬁ ::r'_1+ri_2+.. + fin U
TX X2 Xn

Definition 14 The expected cardindity %; of a fuzzy

equivalencedass [x]5 isdefined as

Qo

Li=a p(x;)x

j=1

Definition 15 The information quantity of fuzzy attribute

st B or fuzzy equivalenceréation I?QB isdefined as

— n
H(B,P)=-3 p(x)log;
i=1
This measure is identical with Yager’s entropy [26] in
the form, but different in the god. The information
measure we give is to compute the discernibility power of
afuzzy atribute set or a fuzzy equivaence relation where

a probability distribute is defined on U. while Yager’s
entropy is to measure the semantics of a fuzzy similarity
relation.

Definition 16 Given a fuzzy information system <U, A
V, f, P>, A isthefuzzy attribute set, P is the probability
distribution on U. B, E ae two subsets of A .
[x]z and [x]z ae fuzzy equivdence classes
containing x; generated by B, E, respectively. The
fuzzy equivaence relations induced by B, E are

denoted by R and §.Thejoint entropy of B and Eis
defined as

—_ —_— n
H(EB,P)=H(RS,P)=-§ p(x)logh; ,
i=1
J .
where 7; = Q p(X; )(rjj Us;j) -
j=1
Definition 17 The conditional entropy of E conditioned
to B isdefined as
H(EIB,P)=-& p(x)log,
o1 i

n n
where %, :é p(x;)x; and 7, :é p(X; )(rj Us;) -
j:]_ j=1

Theorem 7 H(E|B, P) = H(BE, P)- H(B,P)

Proof. H(BE,P)- H(B,P)

n n

='é p(x;)logn; - ('é p(x;)log%;)

i=1 i=1
hi
r

=-4 p(x)log
i=1

=H(E|B,P)

The forms of the proposed information measures are
identica with that of Shannon’s ones, and they can be
used to measure the information generated by a fuzzy
atribute set, a fuzzy equivdence relation or a fuzzy
partition. In the follows, the proposed information
measures will be applied to fuzzy probability
gpproximation Space.

4. Information

measures on fuzzy probability



approximation space

The above section presents an information measure for

fuzzy eguivdence relations when a probability
distribution is defined. Here we will apply it to the fuzzy
probability approximation space.
Theorem 8 Given afuzzy probability information system
<U, A V,f, P>, A isthe fuzzy atribute set, P is the
probability distribution on U. B, E are two subsets of
A [x]5 and [x]z ae fuzzy equivalence classes
containing X generated by B, E, respectively. The
fuzzy equivalence relations induced by B, E ae
denoted by R and §,r$pectively.The1weha\/e:

1) " BI A:H(B,P)?0;

2) H(EB,P)* max{H(E,P), H(B, P}

T

EE orRg | Rg: H(BE,P)=H(B,P)

w
(os]

)

) BEEorRg | R. :H(E|B,P)=0

N

Theorem~9 Given a fuzzy probebility [ Dformation system
<U, A V., f, P>, BIiA al B
H(I§, p) = H(I§- a, p) if a is  redundant;
H(B,p)>H(B- a,p) if B is independent.
reductif B satisfies:

1) H(B p)=H(A p)

2) "al B: H(B,p)>H(B- a p)

B is a

Definition 18. The significance of an attribute a in B is
defined as

SIG(a,B)=H(B, p)- H(B- a,p).

Theorem 10 Given a fuzzy probab|l|ty information

system <U, AV,f,P>, A=CUd . B is asubset
of C."al B, H(d|B-a,p)—H(d|B,p) if ais
redundant in B relative to d;

H(d|B-ap)>H(d|B, p) if B is independent. B
isareductof C relativeto d if B satisfies

1) H(B|d,p)=H(C|d,p);

2) "al B: H(d|B-ap)>H(|B,p).

Definition 19. The relative significance of an attribute a
in B isdefined as

SIG(a,B,d)=H(d|B- a p)- H(d|B, p).

5. Conclusions

The contribution of the paper is two-fold. On one side,
we generdlize the fuzzy approximation space to fuzzy
probebility approximation space by introducing a
probebility distribution on U. Furthermore, we propose
novel information measures on fuzzy equivdence
relations to compute the information quantity in fuzzy
probability approximation space.

The proposed fuzzy probébility approximation space
combines three types of uncertainty: randomicity,
fuzziness and roughness together. It’s shown that the
fuzzy probability approximation space will degrade to
fuzzy approximation space when the equdlity-probebility
assumption holds. If equivaence relations and the subset
to be gpproximaed both are crisp, then approximation
space is Pawlak’s one. The proposed measures integrate
fuzziness, probability with roughness, which is showed a
rational generalization of other cases. The methods to
measure information in Pawlak’s approximation space,
fuzzy approximetion space and fuzzy probebility
approximation space are presented in uniform forms
based on the generdizations.
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Abstract - In this paper we present an ontology-based
document clustering and summarization system, called BioLit-CS
(Biomedical Literature Clustering and Summarization). The
basic idea of our summarization method is first to integrate the
ontology concepts into the vector representation of the document
set, then to cluster the document set in document vector into
topical groups. Within each topical group, saliency scores for key
concepts and sentences are calculated based on the mutual
reinforcement principle. The key concepts and sentences are
ranked according to their saliency scores. Then, some (TOP n) of
them are selected for inclusion in the top key concept list and the
summaries of the documents. We use Relevance Novelty to
minimize the redundancy of summary and to maximize both
relevance and diversity for extracted sentences. The experimental
results on a yeast gene related document set indicate that our
system is very effective at generating a concise and informative
summary for multiple documents with multiple topics.

Index Terms - ontology, text clustering, text summarization,
multi-document summarization, data mining, text mining

I. INTRODUCTION

he rapid electronic dissemination of research breakthrough

has greatly accelerated the current pace of genomic and
proteomics research. A lot of genomic knowledge and
discovery is published and collected in huge biomedical
literature databases such as MedLine. The number of articles
or abstracts in these databases is growing at an unprecedented
rate. Medline is the largest biomedical bibliographics database
with more than 12 million abstracts collected from more than
4000 journals in biomedical areas. More than 10,000
documents are added to Medline every week. The sheer size of
Medline can be daunting to many scientists involved in
biomedical research. Biomedical researchers have suffered
from dramatic information overload due to the unprecedented
growth of biomedical literatures. One way to catch up with the
latest information and to tackle the information overload is the
use of a text summarization system, which can generate a
semantically concise, coherent and informative summary to
help domain experts quickly absorb and assimilate the latest
information in their fields.

Generally speaking, there are two approaches in text
summarization: text extraction based methods and template
based methods. Text extraction based methods, after data
preprocessing, extract text based on user’s input/interest
and/or rank the extracted text (usually sentences) based on

some statistical or linguistic measures; a lot of heuristics that
are empirically acquired are usually used. Template based
methods first manually construct domain-specific templates
and then fill the templates from the text. In both methods
sentences are used as the basic processing units because a
sentence is the discourse unit with the best balance of
semantic granularity and self contained cohesiveness [1]. The
sentences are ranked based on salient scores. The highly
ranked sentences are included into a summary.

In this paper we present an ontology-based Biomedical
Literature multi-document clustering and summarization
system BioLit-CS. The basic idea of our summarization
method is to first integrate the ontology concepts into the word
vector representation of the document set, then cluster the
documents in the vector representation into a topical group.
Within each topical group, saliency scores for key terms and
sentences are calculated based on the mutual reinforcement
principle [2]. The key terms and sentences are then ranked
according to their saliency scores and are selected for
inclusion in the top key terms list and summaries of the
documents. We use Maximal Marginal Relevance [3], [4] to
minimize the redundancy of the extracted sentences in the
summary.

The rest of this paper is organized as follows. In section 2
we review some of the related work in multidocument
summarization, text clustering and biological ontology. In
Section 3, we first introduce the architecture of our system
BioLit-CS and then discuss the technical details of ontology-
based clustering and summarization. We show the
experimental results in Section 4 and conclude with discussion
and future research plan in Section 5.

II. RELATED WORK

Here, we review some related works in the multi-document
summarization, text clustering and biomedical ontologies
fields and provide background information about them.

A. Multidocument Summarization

Text summarization has been studied since Luhn’s work [5]
in 1958. A lot of approaches have been introduced. For
example, there are statistical methods based on the bag-of-
words model, linguistic methods using natural language
processing, knowledge-based methods using concepts and
their relations and summary generation methods. The first
three approaches try to seek the most important information
(usually sentences or terms) for a condensed version of the



documents while the last approach generates completely a new
summary that consists of informative terms, phrases, clauses
and sentences. The main difficulty of the last approach is
figuring out how to combine them to make sentences that are
grammatically correct.

In the bioinformatics field many multi-document
summarization systems have also been introduced. TextQuest
[6] is designed to summarize documents retrieved in response
to a keyword(s) based search on PubMed. However, it does
not retain the association between the genes and the retrieved
documents. MedMiner [7] can provide summarized literature
information on genes but it is limited when finding relations
between two genes only. Also, it returns a few hundred
sentences for the summary. Shatkay et al. [8] suggested a
system, which attempts to find functional relations among
genes on a genome-wide scale. However, this system requires
the user to specify a representative document for each gene
which describes the gene very well. Looking for the
representative document may take a lot of time, effort and
knowledge on the part of the user. In addition, as genes have
multiple biological functions, it is very rare to find a document
that covers all aspects of a gene across various biological
domains. GEISHA [9] is based on the comparison of the
frequency of abstracts linked to different gene clusters.
Interpretation by the end user of the biological meaning of the
terms is facilitated by embedding them in the corresponding
significant sentences and abstracts and by establishing
relations with other, equally significant terms.

However, those approaches deal with all of the words in
documents except stop words. A main drawback of these
approaches is that many (semantically) unimportant words are
involved with text summarization so that the quality and the
performance of text summarization decrease because those
words act as noise on summary processing. Unlike traditional
text summarization approaches, the ontology-based text
summarization method uses two kinds of ontology concepts:
the concepts that are found in documents, and then the
concepts that are found to be semantically relevant to those
concepts through tracking their relationships. Ontology

concepts as semantically salient terms are searched and valued.

Therefore, more semantically concise summaries with better
semantic meaning are expected.

B. Text Clustering

Existing text clustering solutions use all of the words in the
documents except the stop words for their term vectors. Thus,
it is not uncommon for such solutions to generate thousands of
dimensions in the vector representation of documents.
Moreover, they handle terms not semantically but only
syntactically; thus, they ignore the similarity of terms and
relationships between words such as synonyms, hyponyms
and hypernyms defined in terminological resources in
ontology. For example, semantically identical but differently
spelled words (e.g., cancer, malignant tumor) are treated as
completely different words in traditional document clustering
approaches. Such term handling hampers document similarity
measure processing. A good way to solve such a problem is
the use of ontology on document clustering [10]. In our
architecture, enriching the term vectors with concepts from
ontology has three benefits. Firstly, it naturally resolves the

synonym problem. Secondly, it can identify documents with
different topic using high level (more general) concepts.
Lastly, because the concepts that are found in the documents
and the concepts that are relevant to those concepts are used
on the vector construction, the dimensions are remarkably
reduced, which in turn improves the clustering accuracy and
efficiency.

C. Biological Ontologies

Biology researchers have suffered from inconsistent
descriptions of gene products and ambiguous term definitions
from disparate biology databases. This is called
“communication problem” [11], which hampers the semantic
computational processing of bioliterature, such as text
summarization or document clustering. One of the promising
solutions to the problem is the use of ontologies, which have
gotten much attention recently in semantic web and
bioinformatics communities. This is because ontologies
explicitly conceptualize a domain without ambiguity, thus
providing better understanding of the domain; they include a
structured, controlled vocabulary with definition, the
taxonomy of the vocabulary and all of the possible
relationships among concepts.

There are many biology/medical ontologies, such as Gene
Ontology (GO) [12], UMLS, TAMBI Ontology, EcoCyc
Ontology, etc. Each ontology is designed for a specific
purpose. For example, GO is about gene product function.
Current GO is from the result of the integration of 16 biology
databases [12]. GO terms are taxonomically grouped into three
areas: molecular function, biological process and cellular
component which are considered independent of each other.
GO terms are structured in a directed acyclic graph because it
is very possible for a gene product that has many molecular
functions to be used in many biological processes and to be
related to many cellular components. For example, a GO term
has relationships with more than 400 GO terms. Although GO
terms are in the form of a graph, all GO terms are rooted
(hierarchically arranged) to in GO_Ontology concept.
However, a GO term may have many parents and/or many
children in different levels. In this paper we focus on GO
ontology because we will cluster and summarize document set
related to genes and gene products.

III. OVERVIEW OF B10-CS ARCHITECTURE

In order to summarize documents properly, two problems
should be carefully handled: (1) documents are highly
redundant in terms of information; and (2) documents contain
various kinds of information. One of the promising approaches
for the problems above is to cluster the document set because
through document clustering similar documents are grouped
together while dissimilar documents are grouped into different
document clusters.

Our approach follows this philosophy but with significant
enhancement by integrating ontology into the clustering
procedure. The principal idea of our approach is based on the
usage of ontology for generating alternative representations of
the given document set. The benefits of integrating ontology
into document clustering and summarization can be three-fold;



=  Ontology can clearly identify relationships among
terms found in documents. Thus, by using concepts
found in documents and their relationships, the
document vectors inspired by ontology are able to
contain a higher level of semantic meaning as well as
the actual semantic meaning. For example, if a
document that is relevant to sedan or convertible is
converted into a vector representation using proper
ontology, the vector representation can hold the higher
level meaning of sedan or convertible, e.g. car or
vehicle. Therefore, the ontology-based document

vector can semantically represent the original
document well and uncover the hidden meaning of
documents.

=  Because only important terms (or ontology terms) are
used in the document vector, which reduces the
cardinality of document dimensions significantly, the
clustering performance can be greatly increased. It
should be noted that the vector elements of
unimportant terms act as noise on calculating
document similarity/distance.

= Using different ontologies of different domains we
can cluster documents in different ways because the
same documents can be interpreted from different
points of views. For instance, using generic ontology
and molecular ontology biology documents can be
clustered in the generic view or in molecular point of
view.
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Figure 1. The Architecture of Biomedical Literature
Clustering and Summarization (Bio-CS)

The architecture of our system BioLit-CS, which follows
the pipeline architecture, is shown in Figure 1. The technical
details of major steps are described in the following
subsections.

A. Ontology-based Biomedical Literature Clustering

Instead of summarizing the whole document set relevant to
a gene cluster, each gene cluster document set is first clustered
using a clustering algorithm for better text summarization. Our
rationale of document clustering before summarization is that
the document set of a gene cluster contains various biological

topics because genes in a cluster carry out multiple functions.
Thus, clustering the document set guarantees a text
summarization system the best input source because each
document cluster only consists of similar documents. For
better document summarization, document clustering can be a
prerequisite.

The traditional document clustering model, such as the bag-
of-word model, is often unsatisfactory since the model ignores
the relationships among semantically similar terms; for
example “car” and “automobile” or “cancer” and “malignant
tumor” are treated as completely different terms in the model.
Therefore, traditional clustering approach suffers three main
problems. First, traditional document clustering is mostly seen
as an objective method, which delivers rigidly defined results.
This, however, runs contrary to the fact that different people
have quite different needs with regard to document clustering
because they may view the same documents from completely
different perspectives (e.g., a clinical view vs. genetic view).
Second, traditional document clustering typically takes place
in the high-dimensional space of a word vector whose entries
are attributes/properties for a document. However, using
unimportant terms as vector entries negatively affects the
clustering in high-dimensional spaces on clustering — besides
the computational inefficiencies — because each entry is
treated as the same regardless of its semantic importance and
thus has the same distance from all other data points. Third,
traditional document clustering per se does not provide an
explanation for why a specific document is grouped into a
particular cluster.

Our approach deals with those problems by deeply
integrating ontology in the clustering procedure. For the first
problem using different ontologies from different domains
provides multiple subjective perspectives about document
clustering into the same document set. The second problem
can be easily solved if ontology is used on document
clustering because only ontology concepts as importance
terms are involved in vector representation; thus, the
cardinality of dimensions remarkably decrease. As a result, the
performance and the efficiency of document clustering is
greatly improved. For the third problem involving high-level
concepts in  vector representation by  analyzing
hyponyms/hypernyms relationships among concepts provides
reasonable explanation of document clustering because those
high-level concepts with much higher salient scores than
normal concepts play an important role in distance/similarity
measurement of document clustering. The explanation is
based on those high-level concepts. Therefore, we expect
better clustering performance in terms of the semantic, a
computational benefit and flexibility with ontology on
document clustering. Consequently, we believe the most
important part in document clustering is the conversion from
documents into document vectors. Without proper conversion,
the document vectors do not represent the original documents
well. Ontology plays a crucial part in the conversion.

Our algorithm converts original documents into
semantically well-represented document vectors for clustering.
This is done by, firstly, calculating global and local measures
of ontology concepts found in the documents. Then, each
ontology concept is valued based on our own measure (called,



“thorough frequency”) that is figured out by its global measure
and its descendants’ global measures. Finally for some
qualified concepts, their parent concepts are involved in
document vectors in order to represent high-level concepts of
those terms in document vectors. As a result, ontology-based
document vector can represent the original documents well by
uncovering hidden high-level semantics. The big difference
between traditional document vector conversion method and
our ontology-based document vector conversion is that our
conversion method involves not only terms found in
documents in document vectors but also their parent concepts
whose values are figured out by sophisticated ontology
concept frequency measurement (“thorough frequency” in our
term) using the ontology semantic net.

Algorithm: Ontology-based document clustering

Input: Document set (D); Ontology; any external
clustering algorithm

Output: Document clusters

Procedural:

STEP 1: Calculating concept measures for C; over

documents (d,)

Ford,e D
For C;
LF(C,)
GF(C)
End For
End For

STEP 2: Valuing C; from leaves to the root
For the leaves to the root

C, e{C,| PC(C,C))}
TF(C)=GF(C)+ 2

C, e{C;|PC(C.C)))

GF(C,)
End For

STEP 3: Constructing DV
DVE= {{Cl} + {Cj | PC(Cj’5TF(Q))}} (i=1...,m)
Ford,e D
For C, e {Ci |LF(C,, )}
DV, &= {TF(C,| PC(C,, 5, (C))]
+{LF(C, )|

End For
End For

STEP 4: Applying DV to a clustering algorithm and
Storing clusters to files

In Step 1 for each ontology term (C;) its measure is
calculated over documents. The measure could be one that the
Information Retrieval community has used, such as term
frequency, document frequency, information gain, Z-score

[13], etc. However, TF*IDF should not be used here because
we use abstracts of papers, most GO concepts are found only
once in the abstracts in which the concepts exist and GO
concepts that are found frequently over documents should be
regarded as salient concepts; TF*IDF assumes that salient
terms are not found too frequently over all documents due to
the nature of inversed document frequency (e.g., ‘the’, ‘that’,
etc) and are found frequently in the documents in which the
term exist due to the nature of term frequency.

The frequencies are calculated in both the global (corpus)
level and local (document) level. Global frequencies are
summed up whenever the same concepts are found. For a

document d, € D (p = 1,..., n) the global frequency of a
concept C; is defined as:

GF(C)= Y, LF(C,)
p=Ll..,n r

where GF(C,) is the global frequency of a concept C; and
LF(C)) is the local frequency of a concept C; and Cid isa C;

that is found in d,. The global frequencies are used for the
calculation of thorough frequencies in Step 2.

In Step 2 all the parent level concepts of concepts that are
found in documents are valued by their children’s global
frequencies plus their own global frequencies. For instance, if
a concept’s GF is 5 and the summation of its all children’s
GFs are 10, the new frequency (here, called “thorough
frequency” in our term) of the concept is 15. This procedure
starts from leaf level to the root. The thorough frequency (7F)
of a concept (C;) is mathematically defined as:

TF(C,)= GF(C,) + >,

C; e{C;|PC(C,.C))}

GF(C))

where TF(C;) is the thorough frequency of concept C; and
PC(C, C) means C; is the parent level concept of C; (a child).
Through TF of a concept we estimate the importance of a
concept in documents in terms of semantic. This is feasible
because all relationships relevant to a concept are identified
through the ontology semantic net.

In Step 3, as the core of this procedure, the document vector
is constructed. The vector elements/entries consist of the
distinct concepts found in the whole document set plus all
parent concepts of qualified concepts. The reason why their all
of their parent concepts are also selected is to hold all the
semantic meanings in ontology in document vector
representation. Thus, document vector elements (DVE) are
defined as:

DVE={{C}+{C;| PC(C,,5,(C)}} (i=1,..,m)

where m is the distinct number of concepts found in the
corpus and orp(C;) includes only C; whose TF is bigger than
the threshold value. For C; whose TF is smaller than threshold
value J7r(C;) outputs nothing and thus, PC(C; x(C;) also
outputs nothing (or an empty set).

Instead of including all parent concepts of all distinct
concepts only the parent concepts of qualified concepts are
included into document vectors. In order to qualify concepts
their thorough frequencies are used because we assume salient



concepts have big enough thorough frequencies; the
assumption is based on the fact that semantically salient
ontology concepts are frequently found over documents
because the documents are related to a gene cluster.

After selecting the concepts to be added to the document
vectors we should consider which values should be assigned to
the vector elements (selected concepts) as salient scores. For
non-parent concepts, their local frequencies are assigned to a
vector. For parent concepts as a whole, their thorough
frequencies are used; if a local frequency already exists, it is
replaced with the thorough frequency. This is defined as:

DV, ={TF(C,|PC(C,,5,.(C))}

+{LF(Cl.dp )} (p=1,..n)

where n is the number of documents.

The rationale is that, for example, if a document talks about
“nucleus”, the document is relevant to “intracellular” as an
upper level concept and also “cell” as a more upper level
concept (see Figure 2). With such information the document
vectors can represent the semantics of the original document
well. In addition, using such information makes the similarity
and dissimilarity of documents clear because parent concepts
have more salient values than non-parent concepts. This is
possible because all possible relationships among concepts are
analyzed. For example, suppose there are five documents
about extracelluar, intracellular, membrane, DNA and RNA
and those documents are encoded into document vector using

proper ontology such as Gene Ontology in the same way in
Steps 1, 2 & 3. Table 1 shows local and global frequencies of
all concepts. This is a typical document vector conversion of
traditional methods except the section of global frequencies.
Table 2 shows the ontology-based document vector
conversion. Note each frequency is based on the ontology in
Figure 2 and document vector in Table 2 contains only local
frequency values and thorough frequency values.

Because the high-level (parent) concepts have more
frequencies, the documents are easily semantically
distinguished by the clustering algorithm; this can be easily
explained using Euclidean distance. Only 2 document vector
elements (DNA and RNA) mainly affect the calculation of the
distance between DNA document and RNA document because
they are split in Level 3 (in Figure 2) from the same parent
(see Table 2 for the difference between the documents in
vector elements). The distance above can be naturally smaller
than the distance between extracelluar document and DNA
document because they are broken down in Level 2 (in Figure
2); more vector elements and higher frequencies are involved
during the distance calculation (see Table 2).

In Step 4 the document vectors are used as the input for any
clustering algorithm. Using the clustering results of the
clustering algorithm, document clusters are generated. For the
document clustering, X-means [14], an extension of K-means,
is used because X-means improves two major shortcomings of
K-means. It scales better and automatically detects the number
of clusters (k problem) using Bayesian Information Criterion.

GO_Ontology Level 1
A 4
Cellular Level 2
Component
/ v\
Obsolete cellular
Extracelluar Cell
component Level 3
Intracellular Membrane DNA RNA Level 4
nucleoid nucleus Level 5

Figure 2. A part of GO Ontology

Table 1. A Document Vector containing Local Frequencies of Concepts

Extra. Intra. Cell Memb. nucleoid nucleus 0.C.C. DNA RNA C.C.

Extra. Doc. 6 0 0 0 0 0 0 0 0 0
Intra. Doc. 1 5 3 0 3 4 0 0 0 0
Memb. Doc. 0 1 3 5 0 0 0 0 0 0
DNA Doc. 0 0 0 0 0 0 0 3 1 0
RNA Doc. 0 0 1 0 0 0 0 1 4 0
Global 7 6 7 5 3 4 0 4 5 0
Frequencies

Table 2. A Document Vector containing Local or Thorough Frequencies of Concepts
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Extra. Intra. cell Memb. nucleoid nucleus O.C.C. DNA RNA C.C.
Extra. Doc. 6 0 0 0 0 0 0 0 0 41
Intra. Doc. 1 13 25 0 3 4 0 0 0 41
Memb. Doc. 0 1 25 5 0 0 0 0 0 41
DNA Doc. 0 0 0 0 0 0 9 3 1 41
RNA Doc. 0 0 1 0 0 0 9 1 4 41

Table 3. A Document Vector containing Local and Thorough Frequencies of Concepts for Full Text Documents

Extra. Intra. Cell Memb. nucleoid nucleus O.C.C. DNA RNA C.C.
Extra. Doc. 26 0 5 0 0 0 0 0 2 0
Intra. Doc. 1 15 33 0 30 24 0 4 3 0
Memb. Doc. 4 1 25 28 0 2 0 0 0 0
DNA Doc. 2 0 3 0 1 0 0 32 1 0
RNA Doc. 0 0 2 0 0 0 0 1 41 0
TOP n TOP m
terms sentences
TN [ K S
Doc | -~ Kb o 8h
@ Cluster 1 o . o
; Mutual
Original Ontology- w Doc .| Reinforcement |, } } %; F EZ‘ » Maximal ;
enriched - Cluster 2 ) 0 0 o2 . Final
Document = “ootor [ © based Keyterm Marginal - — o mary
Set representation e and Sentence : Relevance
) Extraction
e Doc _ S| K F gkl
Clusterk [ "I B Ko O e >

Figure 2. Data flow of Document Clustering and Summarization

One may argue that, for example, Extra. or Intra. document
may contain DNA or RNA as an unrelated term which can act
as significant noise. The authors agree with that problem.
However, our documents are abstracts of papers. Since
abstracts are actually summaries of the original documents, it
is rare that summaries contain unrelated GO concepts. If the
full text is used instead of abstracts, such problem may arise as
Table 3 shows (the measures which are italic and underlined
are noises). However, this problem can be easily solved; for
concepts whose measures are significant over documents, we
include their parent concepts in document vectors.
Alternatively for each concept Z-score can be used as a
measure for this purpose because Z-score indicates the
distance from the mean of a distribution normalized by the
standard deviation of the distribution. Thus, significant
concepts are easily identified from trivial concepts.

B. Ontology-based Biomedical Literature Summarization

After document clustering, as prerequisite for document
summarization, each document cluster that is guaranteed to
contain homogeneous documents is summarized. In this paper,
we use a mutual reinforcement principle [2] to extract key
phrase and sentences from the document that are added to the
summary. The core of mutual reinforcement principle is that:
“a term should have a high saliency score if it appears in many
sentences with high saliency scores while a sentence should
have a high saliency score if it contains many terms with high
saliency score” [2]. We make undirected and weighted
bipartite graphs for terms and sentences to extract salient
terms and sentences from the graphs on the fly without
extensive training process.

For each document cluster, a term set and a sentence set
are generated; term set T= {t;, tp, ...,t,} which includes all
terms found in the document set and sentence set S={s;, s,,
...,Sm} which contains all sentences. Here, bipartite graph is
created between term set and sentence set. If a sentence (s,)
contains a term (t,), an edge is created between s, and t,. The
elements of two sets are vertices. Each edge may be weighted
by the number of relationships between a sentence and a term
or by a more elaborated measure (e.g., TF*IDF). A weight
W, indicates the weight on edge between s, and t,.
Fundamentally the merit of a sentence depends on the terms
the sentence contains and the merit of a term relies on the

sentences that include the term. The following
mathematically represents this principle.
Merit(s,) = Z W and
t,€it, |edge(s,, .t,}
Merit(t)) = Z w,.

Sm E{Sm | edge(sm ’tn }

The function edge(s,t,) indicates a sentence s, contains a
term t,. This iterative process continues until it reaches a
certain number of iterations. Finally TOP n terms and
sentences are selected based on their salient scores and added
to the summary. There are a lot of numerical computation
methods developed to calculate the scores of terms and
sentences efficiently. For more detailed discussion, please
refer to [16].



