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Opening Remarks: 
Data Mining has been developed, though vigorously, under rather ad hoc and vague 
concepts. For further development, a close examination on its foundations seems 
necessary. The central goal in this workshop is to explore various fundamental issues of 
data mining. The scope of the workshop includes: 
 

1. Theory of Data Mining and Discovery 
2. Similarity and Dissimilarity of Learning and Discovery 
3. Logical Foundations 
4. Modeling for Data Mining 
5. Sampling and Complexity Reduction 
6. Uncertainty in Data Mining and Discovery 
7. Other New and Novel Approaches: The examination of foundation may lead to new 

directions 
 
The proceedings contain 2 invited papers and 25 contributed papers to be presented at the 
workshop. Each paper was carefully peer-reviewed. We would like to thanks all the 
authors, invited speakers, and attendees for contributing to the success of the workshop. 
Special thanks are due to the program committee for help in reviewing the submissions. 
 
This workshop follows the previous highly successful workshops: FDM 2002, held in 
Maebashi City, Japan and FDM 2003 in Melbourne, Florida, USA. We expect FDM 2004 
to be equally successful. 
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A Theory of Parameter Free Data Mining

Ming Li
Canada Research Chair in Bioinformatics

University of Waterloo

Given a collection of genomes, can we derive their evolutionary history?
What about a collection of languages? Or a collection of music scores? Or
a collection of student programming assignments? Or a collection of chain
letters? More generally, given a collection of sequences, can we cluster them
properly? Is there an application-independent information measure which
applies to all such applications?

In this talk, we will present a universal information distance and a general
method to discover similarities between sequences, any type of sequences.
We then apply the theory to infer the evolutionary histories of mammals,
languages, programs (plagiarism detection), and chain letters.

A popular version of this talk can be found in the June 2003 issue (pp.
76-81) of Scientific American, “Chain Letters and Evolutionary Histories”,
by Charles H. Bennett, Ming Li and Bin Ma.

* The word of “Parameter-Free Data Mining” was coined by Keogh-
Lonardi-Ratanamahatana



 



BI-directional BYY Learning for Mining Structures with Projected Polyhedra
and Topological Map

Lei Xu �

Department of Computer Science and Engineering, Chinese University of Hong Kong
Shatin, NT, Hong Kong, P.R. China, Email: lxu@cse.cuhk.edu.hk

Abstract

Two types of learning structures are investigated from the
perspective of Bayesian Ying Yang (BYY) harmony learning
with a bi-directional architecture. First, the Kohonen map
type of topology is revisited with a new insight and a new
variant. Next, we explain how the multi-sets modelling for
object detection can be reformed into a topological map of
multi-set-mixture. Third, we show that independent binary
factor analysis can be used to learn a type of Gaussian mix-
ture with �� Gaussian densities located on vertices of a
projected hyper polyhedra structure that are represented via
only � real vectors such that the number of free parame-
ters has been significantly reduced, thus with a much better
generalization ability. Also, an adaptive algorithm is pro-
vided for learning not only all the parameters in this struc-
ture but also determining an appropriate � automatically
during learning. Moreover, another topological type is in-
troduced into this binary factor analysis in a sense that sim-
ilar objects are encoded by inner binary codes that are close
to each other in term of smallest error bits.

1. Introduction

Given data from a world of multiple objects in term of
a set of samples, where each sample �� comes from one of
objects, one widely encountered task is to determine which
object that each sample �� comes from. Using a label � �
� to denote one object, the task is to assign a correct label
�� to each sample �� that is observed with its label missing,
which is usually said either that �� is encoded by �� or that
�� is recognized as coming from the �-th pattern.

Provided that each object is simply described by a vector
�� that is observed via each sample � after disturbed by a
noise � from a Gaussian ������ ��� ��, or equivalently � can

� The work described in this paper was fully supported by a grant from
the Research Grant Council of the Hong Kong SAR (Project No:
CUHK4225/04E).

Figure 1. Topological structure

be regarded as coming from ������� �
�
� ��. The task of es-

timating every �� from a given set of samples ���� and the
task of assigning a label � to each object represented by one
�� are closely coupled together, which have been widely
studied either under the name of minimum Mean Square Er-
ror (MSE) clustering analysis in the pattern recognition lit-
erature [10] or under the name of Vector Quantization (VQ)
in the literature of image encoding [18]. Both MSE clus-
tering and VQ are usually implemented by the well known
k-mean algorithm, which has been also widely used for var-
ious data mining problems in recent years [11].

Usually, multiple objects are not isolated from each other
but linked with various relations. Among them, an impor-
tant type, that comes from concepts such as ‘similar’, ‘near’,
etc, can be displayed by spatial relationships among ob-
jects located in the Euclidean space. Considering a regular
	-dimensional lattice topology, we attempt to locate each
object � on one node of the lattice such that objects locat-
ing topologically near should be similar to each other, as
shown in Fig.1. If we can learn from data such a topolog-
ical structure, we will be able to retrieve similar objects or
pattern classes simply from neighbors, which takes an im-
portant roles in tasks of content based retrieval, missing pat-
tern recovering, and tracing temporal patterns as encoun-
tered in bio-informatics, financial engineering.

Intuitively, to build such a topological structure we need
a similarity measure to judge whether two objects are simi-
lar. Even so, a direct placement of all the objects on a lattice
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Figure 2. One member wins, a family gains

under a given similarity measure is computationally a hard
combinatorial problem. Interestingly, this problem has been
implemented approximately in help of a biological brain dy-
namics of self-organization [17], featured by a Mexican hat
type interaction, namely, neurons in near neighborhood ex-
cite each other with learning, while neurons far away in-
hibit each other with de-learning. Computationally, such a
dynamic process can be further simplified by certain heuris-
tic strategies.

One widely used is the well known Kohonen self-
organizing map [14] that implements a strategy of one
member wins, a family gains That is, as long as one mem-
ber wins in the winner-take-all competition, all the mem-
bers of a family will gain regardless whether other mem-
bers are strong or not. As shown in Fig.2, with each node
on the lattice associated with a mean vector �� that rep-
resents an object or class, a winner-take-all competition is
made per sample �� to get the winner

�� � 
����� ��� ����
�
 (1)

Then considering a small neighborhood � � of �� that usu-
ally consists of �� knots directly connected to ��, we up-
date

����
� � ����

� � ����� �����
� ���� � ��
 (2)

As long as an appropriate size �� is specified, this learning
will finally result in a map on which nodes located near each
other have their corresponding mean vectors being close to
each other too. In the literature, a great number of studies
have been made on applying and extending the Kohonen
map.

In [30], we also get an alternative strategy of strongers
gain and then teaming together. That is, a number of
strongers in competition will be picked as winners who
not only gain learning but also are teamed together to be-
come neighbors. As experimentally demonstrated in
[6], this strategy can speed up self-organization, espe-
cially at the early stage of learning. Also, we can com-
bine it with the Kohonen map strategy by using it at
an early stage and subsequently switching to the Koho-
nen map.

the first winner

the second winner

the third winner

the fourth winner

the fifth winner

before update after update

Figure 3. Strongers gain and then teaming to-
gether

In many applications, it is not enough to represent each
object simply by a vector �� or even ������� �

�
� �� af-

ter taking noise in consideration. It is further considered
that each object is described by a parametric distribution
������� �� plus

���� �
	�


��

�
Æ��� ���

with the constraint �� � ��

	�
���

�� � 	� (3)

where �� denotes a priori probability that � comes from the
�-th object. As a result, the MSE clustering task has been
extended to estimate �� and �� which is equivalent to learn-
ing the dependence structures in the format of

���� �
�
�

��������� ��
 (4)

It is usually called finite mixture and learning can be made
in help of the EM algorithm [8, 19, 16].