Here, we need to take one more step to deal with “summary
sentence redundancy”. It is very possible that the newly
extracted sentences to be added to summary are semantically
similar to the previously extracted sentences. Extracting all
similar sentences would produce a verbose and repetitive
summary. The sentence extraction part of our system is similar
to the domain-independent multidocument summarization in
[3,4,17] in the way it clusters sentences across documents to
help determine which sentences are central to the collection,
as well as to reduce redundancy among sentences as it does
not make use of comparisons to the centroids of the
multidocument set. We will integrate the ideas from
Maximum Marginal Relevance measure [3,4] and Cross
Sentence Information Subsumption (CSIS) [17] to minimize
redundancy and maximize both relevance and diversity for
extracted sentences. In order to measure the similarities
between two sentences (S={k;, ks ..., kip} and S={k;;, k...,
ki,}) term sets are generated for each sentence. And then
every two terms from different term sets are compared. If two
terms are exactly the same, the similarity score is 1. If two
terms are different but they are related in the ontology, the
similarity score is dependent on the semantic similarity in the
ontology. There are many approaches to use the distance
between two concepts in ontologies as the basis for their
similarity [18]. For example, assuming the commonality
between terms k;, and k;, in the ontology is K, where K, is the
most specific class that subsumes both k;, and k;, . We can
define the semantic similarity as follows:

2*log P(K )
d(k,.k;)=
log P(K,,) +log P(K )

where P(K,) represents the probability that a randomly
selected concept belong to the K, in the ontology. The
similarity measure of S; and S; is defined as

Z Z Wiu,jv
SZI’I/Z(SI,SJ) — u=l v=l
m+n

Lif k,
d(k,

i’

= kjv

where w, k), 1f k,, is related to k, in the ontology

i, jv

0,if k, & k,, are different literally & semantically

IV. EXPERIMENTAL RESULTS

We conducted some experiments on a yeast gene data set
(http://rana.lbl.gov/EisenData.htm). In our experiment we

considered the genes in a function family as a cluster and
created 10 data sets. Table 4 shows 10 yeast gene function
families as clusters and information about experiment data sets.

The input data set is documents relevant to genes in clusters.
For each gene its synonyms are searched; yeast synonym
information is found at www.yeastgenome.org/gene_list.shtml.
For each gene and its synonyms the relevant documents are
fetched from PubMed using our PubMed search tool on the fly.
The results of gene cluster 1 and 7 as samples are shown in
Table 5.

Table 4. Gene Clustering and Document Clustering

# of genes in # of # of document
Gene
Cluster the cluster relevant clusters for Gene
4 (including PubMed each gene Function
synonyms) documents cluster
ATP
1 19 (25) 122 2 synthesis
2 19 (35) 519 6 Mitosis
Vaculolar
3 19 (69) 262 3 protein
targeting
4 20 (30) 501 5 Silencing
Fatty acid
> 2034) 213 2 metabolism
6 21 (35) 386 6 Meiosis
Phospholipid
7 213D 242 3 metabolism
8 22 (30) 203 3 TCA cycle
Chromatin
9 42 (67) 640 6 structure
10 42 (75) 1874 15 DNA

replication

V. CONCLUSION

In this paper we present a novel system Bio-CS for
biomedical literature clustering and summarization. Our
system integrates gene ontology, text clustering and text
summarization. The experiment results on yeast gene
expression data indicate that the Bio-CS can clusters can
provide a concise and informative textual summary for the
gene clusters. One of the challenging issues for summarization
is how to organize the extracted sentences in a coherent way.
We plan to integrate chronicle ordering to sort the extracted
sentence and hope to report our findings in the near future.


http://rana.lbl.gov/EisenData.htm

(1]

(2]

(3]

(4]

(3]

Table 5. The top 10 significant terms and the best sentence for each cluster

Cluster # Cluster common Document Key Terms Best Sentences
terms Cluster #
RNA; binding; These data were in agreement with the sequence
1 chromosome; of the hypothetical protein L8003.20 whose
cytochrome; primary structure was deduced from DNA
ATPase activity; protein; telomere sequencing of the yeast chromosome XII.
DNA,; We conclude that Ymelp is in part responsible
1 Cell; growth; for assuring sufficient F(1)F(0)-ATPase activity
membrane phosphorylation; to generate a membrane potential in
2 protein; translation;  mitochondria lacking mitochondrial DNA and
transport; vacuolar ~ propose that Ymelp accomplishes this by
membrane catalyzing the turnover of protein inhibitors of
the F(1)F(0)-ATPase.
The phospholipid composition of yeast plasma
membrane was manipulated by two different
. . . methods: (i) by using two auxotrophic strains
DNA; RNA; cell; = 304101 " (chol) and MCI3 (Cho+) which
1 membrane; protein; . . -
. required phospholipid bases for growth and (ii)
transferase activity . i
by supplementing Saccharomyces cerevisiae
(3059) cells with high concentration of choline
Binding: or ethanolamine.
Bios n%l;esiS' Expression of the C. albicans secretory aspartyl
7 Grovz/]th' ’ DNA; RNA; cell; proteinase (SAP) and phospholipase B (PLB)
holin ’ 5 lipid biosynthesis; virulence genes was determined by reverse
protein; transcription-PCR  after the addition of
transcription caspofungin to cells grown for 15 h in
Sabouraud dextrose broth.
centromere; .. Structural genes of phospholipid biosynthesis in
chromosome; lipid -
bi . the yeast Saccharomyces cerevisiae are
iosynthesis; S
3 o transcriptionally ~ co-regulated by ICRE
phospholipid; L . .
. (inositol/choline-responsive element) promoter
transcription; .
motifs.
vacuole
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GRANULAR COMPUTING:
BIAPPROXIMAATION SPACES
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Department of Mathematics, Faculty of Science, ( * Tanta , o Zagazig ) University , Egypt.

Abstract

The purpose of the present work is to construct a new method for approximation
of sets using two information systems simultaneously. Some properties and charac-
terizations are given and a comparison with the previous sorts of approximation is

obtained.

1. Introduction

A data set is represented as a table where each row represents a case, an event, a patient,
or simply an object. Every column represents an attribute (a variable, an observation, a
property, etc.) that can be measured for each object; the attribute may be also supplied
by a human expert or user. This table is called an information system. More formally, it
is a triple (X, 7,t) [7] where X is a non-empty finite set of objects called the universe, and
T is a non-empty finite set of attributes such that ¢t : X — V, for all ¢t € T. The set V}
is called the value set of . The notion of equivalence is recalled first, A binary relation
R C X x X which is reflexive (i.e., an object is in relation with itself z Rx), Symmetric (if
xRy then yRz) and transitive (if xRy and yRz then xRz) is called an equivalence relation.
The equivalence class of an element x € X consists of all objects y € X such that xRy.
Let ¢ = (X, A, t) be an information system obtained via data collected from an experiment

by a user then there is associated an equivalence relation R,
Re={(z,y) € X x X1 V ti(z) = t:(y)},

1



R¢ is called indiscernibity relation. If (x,y) € R¢, then objects x and y are indiscernible
from each other by attributes from A. The equivalence classes of an indiscraibility relation
R on a set X are denoted by [z],, this class forms a base (3, for a topology on X.

Kelly [8] introduced the concept of bitopological spaces as method of generalizes topo-
logical spaces. The field of bitopologies has achieved great success in abstract study [9].
To the best four Knowledge the notions of bitopological structures are not applied in the
field of set approximations one of this methods is rough set approach. The purpose of the
present work is to construct another approach for rough set analysis using bitopology, we
expert that this approach will give a general view for rough set concepts in the case of two
information systems resulting from two experiments or the view of two experts. However,
we hope that this work is an initial step for the application of bitopological concepts in the
fields of applications based on rough set concepts such as reduction of attributes, decision

tables used dependency of knowledge bases.

2. Set of pairwise approximation

If the attribute for each object are measured by two experts or users, we have two
tables or two information systems ¢ = (X,T,t) and ¢' = (X,T,t), we can obtain two
indiscernibity relations R and R.. Consequently we have two bases (. and ﬁRc’ for two
topologies 71 and 7.

Example 1.1: In the following tables we have two information systems for five cases
X ={a,b,c,d, e} represent five patients, T' = {t1, to} attributes represent symptoms of dis-
eases and the values represent the type of symptoms as the following 1 means abdominal

pain, 2 means headache, 3 means fever, 4 means diarrhea



t ty t 123
a 1 3 a 1 3
b 2 4 b 2 4
¢ 2 3 ¢ 1 3
d 1 3 d 1 3
e 2 4 e 1 3
table(1) table(2)
Results from the medical expert (1) Results from the medical expert (2)

With respect to user (1) the reader will easily notice that cases a and d as well as b and
e have exactly the same values of conditions. Also with respect to user (2), the cases

a, b, cand d have the same values of conditions.

In table (1)

Re={(z,y) e X x X 1 t;(x) =t;(y) V x,y € X,1,j € {1,2}}
R¢ ={(a,a), (b,0),(c,c), (d,d), (e, e), (a,d), (d,a), (b, e), (e, D) }
Bre = {le]r, - v € X} = {{a,d},{b,e}, {c}}.

The topology induced by (r, as a base is

= 1{X, ¢,{a,d},{b, e}, {c}, {a,b,d, e}, {a,d,c},{b,c,e}}

In table (2)

(r,y) € X x X i t;(x) =t;(y) V x,y € X,4,5 € {1,2}}
(a,a),(b,b), (c,c), (d,d), (e, e€), (a,c),(c,a), (a,d), (d,a),
a,e), (e a),(cd),(d,c),(ce),(ec),(de),(ed}

ﬁRq’ = {[x]Rc’ cx € X} ={{b},{a,c,d, e}}.

The topology induced by ﬁRC' as a base is

m ={X,¢,{b},{a,c,d e}}

Ry = {
Ry = {



Definition 1.1. If we have two information systems ¢ = (X,T,t) and ¢ = (X, T,t)
and 71, T are two topologies induced by Bg, and ( R respectively as a bases we can define

pairwise lower approximation for any subset A of X as the following
pL(A) = int, (A) Uint, (A)
. Also we define pairwise upper approximation for any subset A of X as the following
pU(A) = cl; (A) Nl (A)

In Example 1.1, if we let A = {b,d}. Then ,L(A) = {b} and ,U(A) = {a,b,d, c}

Proposition 1.1. One can easily show the following properties of pairwise approximations:
(1) pL(A) € A S, U(A)
(2) pL(X) =, U(X) = X and ,L(¢) =p U(¢) = ¢
(3) U(AUB) 2 ,U(A) U ,U(B)
(4) U(ANB) C ,U(A) N ,U(B)
() pLANB) C ,L(A) N pL(B)
(6) pL(AUB) 2 ,L(A) U ,L(B)
(7) If A C B implies ,U(A) C ,U(B) and ,L(A) C ,L(B)
(8) pU(X\A) = X'\ ,L(A) and ,L(X \ A) = X'\ ,U(A)

(10) pL(L(A)) € pUGL(A))



Proof: We prove the parts (9) and (11) only, other parts are obtains similarly.

(9)

GUB)E = (cln(B) Nelry(B))
= (dn(B))° U (dn(B))°
— int,,(B%) Uint,,(B°)
= L(BY)

Similarly (11)

JLGLB)Y) = pL{ints (B) Uint(B))
= int, (int. (B) Uint.,(B)) Uint,,(int, (B) Uint.,(B))

(
= int, (B) Uint, (int,,(B)) Uint,, (int. (B)) U int.,(B)
(

)
= int, (B)Uint.(B)
= pL(B)

In the following example we show that the equality in parts (3), (5), (10) and (12) of

Proposition 1.1 are not true in general.
Example 1.2. Consider the two information systems as in Example 1.1.

part (1) Let A = {a}, B = {b}, we have ,U(A) = {a,b}, ,U(B) = {b} and ,U(AU B) =
{a,b,d,e}. Consequently ,U(AU B) #,U(A)U ,U(B).

part (2) Let A = {a,c,d,e}, B = {a,b,d, e}, we have ,L(A) = {a,c,d,e}, ,L(B) =
{a,b,d,e} and ,L(AN B) = {a,d}. Consequently ,L(AU B) #,L(A)N ,L(B).

part (3) Let A = {a,b,c,d}, we have ,L(,L(A)) = {a,b,¢,d} and ,U(,L(A)) = X.
Consequently ,L(,L(A)) #p U(,L(A))

part (4) Let A = {e}, we have ,L(,U(A)) = ¢ and ,U(,U(A)) = {e}. Consequently
pUGU(A)) #p LGU(A))



The following table show that the difference between approximations by using our ap-

proach and Pawlak’s approach.

Approximation by using one user

Approximation by using two user

L(A) C A C U(A)

pL(A) S AC ,U(A)

UAUB)=U(A)uUU(B)

JU(AUB) 2 ,U(A)U U(B)

U(ANB) C U(A)NU(B)

YJU(ANB) C ,UA)N ,U(B)

L(ANB) = L(A) N L(B)

,L(ANB) C ,L(A) N ,L(B)

L(AU B) D L(A) U L(B)

JL(AUB) 2 ,L(A)U ,L(B)

If A C B implies U(A) CU(B)

L(A) C L(B)

If AC B implies ,U(A) C ,U(B)

pL(A) € pL(B)

L(X\ A) = X \ U(A)

UX\ A) = X\ L(A)

pL(X\A) =X\ ,U(A)

pUX\A) =X\ ,L(A)

pL(L(A)) € U GL(A))

The emergence of two viewpoints increase sets which is definable internally or exter-

nally. One can define the following four basic classes of raugh sets.




Definition 1.2. For any two information systems ¢ = (X, 7,t) and ¢’ = (X, T,t). The
set A C X is called:

(1) Roughly pairwise definable iff ,L(A) # ¢ and ,U(A) # X.

(2) Internally pairwise undefinable iff ,L(A) = ¢ and ,U(A) # X.
(3) Externally pairwise definable iff ,L(A) # ¢ and ,U(A) = X.
(4) Pairwise exact iff ,L(A) = ,U(A) = A.

We denote the set of all Roughly pairwise definable (resp. Internally pairwise unde-
finable, Externally pairwise definable and Pairwise exact) sets by RPD(X, 7y, 72) (resp.
IPU(X,m,72), EPD(X,7,72) and PE(X,7,7)). In the case of using one of two infor-
mation systems ¢ = (X, T,t) and ¢’ = (X,T,t") we denote the set of all Roughly definable
(resp. Internally undefinable, Externally definable and exact) sets by RD(X, ;) (resp.
IU(X,7;), ED(X, ;) and E(X,7;)) where i = 1,2.

Remark 1.1 For any two information systems ¢ = (X, T,t) and ¢ = (X,T,t"). The the
relations between the types of sets in Definition 1.2 with respect to two user and one user

as the following: for all i = 1,2
(1) RPD(X,1,72) 2 RD(X,7;)
(2) IPU(X,m,m) CIU(X,T;)
(3) EPD(X,m,m) C ED(X, ;)

(4) PE(X,m,m) 2 BE(X,T;)

Example 1.3. In Example 1.1,we have:

RPD(X,m,1) = {{b},{c},{a,b},{c,e},{a,c},{a,d}, {b,c}, {b,d}, {b,e},{c,d},{a,b,d},
{a,b,e},{a,c,d},{a,c,e},{a,d,e},{b,c,e},{c,d, e}, {a,c,d e}, {a,b,d e}}.

RD(X, ) = {{c},{a,d}, {b,c},{b, e}, {c,d},{c, e},{a,b,d},{a,b e}, {a,c,d},
{a,d,e},{b,c,e},{a,b,d, e}}.

RD(X, ) ={{b},{a,c,d,e}}.

IPU(X,m1,72) = {{a},{d}, {e} {a e}, {d, e}, ¢}.

1U(X, 1) = {{a}, {b},{d}, {e},{a, b}, {a, e},{d, e} {b,d}, ¢}.

7



1U(X,72) = {{a}, {c}, {d}, {e},{a,c} {a,d} {a, e}, {d, e}, {c, d},{c e}, ¢}.

EPD(X,7m,7) = {X,{a,b,c}, {b,c,d},{a,b,c,d},{a,b,c,e},{b,c,d, e}}.

ED(X,n) ={X,{a,b,c} {a,c,e},{b,c,d}, {c,d, e}, {a,b,c,d},{a,b,c,e},{a,c,d e}, {bc,d e}}.
ED(X, 1) ={X,{a,b},{b,c},{b,d}, {b,e},{a,b,c},{a,b,d},{a,b, e}, {b,c,d},{b,c, e}, {b,d e}
{a,b,c,d}, {a,b,c,e},{a,b,d e}, {bc,d, e}}.

PE(X,1,1) = {X,{b},{c}, {a,d}, {b, e}, {a,c,d}, {b,c, e}, {a,c,d, e}, {a,b,d e}}

E(X,n) ={X,{c},{a,d},{b,e},{a,c,d},{b,c,e},{a,b,d, e}}

E(X, ) ={X,{b},{a,c,d,e}}

ZZLJ((Q)) | called

the accuracy of pairwise approximation, where | A | denotes the cardinality of A # ¢.

Obviously 0 < a,,(A) < 1. If a,(A) = 1 the set A is an exact and if oy, (A) < 1 the set A is

Rough set can be also characterized by the following cofficient a,(A) =|

a rough set.

The relation between the degree of accuracy of pairwise approximation by using tow
information systems together and approximation by using each of the two information sys-
tem alone as the following a,(A) > max{a;(A), az(A)} where a,(A) is the accuracy of
pairwise approximation by two information systems (two users), a;(A) is the accuracy of
pairwise approximation by first information systems (user 1) and a(A) is the accuracy of

pairwise approximation by second information systems (user 2).

The following table show that the degree of accuracy of approximation a,(A), ai(A)

and as(A) for some sets in Example 1.1



The set a;;(A) a;(A) as(A)
X 1 1 1
@y | f | o0 |
@ha | 2 1 | 1
{b.d.c} ; 2 5
{a,c,d, e} 1 g 1

3. Real life application

In the following we will investigate the Middle East setution problem using our approach
and compare the results with the results of Pawlak [1] and M. M. Abd El-Monsef [2].
Pawlak and Skowron [3]| characterize a rough set by a single membership function for any
subset A C X, a rough membership function is defined by

AN, |

k@) = ]

where | . | denotes the cardinality of a set.

Definition 2.1. If we have two information systems ¢ = (X,T,t) and ¢ = (X, T,t)
we can define the pairwise membership function by the relation
| AN (2], Ulal, ) |
pa(z) = -
p (el Ul )
where [z] R(( resp. (7], ) is the equivalent class of & with respect to information system
¢

¢ = (X,T,t) (resp. (' = (X,T,t) ) and | .| denotes the cardinality of a set.

In the folllowing we will showing the political situation of the Middle East problem by
using two veiws, the first veiw is befor Irak war and the other after it. Let us consider the

nine parties (objects) in this problem.



(1) Egypt (2). Israeli (3). Jordan (4). Lebanaon (5). Palestine
(6) Syria (7). Saudi Arabia (8). Iraq (9). Kuwait (10). Kater.

The relation between those parties are determined by the following twelve issues (at-

tributes).
(a) Return of Golan Heights of Syria.
(b) Israeli military outposts on the Golan Heights.
(¢) Israeli accupation zone in south Lebanon.
(d) Free access to all religious centers.

(e) Arab countries grant citizenship to palestinians who choose to remain within their

borders.
(f)Israeli retains East Al-Quads.
(g) Isolation and division of Al-Quads.
(h) Autonomous palestinian state on the West Bank and Gaza.
(i) Return of the West Bank and Gaza to Arab rule.
(j) Israeli military autpost along the Jordan river.
(k) Roed map.
(1) The segregation wall.

The following two table (information systems) summarize all the participants opinion on
the previous twelve issues before and after Iraq war. If the participant is against the issue

we put 0 and if the participant is neutral or favorable toward the issue we assign that by 1

10
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table (*)
Information system before Iraq war
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table (**)
Information system after Iraq war

11

we have the following equivalence class

In table (*)

—_— o — o/ —



we have the following equivalence class

Mg, = {1}
2z, = Bz, = 9r, = [10]r, = {2,8,9,10}
[3]1%/ = {3}
[4r, = {4}
5lr, = {5}

The degree of membership of Israeli with respect to the set

A = {Egypt, Kuwait, Iraq, Kater, Palestine} with respect to one information system in table
(*) is

| AN 2, |

| [2]R( |
1{1,5,8,9,10} N {2,9} |

[ {2,9} |

a(2)

1

2

The degree of membership of Israeli with respect to the set

A = {Egypt, Kuwait, Iraq, Kater, Palestine} with respect to tow information system is

| AN (2)r URls,) |

#a2) = B U, |
| {1,5,8,9,10} N ({2,9} U {2,8,9,10}) |
1{2,9} U{2,8,9,10} |
3
= 1
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Abstract

The principal focus is to examine the foundation of association (rule) mining (AM)
via granular computing (GrC). The main results is: The set of all high frequency patterns
is the set of set theoretical expresssions of the names of elementary granules or the well
form formulas in deicion logic with large meaning set

1. INTRODUCTION

What is data mining? The following informal
paraphrase of Fayad et al. (1996)’s definition
seems quite universal: Deriving useful
patterns from data. The keys are data,
patterns, derivation system, and useful-ness.
We will examine critically the current
practices of AM

1.2. Basic Terms in Association Mining
(AM)

In AM, two measures, support and confidence,
are the main criteria. It is well known among
researchers the support is the main hurdle, in
other words, high frequency patterns are the
main focus. AM is originated from the market
basket data (Agrawal, 1993). However, we
will be interested in AM for relational tables.
For definitive, we assert:

1. A relational table is a bag relation, that is,
repetitions of tuples are permissible
(Garcia-Monila et al. 2002)

2. An item is an attribute value,

3. A g-itemset is a subtuple of length q,

4. A high frequency pattern of length q is
a g-subtuple if its number of occurrences
is greater than or equal to a given
threshold.

2. EMERGING METHOD - GRANULAR
COMPUTING

Bitmap index is a common notion in database
theory. The  advantage of  bitmap
representation is computationally efficient
(Louis and Lin, 2000), and the drawback is
the order of the table has to be fixed (Garcia-
Molina, 2002). Based on granular computing,
we propose a new method, called granular
representations, that avoids this drawback.
We will illustrate the idea by examples. The
following example is modified from the text
cited above (p. 702). A relational table K is
viewed as a knowledge representation of a set
V, called the universe, of real world entities
by tuples of data; see Table 1.



A% BusinesSize | Bmonth | City BusinesSize | Bmonth City

Vi TWENTY MAR NY 100011100 110011000 | 101000000
Vs TEN MAR SJ 011100000 110011000 | 010011100
V3 TEN FEB NY 011100000 001100000 | 101000000
vy | K| TEN FEB LA 011100000 001100000 | 000100011
vs | > | TWENTY MAR SJ 100011100 110011000 | 010011100
Ve TWENTY MAR SJ 100011100 110011000 | 010011100
\Z] TWENTY APR SJ 100011100 000000100 | 010011100
Vg THIRTY JAN LA 000000011 000000011 | 000100011
Vo THIRTY JAN LA 000000011 000000011 | 000100011
Relational Table K Bitmap Table B

Table 1. K and B are isomorphic

BusinesSize | Granular Representation Bitmap Representation
TWENTY ={v1, Vs, Vs, V1} =100011100
TEN ={vy, V3, Va} =011100000
THIRTY ={vs, Vo} =000000011
GDM in Granules GDM in Bitmaps
Table 2a. Granular Data Model (GDM) for BusinesSize Attribute
Bmonth Granular Representation Bitmap Representation
Jan ={vs, Vo} =000000011
Feb ={v3, Va} =001100000
Mar :{Vl, Vi, Vs, V6} =110011000
APR ={vy} =000000100
GDM in Granules GDM in Bitmaps

Table 2b. Granular Data Model (GDM) for Bmonth attribute

City Granular Representation Bitmap Representation

LA ={Vy, Vg, Vo!} =000100011

NY ={vy, v3} ={vl, v3}

SJ ={vy, Vs, Vs, V7} =010011100

GDM in Granules GDM in Bitmaps
Table 2¢. Granular Data Model (GDM) for City attribute
\4 BusinesSize | Bmonth | City | BusinesSize Bmonth City
Vi TWENTY MAR NY {v1,v5,v6,v7} {vl,v2,v5,v6} | {vl,v3}
Vs TEN MAR SJ {v2,v3,v4} {vl,v2,v5,v6} | {v2,v5,v6,v7}
V3 TEN FEB NY {v2,v3,v4} {v3,v4} {vl,v3}
vy, | K| TEN FEB LA {v2,v3,v4} {v3,v4} {v4,v8,v9}
vs | = | TWENTY MAR SJ {v1,v5,v6,v7} {vl,v2,v5,v6} | {v2,v5,v6,v7}
Ve TWENTY MAR SJ {v1,v5,v6,v7} {vl,v2,v5,v6} | {v2,v5,v6,v7}
\Z] TWENTY APR SJ {v1,v5,v6,v7} {v7} {v2,v5,v6,v7}
Vg THIRTY JAN LA {v8, v9} {Vg,Vo} {v4,v8,v9}
Vo THIRTY JAN LA {v8, v9} {Vg,Vo} {v4,v8,v9}
Bag Relation K Granulr Table G




| Table 2. K and G are isomorphic ‘

A bitmap index for an attribute is a collection
of bit-vectors, one for each possible value that
may appear in the attribute. For the first
attribute, BusinesSize (the amount of business
in millions), the bitmap index would have
nine bit-vectors. The first bit-vector, for value
TWENTY, is 100011100, because the first,
fifth, sixth, and seventh tuple have
BusinesSize = TWENTY. The other two, for
values TEN and THIRTY, are 011100000 and
000000011 respectively; Table 1 shows both
the original table and bitmap table. Bmonth
means Birth month; City means the location
of the entities.

Next, we will interpret the bit-vectors in
terms of set theory. A bit-vector can be
viewed as a representation of a subset of V.
For example, the bit-vector, 100011100, of
BusinesSize = TWENTY says that the first,
fifth, sixth, and seventh entities have been
selected, in other words, the bit-vector
represents the subset {v;, vs, vs, v7}. The
other two bi-vectors, for values TEN and
THIRTY, represent the subsets {v,, v3, v4} and
{vs, vo} respectively. We summarize such
translations in Table 2a,b,c. and refer to these
subsets as elementary granules.

Some easy observations:

1. The collection of elementary granules of
an attribute (column) forms a partition,
that is, all granules of this atribute are
pairwise disjoint. This fact was observed
by Pawlak (1982) and Tony Lee(1983).

2. From Table 1 & 2, one can easily
conclude that the relational table K, the
bitmap table B and granular table G are
isomorphic. Two tables are isomorphic
if one can transform a table to the other
by renaming all attribute values in a one-
to-one fashion.

3. GRANULAR DATA MODEL (GDM) -
TABLE IN FREE FORMAT

The middle columns of Table 2a, 2b and 2c¢
define 3 partitions. The universe and such 3
partions, denoted by (V, {Egusinessizes Emonth,
Eciy} ), determines the granular table G and
vice versa. More generally, a pair (V, E, C) is
called a GDM, where E is a set of finite
family of partitions, and C consists of the
names of all elementary granules. A partition
(equivalence relation) of V that is not in the
given E is referred to as an uninterpreted
attribute of GDM, and its elementary
granules are un-interpreted attribute
values.

GDM Theorem. The granular table G and its
GDM determine each other.

In view of Isomorphic theorem below, it is
sufficient to do AM in GDM.

4. ANALYSIS OF ASSOCIATION
MINING (AM)

To understand the mathematical mechanics of
AM, let us ecamine how the information has
been created and processed. We will take the
deductive data mining approach.

First, let us set up some terminology. A
symbol is a string of "bits and bytes" that
represents a slice of real world, however, such
a real world meaning does not participate in
the formal processing or computing. We term
such a processing computing with symbols.
In Al, such a symbol is termed a semantic
primitive. (Feigenbaum, 1981). A symbol is
termed a word, if the intended real world
meaning participates in the formal processing
or computing. We term such a processing
computing ~ with  words.  Note  that



mathematicians use words (in group theory)
as symbols; their words are our symbols.

4.1. Data Processing and Computing with
Words

In traditional data processing (TDP), a
relational table is a knowledge representation
of a slice of real world. So each symbol of the
table represents (to human) a piece of the real
world; however, such a representation is not
implemented in the system. Nevertheless,
DBMS, under hAuman commands, does
process the data, for examples, Bmonth
(attribute), April, March (attribute values)
with human-perceived semantics. So in TDP
the relational table is a table of words; TDP is
human directed computing with words.

4.2. Data Mining and Computing with
Symbols

In (automated) AM we use the table created
in TDP. However, AM algorithms regard the
TDP data as symbols; no real world meaning
of each word participates in the process of

AM. High frequency patterns are completely
deduced from the counting of the symbols.
AM is computing with symbols. The input
data of AM is a relational table of symbols,
whose real wolrd meaning does not
participate in formal computing.

Under such a circumstance, if we replace the
given set of symbols by a new set, then we
can derive new patterns by simply replacing
the symbols in “old” patterns. Formally, we
have (Lin, 2002)

Isomorphic Theorem Isomorphic relational
tables have isomorphic patterns.

This theorem implies that the theory of AM is
a syntactic theory.

Example From Table 3, it should be clear
that the one-to-one correspondences between
K and K’ induces consistently a one-to-one
correspondence between the two sets of
distinct attribute values. We describe such a
phenomenon by the statement: K and K’ are
isomorphic.

\ BusinesSize | Bmonth | City U W’t | Name Material
Vi TWENTY | MAR NY u 20 SCREW STEEL
N2 TEN MAR SJ u 10 SCREW BRASS
V3 TEN FEB NY u3 10 NAIL STEEL
vs | K| TEN FEB LA uy | K |10 NAIL ALLOY
vs | »| TWENTY | MAR SJ us | — | 20 SCREW BRASS
Ve TWENTY | MAR SJ Us 20 SCREW BRASS
\Zi TWENTY | APR SJ Uy 20 PIN BRASS
Vg THIRTY JAN LA Us 30 HAMMER | ALLOY
Vo THIRTY JAN LA Uy 30 HAMMER | ALLOY
Bag Relation K Bag Relation K’
Table 3 The isomorphism of Table K and K’
K K’ GDM in Granules Support
(TWENTY, MAR) | (20, SCREW) ={vi, Vs, Vs, V71N {V1, V2, V5, V6} | 3
(MAR, SJ) (SCREW, BRASS) | ={vy, va, Vs, V6} N {V2, Vs, Vs, v7} | 3
(TWENTY, SJ) (20, BRASS) ={V1, Vs, Ve, V1}N{V2, Vs, V6, V7} | 3
Table 4. Three isomorphic 2-patterns; support =cardinality of granules




In Table 4, we display the high frequency
patterns of length 2 from Table K, K’ and
GDM; the three sets of patterns are
isomorphic to each other. So for AM, we can
use any one of the three tables. An
observation: In using K or K’ for AM, one
needs to scan the table to get the support,
while in using GDM, the support can be read
from the cardinality of the granules, no
database scan is required — one strength of
GDM. Another observation: From the
definition of elementary granules, it should be
obvious that subtuples are mapped to the
intersections of elementary granules; see
Table 4.

5. HIGH FREQUENCY PATTERNS ARE
GRANULAR/DECISION FORMULAS

Implicitly AM has assumed high frequency
patterns are ‘“‘expressions” of  the input
symbols (elements of the input relational
table.) Such assumptions are not made in
other techniques. In neural network
techniques, the input data are numerical, its
patterns are not numerical “expressions.”
They are essentially functions that are
derived from activation functions (Park and
Sanders, 1989; Lin, 1996).

Let us back to AM, the implicit assumption
simplifies the problem. What are the possible
“expressions” of the input symbols? There
are two possible formalisms, logic formula
and set theoretical algebraic expression. In
logic form, we have several -choices,
deductive database systems, datalog, or
decision logic among others (Ullman, 1988-
89; Pawlak, 1991); we choose decision logic
because it is simpler. In set theoretical form,
we use GDM (Lin, 2000).

5.1. Decision Logic Based Formula

A high frequency pattern in decision logic is
a logic formula, whose meaning set (support)

has cardinality greater than or equal to the
threshold.

5.2. Granular Formulas - Set Theoretical
Based Formulas

A high frequency pattern in GDM is a
granular expression, which is a set theoretical
algebriac expression of elementary granules;
when the expression is evaluated set
theoretically, the cardinailty of the resultant
set is greater than or equal to the threshold;
we will call the algebraic expressions
granular pattern. Note that several distinct
algebraic expressions of elementary granules
may have the same resultant set.

Some observations: Informally, a logical
formula of granular pattern is the “logic
formula” of the names of elementary granules
(Lin, 2000); more pricisely we translate
elementary granules, U and M into their
names, “or” and “and” respectively. Next, we
note that there are only finitely many distinct
subsets that can be generated by the
intersections and unions of elementary
granules in GDM. If we only consider the
disjunct normal form, the total possible high
frequency patterns in AM is finite.

6. HIGH FREQUENCY PATTERNS BY
LINEAR INEQUALITIES

Let B be the Boolean algebra generated by
the elementary granules; the partial order is
the set theoretical inclusion . Then B is the
set of all granular expressions. Let O be the
smallest element (it is not necessary an empty
set) and I is the greatest element (I is the
universe V). An element p is an atom, if p D
O, and there is no element x such thatp > x o
O. Each atom p is an intersection of some
elementary granules. Let S(b) be the set of all
atom p; such that p; < b and s(b) be its
cardinality. From (Birkoff & MacLane, 1977,
Chapter 11), we have



Proposition. Every b € B can be expressed in
the form b =piU ... Upsw).

For convenience, let us define an
“operation” of a binary number x and a set S.
We write S*x to mean the following:

S*x=1S§, ifx=landS#J
S*x =, ifx=0or S=J

Let p1, p2, . . ,pm be the set of all atoms in B.
Then a granular expression b can be
expressed as
pi*x1 U ... U pn™* Xm.
and its cardinality can be expressed as
bl =2 | pi [*xi

where | @ | is the cardinality of e .

Main Theorem. Let s be the threshold. Then
b is a high frequency pattern, if

bl =2 Ipil*xizs (%)

In applications, p; ‘s are readily computable;
it is the -elementary granules of the
intersection of all partitions (defined by
attributes); see the Table 1 and 2. So we only
need to find all binary solutions of x;. The
generators of the solution can be enumerated
along the hyperplanes of the inequalities of
the constraints.

Observations:  Theoretically, this is a
remarkable theorem. It says all possible high
frequency patterns can be found by solving
linear inequalities. However, the practicality
of the main theorem is highly depended on
the complexity of the problem. If both | p; |
and s are small, then the number of solutions
will be out of hands, simply due to the size of
the number. We would like to stress that the
difficulty is simply due to the size of possible

solutions, not the methodology. The result
implies that the notion of high frequency
patterns may not be tight enough. At this
moment, (*) is useful only if the number of
attributes under considerations is small.

7. FUTURE TRENDS

7.1. Tighter Notion of Patterns

Let us consider the real world meaning of the
patterns of length 2, namely, (TWENTY,
MAR) and (20, SCREW). What does this
subtuple (TWENTY, MAR) mean? 20
million dollar business on March ? The last
statement is not the original meaning of the
schema: Originally it means vy, vs, v have 20
million dollar busness and they were born in
March. This subtuple has no meaning on its
own. On the other hand, (20, SCREW) from
K’ is a valid pattern (most of screws have
weight 20). In summary, we have

(TWENTY, MAR) from K has no meaning
on its own,
(20, SCREW) from K’ has a valid meaning.

Let RW(K) be the Real World that K is
representing. The summary implies that the
subtuple (TWENTY, MAR), even though
occurs very frequenly in the table, there is no
real world event correspond to it. The data
implies that three entities v;, vs, v¢ have
common properties encoded by “Twenty” and
“Mar.” In the table K, they are “naively”
summairzed into one concept “(TWENTY,
MAR).”  Unfortunately, in the real world
RW(K), the three occurences of “Twenty”
and “Mar” (from three entities, vy, vs, v¢) do
not integrate into an appropriete new concept
“(TWENTY, MAR).” Such “error” occurs,
becuase high frequency is an inadequate or
inaccurate criterion. We need a tighter notion
of patterns.



7.2. Semantic Oriented Data Mining

If we do know how to compute the semantics,

then the computation should tell us that the
repeated two words “TWENTY” and “MAR”
can not be combined into a new concept
regardless of high repetitions, and should be
dropped out. So semantic oriented data
mining is needed (Lin & Louie. 2001, 2002).
As ontology, semantic web, and computing
with words (semantic computing) are heating
up, it could be a right time to move onto
Semantic Oriented Data Mining.

7.3. New Notions of Patterns and
Algorithmic Information Theory

In (Lin, 1993), based on algorithmic
information  theory = or  Kolmogorov
complexity theory, we proposed that a non-
random (compressible string) is a string with
patterns and the shortest Turing machine that
generates this string is the pattern. We
concluded, then, that a finite sequence (a
relational table is a finite sequence) with long
constant subsequences (the lenght of such
constant sequence is the support) is trivially
compressible (having a pattern). High
frequency patterns are such patterns. Taking
the same thought, what would be the next less
trivial compressible finite sequences?

CONCLUSIONS
Our analysis on association mining
seems fruitful: (1) High frequency patterns

are natural generalizations of association rules.

(2) All high frequency patterns (generalized
associations) can be found by solving linear
inequalities. (3) High frequency patterns are
rather lean in semantics (Isomorphic
Theorem). So semantic oriented AM or new
notion of patterns may be needed.
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Extended Abstract

Due to the rapid growth of resources over the Web and the diversity of content within any web
page, automatic tools are necessary to help users find, filter, and extract the desired information.
Search engines have become indispensable tools for gathering web pages and documents that are
relevant to a user's query. However, inconsistent, uninteresting and disorganized search results
are often returned. Without conceptual contexts, issues like polysemy, phrases and term
dependency impose limitations on search technology. Search results can be improved with
mechanisms based on categories, subjects, and contents.

Document clustering is considered as a mechanism to improve search results. A good search
engine needs to discriminate whether a piece of information is relevant to users' queries within a
short time. Short of the ability to extract semantic meaning from a document automatically, one
can only hope to find a technique that can classify or cluster Web documents into semantic
categories based on extracted features from those documents. Given that multiple concepts can
be simultaneously defined in a single Web page, it is hard to limit the number of concept
categories in a collection of Web pages. As a result, unsupervised clustering methods are better
suited for document categorization on the huge, diverse, and scattered Web.

Our observation is that the frequent itemsets (undirected association rules or simply associations)
of key terms in a document collection form mathematically a simplicial complex; previously
they have been identified as a hypergraph. The nodes correspond to key terms in a document
collection, while simplexes or hyperedges reflect the strong associations among these key terms.
Superficially, both hypergraphs and simplicial complexes have captured the essence of the
associations of key terms. Yet, the natures of two mathematical systems are quite different, they
would yield different theories. Hypergraphs are pure combinatoric concepts, while simplicial
complexes are not only combinatoric, but are also topological concepts that are deepest layer of
geometric facts. For example, distance is not topological notion. In other words, our clustering is
independent of metric; that marks our different from many classical clustering methods.



This paper presents a novel scheme to clustering documents based on simplicial complex in
combinatorial topology. The associations among frequently co-occurring terms in documents
naturally form a (combinatorial) simplicial complex. We believe each connected component of
such a complex represents a primitive concept in the document collection. Based on these
primitive concepts, documents can be clustered into meaningful groups. Experiments with three
different data sets from web pages and medical literature have shown that the proposed
unsupervised clustering approach performs significantly better than traditional clustering
algorithms, such as k-means, AutoClass and Hierarchical Clustering (HAC). The results indicate
that geometric model is a strong model capturing associations among key terms in text and is
useful for automatic document clustering.
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Abstract

Thispaper presentsa novel model of concept representa-
tion using a multilevel geometric structure, which is called
Latent Semantic Networks. Given a set of documents, the
associations among frequently co-occurring termsin any of
the documents define naturally a geometric complex, which
can then be decomposed into connected components at var-
ious levels.

This hierarchical model of knowledge representation
was validated in the functional profiling of genes. Our ap-
proach excelled the tradtional approach of vector-based
document clustering by the geometrical forms of fre-
guent itemsets generated by the association rules. The
biological profiling of genes were a complex of con-
cepts, which could be decomposed into primitive concepts,
based on whichthe relevant literature could be clus-
tered in adequate ” resolution” of contexts. The hierarchi-
cal representation could be validated with tree-based bio-
medical ontological frameworks, which had been applied
for years, and been recently enriched by the online avail-
ability of Unified Medical Language System (UMLS) and
Gene Ontology (GO).

Demonstration of the model and the clustering would be
performed on the relevant GeneRIF (References into Func-
tion) document set of one gene. Our geometrical model is
suitable for representation of biological information, where
hierarchical concepts in different complexity could be ex-
plored interactively according to the context of application
and the various needs of the reserachers.
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1. Introduction

One of the urgent need of bioinformatics in the post-
genomic era is to find “’biological themes” or “’topics” be-
tween genes or gene products, in order to ’drink from the
fire hose” from vast amounts of literature and experiment
results.

One approach of theme finding is to derive knowledge
directly without translation by another knowledge source,
e.g. a vocabulary system. One of the early successful ap-
proaches is direct mining from the source literature. The
relationships between genes are constructed by probabilis-
tic modes , such as Bayesian Networks. The most clinically
yielding is the PubGene project [4]. However, the interpre-
tation of the results is often qualitative, selectively on some
local findings in large graph models. The lack of overall pic-
ture is partly due to the exploration of individual genes with-
out preliminary grouping of some closely correlated genes.
The result relied on the quality of documents collected as
“relevant” to the target genes [8].

Subsequent researches to find “molecular pathway” in
raw documents is vigorous use of natural language process-
ing techniques. One of the efforts with a long history of
literature mining in other medical domain is the GENIE
project, evolved from MEDLEE works [2]. Finely tuned
rule-based term tagging and processing improve the effi-
ciency, but the rule sets or knowledge sources they con-
structed cannot be reused by other applications or be val-
idated by others. Besides, the system is too large for per-
sonal document browsing.

The other approaches use external knowledge system,
such as keyword hierarchy, to group the raw gene infor-
mation to more biologically understandable “themes”. The



early works are well reviewed by Shatkay in the analysis
of microarray data [8]. MedMesh is more recent work ad-
dressing on the MeSH systems (Medical Subject Heading)
of UMLS (Unified Medical Language System), but much
raw document processing is used and the approach was rel-
atively in a ”black box” [6]. After the advent of Gene On-
tology (GO) system, more tools were developed to apply
the ontological framework to impose domain knowledge on
analysis of raw data, which were listed under the section of
”GO tools” in the official site of the GO Consortium [1].

From the medical point of view, current application of
MeSH or GO is still in a very primitive developing stage.
One of the main reason lies on the nature of tree-based on-
tological system. For example, GO divides the functional
profiles into three branches from the root — the function do-
main, the process domain, and the anatomical domain. The
first two domaion are closely associated in many applica-
tion. The third domain is also dependent on the first two
“function” domains. In addition, the amount of annotations
of genes to the three domains are also unbalanced.

Our research addresses on the limitation of functional
analysis of genes, and proposed a new geometric model.
In what follows, we start by reviewing related work on the
models of the relationships between gene and gene prod-
ucts clustering in section 2. The concepts and definitions of
latent semantic networks based on geometric forms for the
frequent itemsets generated by association rules are given in
section 3. The clustering results for clustering of the func-
tioning profile of a gene are described in Section 4; followed
by the conclusion.

2. Related Work

Detecting knowledge based on the co-occurence of terms
or concepts is one of the basic mechanism of document
clustering, and was initially proposed to cluster genes into
biologically meaningful groups [4]. However, the charac-
teristics of the “groups” could not be explained by the
co-occurrence alone. An approach of getting the biologi-
cal “meaning” was by annotation with associated MeSH
and GO terms, which were both tree-based. Our work ap-
proaches the “meaning” problem by proposing a new geo-
metric model of clustering in order to more adequately
present the network nature of the functioning profiles of
genes.

After Girvan and Newman’s work of “community struc-
ture” in socal and biological networks [3], the nature of
graph structure inherent in a co-occurrence network began
to be explored. Wilkinson et al. [6] picked sets of genes cor-
related to user-selected keywords by partitioningthe com-
ponents of gene co-occurrence networks functionally corre-
lateed ”communities”. Wren et al. [9] studied the connec-

tions in the gene network to rank the “’cohesiveness” of co-
occurring genes, diseases, and chemical compounds.

The current published genetic analyses based on “com-
munity” networks were calculated based on geometrical
measurement in the Euclidean space, which we considered
is a fundamental limitation of statistical calculation in docu-
ment or concept clustering. The clustering of distance mea-
surements between sets of more primitive concepts to form
higher hierarchy of concept groups is more applicable in
topological spaces than in Euclidean spaces. We proposed a
topologically based network more suitable for gene analy-
sis.

3. Geometric Representation of Concept

Term-term inter-relationships that are denoted by their
co-occurred associations can automatically model and ex-
tract the concepts from a collection of documents. These
concepts organize a multilevel and homogenous hierarchy
called a Latent Semantic Network. The most natural way to
represent a latent semantic network is expressed by using
the geometric and topologic notations, which can capture
the totality of thoughts expressed in this collection of doc-
uments; and a “simple component” (which is a r-connected
component) of a level of hierarchy represents some concept
inside this collection.

3.1. Combinatorial Geometry

Let us introduce and define some combinatorial topolog-
ical concepts. The central idea is n-simplex.

Definition 1 A n-simplex is a set of independent abstract

vertices [v, . . ., Un+1]-

Geometrically 0-simplex is a vertex, 1-simplex an edge (a
vertex pair), 2-simplex a triangle, 3-simplex a tetrahedron.
A n-simplex is the n 4+ 1 dimensional analog. This is the
smallest convex set in a Euclidean space R™*! containing
n + 1 points vy . . ., v,41 that do not lie in a hyperplane of
dimension less than n. For example, there is the standard n-
simplex

6" ={(to,t1,...tyr1) € R™| Zti =1,t; >0}

Definition 2 A face of a n-simplex [vg,...,vnt1] IS
a r-smplex [vj,,...,v;_,] whose vertices is a sub-
set { vo, ..., vnt1 } With cardinality r + 1.

Definition 3 A complex is a finite set of simplices that sat-
isfies the following two conditions:

e Any face of a simplex from a complex is also in this
complex.



e The intersection of any two simplices from a complex
is either empty or is aface for both of them.

The vertices of the complex vy, v, - -
vertices of those simplces. [ 7]

-, vy, istheunion of all

Definition 4 A hereditary n simplex, or abbreviated to be
n-H-simplex is a special complex of n dimensions that con-
sists of one n-simplex and all its faces.

Definition 5 A (n,r)-skeleton (denoted by S) of n-
complex is a n-complex whose k-faces(k < r) are re-
moved

Definition 6 For any non-empty two simplices A, B are
said to be r-connected if there exits a sequence of k-
SIer'ICESA =Sy,51,...,Sn = B suchthat Sj and Sj+1
has an h-common face for j = 0,1,2,...,m — 1; where
r<h<k<n.

Definition 7 The maximal r-connected subcomplex is
called a r-connected component. Note For a r-connected
component implies there does not exist any r-connected
component that is the superset of it.

3.2. Simple Concept Geometric Structure

In our application each vertex is a key term, so a sim-
plex defines a set of key terms in a collection of docu-
ments. Hence, we believe a simplex represents a primi-
tive concept in the collection. For example, the 1-simplex
[Wall, Street] represents a primitive concept in financial
business. The 0-simplex [Network] might represent many
different concepts, however, while it is combined with some
other terms would denote latent semantic concepts, such as,
these 1-simplices [Computer, Network], [Traffic, Network],
[Neural, Network], [Comunication, Network], and so on,
demonstrate distinct concepts and identify more obvious se-
mantic than 0-simplex. Of course, the 1-simplex [Neural,
Network] is not conspicuous than the 2-simplices [Artifi-
cal Neural Network] and [Biology, Neural, Network].

A collection of documents most likely consists of sev-
eral distinct primitive concepts. Such a collection of primi-
tive concepts is combinatorial a complex.

An idea (in the forms of complex of keywords) may con-
sist of a lot of primitive concepts (in the form of simplices)
that are embedded in a document collection. Some primi-
tive concepts may share a common primitive concept, some
may not. This situation may be captured by a combinatorial
complex of key terms: An idea in the forms of a complex
of keywords may consist of a lot of primitive concepts in
the form of simplices. Some primitive concepts (simplices)
may share a common concept (a common face), some may
not.

Example 1 In Figure 4, we have an idea that consist of
twelve terms that organized in the forms of 3-complex. Two

Simplex(a,b, ¢, d) and Simplex(w, x, y, z) are two maxi-
mal H-simpliceswith the highest rank 3. Considering (3, 1)-

Figure 1. A complex with twelve vetrics.

skeleton, S%, by removing all 0-simplices, the other sim-
plicesinit can be listed.
e Simplex(a, b, c,d) and its ten subsimplices:
— Simplex(a, b, ¢)
— Simplex(a, b, d)
— Simplex(a, ¢, d)
— Simplex(b, ¢, d)
— Simplex(a, b)
— Simplex(a, ¢)
e Simplex(a, c, h) and its three subsimplices:
— Simplex(a, ¢)
— Simplex(a, h)
— Simplex(c, h)

There does not exist any common faces between any two
simplices, so that eight maximal connected componentsare
in S3. So does S3, there are only two maximal connected
componentsin it because the maximum rank of simplicesin
itis3.

A maximal connected component of a skeleton repre-
sents a complex of association rules, i.e., a set of concepts.
If a maximal connected component of a skeleton contains
only one simplex, this component is said to organize a prim-
itive concept.

Definition 8 A maximal connected component is said to be
independent if it is composed of a single simplex, i.e, there
is no common face between two maximal connected compo-
nents.



3.3. Issue

From a collection of documents, a complex of associ-
ation rules can be generated. A skeleton of a complex is
closed, because all subcomplexes of a complex are also in
the skeleton according to subsimplices in each composite
simplex of a complex in a skeleton are also included in the
simplex, which satisfies the apriori property. As seen in Ex-
ample 1, all connected components in S} are contained in
ST, where k > r. Based on that, the goal of this paper is to
establish the following belief.

Claim A maximal independent connected component of a
skeleton represents a primitive concept in this collec-
tion of documents.

Simplex;
Wiane
':‘.I;i'Hﬁ—h SIm_ple.xI _—_‘_‘——\——_?.-E‘.,“
Simplex, Simplex,
Wisc
W{C',A) \EC &)

Figure 2. A simple skeleton S3 of example is
composed of three terms {t4, tg, tc} from
a collection of documents, where each sim-
plex is identified by its tfidf value and all 0-
simplices have been removed (the nodes are
drawn by using dash circles).

Example 2 Given a skeleton, S, of association rules de-
picted in Figure 2, it is a 2-complex composed of the term
set V={ta, tp, tc} in a collection of documents. In the
skeleton, all 0-simplices are neglect, i.e, the terms de-
picted in dash lines. The simplex set S ={Simplex;,
Simplex,, Simplex,, Simplex, } (Simplex; is a 2-simplex
and Simplex,, Simplex; as well as Simplex, are 1-
simplices) represents generated frequent itemsets from V,
and W :{wA,B, we, Ay WB,C ’LUA,B7c} denote their cor-
responding supports.

This complex is also a pure 2-simplex, i.e. triangle,
with one maximal independent connected component. The
boundary of 2-H-simplex hasfour 0-faces (0-simplexes) and
three 1-faces (1-simplexes). Snce all the simplexes are in
the complex, it is a closed complex. Therefore, we can say
this complex represent a concrete concept. In general, the
n-simplex has the following geometric property.

Property 1 The boundary of a n-H-simplex has n + 1 0-
faces (vertices), ") 1-faces (edges), and (%F)) i-faces
(i < n), where (}}) isa binomial coefficient.

This geometric representation properly satisfies the apri-
ori property of association rules: if the support of an item
set {t1, ta, - - -, t,, } is bigger that a minimum support, so are
all the nonempty subsets of it. In a complex, the universe
of vertices organizes 1-simplices, i.e., frequent 1-itemsets,
the universe of 1-simplex represents all possible frequent
1-itemsets and frequent 2-itemsets, and so on.

According to Example 1, it is obvious that simplices
within the higher level skeleton S, is contained in the
lower level skeleton S} with the same n-complex, r >
k. Figure 3 shows the network hierarchy of the exam-
ple, each skeleton is represented as a layer. For the pur-
pose of simplicity, skeletons induced from r-complex, in
which 0 < r < 3, are neglected. The most distinct con-
cepts of all (without a common concept between them)
are existed in the topmost layer, although they could be
empty concepts, which means there does not exist any
non-overlapped concepts. In this example, the H-simplices
Simplex(a, b, c,d) and Simplex(w, x,y,z) are two maxi-
mal independent connected components that demonstrate
two discriminating primitive concepts. The H-simplices at
the lower layers could have a common face between them.
Therefore, the concepts denoted by those H-simplices are
vague discriminated as shown in Figure 4 in that an over-
lapped concept induced by a common face is existed. As
seen in the skeleton Sf, the maximal connected compo-
nents generated from simplex Simplex(a, b, ¢, d) and sim-
plex Simplex(a, c,h) have a common face Simplex(a,c)
that makes some documents not able to properly discrim-
inated in accordance with the generated association rules
from term a and term ¢, so are the other maximal con-
nected components in the skeleton. Because of the inter-
section produced by such subsimplices, some documents
would be vague classified into two clusters. The lower the
skeleton layer is, the serious the concept overlapping situa-
tion is.

4. Finding Maximal Connected Components

For the context of latent semantic ideas within a col-
lection of documents, it is naturally that some similar con-
cepts would be cross-referenced among the collection, espe-
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Figure 3. A simple latent semantic net-
work with its hierarchical structures is
generated from Example 1. Obviously
the skeleton (3,3)-Skeleton at the top-
most layer composed of two maximal con-
nected components as two distinct concepts
Simplex(a, b, c,d) and Simplex(w, x,y,z) is con-
tained in the skeleton at the lower layer. Ex-
cept the topmost layer, all the concepts are in
some sort of vague discrimination. The bot-
tom layer contains only one connected com-
ponent, which is a 3-complex. All the con-
cepts are mixed together that make several
primitive concepts are non-distinguishable
in this connected component.

cially for a collection of homogeneous documents. There-
fore, some professional used words or phrases are often
taken to denote a specific idea. No doubt that we can iden-
tify them by the usage of those terms. As we already known
the best way to recognize them is according to term-term
inter-relationships, which are term associations. Following
the above statement, combinatorial geometry based latent
semantic networks are the perfect model for illustrating the
concepts in a huge variety of high-dimensional data, such
a document collection. The algorithm for finding all con-
cepts, i.e., maximal connected components, which is gen-
erated from the co-occurred terms in a collection of docu-
ments, will be introduced as follows.

Document
Cluster *

Figure 4. Each cluster of documents is iden-
tified by a maximal connected component.
Some cluster may overlap with other cluster
because of the common face between them.

4.1. Data Structure

In order for the further discussion on the algorithm, let us
make the following definitions of the use of geometric no-
tations to represent latent semantic networks on association
rules.

Definition 9 In a latent semanic network, let V' be the
set of single terms in a collection of documents, i.e., 0-
simplices, and £ be the set of all »-simplices, where r > 0.
If Simplex , isin &, its support is defined as w(Simplex, ),
i.e, thetfidf of all termsin Simplex, co-occurredin a col-
lection of documents.

A network, which is a complex in geometry, can be rep-
resented as a matrix.

Example 3 Asseenin Example 2, the 2-simplex of the net-
workistheset {t4,tp,tc}, which isalso the maximal con-
nected component that represents a primitive concept in a
document collection. As Venn diagram, the incident matrix
I and the weighted incident matrix Iy of the network are
as follows.

1 01 1
I = 1 1 1 0
1 1 0 1
WA B,C 0 WA B WC, A
Iy = | wasc wc wap 0

WA,B,c WB,C 0 we, A



The rows correspond to the terms and the columns corre-
spond to the simplices.

Each simplex denotes a connected component, i.e., an
undirected association rules. If the simplex is a maximal
connected component, it defines a maximal frequent item-
set. The number of terms in this connected component de-
fines its rank, that is, if its rank is r it is equivalent to fre-
quent r + 1-itemsets.

4.2. Algorithm

As we already known, a r-H-simplex denotes a r-
connected component, which is a frequent r + 1-itemset.
If we say a frequent itemset I; identified by an H-simplex
Simplex; is a subset of a frequent itemset I; identi-
fied by Simplex;, it means that Simplex; C Simplex;.
An H-simplex Simplex; is said to be a maximal con-
nected component if no other H-simplex Simplex; € & is
the superset of Simplex; for ¢ # j. Documents can be au-
tomatically clustered based on all maximal connected
components. It provide a soft-computing that allows over-
lapped concepts exist within a collection of documents.

All connected components are convex hulls, the inter-
section of connected components is nothing or a connected
component. It would induce an vague region for concept
discrimination if the intersection is a non-empty simplex.
This common face will induce an unspecified concept be-
tween them as we have mentioned before. It is not neces-
sary to consider this common face because it has been con-
sidered in its super-simplices.

Example4 As shown in Figure 5, one component is orga-
nized by the H-simplex Simplex,; = {ta,t5,tc}, the other
is generated by the H-simplex Simplex; ={tc,tp,tg}.

The boundary of a concept defines all possible term as-
sociations in a document collection. Both of them share a
common concept that can be taken as a 0-simplex {t¢},
which is an 1-item frequent itemset {¢¢}.

Property 2 The intersection of concepts is nothing or a
concept that is a maximal H-simplex belonging to all in-
tersected concepts.

Since there is at most one maximal H-simplex in the in-
tersection of more than one connected components and the
dimension or rank of the intersection is lower than all in-
tersected simplices. It is convenient for us to design an effi-
cient algorithm for documents clustering based on all maxi-
mal connected components in a complex skeleton by skele-
ton. It does not need to traverse all complex.

5. Demonstrations

Demonstration were performed on the relevant GeneRIF
(Referencesinto Function) document set, publicly available

Figure 5. A complex is composed of two
maximal connected components generated
by two 2-H-simplices Simplex(ta,ts,tc) and
Simplex(tc, tp, tg). Both of them contain a
common face Simplex(tc) that produces an
undiscriminating concept region.

in the EUtils web service of the NCBI Entrez site. Our geo-
metrical model is suitable for representation of biological
information, where hierarchical concepts in different com-
plexity could be explored interactively according to the con-
text of application and the various needs of the reserachers.

The biological background of the experiment is briefly
described here, with the terms or the concepts quoted.
”CARDI15” gene was found equivalent with "NOD2” gene
in recent years. This CARD15/NOD2 gene was discov-
ered associated with inflammatory bowel diseases ("IBDs”)
in 2000, and vigorous correlation studies were performed
to elucidate the position on the genome or several candi-
date chromosomes”. The pathogenesis was proposed later
to be “barrier” break in the intestinal ("mucosa”) defense
mechanism due to the genetic defect, then the focus of re-
searchers shifted to the functioning domain of “inflamma-
tion” — "TNF”, "TLR4”, "NF-KappaB”, and ’Paneth cell”.

The GIF document set of CARDI15 gene was queried.
The abstracts were retrieved, and the important keywords
and synonyms were processed by a dictionary derived from
UMLS thethaurus. The co-occurences between the terms
were calculated, weighted by TFIDF measurements. In this
implementation, the term nodes were ranked by TFIDF
weighting, and directed graphes were displayed for addi-
tional arrangement of the terms after suggestion by medical
domain experts. Our model does not imply directed associ-
ation.

The nodes of relevant concepts were rendered by the
default setting of ATT GraphViz, the layout algorithm of
which was according to geometrically even distribution of
the nodes and their edges. The nodes with more intercon-
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Figure 6. Functional profiles of the CARD15 gene, rendered by GraphViz. The direction of edges are
based on TFIDF weighting in this implementation. Our model does not imply directed association.

nections or edges were positioneded together, compatible
with the clusters of concepts in our model.

In Figure 6, the whole picture of term co-occurrence was
shown. In Figure 7, the threshold of visible co-occurrence
(the support) was raised, to show the 4-H-simplex or 5-
H-simplex concept clusters. Three groups of 4-connected
components or 5-connected components were shown in the
left, the midlle, and the right regions, corresponding to the
concept clusters of the new focus of “inflammatory process”
and the older topics and genetic association and chromo-
some localization.

The left “inflammatory process” cluster was the 5-
frequent itemset with "TLR”, Paneth cell”, "TNF”, "bar-
rier”, and “mucosa”. The middle and right clusters were two
4-H-simplex, connected by the intersection of the chro-
mosome 1” node.

6. Conclusion

Polysemy, phrases and term dependency are the limi-
tations of web search technology [S5]. In the biomedical
queries and concept analysis, the problem becomes more
severe.

A group of solid term associations can clearly identify

a concept. Most methods no matter what is k-means, HCA,
AutoClass or PDDP classify or cluster documents from the
represented matrix of a set of documents. It is inefficient
and complicated to discover all term associations from such
a high-dimensional and sparse matrix. Given a collection of
documents, the associations among frequently co-occurring
terms in any of the documents define naturally a geomet-
ric complex, which can then be decomposed into connected
components at various levels and connected components
can properly identify concepts in a collection of documents.

The paper presents a noval approach based on finding
maximal connected components for clustering of the func-
tional profile of genes. The r-simplexs, i.e., connected com-
ponents, can represent the concepts in a collection of rele-
vant documents. It illustrates that geometric complexes are
a perfect model to denote association rules in text and is
very useful for automatic document clustering and concept
grouping, as demonstrated in our experiment in the func-
tional analysis of gene-related documents.
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Abstract

Naive association rules may result if the underlying cau-
sality of the rules is not considered. The greatest impact
on the decision value quality of association rules may
come from treating association rules as causal statements
without understanding whether there is, in fact, underlying
causality. A complete knowledge of all possible factors
(i.e., states, events, constraints) might lead to a crisp de-
scription of whether an effect will occur. However, it is
unlikely that all possible factors can be known. Common-
sense understanding and reasoning accepts imprecision,
uncertainty and imperfect knowledge. The events in an
event/effect complex may be incompletely known; as well
as, what constraints and laws the complex is subject to.
Usually, commonsense reasoning is more successful in
reasoning about a few large-grain sized events than many
fine-grained events. A satisficing solution would be to
develop large-grained solutions and only use the finer-
grain when the impreciseness of the large-grain is
unsatisfactory.

1. Introduction

One of the cornerstones of data mining is the develop-
ment of association rules. Association rules greatest im-
pact is in helping to make decisions. One measure of the
quality of an association rule is its relative decision value.
Association rules are often constructed using simplifying
assumptions that lead to naive results and consequently
naive and often wrong decisions. Perhaps the greatest area
of concern about the decision value is treating association
rules as causal statements without understanding whether
there is, in fact, underlying causality.

Causal reasoning occupies a central position in hu-
man reasoning. It plays an essential role in human deci-
sion-making. Considerable effort over thousands of years
has been spent examining causation. Whether causality
exists at all or can be recognized has long been a theoreti-
cal speculation of scientists and philosophers. Serious
questions have been asked whether commonsense percep-
tions of the world match the underlying reality. These
concerns run from the implications of Zeno’s paradox
[Zeno, 449 B.C.] and Plato’s cave [380 B.C.] to Ein-
stein’s relativity theory and modern string theory. An in-
troduction to some of these issues may be found in
Mazlack [2004].

At the same time, people operate on the common-
sense belief that causality exists.
Causal relationships exist in the commonsense world;
for example:
When a glass is pushed off a table and breaks on
the floor

it might be said that

Being pushed from the table caused the glass to
break.

Although,

Being pushed from a table is not a certain cause
of breakage; sometimes the glass bounces and
no break occurs; or, someone catches the glass
before it hits the floor.

Counterfactually, usually (but not always),
Not falling to the floor prevents breakage.

Sometimes,

A glass breaks when an errant object hits it, even
though it does not fall from the table.

Positive causal relationships can be described as: if a
then f3 (or, o — fB). For example:
When an automobile driver fails to stop at a red
light and there is an accident it can be said that
the failure to stop was the accident’s cause.
However, negating the causal factor does not mean
that the effect does not happen; sometimes effects can be
overdetermined. For example:

An automobile that did not fail to stop at a red
light can still be involved in an accident; another
car can hit it because the other car's brakes
failed.

Similarly, simple negation does not work; both be-
cause an effect can be overdetermined and because negative
statements are weaker than positive statements as the
negative statements can become overextended. It cannot be
said that ~a — 3, for example:

Failing to stop at a red light is not a certain
cause of no accident occurring; sometimes no
accident at all occurs.

Some describe events in terms of enablement and use
counterfactual implication whose negation is implicit; for
example [Ortiz, 1999a]:



Not picking up the ticket enabled him to miss the
train.

There is a multiplicity of definitions of enable and
not-enable and how they might be applied. To some de-
gree, logic notation definitional disputes are involved.
These issues are possibly germane to general causality
theory. However, it is not profitable to the interests of
this paper to consider notational issues; this paper is con-
cerned with the less subtle needs of data analysis.

Negative causal relationships are less sure; but often
stated; for example, it is often said that:

Not walking under a ladder prevents bad luck.
Or, usually (but not always),
Stopping for a red light avoids an accident.

In summary, it can be said that the knowledge of at
least some causal effects is imprecise for both positive and
negative descriptions. Perhaps, complete knowledge of all
possible factors might lead to a crisp description of
whether an effect will occur. However, it is also unlikely
that it may be possible to fully know, with certainty, all
of the elements involved. Consequently, the extent or
actuality of missing elements may not be known. Addi-
tionally, some well described physics as well as neuro-
biological events appear to be truly random [Freeman,
1995]; and some mathematical descriptions randomly un-
certain. If they are, there is no way of avoiding causal
imprecision.

Coming to a precise description of what is meant by
causality is difficult. There are multiple and sometimes
conflicting definitions. For an introductory discussion of
these issues, see Mazlack [2004]. Recognizing many
things with absolute certainty is problematic. As this is
the case, our causal understanding is based on a foundation
of inherent uncertainty and incompleteness. Consequently,
causal reasoning models must accommodate inherent
ambiguity. For an introductory discussion of this, see
Mazlack [2003a].

It may well be that a precise and complete knowledge
of causal events is not possible or at least uncertain. On
the other hand, we have a commonsense belief that causal
effects exist in the real world. If we can develop models
tolerant of imprecision, it would be useful. Also, to some
degree, the degree of importance that some of these items
have decreases as grain size increases.

2. Satisficing

People do things in the world by exploiting common-
sense perceptions of cause and effect. Manipulating per-
ceptions has been explored [Zadeh, 1999] but is not the
focus of this paper. The interest here is how perceptions
affect commonsense causal reasoning, granularity, and the
need for precision.

When trying to precisely reason about causality, com-
plete knowledge of all of the relevant events and circum-
stances is needed. In commonsense, every day reasoning,
approaches are used that do not require complete knowl-
edge. Often, approaches follow what is essentially a satis-
ficing [Simon, 1955] paradigm. The use of non-optimal
mechanisms does not necessarily result in ad hocism;
Goodrich [2000] states:

“Zadeh [1998] questions the feasibility (and wis-
dom) of seeking for optimality given limited re-
sources. However, in resisting naive optimizing,
Zadeh does not abandon the quest for justifiability,
but instead resorts to modifications of conventional
logic that are compatible with linguistic and fuzzy
understanding of nature and consequences.”

Commonsense understanding of the world tells us
that we have to deal with imprecision, uncertainty and im-
perfect knowledge. This is also the case with scientific
knowledge of the world. An algorithmic way of handling
imprecision is needed to computationally handle causality.
Models are needed to algorithmically consider causes and
effects. These models may be symbolic or graphic. A
difficulty is striking a good balance between precise for-
malism and commonsense imprecise reality.

3. Complexes

When events happen, there are usually other related
events. The entire collection of events can be called a
complex. The events can be called the elements of the
complex.

A “mechanism” [Simon, 1991] or a “causal complex”
[Hobbs 2001, 2003] is a collection of events whose occur-
rence or non-occurrence results in a consequent event
happening. Hobbs’ causal complex is the complete set of
events and conditions necessary for the causal effect
(consequent) to occur. Hobbs suggests that human casual
reasoning that makes use of a causal complex does not
require precise, complete knowledge of the complex.
(Different workers may use the terms “mechanism and
“causal complex” differently; I am using them as these
author’s use them.)

Each complex, taken as a whole, can be considered to
be a granule. Larger complexes can be decomposed into
smaller complexes; going from large-grained to small-
grained. For example, when describing starting an auto-
mobile, A large-grained to small-grained, nested causal
view would start with

When an automobile’s ignition switch is turned on,
this causes the engine to start.

But, it would not happen if a large system of other nested
conditions were not in place.

There has to be available fuel. The battery has to
be operational. The switch has to be connected to
the battery so electricity can flow through it. The
wiring has to connect the switch to the starter
and ignition system (spark plugs, etc.). The
engine has to be in good working order; and so
forth.

Turning the ignition switch on is one action in a
complex of conditions required to start the engine. One of
the events might be used to represent the collection of
equal grain sized events; or, a higher level granule might
be specified with the understanding that it will invoke a
set of finer-grained events. In terms of nested granules, the
largest grained view is: turning on the switch is the sole
causal element; the complex of other elements represents
the finer-grains. These elements in turn could be broken



down into still finer-grains; for example, “available fuel”
could be broken down into:
fuel in tank, operating fuel pump, intact fuel lines,
and so forth.

start car: turn on ignition switch

AN

available battery wires wires turn on
fuel  operational connect: connect: ignition

battery to  ignition  switch
ignition  switch to
switch starter,
spark

fuel operating intact plugs
in fuel fuel
tank  pump lines

Figure 1. Nested causal complex.

Sometimes, it is enough to know what happens at a
large-grained level; at other times it is necessary to know
the fined grained result. For example, if

Bill believes that turning the ignition key of his
automobile causes the automobile to start.

It is enough if
Bill engages an automobile mechanic when his
automobile does not start when he turns the key
on.

However,
The automobile mechanic needs to know a finer-

grained view of an automobile’s causal complex
than does Robin.

Instead of being concerned with all of the fined
grained detail, a better approach may be to incorporate
granulation using rough sets and/or fuzzy sets to soften
the need for preciseness. And then accept impreciseness in
the description. Each complex can be considered to be a
granule. Larger complexes can be decomposed into smaller
complexes. Thus, going from large-grained to small-
grained.

Hobbs [2001] uses first order logic to describe his
causal complexes. Pearl [2000] develops probabilistic
causal networks of directed graphs (DAGS).

The causal complexes explicitly considered by Hobbs
and Pearl have a required structure that may be overly re-
strictive for commonsense causal understanding, namely:

o If all of the events in the causal complex appropriately
happen, then the effect will occur

* There is nothing in the causal complex that is irrelevant
to the effect

These requirements are probably too precise and ex-
tensive to be realized in a commonsense world. Some-
times, only some of the events need to happen. For
example,

Someone may be able to save more money:
« If their taxes are lowered or
« If they earn more money.

Either even may lead to greater savings. However,

Neither may result in increased savings if they
also have to pay a large divorce settlement.
So, if all of the events happen, the effect may happen. If
some of the events happen, the effect may happen. In the
commonsense world, we rarely whether all of the events
are in a complex are necessary. For example,
A man may want to attract the attention of a
woman. He may do a large number of things (e.g.,
hair, clothes, learn to dance, etc.). If he does at-
tract the woman, he may never know which things
were relevant and which were not

An issue is how to distinguish between what is in a
complex and what is not. Another issue is how to dis-
tinguish between the things that deserve to be called
“causes” and those that do not. Hobbs suggests that a con-
sideration of causal complexes can be divided into:

¢ Distinguishing what events are in a causal complex from
those outside of it. [Lewis, 1973] [Oritz, 1999b]
[Simon, 1952, 1991] [Pearl, 2000]

*Within a causal complex, recognizing the events that
should be identified as causes from those that are not.
[Macke, 1993] [Shoham, 1990]

Nested granularity may be applied to causal com-
plexes. A complex may be several larger grained elements.
In turn, each of the larger grained elements may be a com-
plex of more fine grained elements. Recursively, in turn,
these elements may be made up still finer grained ele-
ments. In general, people are more successful in applying
commonsense reasoning to a few large grain sized events
than the many fine grained elements that might make up a
complex.

A question concerning complexes is: To what extent
can we increase the causal grain size and still have useful
causal information? Conversely, can we start with a large-
grained causal event and then derive the finer-grained
structure? Can we measure and/or control the imprecision
involved in changing grain size? If we start with a large-
grained structure and resolve it, will our computational
complexity burdens be reduced?

Complexes often may be best handled on a black-box,
large grained basis. That is, it can be recognized that a
complex exists; but we do not necessarily need to deal
with the details internal to the complex.

3. Recognizing Causality Is Of Interest In
Many Domains

Recognizing causality is of interest in many areas. Of
particular interest to this paper are areas where the analysis
is non-experimental. The world is taken as it is and not
subject to experimentation. In the computational sciences,
data mining is of concern. An area not well known to
people working in the computational sciences is
economics.

Perhaps, the applied area that has the greatest history
of attempting to deal with causality and non-observational
data is economics. Econometrics is distinguished from
statistics by econometrics interest in establishing causa-
tion [Hoover, 2003]. How and if causality can be recog-
nized has been a significant area of discussion. Some of
this discussion mirrors discussion that has gone on in the



computational sciences. Hoover provides a good entry to
the discussion of causality in economics.

Hume [1777/1902, p 165], as a philosopher, sug-
gested that causal statements are really about constant
conjunction and time ordering. However, when speaking
as an economist, Hume [1742/1985, p 304] was less in-
sistent on causal ordering: “it is of consequence to know
the principle whence any phenomenon arises, and to dis-
tinguish between a cause and a concomitant effect.” The
issue of causal ordering is also often of importance to
those modeling causality in data discovery.

Data mining analyzes data previously collected; it is
non-experimental. There are several different data mining
products. The most common are conditional rules or as-
sociation rules. Conditional rules are most often drawn
from induced trees while association rules are most often
learned from tabular data.

IF Age < 20
THEN vote frequency is: often
with {belief = high}

IF Age is old
THEN Income < $10,000
with {belief = 0.8}

Figure 2. Conditional rules.

Customers who
buy beer and sausage
also tend to buy hamburger
with {confidence = 0.7}
in {support = 0.15}

Customers who
buy strawberries
also tend to buy whipped cream
with {confidence = 0.8
in {support = 0.2}

Figure 3. Association rules.

At first glance, conditional and association rules seem
to imply a causal or cause-effect relationship. That is:

A customer’s purchase of both sausage and beer
causes the customer to also buy hamburger.
Unfortunately, all that is discovered is the existence of a
statistical relationship between the items. They have a
degree of joint occurrence. The nature of the relationship
is not identified. Not known is whether the presence of an
item or sets of items causes the presence of another item
or set of items; or the converse, or some other phenome-

non causes them to occur together.
Purely accidental relationships do not have the same
decision value, as do causal relationships. For example,
IF it is true that buying both beer and sausage
somehow causes someone to buy beer,
* THEN: A merchant might profitably put beer (or
the likewise associated sausage) on sale

* AND at the same time: Increase the price of
hamburger to compensate for the sausages'
reduce sale price.

On the other hand, knowing that

Bread and milk are often purchased in the same

store visit
may not be as useful decision making information as both
products are commonly purchased on every store visit. A
knowledge of frequent co-occurrences of bread and milk
purchases might lead us to placing the bread and milk at
opposite ends of the store to force shoppers to visit more
of the store and consequently make more impulse buying
decisions. However, there is a limit to how often when
such a physical distance distribution can be reasonably
effected. What is most valuable is knowledge of true
causal relationships.

Tangentially, what might be of interest is discovering
if there is a causal relationship between the purchase of
bananas and something else. (It turns out that bananas are
the most frequently purchased food item at Wal-Mart
[Nelson, 1998]).

When typically developed, rules do not necessarily de-
scribe causality. The association rule’s confidence measure
is simply an estimate of conditional probability. The
association rule’s support indicates how often the joint
occurrence happens (the joint probability over the entire
data set). The strength of any causal dependency may be
very different from that of a possibly related association
value. In all cases

confidence = causal dependence

All that can be said is that associations describe the
strength of joint co-occurrences.
Sometimes, the association might be causal; for ex-
ample, if
Someone eats salty peanuts and then drinks
beer.
or

Someone drinks beer and then becomes

inebriated.
there may be a causal relationship. On the other hand, if
A rooster grows and then the sun rises.
or
Someone wears a ‘lucky’ shirt and then wins a
lottery.
there may not be a causal relationship. Recognizing true
causal relationships would greatly enhances the decision
value of data mining results.
The most popular market basket association rule de-
velopment method identifies rules of particular interest by

screening for joint probabilities (associations) above a
specified threshold.

4.1 Association Rules Without An Underlying
Causal Basis Can Lead To Naive Decisions

Association rules are used is to aid in making retail
decisions. However, simple association rules may lead to
errors. Errors might occur; either if causality is recognized
where there is no causality; or if the direction of the causal
relationship is wrong [Silverstein, 1998a] [Mazlack,



2003b]. Errors might occur; either if causality is recog-
nized where there is no causality; or if the direction of the
causal relationship is wrong. For example, if

A study of past customers shows that 94% are
sick.

* Is it the following rule?
Our customers are sick, so they buy from us.

* [s it the following complementary rule?
If people use our products, they are likely to be-
come sick.
*Is there no relationship between product purchase and
illness?
Consequently, from a decision making viewpoint, it is
not enough to know that
People both buy our products and are sick.
What is needed is knowledge of what causes what, if any-
thing at all.
If causality is not recognized, the naive application of
association rules can result in bad decisions [Silverstein,

1998a]. This can be seen in an example from Mazlack
[2003]:

Example:
At a particular store, a customer buys:

» hamburger 33% of the time

* hot dogs 33% of the time

*both hamburger and hot dogs 33% of the
time

» sauerkraut only if hot dogs are also
purchased

This would produce the binary transaction matrix:

Figure 4. Binary transaction matrix for hamburger,
hot dog, and sauerkraut purchases.

This in turn would lead to the associations
(confidence):

» (hamburger, hot dog) = 0.5

* (hamburger, sauerkraut) = 0.5

* (hot dog, sauerkraut) = 1.0

All of the support levels are adequately high for
this application.

If the merchant:
* Reduced price of hamburger (as a sale item)

» Raised price of sauerkraut to compensate (as
the rule hamburger fi sauerkraut has a high
confidence.

 The offset pricing compensation would not work,
as the sales of sauerkraut would not increase
with the sales of hamburger. Most likely, the
sales of hot dogs (and consequently, sauer-
kraut) would likely decrease as buyers would
substitute hamburger for hot dogs.

4.2 Association Rules That Do Not Take Into
Account Quantities Can Result In Misleading
Causal Inferences

Association rules are often formed by reducing all val-
ues to binary zeros and ones.

This is an early technique that was and is used in data
mining when analyzing market basket data. However, it is
essentially flawed. Quantities do matter; some data co-oc-
currences are conditioned on there being a sufficiency of a
co-occurring attribute. Also, some relationships may be
non-linear based on quantity [Mazlack, 2003b]

Example:

Situation: Customers frequently buy either
wine or beer for themselves in varying
amounts. However, when buying for a party,
they often purchase both beer and wine and
they usually purchase in larger quantities.

Actual basket: Binary basket:

Beer|Wine Beer [Wine
6| o 1 0
0 1 0 1
12 0 1 0
0] 3 0 1
24 | 4 1 1
24 | 5 1 1
48 | 2 1 1

Figure 5. Beer, wine transactions: quantified and
binary.

Missed rule: When at least 24 beers purchased,
wine also purchased;
Otherwise, there is no relationship
between beer and wine.

Naively constructing an association rule on non-quan-
tified, binary data would find a rule that misleadingly
represents the situation; i.e.,

Misleading rule: When beer is purchased, wine is
also purchased

{confidence = 0.6}
{support = 0.43}

This rule is misleading because it naively implies
that purchase probabilities are uniform; in fact, they are
not. Under one set of conditions, beer and wine are never
purchased together under one set of conditions; and, under
another set of conditions they are always purchased to-
gether.

In neither case is there a direct causal relationship. In
the quantified rule case, the larger quantities of beer and
wine are caused by a third factor (a party).

5. DESCRIBING CAUSALITY

In some ways, someone may object to this paper, as
it does not offer much in the way of solutions. It mostly
identifies needs. Part of a reply is that there is limited



space and time. Another is that recognizing a need is the
first step to finding a solution. Another is that both rec-
ognizing and defining causality is still a very complex and
difficult problem, even after over 3,000 years of effort.

Various causality descriptions and discovery tools
have been suggested. It may eventually turn out that dif-
ferent subject domains may have different methodological
preferences. This section is intended to give a selective,
non-complete, taste.

5.1 Intuitive Graph Based Approaches

Different aspects of causality have been examined. As
in Figure 6, the idea of “positive” causation (o — f) is at
the core of commonsense causal reasoning. Often a posi-
tive causal relationship is represented as a network of
nodes and branches [Mazlack, 2003a]. In part because of
their intuitive appeal, there have been many approaches to
recognizing causality that use graphs.

@—>®

Figure 6. Diagram indicating that a is causally de-
pendent on b.

There are a number of different books describing vari-
ous aspects of causal graphs. Among them are: Gammer-
man [1999], Glymour [2001], Hausman [1988], Pearl
[2000], Shafer [1996], Spirtes [1993].

5.2 Directed Graphs

Various graph based Bayesian based methods have
been suggested to recognize causality. Probably the best
known is the class of methods based on Directed Acyclic
Graphs (DAGs). The most fully developed approach is
Pearl [2000]. Silverstein [1998] followed a similar
approach.

Pearl [1991] and Spirtes [1993] claim that it is possi-
ble to infer causal relationships between two variables
from associations found in observational
(nonexperimental) data without substantial domain knowl-
edge. Spirtes claims that directed acyclic graphs could be
used if (a) the sample size is large and (b) the distribution
of random values is faithful to the causal graph. Robins
[1999] argues that their argument is incorrect. Lastly,
Scheines [1994] only claims that in some situations will
it be possible to determine causality. Their discussion is
tangential to the focus of this paper; going deeply into
their discussion is outside this paper’s scope. It is enough
to note that these methods are possibly the most thor-
oughly developed methods of computational causal
analysis.

From the commonsense causal reasoning view, the
various directed graph methods have similar liabilities,
specifically. Mazlack [2004] discusses and lists and dis-
cusses some of the problems.

5.3 Negation And Counterfactuals

Negation or counterfactuals (—a — —f) also have a
place, although it may result in reasoning errors. For ex-
ample, the rule:

If a person drinks wine, they may become
inebriated.

cannot be simply negated to

If a person does not drink wine, they will not be-
come inebriated.

One reason is that effects can be overdetermined; that
is: more than one item can cause an effect. If so, eliminat-
ing one cause does not necessarily eliminate the effect. In
this case:

A person may also drink beer or whiskey to ex-
cess and become inebriated.

Events that do not happen can similarly be overdeter-
mined. From a commonsense reasoning view, it is more
likely that things do not happen than they do. For exam-
ple, Oritz [1999a] says that it is not true that

His closing the barn door caused the horse not
to escape.

because the horse might not have attempted to escape even
if the door was open. Therefore, a false counterfactual is:

If he had not closed the barn door, the horse
would have escaped.

Similarly, for example, the rule
If a person smokes, they will get cancer.

cannot be simply negated to

If a person does not smoke, they will not get
cancer.

Again, effects can be overdetermined. In this case,

People who do not smoke may also get cancer.

Another idea that is sometimes involved in causal rea-
soning is causal uncorrelatedness [Shafer, 1999] where if
two variables have no common cause they are causally
uncorrelated. This occurs if there are no single events that
cause them to both change.

Similarly, Dawid [1999] focuses on the negative; i.e.,
when a does not affect . Dawid speaks in terms of unre-
sponsiveness and insensitivity. If 3 is unresponsive to «
if whatever the value of a might be set to, the value of
will be unchanged. In parallel, if B is insensitive to o if
whatever the value o may be set, the uncertainty about 8
will be unaffected. Along the same vein, Shoham [1990,
1991] distinguishes between causing, enabling, and pre-
venting. The enabling factor is often considered to be a
causal factor. Shoham distinguished between background
(enabling) conditions and foreground conditions. The back-
ground (enabling) conditions are inferred by default. For
example [Shoham, 1991]:

“If information is present that the key was turned
and nothing is mentioned about the stated about
the state of the battery, then it is inferred that the
motor will start, because the battery is assumed,
by default to be alive.

Given this distinction, causing is taken to refer to the
foreground conditions where enabling and preventing refer
to the background conditions (in this example, turning the



key causes the motor to start, the live battery enables it,
the dead battery prevents it).”

Other ideas that are sometimes involved in causal rea-
soning are causal uncorrelatedness [Shafer, 1999] where if
two variables share no common cause they are causally
uncorrelated. This occurs if there are no single events that
cause them to both change. Similarly, causal independence
occurs when speaking about probabilities.

5.4 Observational And Non-Observational Data

Statistics is the traditional tool used to discover cau-
sality when handling experimental data. The standard
method in the experimental sciences of recognizing cau-
sality is to perform randomized, controlled experiments.
This produces experimental data. Depending on their de-
sign, randomized experiments may remove reasons for
uncertainty whether or not a relationship is casual.

However, the data of greatest interest in the computa-
tional sciences, particularly data mining, is non-experi-
mental. This is because analysis is performed on large
quantities of warehoused data. In this domain, traditional
statistical methods are either not useful an/or are often too
computationally complex.

Even if some experimentation is possible, the
amount of experimentation in contrast to the amount of
data to be mined will be small. This said; some work has
been done using chi-squared testing to reduce the search
space [Silverstein, 1998].

Several areas can only wholly (economics, sociology)
or partially develop non-experimental data. In these areas,
investigators can either abandon the possibility of discov-
ering causal relationships; or, claim that causality does
not exist. There continue to be efforts to discover causal
relationships areas where only non-observational data is
available. Among the books considering causality in non-
experimental data are: Asher [1983], Blalock [1964], Berry
[1984], Hilborn [1997], Shipley [2000].

6. EPILOGUE

One of the corner stones of data mining is the devel-
opment of association rules. Association rules greatest
impact is in helping to make decisions. One measure of
the quality of an association rule is its relative decision
value. Association rules are often constructed using sim-
plifying assumptions that lead to naive results and conse-
quently naive and often wrong decisions. Perhaps the
greatest area of concern is treating association rules as
causal statements without understanding whether there is,
in fact, underlying causality.

Causal relationships exist in the commonsense world.
Knowledge of at least some causal effects is imprecise.
Perhaps, complete knowledge of all possible factors might
lead to a crisp description of whether an effect will occur.
However, in our commonsense world, it is unlikely that
all possible factors can be known. In commonsense, every
day reasoning, we use approaches that do not require
complete knowledge.

People recognize that a complex collection of ele-
ments causes a particular effect, even if the precise ele-
ments of the complex are unknown. They may not know

what events are in the complex; or, what constraints and
laws the complex is subject to. Sometimes, the details
underlying an event are known to a fine level of detail,
sometimes not. Generally, people are more successful in
reasoning about a few large-grain sized events than many
fine-grained events. Perhaps, this can transfer over to
computational models of causality.

A lack of complete, precise knowledge should not be
discouraging. People do things in the world by exploiting
our commonsense perceptions of cause and effect. When
trying to precisely reason about causality, we need com-
plete knowledge of all of the relevant events and circum-
stances. In commonsense, every day reasoning, we use
approaches that do not require complete knowledge. Often,
approaches follow what is essentially a satisficing
paradigm.

Instead of being concerned with all of the fined
grained detail, a better approach may be to incorporate
granulation using rough sets and/or fuzzy sets to soften
the need for preciseness. And then accept impreciseness in
the description. Each complex can be considered to be a
granule. Larger complexes can be decomposed into smaller
complexes. Thus, going from large-grained to small-
grained.

Regardless of causal recognition and representation
methodologies, it is important to decision making to un-
derstand when association rules have a causal foundation.
This avoids naive decisions and increases the perceived
utility of rules with causal underpinnings.
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of the information generalization relation as defined in our
generalization model (definition 2.1). We also prove (the-
orem 2.3) that the preprocessing relation is a special case
of the weak information generalization relation and it is
disjoint with our data mining generalization relation. This
means that within the framework of our general model we
were able to distinguish (as we should have) the preprocess-
ing generalization from the generalization that occurs in the
data mining proper stage.

Definition 2.1 A Generalization Model is a system
G6M = (U, K, G, =)
where

U # () is theuniverse,

K # 0 is the set ofjeneralization states

< C K x K isageneralization relatior

Abstract o -
We assume that the relatiefis transitive.

We define here a model in which data preprocessing and G # 0 is the set ofjeneralizations operators such that
data mining processes are are described as two different for everyG € G, for everyK, K’ € K

types of generalization.

G(K)=K' if andonlyif K=<K'.
1 Introduction Definition 2.2 A Strong Generalization Modelis the gen-
eralization model (definition 2.1) in which the information

The preprocessing of data is the initial and often crucial generalization relation is not reflexive. We denote the gen-
step of the data mining process. We show here that the Gené&ralization relation of the strong model by and call it a
eralization Model presented in [8] is strong enough to ex- Strong generalization relation.
press not only the data mining stage of data mining processA Weak Generalization Modelis the generalization model
but the preprocessing stage as well. Moreover, we showl(definition 2.1) in which the information generalization re-
that preprocessing stage and data mining stage generaliz@tion is reflexive. We denote the generalization relation of
data in a different way and that in fact, the generalization the weak model by: and call it a weak generalization re-
proper (i.e. strong generalization in our model) occurs only lation.
at the data mining stage. The preprocessing operations are . . o
expressed in the model as a weak generalization. We show Any Data Mining process starts with a certain initial set
that they lead to the strong information generalization in of fjata. Th_e model_of S_UCh aprocess dgp_e_nd_s on represen-
the next, data mining proper stage and improve the qua“tytsz?/t:t)gn?f this data, i.e. it starts with an initial information
(granularity) of the generalization process. Io = (Us, Ao, Vay. fo)
and we adopt thaniverseU, as the universe of the model
ie.

2 Generalization Model

It is natural that when building a model of the data min- GM = (U, K, G, 2).
ing process one has to include data preprocessing methods In preprocessing stage of data mining process we might
and algorithms, i.e. one has to model within it preprocess- perform the following standard operations:
ing stage as well as the data mining proper stage. In or- 1. eliminate some records, obtaining as result a new in-
der to achieve this task we introduce the preprocessing andormation system with an univer$é C Uy, or
the data mining generalization relations (definitions 2.11, 2. eliminate some attributes, obtaining as result the in-
2.10, respectively. We show that they are particular casesformation systenT with the set of attributegl C Ag, or



3. perform some operations on values of attributes: nor- Vj is a finite set ofalues of k- attributes.
malization, clustering, application of concept hierarchy on,
etc..., obtaining some s&fy of values of attributes that is
similar, or equivalent td},. We denote it by

g is a partial function calledknowledge information
function(k-function)

Va ~ V. g:PU)x (AUE) — (V4 UVg)
Given an attribute value, € V4 and a corresponding at- such that
. 0 : . _
trtl)buteva €.V0 (for examplev,, being a normgllzed form of 0 91 (U,ep{a} x A) = f
v, Or v, being a more general form as defined by concept N
hierarchy ofv?) we denote this correspondence by (if) VVS)EMU)VaeA((S» a) € dom(g) = g(S,a) €
A
Vg ~ Ug' (”I) vSG'P(U)veEE((S7 a) € dom(g) = 9(576) €
Vi
We call any information systerhobtained by any of the )
above operatioa subsystem ofl,. We put it formally in Any setS € P(U)i.e. S C U is often calleda granule
the following definition. or a group of objects.
Definition 2.3 Given two information systemg, = Definition 2.5 The set

(Uo, Ao, Va,, fo) and
I = (U, A, Vy,f), we say thatl is a subsystem ofl, and

denote it as is calleda granule universeof K.
1CI,

Grrg ={SePU): Ibe(EUA)(SDb) €dom(g))}

if and only if the following conditions are satisfied Observe tha is a total function orGr .

() U < Uy,

(i) AC Agy, V4~ Vp, and Definition 2.6 We call the systerk’ = (Grk,E,Vg,g) a
granule knowledge generalizatiorsystem.
(iii) the information functiong and f, are such that

Vo € UVa € A(f(z,a) = v, The condition(i) of definition 2.4 says that whell = ()

the k-functiong is total on the sef{z} : x € U} x A and
& 0 € Vo(folw,a) = 2 Nl ~v,)). g etie} }

Vo € UVa € A(g({z},a) = f(x,a)).
In the data analysis, preprocessing and data mining al-
though we start the process with the information table (i.e. Definition 2.7 The set
we define the lowest level of information generalization as obi
the relational table) the meaning of the intermediate and fi- P(U) = {z}:w € U}
nal results are considered to be of a higher level of gener-is called anobject universe The knowledge generalization
alization. We represent those levels of generalization by agystem
sets of objects of the given (data mining) univet&eas in 4 4 4
[1], [6]. K = (P (U), A,0,Va,0,9) = (P™(U), A, Va, )
This approach follows the granular view of the data min-
ing and is formalized within a notion of knowledge gener-

alization system, defined in [8] as follows. Theorem 2.1 For any information system

is called anobject knowledge generalizatiorsystem.

Definition 2.4 A knowledge generalization systenibased I=(UAVa,f),

on the information systeny = (U, A, Va4, f) is a system
the object knowledge generalization system

Kr=(PU),A E,Va,Vg,g) K?bj — (PO (1), A, Va, g)

where o o )
is isomorphic with/. We denote it by

E is a finite set ofknowledge attributes (k-attributes) obj

such thatd N E = 0. I~ K™,



The function
F:U— P ({U), F(z)={x}

establishes (by conditiofi) of definition 2.4) the required
isomorphism ofk 7™/ and1.

Given initial information systenfiy = (U, Ao, Va,, fo),
the object knowledge generalization system (definii@n

K;)é)j = (PObj(UO)a A7 VA7g)

isomorphic with i.e. K}’fj ~ J, is also calledthe
initial knowledge generalizationsystem.

() |1Gr| < |Gkl
(i) A C A

If K < K’ we say that the systel@’ is more or
equally general asK.

Observe that the relatiors is reflexive and transitive,
but is not antisymmetric, as systemis and K’ such that
K = K’ may have different sets of knowledge attributes
and knowledge functions.

Definition 2.10 Let < C K x K be relation defined in the
definition 2.9.

Data Mining process in the preprocessing stage consistd? relation

of transformations the initial, into some ofI C I,

—dm gj

and subsequently, in the data mining proper stage, ofgych that it satisfies additional conditions:

transformations of knowledge generalizations systéms

based onl C I,. The transformations in practice are (iii)
defined by different Data Mining algorithms, and in our
model by appropriate generalization operators. Any data

Gr| < |Gkl
(iv) 3ISeGr (S| >1)

mining transformation starts, for unification purposes with is calleda data mining generalization relation.

corresponding initial knowledge generalization systems

Kll ~ J. We hence adopt the fo”owing definition of the set Theorem 2.2 The rE|ati0n-<dm is not rEﬂEXive, and the fol-

K of knowledge states.

Definition 2.8 We adopt the set

K={K;: ICI}

of all knowledge generalization systems based on the

initial information system (input dataJ, as the set of
knowledge states ofGM.

The setiCP"¢P C K such that

JCPTeP — {KIObj : KPP ~TandI C Iy}

is calleda set of preprocessing knowledge statesr pre-
processing knowledge systems;fl.

Definition 2.9 Given setK of knowledge states (defini-
tion 2.8) based on the input dafg and K, K’ € K i.e.

K= (P(UO),A,EyvA) VEvg)v

K/ = (P(U0)7 Ala El7 VA'a VE'7 g/)

LetGk, Gk be granule universes (definition 2.5) &t K’
respectively. We defireeweak generalization relation

<CKxK

as follows:
K < K' ifandonlyif

lowing properties hold.

(1) The weak generalization relation of definition 2.9 is the
weak information generalization relation of the gener-
alization model (definition 2.1),

(2) <dm C jl

(3) <am Is a strong information generalization of the
definition 2.2 and iK' <4,,, K’ we say that the system
K’ is more general thenk.

The preprocessing of data is the initial (an crucial) step
of the data mining process. We show now that we can
talk about preprocessing operations within our generaliza-
tion model. The detailed analysis of preprocessing methods
and techniques within it will be a subject of separate paper.

Definition 2.11 Let KP"¢? C K be a the set of preprocess-
ing states (definition 2.8). A relatior C= defined as
follows:

prep

Zprep = {(K,K') €x: K,K' € KPP}

is calleda preprocessing generalization relation

Theorem 2.3 The preprocessing generalization relation is
a weak generalization relation and is not a data mining gen-
eralization relation i.e.

jprep N <dm = 0.



Within our framework the system#’, K’ such that generalization relation of the generalization mod@®1 =
K=,.,K' are, in fact, equally general. So why do we (U, K, G, =) (definition 2.1) we call the model thus ob-
call some preprocessing operations a "generalization”?tained aPreprocessing Modelnd denote iPM, i.e.

There are two reasons. One is that traditionally some

preprocessing operations have been always called by this PM = (U, KPP, Gprep, <prep)

name. For example we usually state that we "generalize”

attributes by clustering, by introducing attributes hierarchy, Where

by aggregation, etc. as stated on page 114 of the most

prep i I -
comprehensive. as far, Data Mining book ([2]). I is the set of preprocessing knowledge states (defi

nition 2.8),

Gprep C G called a set of preprocessing generalization

....'Data transformation (preprocessing stage) can .
(prep g stage) operators (to be defined separately).

involve the following .....

Generalization of the data , where low-level or
"primitive” (raw) data are replaced by higher
-level concepts through the use of concept
hierarchies. For example, categorical attributes
..... can be generalized to higher level concepts.
Similarly, values for numeric attributes,like ...
may be mapped to higher level concepts.” ....

The data mining proper stage is determined by the data
mining generalization relation and is defied formally as fol-
lows.

Definition 3.2 Let <4, be the data mining generalization
relation (definition 2.10). Mata Mining Model is a sys-
tem

DM = (U, IC, gdm7 '<dm)

The second, more important reason to call some prepro-
cessing operations a (weak) generalization is that they IeadN
to the "strong” information generalization in the next, data Gam € G
mining proper stage and we perform them in order to im- for G,,,, # () being a set of data mining generalization op-
prove the quality (granularity) of the generalization. erators defined in the next section.

here

3 Generalization Models for Data Prepro- Now, we express the whole data mining process within
cessing and Data Mining Process our generalization model as follows.

) o . Definition 3.3 A Data Mining Process Modelis a system
It is natural that when building a model of the data min-

ing process one has to include data preprocessing methods DMP = (U, K, Gy, =,)

and algorithms, i.e. one has to model within it preprocess- P Tk =

ing stage as well as the data mining proper stage. In order where

to achieve this task we choose the notion of weak infor-

mation generalization relation as a component of our (the(') =p = Zprep Y <dm,

most general) notion of the generalization model (defini- i) G, =¢G ug

tion 2.1). We have then introduced the preprocessing and P prep = Fdm;

the data mining generalization relations (definitions 2.11,

2.10, respectively) and proved (theorem 2.3) that the pre-

processing relation is a special case of the weak informa-

tion generalization relation and it is disjoint with our data

mining generalization relation. This means that within the
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Abstract the speed or the accuracy of the existing ones [24].

Data mining (DM) and knowledge discovery are
intelligent tools that help to accumulate and process data
and make use of it. We review several existing
frameworks for data mining that originate from different
paradigms. These DM frameworks address various DM
algorithms for the different steps of the DM process.
However, usually each DM framework explains the
nature of one particular type of the algorithms. Recent
research has shown that many real-world problems
require the integration of several DM algorithms
originating from different paradigms in order to produce
a better solution. In this paper we introduce our vision
how DM process modeling can take advantage of the
research made in the areas of Information Systems
Development and Knowledge Management.

1. Introduction

Data mining (DM) and knowledge discovery are
intelligent tools that help to accumulate and process data
and make use of it [6]. Data mining bridges many
technical areas, including databases, statistics, machine
learning, and human-computer interaction. The set of data
mining processes used to extract and verify patterns in
data is the core of the knowledge discovery process [24].
These processes include data cleaning, feature
transformation, algorithm and parameter selection, and
evaluation, interpretation and validation (Figure 1).

Data Feature Algorithm & Evaluation,
cleanin transformation parameter interpretation &
Y selection validation

Figure 1. Data mining process (adapted from [24])

The idea of learning from data is far from being new.
However, likely due to developments in the database
management field and due to the great increase of data
volumes being accumulated in databases the interest in
DM has become very intense. Numerous DM algorithms
have recently been developed to extract knowledge from
large databases. Currently, most research in DM focuses
on the development of new algorithms or improvement of

Relatively little has been published about theoretical
foundations of DM. A few theoretical approaches to DM
were proposed in [16]. A motivation for DM foundations
development and requirements for a theoretical DM
framework were also considered in [16]: a theoretical
framework should be simple and easy to apply; it should
contribute to DM algorithms and DM systems
development; it should be able to model typical DM tasks
like clustering, classification and rule discovery; it should
recognize that DM is an iterative and interactive process,
where a user has to be involved.

In this paper (in Section 2) we consider several
existing frameworks for data mining based on statistical,
data compression, machine learning, philosophy of
science, and database paradigms. We consider their
advantages and limitations analyzing what these
approaches are able to explain in the data mining process
and what they do not. We believe that a reader will notice
that each of the above DM frameworks is limited mainly
to addressing one particular type of DM algorithms and
that they rarely address the issues of iteration and
interactivity.

We introduce our vision how DM process modeling
can take advantage of the research made in the areas of
Information Systems Development (ISD) and Knowledge
Management (KM). In Section 3 we refer to the
traditional information system (IS) framework presented
in [11] that is widely known in the IS community and is a
synthesis of many other frameworks considered before it.
For us this framework is more substantial than the others
since it also focuses on the development process of
information  systems. We consider Nunamaker’s
information systems development research framework
[21] in the context of DM. We demonstrate how
theoretical, constructive and experimental approaches can
be applied iteratively and/or in parallel for the
development of an artefact (a data-mining tool).

In Section 4 we consider DM research in the context
of a complex adaptive system that creates, receives,
stores, retrieves, transforms, and transmits (meta-)
knowledge to improve its ability to adapt to the
environment and to develop (or better utilize available)
DM techniques.



We conclude briefly in Section 5 with a summary and
further research topics.

2. Review of some existing theoretical
frameworks for data mining

It this section we review basic DM frameworks and
show that they deal mainly with DM techniques as such.
Philosophy of science may help to understand the nature
and scope of data mining techniques. However, as we
conclude, present-day frameworks for DM lack in
describing it as iterative and interactive process and in
accounting social dimension of DM, i.e. involvement of a
user.

2.1. Statistical paradigms

Generally, it is possible to consider the task of data
mining from the statistical point of view, emphasizing the
fact that DM techniques are applied to larger datasets than
it is commonly done in applied statistics [10]. Thus the
analysis of the appropriate statistical literature, where
strong analytical background is accumulated, would solve
most data mining problems. Many data mining tasks
naturally may be formulated in statistical terms, and many
statistical contributions may be used in data mining in a
quite straightforward manner [9].

According to [5] there exist two basic statistical
paradigms that are used in theoretical support for DM.
The first paradigm is so-called “Statistical experiment”. It
can be seen from three perspectives: Fisher’s version that
uses the inductive principle of maximum likelihood,
Neyman-E.S. Pearson-Wald’s version that is based on the
principle of inductive behavior, and Bayesian version that
is based on the principle of maximum posterior
probability. An evolved version of “Statistical
experiment” paradigm is “Statistical learning from
empirical process” paradigm [23]. Generally, many data
mining tasks can be seen as the task of finding the
underlying joint distribution of variables in the data.
Good examples of this approach would be a Bayesian
network or a hierarchical Bayesian model, which give a
short and understandable representation of the joint
distribution. Data mining tasks dealing with clustering
and/or classification fit easily into this approach.

The second statistical paradigm is called “Structural
data analysis” and can be associated with singular value
decomposition methods, which are heavily used, for
example, in text mining applications.

A deeper consideration of data mining and statistics
can be found in [8]. Here, we just point out that the
volume of the data being analysed and different
educational background of researchers are not the most
important issues that constitute the difference between the
areas. Data mining is an applied area of science and

limitations in available computational resources is a big
issue when applying results from statistics to data mining.
An important point is that the theoretical framework of
statistics does not concern much about data analysis as an
iterative process that generally includes several steps.
However, there are persons (mainly with strong statistical
background) who consider DM as a branch of statistics,
because many DM tasks may be perfectly represented in
terms of statistics.

2.2. The data compression paradigm

A data compression approach to data mining can be
stated in the following way: compress the dataset by
finding some structure or knowledge for it, where
knowledge is interpreted as a representation that allows
coding the data using a fewer amount of bits. For
example, the minimum description length (MDL)
principle [17] can be used to select among different
encodings accounting to both the complexity of a model
and its predictive accuracy.

Machine learning practitioners have used the MDL
principle in different interpretations to recommend that
even when a hypothesis is not the most empirically
successful among those available, it may be the one to be
chosen if it is simple enough. The idea is in trading
between consistency with training examples and
empirical adequacy by predictive success as it is, for
example, with accurate decision tree construction.
Bensusan [2] connects this to another methodological
issue, namely that theories should not be ad hoc that is
they should not overfit the examples used to build it.
Simplicity is the remedy for being ad hoc both in the
recommendations of philosophy of science and in the
practice of machine learning.

The data compression approach has also connections
with the rather old Occam’s razor principle that was
introduced in the 14" century. The most commonly used
formulation of this principle in data mining is "when you
have two competing models which make exactly the same
predictions, the one that is simpler is better".

Many (if not every) data mining techniques can be
viewed in terms of the data compression approach. For
example, association rules and pruned decision trees can
be viewed as ways of providing compression of parts of
the data. Clustering approaches can also be considered as
a way of compressing the dataset. There is a connection
to the Bayesian theory for modeling the joint distribution
— any compression scheme can be viewed as providing a
distribution on the set of possible instances of the data.

2.3. The machine learning paradigm

The machine learning (ML) paradigm “let the data
suggest a model” can be seen as a practical alternative to



the statistical paradigm “fit a model to the data”. It is
certainly reasonable in many situations to fit a small
dataset to a parametric model based on a series of
assumptions. However, for applications with large
volumes of data under analysis the ML paradigm may be
beneficial because of its flexibility —within a
nonparametric, assumption-free nature.

We would like to focus here on a constructive
induction approach. Constructive induction is a learning
process that consists of two intertwined phases, one of
which is responsible for the construction of the “best”
representation space and the second concerns generating
hypotheses in the found space [15]. Constructive
induction methods are classified into three categories:
data-driven (information from the training examples is
used), hypothesis-driven (information from the analysis
of the form of intermediate hypothesis is used) and
knowledge-driven (domain knowledge provided by
experts is used) methods. Any kind of induction strategy
(implying induction, abduction, analogies and other forms
of non-truth preserving and non-monotonic inferences)
may potentially be used. However, the focus is usually on
operating higher-level data-concepts and theoretical terms
rather than pure data.

Many DM techniques that apply wrapper/filter
approaches to combine feature selection, feature
extraction, or feature construction processes (as means of
dimensionality reduction and/or as means of search for
better representation of the problem) and a classifier or
other type of learning algorithm may be considered as
constructive induction approaches.

2.4. The philosophy of science paradigm

Categorization of subjectivist and  objectivist
approaches [4] can be considered in the context of DM.
The possibility to compare nominalistic and realistic
ontological believes gives us an opportunity to consider
data that is under analysis as descriptive facts or
constitutive meanings. The analysis of voluntaristic as
opposed to deterministic assumptions about the nature of
every instance constituting the observed data directs our
attitude and understanding of that data. One possibility is
to view every instance and its state as determined by the
context and/or a law. Another position consists in
consideration of each instance as autonomous and
independent. An epistemological assumption about how a
criterion to validate knowledge discovered (or a model
that explains reality and allows making predictions) can
be constructed may impact the selection of appropriate
data mining technique. From the positivistic point of view
such a model-building process can be performed by
searching for regularities and causal relationships
between the constitutive constructs of a model. And anti-
positivism  suggests analyzing every individual

observation trying to understand it and making an
interpretation. Probably some of case-based reasoning
approaches can be related to anti-positivism’s vision of
the reality.

An interesting difference in the views of the reality can
be found considering ideographic as opposed to
nomothetic methodological disputes. The nomothetic
school does not see the real world as a set of random
happenings. And if so, there must be rules that describe
some regularities. Thus, nomothetic sciences seek for
establishing abstract (general) laws that describe
indefinitely repeatable events and processes. On the
contrary, ideographic sciences are aimed to understand
the unique and nonrecurrent events. They have
connection to the ancient doctrine that “all is flux”. If
everything were always changing, then any generalization
intending to be applied for two or more presumably
comparable phenomena would never be true. And
‘averages’ of some measures (from the nomothetic way of
thinking) usually is not able to represent the behaviour of
a single event or entity.

2.5. The database paradigm

A database perspective on data mining and knowledge
discovery was introduced in [12]. The main postulate of
their approach is: “there is no such thing as discovery, it
is all in the power of the query language”. That is, one
can benefit from viewing common data mining tasks not
as dynamic operations constructing new pieces of
information, but as operations finding unknown (i.e. not
found so far) but existing parts of knowledge.

In [3] an inductive databases framework for the data
mining and knowledge discovery in databases (KDD)
modeling was introduced. The basic idea here is that the
data-mining task can be formulated as locating interesting
sentences from a given logic that are true in the database.
Then discovering knowledge from data can be viewed as
querying the set of interesting sentences. Therefore the
term “an inductive database” refers to such a type of
databases that contains not only data but a theory about
the data as well [3].

This approach has some logical connection to the idea
of deductive databases, which contain normal database
content and additionally a set of rules for deriving new
facts from the facts already present in the database. This
is a common inner data representation. For a database
user, all the facts derivable from the rules are presented,
as they would have been actually stored there. In a similar
way, there is no need to have all the rules that are true
about the data stored in an inductive database. However, a
user may imagine that all these rules are there, although in
reality, the rules are constructed on demand. The
description of an inductive database consists of a normal
relational database structure with an additional structure



for performing generalizations. It is possible to design a
query language that works on inductive databases.
Usually, the result of a query on an inductive database is
an inductive database as well. Certainly, there might be a
need to find a solution about what should be presented to
a user and when to stop the recursive rule generation
while querying. We refer an interested reader to [3].

2.6. Conclusions on considered frameworks

The reductionist approach of viewing data mining in
terms of statistics has advantages of the strong theoretical
background, and easy-formulated problems. The data
compression and constructive induction approaches have
relatively strong analytical background, as well as
connections to the philosophy of science. In addition to
the above frameworks there exists an interesting
microeconomic view on data mining [14], where a utility
function is constructed and it is tried to be maximized.
The data mining tasks concerning processes like
clustering, regression and classification fit easily into
these approaches. Another interesting approach based on
granular and rough computing can be found in [15]

One way or another, we can easily see the exploratory
nature of the frameworks for DM. Different frameworks
account different data mining tasks and allow preserving
and presenting background knowledge. However, what
seems to be lacking in most approaches, are the ways for
taking the iterative and interactive nature of the data
mining process into account [16]. Furthermore, none of
the above frameworks considers data mining in the
context of an adaptive system that processes information.

3. The information systems-based paradigm
applied to data mining

Information Systems (IS) are powerful instruments for
organizational  problem solving through formal
information processing. In this section we consider a DM
system as an adaptive IS that is armed with a number of
techniques to be applied for a problem at hand. Since the
variety of problems is changing over time, such a system
has to be developed continuously towards the efficient
utilization of available techniques and improvement of
these techniques. We introduce an IS framework and an
IS development framework and then consider how data
mining can be seen as an iterative and interactive
development process within this framework.

3.1. The information systems perspective

The traditional framework presented by Ives et al. [11]
is widely known in the IS community. In this framework
an IS is considered in an organizational environment that

is further surrounded by an external environment.
According to this framework an IS itself includes three
environments: a user environment, an IS development
environment, and an IS operations environment. There
are accordingly three processes through which an IS has
interaction with its environments: the use process, the
development process, and the operation process.

Analogously, a data-mining system can be considered
as a system with a user environment, a DM development
environment, and a DM operations environment (Figure
2).

The external environment

The organizational environment
The use }

User
environment process

DM The -ghte .
development development | data mining

environment process system

environment process

DM operations [ The operation }

Figure 2. A model for DM research (adapted from [11])

However, in this paper, we focus on the development
process of DM system and leave the operation and use
processes for further research.

3.2. The IS development perspective

livari et al. [11] relate the IS development process to
the constructive type of research based on their
philosophical belief that development always involves
creation of some new artefacts — conceptual (models,
frameworks) or more technical artefacts (software
implementations). The research approach is classified as
constructive whereas scientific knowledge is used to
produce either useful systems or methods, including
development of prototypes and processes. It has been
argued that the constructive type of research is important
especially for applied disciplines of information systems
and computer science [11], and DM may be considered as
such a discipline.

In [21] system development is considered as a central
part of a multi-methodological information systems
research cycle (Figure 3). Theory building involves
discovery of new knowledge in the field of study,
however it rarely contributes directly to practice.
Nevertheless, the new theory often (if not always) needs
to be tested in the real world to show its validity,
recognize its limitations and make refinements according
to observations made during its application. Therefore
research methods can be subdivided into basic and
applied research, as naturally both are common for any
large system development project [21]. A proposed theory



leads to the development of a prototype system in order to
illustrate the theoretical framework on the one hand, and
to test it through experimentation and observation with
subsequent refinement of the theory and the prototype in
an iterative manner. Such a view presents the framework
of IS as a complete, comprehensive and dynamic research
process. It allows multiple perspectives and flexible
choices of methods to be applied during different stages
of the research process.

Theory Buildying
Conceptual framework,

Math. models and
methods

System
Development
Artefact construction,
Technology transfer

Experimentation
Computer simulation,
Field experiments,
Lab experiments

Observation
Case studies,
Field studies

Figure 3. A multimethodological approach to the
construction of an artefact for DM (adapted from [21])

3.3 Data mining as artefact development

In this subsection we consider applying theoretical,
constructive and experimental approaches with regard to
Nunamaker’s framework in the context of data mining.

If a stated research problem includes a verb like
introduce, improve, maintain, cease, extend, correct,
adjust, enhance and so on, the study likely belongs to the
area of constructive research. Indeed, these are the kind
of actions that researchers in the area of data mining
perform, when developing new theories and their
applications.

It is obvious that in order to construct a good artefact
background knowledge is needed both about the
artefact’s components, that are basic data mining
techniques in the DM context and about components’
cooperation, that are commonly selection and
combination techniques in the DM context. Beside this
some background knowledge is also needed about
artefact’s external environment, that are different real-
world problems, often called just datasets in the DM
context.

The evaluation process is an essential part of
constructive research. Usually, the experimental approach
is used to evaluate a DM artefact. The experimental
approach, however, can be beneficial for theory testing
and can result in new pieces of knowledge thus
contributing to the theory-creating process.

It does not matter is the subject of evaluation a new

theory or a new artefact, the general principle of
evaluation must hold. This general principle requires that
the new theory or artefact must be better than its best
challenger so far. A ‘goodness’ criterion of a built theory
or an artefact can be multidimensional and it is sometimes
difficult to be defined because of mutual dependence
between the compromising variables. However, it is more
or less easy to construct a criterion based on such
estimates as accuracy of a built model and its
performance. From the other hand, it is more difficult or
even impossible to include into a criterion such important
aspects as interpretability of the artefact’s output because
estimates of such kind are usually subjective and can be
evaluated only by the end-users of a system.

Experimental studies are often divided in the IS
community into “field’ or ‘laboratory’-based. In the first
case different approaches are tested on so-called real-
world datasets with real users. In the second case
systematically controlled experiments can be organized.
Controlled experiments sometimes might produce more
beneficial results for theory creating, since unlike real
world datasets, synthetically generated data allow to test
exactly the desired number of characteristics while
keeping all the others unchanged.

Theory testing might be seen at different levels. A
low-level task is to evaluate how well a built model
works. Another task is to analyse how the built model
performs comparing to the other models. Then it is
usually necessary to compare the algorithm selected to
build the models with other algorithm(s). Finally, when
‘laboratory” experiments and evaluation are finished, it is
necessary to organize ‘field” experiments.

These approaches can be applied iteratively and/or in
parallel for the development of an artefact — a data-
mining tool, and contribute to theory creation and theory
testing.

4. The knowledge management paradigm
applied to data mining

In this section we propose to consider DM research in
the context of a complex adaptive system that creates,
receives, stores, retrieves, transforms, and transmits meta-
knowledge to improve its ability to adapt to the
environment and to utilize available DM techniques more
efficiently and effectively.

4.1 Different types of knowledge and their
transformations

One common definition of knowledge is “justified
belief that increases an entity’s capacity for effective
action” [20]. In this section we consider different types of
knowledge and their potential in the effective work and



performance of a knowledge discovery system (KDS).

Organizational knowledge can be seen as a
hierarchical network of rules about specific data or
information that has explanatory, predictive, and
functional power. These rules are categorized as
procedural and declarative. The procedural rules are
“know-how” rules and the declarative rules are “know-
what” rules. “Knowing where” and “knowing when”
represent spatial and temporal contexts of knowledge
validity respectively. “Knowing why” provides a KDS
with explanatory facilities when it is necessary to argue
why a certain DM strategy is recommended or applied.

Beside these technical issues of knowing with respect
to knowledge management in KDS, we recognize three
basic types of organizational types of knowing.
“Knowing what-for” represents DM goals that reflect
business goals, and account knowledge of the application
domain. “Knowing who” involves information about
“who knows what”. As the complexity of the knowledge
increases, co-operation between groups (of DM experts,
DM practitioners or intelligent knowledge repositories)
tends to develop. “Knowing how much” accounts benefits
of produced knowledge, resources required, related risks,
etc. Although being important the last two knowings are
not in the focus of this section.

In Figure 4 we present the concept of knowledge and
its transformations adapted from [22].

Entities
**************** Capture, Transmission,

Representation, Archiving, Deletion

Data Processing

Attributes

Information

Knowing that and what Information Processing

A

» Knowledge —_.____
Knowing how and why Knowledge
Knowi h h d what f Progessing
nowing when, where and what for ]
’ = Wisdom

Figure 4. Transformations of data and knowledge
concepts (adapted from [22])

Reality is related to entities whereas data are the
attributes from those entities. When the current business
problem is formulated as a DM task, data represents those
attributes. Information is the result of data processing and
the information associated with the “knowing that and
what” type of knowledge. The concept of knowledge is
defined as “knowing how and why” and is the result of
information processing. Wisdom is associated with the
knowing context of where and when certain knowledge is
relevant and valid. All these types of knowing are utilized
in many DM techniques. In the time dimension, data
naturally deals with the past, information is used in the
present and knowledge is to be utilized in the future work.

Observing data, hypothesizing on it, and conducting
experiments, new knowledge claims can be produced.
These claims are validated, placed into the context and
they become new knowledge. However, what is
knowledge for one person or system may be used by
another as the initial data (facts) for construction of
higher-level ~ pieces of  knowledge.  Therefore,
transformations like “data — knowledge — meta-data —
meta-knowledge — meta-meta-data — ...” are rather
natural. Thus, the knowledge discovery transformation of
data into knowledge (Figure 4) may be applied at any
level of knowledge, as the knowledge — data difference is
inessential and subjective in our case. Any level may have
a meta-level. Replacing data by meta-data, the
transformation produces meta-knowledge instead of
knowledge, and so on at the next level. Therefore it is
often not so easy to determine whether knowing belongs
to meta-data or meta-knowledge. Various meta-learning
approaches applied within the instance space of problem
space can be related to the Knowledge Management
(KM) framework.

In the next subsection we emphasize the view on
knowledge as an entity that can be produced, moved,
inspected, rejected, and assessed, just as a widget in a
factory. We consider the primary knowledge management
processes including knowledge creation, knowledge
organization, knowledge distribution, and knowledge
application.

4.2 The knowledge management process in the
context of meta-knowledge

The goal of meta-knowledge management is to make
more effective and efficient use of available data mining
techniques.

Generally, the problem of knowledge capture, storage,
and dissemination is similar to data and information
management in ISs, and therefore some executives prefer
to view KM as a natural extension to IS functions [1].
According to [25] the most practical way to define KM is
to show on the existing IT infrastructure the involvement
of: (1) knowledge repositories, (2) best-practices and
lessons-learned systems, (3) expert networks [these are
DM experts], and (4) communities of practice [these are
end-users].

The main idea of the continuous KM process is
presented in Figure 5. We separate five key phases of this
process. The first phase deals with knowledge
identification, acquisition or creation.

Knowledge
Creation &

—>
Acquisition lr

Knowledge Evaluation, Validation and Refinement LJ

Knowledge Knowledge Knowledge
Organization & Distribution & Adaptation &

—> ]
Storage lr Integration lr Application

Figure 5. The knowledge management process



The second phase deals with knowledge organization
and storage. In our context these processes are related
mainly to knowledge representation issues. Minsky [19]
discusses pros and cons of connectivist and structural
approaches to knowledge representation, concluding that
their combination would be natural, since usually at the
lower levels of abstraction it tends to have a net
architecture and tends to organize clusters and
hierarchical structures at the higher levels of abstraction.
The third phase is related to knowledge distribution and
knowledge integration processes.

Generally, we have four potential sources of
knowledge to be integrated: (1) knowledge from an
expert in data-mining, knowledge discovery, statistics and
related fields; (2) knowledge from a data-mining
practitioner; (3) knowledge from laboratory experiments
on synthetic data sets; and, finally, (4) knowledge from
field experiments on real-world problems.

Beside this, research and business communities, and
similar knowledge discovery systems themselves can
organize different so-called trusted networks, where the
participants are motivated to share their knowledge.

Knowledge sharing, distribution, and integration is
beneficial in two perspectives: (1) contributing from “an
individual” to acceptance and accumulation of “group”
and “organizational” knowledge; (2) external validity,
refinement, contextualism and generality of knowledge.

The fourth phase deals with knowledge adaptation and
application processes.

The fifth phase deals with the knowledge evaluation,
validation and refinement processes. In order to keep the
knowledge updated there is a need to have a monitoring
process to control whether the discovered meta-
knowledge remains valid and a technique for continuous
enhancement of knowledge. We consider these issues in
the next subsection.

4.3 Meta-knowledge repository lifecycle

Since the repository is created it tends to grow and at
some point of growth it naturally begins to collapse under
its own weight, requiring major reorganization [25].
Therefore, the repository needs to be continuously
updated, and some content needs to be deleted (if
misleading), deactivated or archived (if it is potentially
useful). Content may become less fragmented and
redundant if similar contributions are combined,
generalized and restructured.

The process of filtering knowledge claims into
accepted or suppressed is commonly applied in KM. This
is even more important in meta-knowledge management
since a plenty of claims are produced automatically (and
therefore usually need to be filtered automatically).

In Section 3.1 we mentioned the “knowing when” and
“knowing where” contexts. The basic idea here is that

when the environment changes (that in general may
happen all the time), all of the general rules without
specifying the context could become invalid. Therefore, it
is highly desirable to make the knowledge repository
adaptive, i.e. some knowledge should exist that would
guide an organization to change the repository when the
environment calls for it.

Some knowledge claims are naturally in constant
competition with the other claims. Disagreements within
the knowledge repository need to be resolved by means of
generalization of some parts and contextualization of the
others. In order to increase the quality and validity of
knowledge, it needs to be continually tested, improved or
removed (deactivated). Refinement leads to formulating a
new knowledge claim, which requires a new process of
testing and validation.

Some basic principles of triggers can be introduced in
the knowledge repository. Thus, for example, when some
knowledge is falsified, the deductively inferred claims
from the claims to be deleted should be deleted as well.

We would like to clarify the notions of knowledge
validity and knowledge quality with respect to the
knowledge refinement process.

The contexts “knowing when” and “knowing where”
can be discovered before it appears in a real situation. So-
called zooming in and zooming out procedures can be
used to find a context where theory can be falsified or
supported. The goal of such procedures is in search for
balance between generality, compactness, interpretability,
and understandability and sensitiveness to the context,
exactness, precision, and adequacy of meta-knowledge.

The quality of knowledge can be estimated by its
ability to help a KDS produce solutions faster and more
effectively. To determine the relative quality of a
validated knowledge claim, its value needs to be
compared to the values of the other claims according to
the existing criteria. In any case knowledge claims have
both a degree of utility and a degree of satisfaction.
However, the quality of knowledge is often context-
dependent. Therefore “where” and “when” context
conditions may be important in many situations not only
for knowledge validation but also for quality estimation.

The quality of a knowledge claim is further dependent
on the accuracy of the criteria used to evaluate it. Such
criteria as complexity, usefulness, and predictive power
are well formalised and easy to estimate. On the contrary,
such criteria as understandability, reliability of source,
explanatory power are rather subjective and therefore
inaccurate.

5. Conclusions

In this paper we considered several frameworks for
data mining based on different paradigms. We also
considered advantages and limitations of the existing



frameworks. We introduced our vision how DM process
modeling can benefit from the Information Systems
Development and Knowledge Management perspectives.
The 1SD perspective is based on viewing DM as a
continuous iterative and interactive process of developing
DM techniques and their effective utilization for solving a
current problem impacted by the dynamically changing
environment. The KM paradigm views DM research in
the context of a complex adaptive system that creates,
receives, stores, retrieves, transforms, and transmits
different types of knowledge.

In this work we have not provided any examples that
would demonstrate the applicability of the proposed
adaptation of frameworks from IS and KM fields.
However, we believe that our work could be helpful in
the development of a new higher-level framework for
DM, which can be suitable as for advancing research in
DM as for DM artefact development activities. In
particular, the corresponding IS research methods could
be adapted and applied.

We also hope that our work could raise a new wave of
interest to the foundations of DM and to the analysis of
the DM field from different perspectives, such as ISD and
KM.
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Abstract 1. Introduction

Subjective measures are used to model interestingness There are two aspects of interestingness of rules that
of rules (see [6], [1], [13], [14]). They are user-driven, have been studied in data mining literature, objective and
domain-dependent, and include unexpectedness, novVsubjective measures (see [6], [1], [13], [14]. Objective mea-
elty and actionability. A rule is actionable if user can do an syres are data-driven and domain-independent. Generally,
action to his/her advantage based on this rule [6]. This def- they evaluate the rules based on their quality and similarity
inition, in spite of its importance, is rather vague and between them. Subjective measures, including unexpected-

it leaves open door to a number of different interpreta- ness, novelty and actionability, are user-driven and domain-
tions of actionability. In order to narrow it down, a new dependent.

class of rules (called action rules) constructed from cer-
tain pairs of association rules, has been proposed in[10]. A Aruleis actionable if user can do an action to his/her ad-
formal definition of an action rule was independently pro- vantage based on this rule [6]. This definition, in spite of its
posed in [4]. These rules have been investigated further inimportance, is too vague and it leaves open door to a num-
[12] and [11]. ber of different interpretations of actionability. In order to
To construct action rules it is required that attributes in harrow it down, a new class of rules (called action rules)
a decision system are divided into two groups: stable and constructed from certain pairs of association rules, has been
flexible. Flexible attributes provide a tool for making hints Proposed in [10]. A formal definition of an action rule was
to a user what changes within some values of flexible at-independently proposed in [4]. These rules have been inves-
tributes are needed to re-classify group objects, supporting tigated further in [11].
action rule, to another decision class. The strategy for gen-

erating action rules which was proposed in [11] is signifi- To give an example justifying the need of action rules, let

cantly improved in this paper. The qoal of the tree structure us assume that a number of customers decided to close their
y 'mp papetr. 9 accounts at one of the banks. To find the cause of their ac-

used by DEAR-2 is to partition each set of all rules, hav- . : )
. Iy : . tion, possibly the smallest and the simplest set of rules de-
ing the same decision value, into equivalence classes de-

. . scribing all these customers is constructed. Next, we search
fined by values of stable attributes (two rules belong to the L
. X : for a new set of rules, describing groups of customers from
same equivalence class, if values of their the same stable " . . e
. e . which no-one left that bank, which classification parts are
attributes are not conflicting each other). Now, instead of : . P
i . maximally similar to the classification parts of the rules we
comparing all rules, only rules between some equivalence

classes are compared to construct action rules. This strat- have. Now, by comparing these two groups of descriptions,

R we may find not only the cause why these accounts have
egy significantly reduces the number of steps needed to gen: . U )
. . . been closed but also formulate an action which, if under
erate action rules in comparison to DEAR system.
taken by the bank, may prevent other customers from clos-

ing their accounts. Such actions are stimulated by action



rules and they are seen as precise hints for actionability of

rules. For example, an action rule may say that by sending a b ¢ d

certain offer to a certain group of customers, it is guaran-

teed that these customers will not close their accounts and zxn 05 0 L

they do not move to another bank. Sending that offer by reg- 2 0 R 1 L

ular mail or giving a call to all these customers are exam-

ples of an action associated with that action rule. zz3 0.5 0 L
The strategy for generating action rules proposed in [11] za 0 RO1 L

is significantly improved in the systeMEAR-2presented x5 2 P 2 L

in this paper. Initially, all rules discovered in the first step 0w 2 P 2 L

of our new method are partitioned into decision classes

(two rules are in the same decision class, if they define the v 28 2 H

same decision value). In the second step, for each decision s 2 S 2 H

value, the algorithm based on tree structure is partitioning

all rules having that decision value into additional equiva- Table 1. Decision System

lence classes defined by values of stable attributes (two rules
belong to the same equivalence class, if values of their sta- . i i i

ble attributes do not contradict each other). In the final step, A decision table is any information system of the. form
instead of comparing all rules, only rules between some = U, A Y Az U{d}), Whe_zr_ed ¢ AU A is a distin-
equivalence classes are compared in order to construct acduished attribute called decision. The elementsigfare
tion rules. This strategy significantly reduces the number of Calléd stable conditions, whereas the elementsiofare
steps needed to generate action rules in comparison to th&2/led flexible conditions.

strategy (calledEAR proposed in [11]. As an example of a decision table we take

S = ({x1, 22, 23,24, T5, Te, T7, T8 }, {0, c} U {b} U {d})
2. Information System and Action Rules represented by Table 1. The sgt,c} lists stable at-
tributes,b is a flexible attribute and is a decision attribute.
An information system is used for representing knowl- Also, we assume thatl denotes éhigh profit and L de-
edge. Its definition, presented here, is due to Pawlak [7].  notes dow one.
In order to induce rules in which the THEN part con-

By an information system we mean a péir= (U, A), sists of the decision attribui¢ and the IF part consists of
where: attributes belonging tel; U A, subtablegU, B U {d}) of
S where B is ad-reduct (see [7]) inS should be used for
e U is anonempty, finite set called the universe, rules extraction. By.(r) we mean all attributes listed in the
o Ais a nonempty, finite set of attributes ie: U — |F partof aruler. For example, if- = [(a,2) * (b, .5) —
V, is a function fora € A, whereV/, is called the do- (4, H)]is arule thenl(r) = {a,b}. By d(r) we denote the
main ofa. decision value of a rule. In our exampi¢r) = H. If rq,

_ _ ro are rules andB C A; U A, is a set of attributes, then
Elements ofU are called objectg. For mstance,_they can r, /B = ry/B means that the conditional parts of rulgs
be interpreted as customers. Attributes can be interpreted-, restricted to attribute$? are the same. For example if
as features, offers made by a bank, characteristic conditions-; = [(b,S) * (c,2) — (d, H)], thenr, /{b} =r/{b}.
etc.
In our example, we get the following optimal rules:

In this paper we consider a special case of information (a,0) — (d, L), (c,0) — (d, L),
systems called decision tables [7]. In any decision table to- (b,R) — (d, L), (¢,1) —> (d, L),
gether with the set of attributes a partition of that set into (b,P) — (d, L), (a,2) * (b, S) —> (d, H),
conditions and decisions is given. Additionally, we assume (b, S) * (¢,2) — (d, H).

that the set of conditions is partitioned into stable condi-

tions and flexible conditions. For simplicity reason, we as-  Now, let us assume thdt,v — w) denotes the fact
sume that there is only one decision attribidate of birth that the value of attribute has been changed fromto w.

is an example of a stable attributaterest rateon any cus-  Similarly, the term(a,v — w)(z) means that(z) = v
tomer account is an example of a flexible attribute (depend-has been changed tdz) = w. Saying another words, the
able on a bank). We adopt the following definition of a de- property (a,v) of objectx has been changed to property
cision table: (a,w).



LetS = (U, A; U A3 U{d}) is a decision table and rules
r1, 12 have been extracted frofh Assume thaB; is a max-
imal subset ofd; such thatl’l/Bl = T’Q/Bl, d(T’l) = kq,
d(re) = ko andk; < kp. Also, assume thab , bs, ..., by)
is a list of all attributes inL(r1) N L(r2) N A2 on which
T1, T2 differ andrl(bl) = V1, Tl(bg) = 1}2,...,7"1(bp) = Up,
Tg(bl) = Wy, Tg(bg) = UJQ,...,TQ(bp) = Wp-

By (r1,72)-action rule onx € U we mean expressian

[(bl,vl e wl) A\ (bg, Vg —> wg) N ...
A (bp, vp — wp)(x) = [(d, by — k2)](2).

Objectxz € U supports(ry, ra)-action ruler in S =
(U, A1 U Ay U {d}), if the following two conditions are sat-
isfied:

o (Vi <p)bi(z)=v]Nd(z) =k

e if y; is the outcome of the rule applied onz, then

there isy, € U such that{[b € L(r2)] = [b(y1) =
b(y2)]] A [d(y2) = ko] A (Vi < p)[bi(y2) = wi]

By the support of action rule, we mean
RSupg(r) = card{x € U: x supports- in S}.

By the confidence of action rule we mean
Confs(r) = RSups(r)/Sups(ri),
whereSupg(ry) is the support of4 in S.

Another words, object: in S supports(ry, r2)-action
rule in S, if  supportsr; and there isy in S which is
L(ry)-identical to the outcome ofry,72)-action rule ap-
plied onz and which supports,. Two objectsz, y in S are
B-identical, if (Vo € B)[a(z) = a(y)].

To find the confidence dfr, r2)-action rule inS, we di-
vide the number of objects supportirig,, r2)-action rule
in S by the number of objects supporting ruigin S.

3. Discovering Extended Action Rules

The notion of an extended action rule was given in
[11]. In this section we present a new algorithm for dis-
covering extended action rules. Initially, we partition the
set of rules discovered from an information syst&m=
(U, A1 U A2 U{d}), whereA, is the set of stable attributes,
A, is the set of flexible attributes anty = {d, ds, ..., dx}

is the set of decision values, into subsets of rules defining
the same decision value. Saying another words, the set of

rules R discovered front is partitioned into{ R, };.1<i<k,
whereR; = {r € R : d(r) = d;} forany: = 1,2, ..., k.
Clearly, the objects supporting any rule fraf form sub-
sets ofd 1 ({d;}).

Let us take Table 1 as an example of a decision system

S. We assume that, c are stable attributes atmdd are flex-
ible. The sefR of certain rules extracted frosiis given be-
low:

a b c d
{z1, 22, 23,24} 0O L
{2, x4} R L
{1,235} 0 L
{zo, x4} 1 L
{z5,z6} r L
{x7, 28} 2 S H
{z7, 28} S 2 H

Table 2. Set of rules R with supporting ob-
jects

(a,0) — (d, L), (¢,0) — (d, L),

(b,R) — (d, L), (¢,1) — (d, L),

(b, P) — (d, L), (a,2) % (b, S) — (d, H),
(0,5) * (¢,2) — (d, H).

We partition this set into two subsels = {[(a,0) —
(d,L)],[(¢,0) — (d, L)], [(b, R) — (d, L)],[(¢,1) —
(d, L)} [(b, P) — (d, L)]} andRy = {[(a,2) # (b, 5) —
(d, H)], (5, 8) * (e, 2) — (d, H)]}.

Assume now that our goal is to re-classify some objects
from the classi—!({d;}) into the classi~!({d,}). In our
example, we assume thét= (d, L) andd; = (d, H).

First, we represent the sAtas a table (see Table 2).

The first column of this table shows objects.$hsup-
porting the rules fromR (each row represents a rule). The
first 5 rows represent the s& and the last two rows rep-
resent the seR,. In general case, assumed earlier, the num-
ber of different decision classes is equakto

The next step of the algorithm is to buidii-tree andd;-
tree. First, from the initial table similar to Table 2, we se-
lect all rules (rows) defining the decision valdg Simi-
larly, from the same table, we also select all rules (rows)
which define decision valug;.

By d;-tree we mean a trég(d;) = (N, E;), such that:

e each interior node is labelled by a stable attribute from
A,

e each edge is labelled either by a question mark or by
an attribute value of the attribute that labels the initial
node of the edge,

e along a path, all nodes (except a leaf) are labelled with
different stable attributes,

¢ all edges leaving a node are labelled with different at-
tribute values (including the question mark) of the sta-
ble attribute that labels that node,



alb| c
{X1.X2,X3,Xa} | O
{X2,Xa} R
{X1.%s} | 0
{X 2,Xa} 1
{X5,Xe} P
Table 3
c=7 c=1 c=0
la|b alb alb
{X1,X2:X3,Xs} | O {X 2,Xa} {X 1,Xs}
{X2,Xa} R Table T2 Table T3
{X 51X6} P
Table T1
a=0 a="?
b b
{X 1,X2,X3,Xa} {X2,%a} R
Table T4 | {X5,Xe} P

Table TS

Figure 1. (d, L)-tree

a b c
{X7,x} 2 S
{X7!X8} S
Table 4
c=7? c=2
ab ab
{X71X8} 2 S {X71X8} S
Table T6 Table T7

Figure 2. (d, H)-tree

DataSet Rules Action Rules DEAR
Breast Cancer 20sec 27min blsec
Cleveland 1min 09sec Owver 8hrs
Hepatitis Hdsec Owver 8hrs

Table 3. Time needed to extract Rules and Ac-
tion Rules by DEAR

e each leaf represents a set of rules which do not contra-
dict on stable attributes and also define decision valuecan be used in action rules construction. For each pair of ta-
d;. The path from the root to that leaf gives the descrip- bles, we use the same algorithm as in [11] to construct ex-

tion of objects supported by these rules.

Now, taking(d, L) from our example as the valuk, we
show how to construdtd, L)-tree for the set of rules rep-
resented by Table 2. The construction(df L)-tree starts

tended action rules.

This new algorithm (calledDEAR-2) was imple-
mented and tested on many datasets using PC with 1.8
GHz CPU. The time complexity of this algorithm was sig-

with a table corresponding to the root of that tree (Table 3 nificantly lower than the time complexity of the algo-

in Fig. 1). It represents the set of rul&; defining L with
supporting objects frons. We use stable attributeto split
that table into 3 sub-tables defined by valgesl, 7} of at-
tribute c. The question mark means an unknown value.

Following the path labelled by value= 1, we get ta-
ble T2. Following the path labelled by value = 0, we
get tableT'3. When we follow the path labelled by value
[c =7?][a = 0], we get tablel'4. Finally, by following the
path having the labét =?][a =7?], we get tablel'5.

Now, let us defingd, H)-tree using Table 4 as its root
(see Fig. 2). Following the path labelled by value=7],
we get the tablg’6. When we follow the path labelled by
value[c = 2|, we get the tablg"7. Both tables can be eas-
ily constructed.

rithm DEAR presented in [11]. Both algorithms extract
rules describing values of the decision attribute be-
fore any action rule is constructed. The next two tables
show the time needed bPEAR and DEAR-2 to ex-
tract rules and next action rules from three datadgsast
Cancer Cleveland These thred/C1 datasets are avail-
able at pttp://www.sgi.com/tech/mlic/dbiThe first one has
191 records described by 10 attributes. Ofgeis the sta-
ble attribute. The second one has 303 records described
by 15 attributes. Only two attributesge and sexare sta-
ble. The last one has 155 records described by 19 at-
tributes. Again, only two attributeage and sex are sta-
ble.

The interface to both systemBEAR and DEAR-2 is
written in Visual Basic. The first picture in Figure 3 shows

Now, it can be checked that only pairs of rules belonging part of the interface to both systems. The user has an op-

to tables{[T’5, 77, [T'5, T6], [T'2, T6], [T'3,T6],[T4,T7)}

tion to generate the coverings (see [7], [8]) for the decision
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Figure 3. DEAR& DEAR-2Interface

DataSet Action Rules DEAR 2

Breast Cancer 3sec
Cleveland 54min 20sec
Hepatitis 51man 53sec

Table 4. Time needed to extract Action Rules
by DEAR-2

attribute and next use them in the process of action rules ex-
traction or, if he prefers, he can directly proceed to the rules
extraction step. It is recommended, BY£AR-2 to gener-

ate the coverings for the decision attribute if the informa-
tion system has many classification attributes. By doing this
we usually speed up the process of action rules extraction.
The second picture in Figure 3 shows how the results are
displayed byDEAR-2system.

4. Conclusion

SystemDEAR-2initially generates a set of association
rules from.S (satisfying two thresholds, the first one for a
minimum support and second for a minimum confidence)
defining values of a chosen attribute, called decision at-
tribute in S, in terms of the remaining attributd3EAR-2is
giving preference to rules which classification part contains
maximally small number of stable attributes $h These
rules are partitioned b{pEAR-2into a number of equiv-
alence classes where each equivalence class contains only
rules which classification part has the same values of stable
attributes. Each equivalence class is used independently by
DEAR-2as a base for constructing action rules. The current
strategy requires the generation of association rules fom
to form a base, before the process of action rules construc-
tion starts. We believe that by following the process similar
to LERS(see [5], [2]) orERID (see [3]) which is initially
centered on all stable attributes.$h we should be able to
construct action rules directly frori and without the ne-
cessity to generate the base of association rules.
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Abstract

The former results concerning definability of association
rules in classical predicate calculi are summarized. A new
intuitive criterion of definability is presented. This criterion
concerns important classes of association rules. It is based
on tables of critical frequencies of association rules. These
tables were introduced as a tool for avoiding complex com-
putation related to the verification of the association rules
corresponding to statistical hypotheses tests.

1. Introduction

The goal of this paper is to contribute to the theoretical
foundations of data mining. We deal with association rules
of the form ¢ =~ 1 where ¢ and v are Boolean attributes
derived from the columns of the analysed data matrix M.
The association rule ¢ == v says that  and ¢ are associated
in the way given by the symbol /. The symbol ~ is called
4ft-quantifier . It corresponds to a condition concerning a
four-fold contingency table of ¢ and v in M. Association
rules of this form were introduced and studied in [2]. They
were further studied in [4, 8], the results were partly pub-
lished e.g. in [5, 6,7, 9].

The main presented result concerns definability of asso-
ciation rules in classical predicate calculi. It was shown in
[9] that the association rules can be understood as formulae
of monadic predicate observational calculi defined in [2].
Monadic predicate observational calculus is a modification
of classical predicate calculus: only finite models are al-
lowed and generalised quantifiers are added. 4ft-quantifier
~ is an example of the generalised quantifier.

There is a natural question of classical definability of as-
sociation rules i.e. the question which association rules can
be expressed by means of classical predicate calculus(pred-
icates, variables, classical quantifiersV, 3, Boolean connec-

tives and the predicate of equality). This question is solved
by the Tharp’s theorem proved in [2].

The Tharp’s theorem is but too general from the point
of view of association rules. A more intuitive criterion of
classical definability of association rules was proved in [4]
see also [9]. The first goal of this paper is to show that
this criterion can be further simplified for several important
classes of association rules.

The simplified criterion is based on tables of critical fre-
quencies (further only TCF instead of table of critical fre-
quencies). TCF’s were introduced as a tool for avoiding
complex computation [2, 4] related to the association rules
corresponding to the statistical hypothesis tests. It means
that this paper deals with three features of association rules:

e classes of association rules
e tables of critical frequencies
e classical definability of association rules.

The second goal of this paper is to point out to the mutual
relations among these features.

A short overview of association rules of the formyp ~
is given in section 2. The classes of association rules are in-
troduced in section 3. The definition of TCF is based on
classes of association rules and it is given in Sect. 4. Re-
sults concerning classical definability of association rules
are presented in Sect. 5 and 6. Some concluding remarks
are in Sect. 7.

2 Association Rules

The association rules is an expression ¢ ~ 1 where ¢
and ¢ are Boolean attributes and the symbol ~ is the 4ft-
quantifier. The Boolean attributes ¢ and v are derived from
basic Boolean attributes using propositional connectivesV,
A and — in the usual way. The basic Boolean attribute is the
expression A(a) where the symbol a denotes a subset of the



set of all possible values of the attribute A (i.e. column of
the analysed data matrix M.)

The basic Boolean attribute A(«) is true in the row o of
M ifitisa € a where a is the value of the attribute A in the
row o. The truth values of Boolean attributes ¢ and 1 are
defined in the usual way. The value of the Boolean attribute
¢ in the row o of the data matrix M is denoted ¢ (o, M). Tt
is p(0, M) = 1if ¢ is true in 0 and it is (0, M) = 0if
is false in o.

The expressions A(1), B(1,2), and C(4,5) are exam-
ples of basic Boolean attributes derived from the attributes
- columns of the (very simple) data matrix M see Fig. 1.

row attributes basic Boolean attributes
of M| A B C| A1) B(1,2,3) C(4,5)

01 1 9 4 1 0 1

09 1 2 6 1 1 0

on 2 4 5 0 0 1

Figure 1. Data matrix M

The 4ft-quantifier ~ corresponds to a condition concern-
ing a four-fold contingency table of ¢ and ¢ in M. This
table is denoted 4ft(p, ¥, M) and it is called called 4ft ta-
ble of ¢ and 1) in M , see Table 1.

Table 1. 4ft table 4ft(y, v/, M) of o and ) in M
M| Y -

%) a b
= c d

Here a is the number of the rows of M satisfying both
@ and 1, b is the number of the objects satisfying ¢ and not
satisfying v, etc. We write 4ft(p, 1, M) = (a, b, ¢, d).

The association rule ¢ =~ 1) is true in the analysed
data matrix M if the condition corresponding to the 4ft-
quantifier ¢ ~ 9 is satisfied for the 4ft-table 4ft(p, ¥, M).
We write Val(p ~ ¢, M) = 1if ¢ & ¢ is true in the data
matrix M, otherwise we write Val(¢ ~ 1, M) = 0.

Several examples of 4ft-quantifiers follow.

The 4ft-quantifier =, gqse of founded implication [2]
is defined for 0 < p < 1 and Base > 0 by the condition
ﬁb > pAa > Base . The association rule ¢ =, Bgse ¥
means that at least 100p per cent of objects satisfying ¢
satisfy also ¢ and that there are at least Base objects of M
satisfying both ¢ and .

The 4ft-quantifier = | p,.. of lower criti-
cal implication [2] is defined for 0 < p < 1,
0 < a < 0.5 and Base > 0 by the condition

Z?i: (ajb)pi(l — p)*tt=t < a Aa > Base. The
association rule ¢ =, pase P corresponds to a statistical
test (on the level ) of the null hypothesis Hy : P(¢|p) < p
against the alternative one Hy : P(1|¢) > p. Here P(1)|p)
is the conditional probability of the validity ofv under the
condition ¢.

The 4ft-quantifier <, Base Of founded double implica-
tion [3] is defined for 0 < p < 1 and Base > 0 by the
condition ﬁ > p A a > Base. The association rule
© ©p,Base Y means that at least 100p per cent of rows of
M satisfying ¢ or v satisfy both ¢ and ¢ and that there are
at least Base rows of M satisfying both ¢ and .

The 4ft-quantifier =), pqse Of founded equivalence [3]
is defined for 0 < p < 1 and Base > 0 by the con-
dition tﬂr(lgijr_(ciﬂi > p A a > Base. The association rule
© =p,Base ¥ means that ¢ and ¢ have the same value (ei-
ther true or false) for at least 100p per cent of all objects of
M and that there are at least Base objects satisfying both
@ and 1.

Fisher’s quantifier  ~q Base [2] 1s defined for
0 < a < 0.5 and Base > 0 by the condition

(k) (5 (7
me(y’k) % < a A ad > bc N a > Base. This

quantifier corrgsponds to the statistical test (on the level«)
of the null hypothesis of independence of ¢ and v against
the alternative one of the positive dependence.

The 4ft-quantifier — con f,sup i defined for 0 < conf <
land 0 < sup < 1 by the condition _{5 > conf A
m > sup. It corresponds to the “classical” associa-
tion rule with confidence con f and support sup [1].

Additional 4ft-quantifiers are defined e.g. in [2, 3, 6].
The data mining procedure 4ft-Miner [10] deals with 14
types of 4ft-quantifiers.

An example of association rule is the expression

A(1) A B(1,2,3) < Base C(4,5)

It means that at least 100p per cent of rows of data matrix M
satisfying A(1) A B(1,2,3) or C(4, 5) satisfy both A(1) A
B(1,2,3) and C(4, 5) and that there are at least Base rows
of M satisfying both A(1) A B(1,2,3) and C'(4,5).

The condition associated to the 4ft-quantifier = defines
a {0, 1} - function Asf~ such that

1 if the condition associated to =~
is satisfied for {(a, b, ¢, d)
0 otherwise.

(Here we  write  Asfx(a,b,c,d) instead  of
Asf~({(a,b,c,d)).) This function is called associated
Sfunction of the 4ft-quantifier ~, see [2]. It is defined for all
Aft tables (a, b, ¢, d).

Further we will write only = (a,b,c,d) instead of
Asfx~(a,b,c,d). Tt means that the association rule ¢ ~
is true in the analysed data matrix M iff ~ (a,b,¢,d) = 1
where (a, b, ¢, d) = 4ft(p, ¥, M).

Asfx(a,b,e,d) =



3 Classes of Association Rules

The classes of association rules are defined by classes of
4ft-quantifiers. The association rule ¢ ~ v belongs to the
class of implicational rules if the 4ft-quantifier ~ belongs
to the class of implication quantifiers. We also say that the
association rule ¢ ~ 1 is implicational rule and that the 4ft-
quantifier = is implicational quantifier. This is the same for
additional classes of association rules.

We are going to present some of classes of association
rules. We present more classes than we use in the main re-
sults concerning definability of association rules. The rea-
son is to point out to additional interesting properties of as-
sociation rules. The main results on definability concerns
implicational and equivalency rules only.

3.1 Implicational Quantifiers

The class of implicational quantifiers is defined in [2]
such that the 4ft-quantifier ~ is implicational if

~ (a,b,c,d) =1 AN a'>a ANV <b

implies
~ (d,b,c,d)=1

for all 4ft tables < a,b,c,d > and < o', V', c',d’ >. The
conditiona’ > a A V' < bis the truth preservation con-
dition for implicational quantifiers.

Let us assume that (a, b, ¢, d) is the 4ft table of ¢ and 1
in data matrix M and that (a’, ', ¢/, d’) is the 4ft table of ¢
and 1 in data matrix M’. The truth preservation condition
a’ > a A b < bmeans that in data matrix M’ there
are more rows satisfying both ¢ and 1 than in data matrix
M and that in M’ there are fewer rows satisfying ¢ and
not satisfying ¢ than in M. In other words this condition
means that that the 4ft table (a’, b, ¢/, d') is "better from the
point of view of implication” than the 4ft table {(a, b, ¢, d)
(i-better, see [2]).

Thus it is reasonable to expect that if the implicational
rule ¢ ~ v (i.e. the rule expressing implication by =) is
true in data matrix M then it is also true in data matrix M’
that is better from the point of view of implication. This
expectation is ensured for implicational quantifiers by the
above given definition.

It is easy to prove that the 4ft-quantifier = ggse Of
founded implication (see Sect. 2) is implicational. It is
proved in [2] that the 4ft-quantifier éiw, Base Of lower crit-
ical implication (see Sect. 2) is also implicational.

Remark 1: Tt is also easy to prove for the implicational
quantifier =* that the value =* (a, b, ¢, d) depends neither
on ¢ nor on d. Thus we write only =* (a,b) instead of
=* (a,b, ¢, d) for the implicational quantifier =*,

There are various theoretical results related to the class
of implicational quantifiers. Both practically useful and the-
oretically interesting are results concerning deduction rules
of the form f,z::ﬁ, where ¢, ¥ are Boolean attributes and
=" is the implicational quantifier [2, 6]. There are also
results concerning implicational rules in data with missing
information see [2] and also [7].

3.2 Double Implicational Quantifiers

We can try to express the relation of equivalence of
Boolean attributes ¢ and ¢ in an analogy to propositional
logic. If w and v are propositions and both u — v and
v — wu are true, then u is equivalent to v ( the symbol ”—"
is here a propositional connective of implication). Thus we
can try to express the relation of equivalence of attributes
@ and 1 using a “double implicational” 4ft-quantifier <*
such that ¢ <* @ if and only if ¢ =* ¢ and Y =% ¢,
where =* is a suitable implicational quantifier.

If we apply the truth preservation condition for implica-
tional quantifier to ¢ =* 1, we obtaina’ > a A b < b.
If we apply it to p =* ¢, we obtaina’ > a A ¢ < ¢,
(c is here instead of b, see Table 1). This leads to the truth
preservation condition for double implicational quanti-
fiers ' > a AV < bAc < c Thus the class of double
implicational quantifiers is defined in [8], (see also [3] and
[6]) such that the 4ft-quantifier ~ is double implicational
if

~ (a,b,c,d) =1 AN a' >a ANV <b A <c

implies
~ (b d) =1

for all 4ft tables < a, b, ¢,d > and < o', V', ¢, d" >.

It is easy to prove that the 4ft-quantifier <, pgse Of
founded double implication see Sect. 2 is double im-
plicational. Tt can be also proved that the 4ft-quantifier

&' of lower critical double implication [3] defined for

D,

0 I< p<1,0< a<0.5and Base > 0 by the condition
Z?i:-‘rc (aJr?Jrc)pi(l _ p)a+b+c7i < a A a > Baseis
double implicational see [8].

Remark 2: The value <* (a,b, ¢, d) does not depend on
d for the double implicational quantifier<*. Thus we write
only &* (a,b,c) instead of <* (a,b, ¢, d) for the double
implicational quantifier &*.

However it can be proved that there is no implicational
quantifier =* such that <, gase (a,b,¢) = 1 if and only
if =* (a,b) = 1 and =* (a,c¢) = 1 and analogously for
Aft-quantifier <, ,[8].

This fact led to the definition and study of the class of
pure double implicational quantifiers and the class of strong
double implicational quantifiers [8].



We say that the quantifier <* is pure double implica-
tional if there is an implicational quantifier=-* such that

<" (a,b,¢) = 1ifand only if =% (a,b) A =" (a,c¢)

for each 4ft table < a, b, c,d >. We say that the quantifier
&* is strong double implicational if there are two implica-
tional quantifiers =7 and =3 such that

*

<* (a,b,c¢) = 1ifand only if =7 (a,b) A =3 (a,c)
for each 4ft table < a, b, ¢, d >.

It is easy to prove that each pure double implicational
quantifier is strong double implicational and that each
strong double implicational quantifier is double implica-
tional. There are interesting properties of pure double im-
plicational and of strong implicational quantifiers [8].

Let us note that the quantifiers <, pqse and @L’Q are
similar what concerns dealing with the sumb + c. This sum
is treated in the same way as the frequencyb is treated in the
quantifiers =, pgse and :ﬁ)_’a, see above. This led to the
definition of the class of ¥-double implicational quantifiers
[8]. The 4ft-quantifier ~ is >-double implicational if

~ (a,b,c,d) =1 AN a' >a ANV +¢ <b+c

implies
~ (a0, d,d)=1
for all 4ft tables < a, b, ¢,d > and < o', V', ,d" >.

There are again various interesting results related to the
class of X-double implicational quantifiers. An example
is a criterion of correctness of deduction rules of the form
;‘fzi:;‘j, where ¢, 1 are Boolean attributes and <* is the
Y-double implicational quantifier [6].

3.3 Equivalence Quantifiers

The double implicational quantifier is an attempt to ex-
press the equivalence of Boolean attributes ¢ and v in an
analogy to propositional logic. We start from the fact that
if v and v are propositions and bothu — v and v — w are
true, then u is equivalent to v.

There is an other way to express the equivalence of the
propositions v and v. The propositions v and v are equiv-
alent if both u — v and —u — —w are true. Thus we can
try to express the relation of equivalence of the attributes
o and ¢ using an “equivalence” 4ft-quantifier =" such that
@ =% ifandonly if ¢ =* ¥ and ¢ =" =), where =*
is the suitable implicational quantifier.

If we apply the truth preservation condition for implica-
tional quantifiers to ¢ =* ¢ we obtaina’ > a A V' <b. If
we apply it to = =* =), we obtaind’ > d A ¢ < ¢ (¢
is here instead of b and d is instead of a, see table 1). This
leads to the truth preservation condition for equivalency

quantifiers [2, 8]. Thus the class of equivalency quanti-
fiers is defined such that the 4ft-quantifier~ is equivalency
quantifier if

~ (a,b,c,d)=1N a >a AN <bA<ec AN d>d

implies
~ (d,b,d,d)=1

for all 4ft tables < a, b, ¢,d > and < o', V', ¢, d" >.

Let us emphasize that the class of quantifiers defined
by the truth preservation condition for equivalency quanti-
fiers was defined in the frame of development of the GUHA
method of exploratory data analysis about 35 years ago see
e.g. [2]. This class was denominated as a class of associa-
tional quantifiers in [2]. However the termassociation rule
is now commonly used for the association rules with con-
fidence and support defined in [1]. We use, therefore, the
terms equivalency quantifier and equivalency rule.

It is easy to prove that the 4ft-quantifier =, pgse Of
founded equivalence see Sect. 2 is equivalency. It can be
also proved that the 4ft-quantifier E;,a, Base Of lower criti-
cal equivalence [3] defined for0 < p < 1,0 < a < 0.5
and Base > 0 by the condition ;" ., (7)p'(1 — p)" <
a A a > Base is equivalency see [8].

It is also proved in [2] that the Fisher’s quantifier, the
x>-quantifier ~2 5, . and the quantifier ~s p,sc of simple
deviation are equivalency (i.e. associational in the sense
of [2]) The x*-quantifier ~2 .. is defined in [2] for

0 < a < 0.5 and Base > 0 by the condition ad > bc A

a > Base A (a+b)((gj_‘i;(lﬁz)(b+d) (a+b+c+d) > x2 where
X2 is (1 — )-quantile of the x? distribution. The quantifier
~s,Base Of simple deviation is defined in [2] for0 < § and
Base > 0 by the condition ad > e’bc A a > Base.

It can be however proved that the d4ft-quantifier
—conf,sup defined by the condition %_‘_b > conf A
m > sup (see Sect. 2) that corresponds to the “clas-
sical” association rule is not equivalency [8] (i.e. not asso-
ciational in the sense of [2]).

We can define classes of various equivalency quanti-
fiers analogously to the classes of pure double implicational
quantifiers, of strong double implicational quantifiers and
Y-double implicational quantifiers [8]. There are interest-
ing properties of the just defined equivalency quantifiers see
[2, 6].

4 Tables of Critical Frequencies

Further we will denote N = {0, 1,2, ...} U{co}. First
we prove the theorem about partial tables of maximal b.
(Please note that the equivalency quantifier is the associa-
tional quantifier according to [2]).



Theorem 1 Let ~ be an equivalency quantifier.  Then
there is a non-negative function Tby, that assigns to each
triple (a,c,d) of non-negative natural numbers a value

Tba(a,c,d) € Nt such that

1. Foreachb > 0itis = (a,b,c,d) = 1 if and only if
b < Tbx(a,c,d).

2. Ifa’ > athen Thx(d,c,d) > Tha(a,c,d).
Proof: Let us define
Tbx(a,c,d) = min{b| =~ (a,b,c,d) = 0} .
Let us remember that =~ is equivalency. It means that
~ (a,b,c,d)=1NAN a >a ANt <bA<ec AN d>d

implies
~ (db,d,d)=1

It means among other

I: If ~ (a,b,c,d) = 0 and v < a then also
~ (v,b,¢,d) = 0.

II: If = (a,b,c,d) = 0 and w > b then also
~ (a,w,c,d) =

The point Il means that it is =~ (a,b,c,d) = 0 for each
b > min{b| =~ (a,b,c,d) = 0}.

We prove that the function defined in the above given way
has the properties 1. an 2.

1. Let us suppose b > 0 and = (a,b,c,d) = 1
We have to prove b < Tbx(a,c,d). Let us sup-
pose b > Thx(a,c,d) = min{b | =~ (a,b,c,d) = 0}.
It however means according to point 11 that
~ (a,b,c,d) = 0. Thus it must be b < Tbx(a, c,d).

Let us suppose b > 0 and =~ (a,b,c,d) = 0. We have
to prove b > Tbx(a, ¢, d). It but follows from the defi-
nition of Tbx(a, ¢, d).

2. Let us suppose ¢’ > a and also Thx(d',c,d) <
Tb~(a,c,d). Let us denote e = Tbx(a,c,d),
thus it is e > 0. It means Thxy(a',c,d) <
e — 1 and thus according to the definition of
Tby(a',c,d) it is = (a’,e — 1,¢,d) = 0. Due
to point 1 it is also ~ (a,e—1,¢,d)=0. It
is but also e —1<e="Tbya,ca and it means
~ (a,e — 1,¢,d) = 1 according to already proved
point 1. It is a contradiction and thus it cannot be
both ' > a and Thy(d',c,d) < Tbx(a,c,d). It
but means that it follows Tbx(a', ¢, d) > Thx(a, ¢, d)
froma' > a.

This finishes the proof.

Let us remember that the value of =* (a,b,c¢,d) de-
pends neither on ¢ nor on d for the implicational quan-
tifier =* and thus we write only =* (a,b) instead of
="* (a,b, c,d), see Remark 1 in Sect. 3.

The just proved theorem has a direct consequence for the
implicational quantifiers.

Theorem 2 Let =* be an implicational quantifier. Then
there is a non-negative non-decreasing functionTb_ « that
assigns to each non-negative integera a value Th—,- € N
such that for each b > 0 it is =* (a,b) = 1 if and only if
b < The+(a).

Proof: Due to the above mentioned Remark 1 we can only
put Th_,«(a) = Tb=+(a,0,0) where Tb—~(a,c,d) is the
Sfunction from the theorem 1

We define the notions of tables of maximalb on the basis
of just proved theorems.

Definition 1

1. Let = be an equivalency quantifier and letc > 0 and
d > 0 be the natural numbers. Then the partial table
of maximal b for the quantifier = and for the couple
(c, d) is the function Tbpx . q defined such that

pr%,c,d((l) =Tbx (a7 C, d)
where Tbx(a, ¢, d) is the function from the theorem 1.

2. Let =™ be an implicational quantifier. Then the func-
tion Tb—.+ from the theorem 2 is a table of maximal
b for the implicational quantifier =~.

3. Let T be a partial table of maximal b or a table of
maximal b. Then a step in the table T is each such
a > 0 for whichitisT(a) < T(a+1).

It is important that the function Tb_.- makes it
possible to use a simple test of inequality instead
of a rather complex computation. For example we
can use inequality b <Tb: (a) instead of condition

Sot %p‘(l —p)att=i<ana>s for quanti-

fier :%W)S of lower critical implication, see section 2. An
other form of the table of critical frequencies for implica-
tional quantifier is defined in [2].

Let us remark that it can be Th—+(a) = oco. A triv-
ial example gives the quantifier =7 defined such that
=T (a,b) = 1foreacha,b. Thenitis Th_ r(a) = oo for
each a.

The partial table of maximal b and table of maximal b
are called tables of critical frequencies. Further tables of
critical frequencies for ¥-double implicational quantifiers
and for X-equivalence quantifiers are defined and studied in

[8].



S Classical Definability and TCF

5.1 Association Rules and Observational Calculi

Monadic observational predicate calculi (MOPC for
short) are defined and studied in [2] as a special case of
observational calculi. MOPC can be understood as a mod-
ification of classical predicate calculus such that only finite
models (i.e. data structures in which the formulas are inter-
preted) are admitted and more quantifiers thanV and 3 are
used. These new quantifiers are called generalised quanti-
fiers. The 4ft-quantifier is a special case of the generalised
quantifiers.

Classical monadic predicate calculus (CMOPC for short)
is a MOPC with only classical quantifiers. In other words it
is a classical predicate calculus with finite models. The for-
mulas (Vz) Py (x) and (3z)(Fy) ((x # y) AP (x) A—Pa(y))
are examples of formulas of CMOPC.

If we add the 4ft-quantifiers to CMOPC we get MOPC
the formulas of which correspond to association rules. Ex-
amples of such formulas are (=, pese ©)(P1(z), P2(z))
and (< Base T)(P1(x) V Ps(z), Po(x) A Py(z)). The val-
ues of these formulas can be defined in Tarski style see [2].
We suppose that the formulas are evaluated in{0,1} - data
matrices (i.e. finite data structures), see example in Fig. 2
where predicates P, ..., P, are interpreted by columns -
functions f1, ..., f, respectively.

row P1 P2 Pn Pl\/Pg PQ/\P4
of M| fi fo ... fn | max(fi,fs) min(f2,fa)
01 1 0o ... 1 0 1
09 0 1 1 1 0
on |1 0 ... 0 0 1

Figure 2. Example of {0,1} - data matrix

The rule (= z)(Py(z) V Ps(x), Py(z) A Py(z)) can be
written in various forms, e.g. (=)(Py V P3, P, A Py) or
P VvV Py = P, \ Py. Tts evaluation is in any case based
on the value &~ (a, b, ¢,d) where (a, b, ¢, d) is the 4ft-table
of Pi(x) V Ps(x) and Pa(x) A Py(x) in the data matrix in
question. The same is true for each association rule of the
form (~ ) (1p(), ¥ (x)).

Let us remark that the association rule of the form like
A(1,2,3) ~ B(4,5) can be understood (informally speak-
ing) like the rule A; V A; V A3 =~ By V Bs where A; is a
predicate corresponding to the basic Boolean attribute A(1)
etc.

5.2 Definability and Associated Function

The natural question is what association rules are
classically definable. We say that the association rule
(= z) (p(x), Y(x)) - formula of MOPC is classically de-
finable if there is a formula ® of CMOPC with equality such
that ® is logically equivalent to (= x)(p(z),%(x)). The
association rule (=~ z)(Py(z) V Ps(z), Pa(x) A Py(x)) is
e.g. classically definable if it is equivalent to the formula
created from the predicates Py (z), Pa(x), Ps(x), Pa(z),
propositional connectives —, V, A classical quantifiers 3,V
and from the binary predicate of equality =. The precise
formal definition is given in [2], see also [9]. If the as-
sociation rule (=~ x)(p, ) is classically definable then we
also say that the 4ft-quantifier = is classically definable and
vice-versa.

The question of classical definability of (not only) asso-
ciation rules is solved by the Tharp’s theorem proved in [2].
The Tharp’s theorem is but too complex and general from
the point of view of association rules. A more intuitive cri-
terion of classical definability of association rules is proved
in [4] see also [9]. This criterion is based on the associated
function Asf~(a,b,c,d) of the 4ft-quantifier ~ (we write
sometimes only =~ (a, b, c,d) instead of Asfx(a,b,c,d),
see section 2).

The criterion uses the notion of interval in N* where N
is the set of all natural numbers. It is defined as the set

1211X12><I3XI4

such that it is for¢ = 1,2,3,4 I; = (k,1) or I; = (k, 00)
where 0 < k < [ are natural numbers. The empty set () is
also the interval in /4.

The criterion of classical definability of association rules
is given by the following theorem proved in [4], see also [9].

Theorem 3 The 4ft-quantifier = is classically definable if
and only if there are K intervals I, ..., Ix in N4, K >0
such that it is for each 4ft table (a, b, ¢, d)

K
Asf(a,b,c,d) =1 iff (a,b,c,d) € | ] I;.

j=1
5.3 Definability of Equivalency Quantifiers

We use the criterion of classical definability based on as-
sociated functions of 4ft-quantifiers to give a very intuitive
necessary condition of classical definability of equivalency
rules. This condition says that if the equivalency quantifier
is definable then its each partial table of maximal b of this
quantifier has only finite number of steps. It is proved in the
next theorem.



Theorem 4 Let ~ be an classically definable equivalency
quantifier. Then each its partial table of maximalb has only
finite number of steps.

Proof: We suppose that = is classically definable quanti-
fier. Thus according to the theorem 3 there are K intervals
Ii,..., I in N, K > 0 such that it is for each 4ft table
(a, b, c,d)

K
Asf(a,b,c,d) =1 iff {a,b,c,d) € | ] I;.

=1

If K = 0 thenitis = (a,b,c,d) = 0 for each 4ft table
(a,b,c,d) anditis Tbpx .q(a) = 0 for each a and for each
partial table Tbpx, . 4 of maximal b of ~. It but means that
each such partial table of maximalb has no step.

Let us suppose that K > 0 and that

Ij = (a;,A;) x (bj,Bj) x (¢;,Cj) x (dj, Dj).

Suppose that for co and dyy the partial table Tbpx(a, co, dg)
of maximal b has infinitely many steps. It means that for
each natural n > 0 there are a > n and b > n such that
~ (a,b,co,dg) = 1. Thus there must bem € 1,... K
such that

I’m = <Clm,OO) X <bm,00) X <Cmacm) X <dm7Dm)

and co € (¢, Cry) and dy € (dy, D).

We suppose that the partial table Thpx(a, co,do) of
maximal b has infinitely many steps, thus there is also
a > any such that Thpx(a, co,do) < Thp~(a + 1,c¢q, dp).
Thus it is

~ (a,Thp~(a +1,co,dp),co,do) = 0.

Let us denote b’ = max(by,, Tbp~(a+ 1,cq, do)), thus it is
~ (a,b,co,dy) = 0 because of = is equivalency (see also
point II in the proof of the theorem 1).

It is however (a,b',co,do) € I, and it means that
~ (a,b,co,dg) = 1. It is a contradiction that finishes
the proof.

5.4 Definability of Implicational Quantifiers

The next theorem shows that the necessary condition
of definability of equivalency rules proved in theorem 4 is
also the sufficient condition of definability of implicational
quantifiers.

Theorem 5 Let =* be an implicational quantifier. Then
=*is classically definable if and only if its table of maximal
b has only finite number of steps.

Proof: Let Tb—~ be a table of maximal b of =",

If =* is classically definable then we prove that
Tb_.« has only finite number of steps in a similar way
like we proved in the theorem 4 that the partial table
Tbpx(a, co, do) of maximal b has finite number of steps.

Let us suppose that Tb—.~ has K steps where K > 0 is
a natural number. We prove that Tb_. is classically defin-
able.

First let us suppose that K = 0. We distinguish two
cases: Tb—~(1) = 0 and Tb—~(1) > 0.

Ifitis Tbo« (1) = O then it is also Tb—.«(0) = 0 (there
is no step). It but means that =* (a,b,c,d) = 0 for each
4ft table (a, b, ¢, d) because of it cannot be b < 0. Thus it is
=* (a,b,c,d) = 1if and only if {(a, b, c,d) € 0. The empty
set () is but also the interval in N* and the quantifier =* is
according to the theorem 3 classically definable.

Ifitis K = 0 and Tb-(1) > O then it is
=* (a,b,c,d) = 1ifand only if

(a,b,c,d) € (0,00) x (0,Tb=~(1)) x (0,00) x (0,00)

and thus the quantifier =* (a,b, ¢, d) is definable accord-
ing to the theorem 3.
Let us suppose that S > 0 is a natural number and that

0<a; <azs<...<ag

are all the steps in Tb—.-. We will define intervals
I, I, ..., Isy1 in the following way.
If Tbo«(a1) = 0then I = () otherwise

I =(0,a1 + 1) x {0, Tb=~(a1)) x (0,00) x (0,00).
Forj=2,...,5 we define
I ={aj_1,a; + 1) x (0,Tb=+(a;)) x (0,00) x (0,00) .
The interval Is1 is defined such that

Isi1 = (ag,00) x (0,Tb=+(ag)) x (0,00) x (0,00) .

It is clear that the intervals I, I, . .., Isy1 are defined

such that
S+1
=" (a,b,¢,d) =1 iff (a,b,c,d) € U I
=1

and according to the theorem 3 the quantifier=" is defin-
able. This finishes the proof.

6 Undefinability of Particular Quantifiers

First we prove that the 4ft-quantifiers =, pase Of
founded implication, :>;_’a7 Base Of lower critical implica-
tion are not classically definable. We will use the following

lemmas.



Lemma 1 Let =* be an implicational quantifier that satis-
fies the conditions

a) There is A > 0 such that for each a > A there is b such
that =* (a,b) = 0.

b) Foreacha > 0andb > 0 such that =* (a,b) = 0 there
isa’ > aforwhichitis =" (a’,b) = 1.

Then the table Tb—.~ of maximal b of =* has infinitely many
steps.

Proof: If the quantifier =* satisfies the condition a) then it
is Tho+(a) < oo for each a > 0. If the quantifier =*
satisfies the condition b) then there is for each a > A
such o/ > a that =* (a/,Tb=+(a)) = 1. Thus it is
=* (a,Tb=«(a)) = 0 (by the definition of Tb—.«) and
=* (a/,Tb=~(a)) = 1. It means that between a and o’
there must be a step s of the table Th_. «.

We have proved that for eacha > Athereisastep s > a
of the table Tb_.«. It but means that the table Tb—.- has
infinitely many steps. This finishes the proof.

Lemma 2 Let us suppose that =~ is an equivalency quanti-
fier and cy and dy are natural numbers such that the follow-
ing conditions are satisfied.

a) Thereis A > 0 such that for each a > A there is b such
that ~ (CL, b, co, dg) =0.

b) Foreacha > 0andb > 0 such that = (a, b, cg,dy) =0
there is o' > a for which=~ (a’,b,c,d) = 1.

Then the partial table Tbpx(a, co, do) of maximal b of ~
has infinitely many steps.

Proof: The proof is similar to the proof of the lemma 2.

Lemma 3 Let us suppose that0 < p < landi > 0is a
natural number. Then it is

lim (Ij)pi(l —p)K_i =0

K—oo

Proof: It is:

<§)p%1mKi§.K%%lpVW1p)i—

Thus it is enough to prove that forr € (0,1) and i > 0 it is

lim K% =0.
K—oo

To prove this it is enough to prove that forr € (0, 1), real x
and a natural i > 0 it is

lim z'7* =0.
Tr— 00

Itislim, oo 2 = 00, limy,_o 7* = 0 and thus according
to the I’Hospital’s rule it is

) i ) (4)
lim z'7* = lim x/ = lim (") — =
T—00 z—oo 17T T—00 (r*m)(l)
7!
lim —— = lim »* =0,
T—00 (7 11’17')17"*“7 T—00

where ()% is an i-th derivation of x* and analogously for
(=)

Lemma 4 Let us suppose a > 0 and b > 0 are natural
numbers. Then it is for eachk € (0,b) and0 < p < 1

a+b ,
1 atk(1 _ o=k _q.
s (o)

Proof: It is:

at+b\ ok b—k
a 1— —
(a + k)p (1=p)

::(a+b%12+—m>pm%(1_py_k:

a+b\ or b—Fk
= GTE(1 — <
(b_k>p (I-p) "<

(a + b)bfkpaJrk(l 7p)b7k.

Thus it is enough to prove that it is

IN

lim (a+ )" *p® =0
a—0o0
The proof of this assertion is similar to the proof of the as-
sertion ‘
lim K% =o0.
K—oo

in the lemma 3.

Lemma 5

1. The 4ft-quantifier =, pase of founded implication sat-
isfies the condition a) from the lemma 1 for each
0 < p < land Base > 0.

2. The 4ft-quantifier é;)’a,Buse of lower critical impli-
cation satisfies the condition a) from the lemma 1 for

each) < p<1,0< «a<0.5and Base > 0.
Proof:

1. We have to prove that there is A > 0 such that for each
a > Athere is b such that =), pase (a,b) = 0 for each
0 < p < 1and Base > 0. Let us remember that
the 4ft-quantifier =, Base is defined by the condition

aib > pAa > Base-

Let be A > Base and a > A. Then we choose b’ such
that b’ > a%’*a. Then it is = Base (a,b") = 0.




2. We have to prove that there is A > 0 such that for each

a > A there is b such that =, , ... (a,b) = 0 for
each) < p<1,0< a<0.5and Base > 0. Let us
remember that the 4ft-quantifier :>1137a7 Base IS defined
by the condition

a-+b

b\ .

Z (a + )pl(l —p)*t*~t < a Aa> Base.

; i

1=a

Let be A > Base and a > A. We show that there is a
natural b such that

a-+b

a+b i a+b—1i
Z( i )p(l—p) Hoisa,

i=a

Iris 3010 (“‘H’)pi(l —p)**tP=" > « if and only if

1=a K2

a—1

S (“Ta-prtsi-a
1

=0

b _ »
because of 3770 (“TY)pi(1 — p)att—i = 1.
According to the lemma 3 there is a natural V. > a

such that it is

(Z)p%l—p)v‘i S

a

fori=0,...,a— 1. Thusitis

ai <‘Z./>pi(1 -p)V i <1l-a

i=0
Let us choose b =V — a. It means

a—1

> (“Ta-prtsi-a
1

=0

and it finishes the proof.

Lemma 6

1. The 4ft-quantifier =, pqse of founded implication sat-
isfies the condition b) from the lemma 1 for each
0 < p < 1land Base > 0.

2. The 4ft-quantifier :ﬁ)’a’Base of lower critical implica-
tion satisfy the condition satisfies the conditionb) from
the lemma 1 for each0 < p < 1,0 < a < 0.5 and

Base > 0.
Proof:

1. We have to prove that for eacha > 0 and b > 0 such
that =), Base (a,b) = 0 there is o’ > a for that it is
=, Base (@,b) = 1. The proof is trivial, we use the
Jact that lim,_, o aLer =1

2. We have to prove that for eacha > 0 and b > 0 such
that =), g (a,b) = 0 thereisa’ > a for that it is
=

a,b) = 1.

;),oz,Base (

Let us suppose that :>;;,a,Base (a,b) = 0. It means

that a < Base or ¥.°1° (‘“Fb)pi(l —p)att=i s

1=a 1
According to the lemma 4 there is naturaln such that
foreache, e >nandk =0,...,bitis

etb) cik b—k a
€ 1_ .
<e+k>p =P <3

Let us choose o’ = max{a,n, Base}. Then it is
a' > Base and also

Thus it is =), , pase (@/,b) = 1 and it finishes the
proof.
Theorem 6 The 4ft-quantifier =, puse of founded impli-
cation is not classically definable for each0 < p < 1and
Base > 0.
The 4ft-quantifier :B;)’(%Base of lower critical implica-
tion is not classically definable for each0 < p < 1,
0 < a < 0.5 and Base > 0.

Proof: The table of maximal b of the 4ft-quantifier=-, Base
of founded implication has infinitely many steps according
to the lemmas 2, 5 and 6. Thus it is not classically definable
according to the theorem 5.

The proof for the quantifier =

.o, Base LS analogous.
Q@

Now we prove that the the Fisher’s quantifier~,, pase., 18
not classically definable. Let us remember that it is defined
for 0 < a < 0.5 and Base > 0 by the condition

min(r,k) (k) (n—k)

; % ( Tr)fi

<a A ad > bc N a > Base-

n

We use the following results from [2].

Definition 2 (see [2]) The equivalency quantifier ~ is sat-
urable if it satisfies:

1. For each 4ft-table {a,b,c,d) with d # 0 there is an
a’ > a such that =~ (a’,b,c,d) = 1.

(
2. For each 4ft-table {a,b,c,d) with a # 0 there is an
d' > d such that =~ (a,b,c,d’) = 1.



3. For each 4ft-table (a,b,c,d) there is a 4ft-table
(a0, d") such thata' > a, b/ > b, ¢ > ¢, d > d
and ~ (a’,V',c',d") = 0.

Theorem 7 The Fisher’s quantifier ~q Base IS saturable
for 0 < a < 0.5 and Base > 0.

Proof: See [2].

Lemma 7 There are natural numbers co and dgy such that
the Fisher’s quantifier ~, Base Satisfies the conditions a)
and b) from the lemma 2.

Proof: We prove that the conditions a) and b) are satisfied
forco =1 and dy = 1. We have to proof

a) Thereis A > 0 such that for each a > A there is b such
that ~q pase (a,0,1,1) = 0.

b) For eacha > 0 and b > 0 such that = (a,b,1,1) = 0
there is o’ > a for which ~q pgse (a/,b,1,1) = 1.

Let us choose b = a + 1 for each a > Base, then it is
ad < be and thus it is ~q pese (a,0,1,1) = 0. It means
that the condition a is satisfied.

The condition b follows from the fact that the Fisher’s
quantifier ~q Base is saturable, see theorem 7.

Theorem 8 The Fisher’s quantifier ~ Base is not classi-
cally definable for each0 < o« < 0.5 and Base > 0.

Proof: The partial table Tbp.., ... (a,1,1) of maximal b
of ~q,Base has infinitely many steps according to the lem-
mas 7 and 2. Thus it is not classically definable according
to the theorem 4.

7 Conclusions

We have presented a simple criterion of classical defin-
ability of the important 4ft-quantifiers. This criterion is
based on the tables of critical frequencies that are itself im-
portant tool for verification of association rules. This crite-
rion depends on the class of association rules (i.e. the class
of 4ft-quantifiers) we deal with. We also pointed out to the
relations of the classes of association rules to the important
deduction rules concerning association rules see Sect. 3.

Let us remark that there are further interesting and prac-
tically useful relations of tables of critical frequencies,
classes of association rules, logical properties of associa-
tion rules and properties of association rules in the data
with missing information. They are partly published in
[2, 5, 6, 7] and in more details investigated in [4, 8].
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On the Recursion Theoretic Complexity of
Privacy Preserving Data Mining
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Data mining is the process of users posing queries and extracting in-
formation often previously unknown using machine learning and statistical
reasoning techniques. Because of data mining tools, even naive users can
now make correlations and associations. If the extracted information is sen-
sitive then there could be security violations. Furthermore, the extracted
information could violate the privacy of individuals. That is, data mining
is essentially a threat to security and privacy of individuals. Much of the
recent work has focused on privacy preserving data mining where the goal
is to carry out data mining, but at the same time ensure the privacy of the
individuals as much as possible.

In this paper we examine the privacy problem that results from data min-
ing as well as making associations and deductions and explore the recursion
theoretic complexity of the privacy problem. We view the privacy problem as
an aspect of the inference problem and give a definition of the problem based
on deductive databases. We then state and prove the unsolvability of the
general privacy problem and then obtain a characterization of this problem
with respect to recursion theory. We then provide directions for examining
the computational complexity of the privacy problem.
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Abstract The combination of RLSC with Gaussian kernels and the
usual choice of spherical covariances gives an equal weight
For the recent NIPS-2003 feature selection challenge to every component of the feature vector. This poses ap_rob—
we studied ensembles of regularized least squares classiléM if & large proportion of the features consists of noise.
fiers (RLSC). We showed that stochastic ensembles of sim?Vith the datasets of the challenge this is exactly the case.
ple least squares kernel classifiers give the same level of ac Order to succeed in these circumstances, noise variables
curacy as best single RLSC. Results achieved were ranked€€d 0 be removed or weighted down. We aggpigemble-
among top best at the challenge. We also showed that per_based variable fllltenn_go remove n0|se.\./ar|e_1bles. A Ran-
formance of a single RLSC is much more sensitive to the.dom Forest (RF) is trained for the gIaSS|f!cat|oq task, and an
choice of kernel width than that of an ensemble. As a con-importance measure for each variable is derived from the
tinuation of this work we demonstrate that stochastic en- forest [4]. Only highest ranking variables are then passed to
sembles of least squares classifiers with randomized ker-RLSC. We chose Random Forests (RF) for this task for sev-
nels and OOB-postprocessing often outperform the best sin-£ral réasons. RF can handle huge numbers of variables eas-
gle RLSC, and require practically no tuning. We used the ily and global relative variable |m.porta.nce is derived as a
same set of very high dimensional classification problemsPY-Product of the forest construction with no extra compu-
presented at the NIPS challenge. Fast exploratory Randomtation involved. - _
Forests were applied for variable filtering first. In this paper we study empirically how a stochastic en-
semble of RLSCs with random kernel widths compares to
a single optimized RLSC. Our motivation to do this is the
well known fact that ensembles of simple weak learners are
known to produce stable models that often significantly out-
perform an optimally tuned single base learner [3, 9, 4].
Another motivating factor is the elimination of the kernel
Regularized least-squares regression and classificationwidth and regularization parameter selection procedures al-
dates back to the work of Tikhonov and Arsenin [15], together. A further advantage of ensembles is the possibil-
and has been re-advocated and revived recently by Poggioity of parallelization. Using much smaller sample sizes to
Smale and others [13, 6, 14, 12]. Regularized Least Squaresrain each expert of an ensemble could be faster than train-
Classifier (RLSC) is an old combination of quadratic loss ing a single learner using a huge data set.
function combined with regularization in reproducing ker- For an ensemble to be effective, the individual experts
nel Hilbert space, leading to a solution of a simple linear need to have low bias and the errors they make should be
system. In many cases in the work cited above, this sim-uncorrelated [2, 4]. Using no regularization with LSC re-
ple RLSC appears to equal or exceed the performance ofduces the bias of the learner making it a good candidate for
support vector machines and other modern developments irensemble methods. Diversity of the learners can be accom-
machine learning. plished by training base learners using independent random
This simplicity of the RLSC approach is a major thread samples of the training data and by using random kernel
in this paper. We verify the above mentioned findings us- widths. The latter is the main topic of this paper.
ing the NIPS 2003 Feature Selection Challenge datasets. All  The structure of this paper is as follows. We begin by
these five datasets define binary classification problems. briefly describing the RLSC, theory behind it, and its con-

1. Introduction



nections to support vector machines. We discuss ensemblesfhe hypothesis spacé& here is a Reproducing Kernel
especially ensembles of RLSCs and the interplay of regu-Hilbert Space (RKHS) defined by kerngl, and~ is a pos-
larization and bias in ensembles. The scheme for variableitive regularization parameter.

filtering using ensembles of trees is discussed next, after The mathematical foundations for this framework as well
which we describe experimentation with the NIPS2003 fea- as a key algorithm to solve (2) are derived elegantly in [13]
ture selection challenge data sets. We discuss our findinggor the quadratic loss function. The algorithm can be sum-
regarding ensembles of random kernel LSCs, and concludemarized as follows:

by touching upon several possible future directions. 1. Start with the datées, yi)™ ,.

2. Regularized Least-Squares Classifica- 2. Choose a symmetric , positive definite kernel, such as

tion (RLSC) , _lle=a'ii?
K(z,a"y=e " 2.2 . 3)

In supervised learning the training data;, y;)™, is

used to construct a functiofi : X — Y that predicts or 3. Set
generalizes well. To measure goodness of the learned func- Z ciK(z;,2), (4)
tion f(x) a loss functionL(f(x), ytrue) IS Needed. Some
commonly used loss functions for regression are as follows: wherec is a solution to
e Squareloss ako: L(f(z),y) = (f(z)—y)? (the most
common), (myI+K)e=y, 5)
e Absolute value, oLy loss:L(f(x),y) = [f(x) —yl, which represents well-posed linear ridge regression.
e Vapnik'se-insensitive lossL(f (x), y) = (|f(x) —y|— The generalization ability of this solution, as well choos-
€)+ ing the regularization parameterwere studied by Cucker
e Huber's Iosszfunction : and Smale in [6, 7].
{ ly — f(z)|? for|f(z) —yl <9 Thus, the regularized least-squares algorithm (RLSC)
6(ly = f(x)] —6/2), otherwise solves a simple well defined linear problem. The solution is
Examples of loss functions for classification are a linear kernel expansion of the same form as the one given

. e _ . by support vector machines (SVM). Note also that SVM
* MlscIaSS|f|cat|onL(f(x),y) = I{sign(f(=)) # v) formulation naturally fits in the regularization framework
* Exponential (Adaboostk(f(z),y) = exp(—yf(z)) (2). Inserting the SVM hinge loss functiob(f(z),y) =

¢ Hinge loss (implicitly introduced by Vapnik) in binary (1 — yf(z))+ to (2) leads to solving a quadratic optimiza-

SVM classification: tion problem instead of a linear solution to find coefficients
L(f(z),y) = (L —yf(x)) - I(yf(z) > 1) cin(4). _ _ _
o Binomial deviance: L(f(z),y) = log(1 + RLSC with quadratic loss function, that is more com-

exp(—2yf(z))) mon for regression, has also proven to be very effective in
binary classification problems [14].
e Squared errorL(f(z),y) = (1 — yf(x))?

Given a loss function, the goal of learning is to find an 3. Model Averaging and Regularization
approximation functionf(z) that minimizes the expected

risk, or the generalization error 3.1. Stability

EpwapL(f(2),y) (1) Generalization ability of a learned function is closely re-

where P(x,y) is the unknown joint distribution of future ob- lated to its stability. Stability of the solution could be loosely
servations (X,y). defined as continuous dependence on the data. A stable so-
Given a finite sample from the (X,Y) domain this prob- lution changes very little for small changes in data. A com-
lem is ill-posed. The regularization approach championed prehensive treatment of this connection can be found in [2].
by Tomaso Poggio and rooted in Tikhonov regularization ~ Furthermore, it is well known that bagging (bootstrap
theory [15] restores well-posedness (existence, uniquenessiggregation) can dramatically reduce variance of unstable
and stability) by restricting the hypothesis space, the func-learners providing some regularization effect [3]. Bagged
tional space of possible solutions: ensembles do not overfit, and they are limited by learning
m power of base learners. Key to the performance is a low bias
; of the base learner, and low correlation between base learn-
f—argljgrgngL (@), v) +v1fl%x @ o



Evgeniou experimented with ensembles of SVMs [8]. He  We experimented with two schemes to construct the
used a few datasets from UCI tuning all parameters sepatraining data matrix. Since each expert populates the ma-
rately for both a single SVM and for an ensemble of SVMs trix only with oob-samples, the empty spaces correspond-
to achieve the best performance. He found that both performing to the training data of the expert can be filled in either
similarly. He also found that generalization bounds for en- with zeroes, or with the expert outputs by passing the train-
sembles are tighter than for a single machine. ing data through the expert. The latter is optimistically bi-

Poggio et al [12] studied the relationship between sta- ased, and the former is biased toward zero, the “don’t know”
bility and bagging. They showed that there is a bagging condition. In the latter case we also upweighted the entries
scheme, where each expert is trained on a disjoint subseby the reciprocal of the fraction of missing entries in order
of the training data, providing strong stability to ensembles to compensate for the inner product of the regression coef-
of non-strongly stable experts, and therefore providing the ficients with the entries to sum to either plus or minus one.
same order of convergence for the generalization error as Since expert outputs are correlated (although the aim is
Tikhonov regularization. Thus, at least asymptotically, bag- to have uncorrelated experts!) PCA regression can be ap-
ging strongly stable experts would not improve generaliza- plied to reduce the number of regression coefficients. Par-
tion ability of the individual member. tial Least Squares regression could also be used instead of

PCA regression.

3.2. Ensembles of RLSCs 4. Variable Filtering with Tree-Based Ensem-

bles
Since the sizes of the challenge datasets are relatively

small, we compare simple stochastic aggregation of LSCS  practically for all datasets (except arcene) from the chal-
using random kernel widths to the best individually trained lenge we noticed significant improvement in accuracy when

RLSC. only small (but important) fraction of the original variables
We are looking for diverse low biased experts: for RLSC was used in kernel construction.
bias is controlled by regularization parameter, andn We used fast exploratory tree-based models for variable

case of Gaussian kernel. Instead of bootstrap sampling fronfiltering. One of many important properties of CART [5]
training data which imposes a fixed sampling strategy, we is its embedded ability to select important variables during
found that often much smaller sample sizes of the order oftree construction (greedy recursive partition, where impu-
30-50% of the data set size improve performance. A fur- rity reduction is maximized at every step), and therefore re-
ther source of diversity is introduced by each expert having sistance to noise. Variable importance then can be defined

a different random kernel width. as
Combining the outputs of the experts in an ensemble can M(zy,,T) = Z Al(zpy,,t) (6)
be done in several ways. The simplest alternative is major- teT

ity voting over the outputs of the experts. In binary classi- whereAI(z,, ) is the decrease in impurity due to an ac-

fication this is equivalent to averaging the discretized (+1,- tual or potential split on variable,, at a node of the opti-

1) predictions of the experts. In our experiments this per- mally pruned tred". The sum in (6) is taken over all inter-

formed better thap averqging Fh.e actual 'nume.ric expert out- -1 tree nodes where,, was a primary splitter or a surro-

puts before applying their decision function (sign). gate variable. Consequently, no additional effort is needed
A well known avenue to improve the accuracy of an en- oy its calculation.

semble is to replace the simple averaging of individual ex-  Two recent advances in tree ensembles - Multivariate

perts by a weighting scheme. Instead of giving equal weight Agaptive Regression Trees (MART) [10, 11] and Random

to each expert, the outputs of more reliable experts arerorests (RF) [4] inherit all nice properties of a single tree,

weighted up. Linear regression can be applied to learn thesgyng provide more reliable estimate of this value, as the im-

weights. portance measure is averaged over the trees in the ensem-
To avoid overfitting, the training material to learn thisre- ple

gression should be produced by passing only such samples 1 M
through an expert, that did not participate in construction of M(zi) = -7 > M(x;,Tp). )
the particular expert. Typically this is done by using a sep- m=0

arate validation data set. Since some of the datasets used MART builds shallow trees using all variables, and

were very small in size, it was not useful to split the train- hence, can handle large datasets with moderate num-
ing sets further for this purpose. Instead, since each expertider of variables. RF builds maximal trees but chooses a
constructed only from a fraction of the training data set, the small random subset of variables at every split, and eas-
rest of the data is available as “out-of-bag samples” (oob). ily handles thousands of variables in datasets of moderate



size. For datasets massive in both dimensions a hy-

brid scheme with shallow trees and dynamic variable
selection has been shown to have at least the same a
curacy but to be much faster than either MART or RF
[1].
Note that the index of variable importance defined in the |

above measures is the global contribution of a variable to th

learned model. It is not just a univariate response-predictor

relationship.

For the NIPS challenge we used RF to select important
variables. Forest was grown using the training data until
there was no improvement in the generalization error. Typ-
ically, this limit was around 100. As an individual tree is
grown, a random sample of the variables is drawn, out of
which the best split is chosen (instead of considering all of
the variables). The size of this sample was typically .

Figure 1. The importance of the top 33 out
of 500 variables of Madelon derived from a
training set of 2000 cases in 500 trees. Vari-
able importance has a clear cut-off point at
19 variables.

5. Experiments with NIPS 2003 Feature Se-

s validation was thus not done over the whole possible range
lection Challenge Data Sets

of the number of selected variables.
_ Variable set was thereafter fixed to the one that pro-
The purpose of the NIPS 2003 challenge in feature se-qced the smallest cross-validation error, with two excep-
lection was to find feature selection algorithms that signif- {j5ns: Contrary to other data sets, on arcene the error rate
icantly outperform methods using all features, on all five ;sing the validation set did not follow cross-validation error
benchmark datasets. The datasets and their (diverse) chagyt was the smallest when all variables were used. Arcene
acteristics are listed in Table 1. is evidently such a small data set that variable selection and
Of these data sets, only Dorothea was highly unbalancedcassifier training both using the 100 training samples, will
with approximately 12% of samples in one class, and 88% gyerfit. The second exception is dexter, which gave the best
in the other. The rest of the sets had an approximately bal-resyits using 500 variables ranked by maximum mutual in-
a_nced class distribution. All tasks are two-class classifica-formation with the class labels [16].
tion problems. At this point we also experimented with variable stan-
dardization and weighting variables by their importance.
Due to lack of space these experiments are not tabulated,

5.1. Variable Selection Experiments
but the decisions are summarized in table 3

Initial experimentation was performed to deter-
mine whether variable selection was necessary at all.5.2, Classification experiments with ELSCs using
We trained ELSCs for madelon and dexter data sets. Re- random kernels
sults are given in Table 2 as the averages of ten-fold cross
validation. An individual RLSCs has two parameters that need to be
These results clearly indicated that RLSC is sensitive to determined by cross-validation. These are the kernel width
noise variables in data, and that variable selection based o2 and the regularization parameterFor a single RLSC,
importances derived from Random Forests works well. regularization is critical in order not to overfit. The choice
For the rest of the experiments, we adopted the follow- of the parameter needs to be made by cross-validation,
ing variable selection procedure. Variables are ranked by aand appears to be very data dependent. This leads to opti-
random forest as described in Sec. 4. If there are significantmization in a two-dimensional parameter space using cross-
cut-off points in the ranked importance, the variable set be- validation. As an example, we present this optimization for
fore the cut-off point is selected. Figure 1 shows a clear ex- the Madelon data set in Fig. 2.
ample of such a cut-off point. An ensemble of stochastic LSCs is less sensitive to ker-
For each data set, the smallest possible variable set as innel width, does not require search for the regularization pa-
dicated by a cut-off point was tried first. If the results were rameter, is not sensitive to the ensemble size (once itis large
unsatisfactory, the next cut-off point was searched, and soenough), and is not very sensitive to the fraction of data
on, until satisfactory results were obtained. The maximum sampled to train each LSC [17]. Our motivation in using
number of variables considered was about 500. Full cross-random kernels, or more precisely, random kernel widths,



Set Size Type Number of of variables  Training Examples Validation Examples

Arcene 8.7 MB Dense 10000 100 100
Gisette 225MB Dense 5000 6000 1000
Dexter 0.9 MB  Sparseinteger 20000 300 300
Dorothea 4.7 MB  Sparse binary 100000 800 350
Madelon 2.9 MB Dense 500 2000 600

Table 1. NIPS2003 Feature Selection Challenge Data

Dataset Variables Errorrate using Selected Error rate using

all variables variables selected variables
madelon 500 0.254 19 0.093
dexter 20000 0.324 109 0.074

Table 2. Comparison of no variable selection to variable selection.

023 / —TTEEE Data Optimized Optimized| Random kernel
" ozasas set RLSC ELSC ELSC
— 0.1
020 — arcene | 0.1331 0.1331 0.1130
gij - 3 gisette 0.0210 0.0210 0.0200
) — 5

dorothea| 0.1183 0.1183 0.1140
madelon| 0.0700 0.0667 0.0717
dexter 0.0633 0.0633 0.0700

0.16
0.15
0.14
0.13
0.12
O e —

0.1
0.09

0.08
=Inf

Table 4. Error rates using the separate valida-
tion data set after optimizing o2 and ~ for a
-3 -2 -1 0 single RLSC, and ¢2 and the fraction of data
sampled for each LSC in an ensemble of 200
classifiers. Random kernel ELSC required no
parameter tuning.

Figure 2. Single RLSC: Cross-validation ex-
perimentation in order to find the optimal
combination of kernel width and regulariza-
tion parameter for madelon data set. Vertical
axis is the 10-fold cross-validation error rate

on training data, horizontal axis is  log;,(7), . ' :
and each curve corresponds to a specific ker- The ensemble size was fixed to 200, and the fraction of

nel width. Legend displays the multiplier to training data to train each LSC was fixed to 0.5. These were
&2 —37 5 near-optimal values for ELSCs according to our earlier ex-
“w o periments [17].

Ensemble output combination was done using PCA-

. . regression. We experimented also with plain regression us-
was to get rid of all these tunable parameters in ensemble 9 P P 9

. : e .~ "ing a mixture of training/oob samples or just the oob-
construction without sacrificing any of the generalization : .
samples, but the differences were insignificant.
performance.

Naturally, the kernel width cannot be completely ran-  We present the final classification error rates in table
dom, but in a reasonable range, which is determined by4. Even though there is no significant difference in vali-
the data. We sampled the? uniformly in the range of  dation error rates between using a single RLSC with op-
[d2,.4,4d2,..], whered,,.q is the median distance between timized parameters, an ELSCs with optimized parameters,
samples, and,,,;,, is the minimum distance between sam- or an ELSC with random kernel width, the fact that the lat-
ples. This was found to be a reasonable range for all the fiveter can be trained without any necessary parameter/model
diverse challenge datasets. selection makes it a desirable alternative.



Dataset Original variables Selected variables Selection method Standardize? Weighting?

madelon 500 19 RF yes no
dexter 20000 500 MMI yes by MI
arcene 10000 10000 none no no
gisette 5000 307 RF no no
dorothea 100000 284 RF no no

Table 3. Variable selection, standardization, and variable weighting decisions.

6. Future Directions nel width randomly selected from relatively wide range of
values determined only by basic properties of the corre-

We describe an approach in this paper that consists ofsponding dissimilarities matrix. The random sample of data

two disjoint systems, Random Forests for variable selec-used to build individual learner was relatively small. Modest

tion, and ELSC for the actual classification. Even though ensemble size (less than 200) stabilized the generalization

the two systems nicely complement each other, RF provid-error. We used consistent parameter settings for all datasets,

ing fast embedded variable selection and ELSC providing and achieved at least the same accuracy as the best sin-

highly capable base learners to compensate for the lack ofgle RLSC or an ensemble of LSCs with fixed tuned ker-

smoothness of the trees of an RF, an integrated approactmel width. Individual learners were combined through sim-

would be desirable. We describe an idea towards such a sysple OOB postprocessing PCA regression.

tem. For high dimensional noisy problems variable filtering
RF could act as one type of supervised kernel generatomwith fast exploratory ensembles of random trees (Random

using the pairwise similarities between cases. Similarity for Forests with default parameter settings) showed to be very

a single tree between two cases could be defined as the totadffective preprocessing procedure.

number of common parent nodes, normalized by the level

pf the deepest case, and summed up for t_he ensemble..M_lnReferenCes

imum number of common parents to define nonzero simi-

larity is another parameter that could be used like width in [1] A. Borisov, V. Eruhimov, and E. Tuv. Dynamic soft feature

Gau;sian kelrnels. ) ] selection for tree-based ensembles. In I. Guyon,