In [30], the strategies given in Fig.2 and Fig.3 have
been further extended to get topology between objects with
��������� �� as a similarity measure. Specifically, eq.(1) and
eq.(2) are extended as follows:

�� � 
���
���������� ����
�

����� �
����� � ��

	 � �����

� �� � ���

����� � ����� � ����� �� �������� ��� �� � ��� (5)

where�� denotes the number of elements in �. In this way,
topological maps of various models can be obtained for ap-
plications in complicated situations [30]. When ������� �� �
����������, �� can be updated by eq.(2) and �� is up-
dated as follows:

����
� � �	� ����

���
� � ����� �����

� ���� �����
� �� � (6)

for � � ��.



p(x,y)=p(y|x)p(x)

q(x,y)=q(x|y)q(y)
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Figure 4. Bayesian Ying-Yang System

In this paper, from the perspective of Bayesian Ying
Yang (BYY) harmony learning with a bi-directional archi-
tecture, we start at revisiting the above topological learn-
ing with a new variant and also an insight on learning reg-
ularization. Then, we explain how the multi-sets modelling
learning, firstly proposed in 1994 [38, 37] for modelling ob-
jects in typical shapes such as lines, circles, and ellipses, as
well as pre-specified templates [38] and [37] in the fields of
computer vision and image recognition, can be formed into
a topological map of multi-set-mixture. Moreover, we show
that independent binary factor analysis can be used to learn
a type of Gaussian mixture with �� Gaussian densities lo-
cated on vertices of a projected hyper polyhedra structure
that are represented via only � real vectors such that the
number of free parameters has been significantly reduced in
comparison with an ordinary Gaussian mixture and thus a
much better generalization ability is obtained. Furthermore,
an adaptive algorithm is provided for learning not only all
the parameters in this structure but also determining an ap-
propriate � automatically during learning. Also, another
topological type is introduced into this binary factor anal-
ysis in a sense that similar objects are encoded by inner bi-
nary codes that are close to each other in term of smallest
error bits.

2. Bayesian Ying-Yang Harmony Learning

As shown in Fig.4, a BYY system considers coordinately
learning two complement representations of the joint distri-
bution ���� ��:

���� � ���� �� � �����������
���� � ���� �� � ����������� (7)

basing on ���� that is estimated from a set of samples
����



���, while ������, ������ and ���� are unknowns but

subject to certain pre-specified structural constraints. In a
compliment to the famous Chinese ancient Ying-Yang phi-
losophy, the decomposition of ���� �� coincides the Yang
concept with the visible domain by ���� regarded as a
Yang space and the forward pathway by ������ as a Yang
pathway. Thus, ���� �� is called Yang machine. Similarly,
���� �� is called Ying machine with the invisible domain by
���� regarded as a Ying space and the backward pathway
by ������ as a Ying path.

On one hand, we can interpret that each � is generated
from an invisible inner representation � via a backward path
distribution ������ or called a generative model

���� �
�
������������	�� (8)

that maps from an inner distribution ����. In this case,
������ is not explicitly specified or said being free to be
specified, while two pre-specified parametric models ������
and ���� form a backward path to fit the observations of �.
We say that the Ying-Yang system in this case has a back-
ward architecture (shortly B-architecture).

On the other hand, we can interpret that each � is repre-
sented as being mapped into an invisible inner representa-
tion � via a forward path distribution ������ or called a rep-
resentative model

���� �
�
������������	�� (9)

that matches the inner density ����. In this case, ������ is
not explicitly specified or said being free to be specified.
Forming a forward path, ���� is estimated from a given
set of samples and then is mapped via pre-specified para-
metric model ������ into ���� by eq.(9) to match a pre-
specified parametric model ����. We say that the Ying-Yang
system in this case has a forward architecture (shortly F-
architecture).

Moreover, the above two architectures can be combined
with ������, ������ and ���� are all pre-specified paramet-
ric models. In this case, we say that the Ying-Yang sys-
tem in this case has a Bi-directional architecture (shortly
BI-architecture).

The name of BYY system not just came from the above
direct analogy between eq.(7) and the Ying-Yang concept,
but also is closely related to that the principle of mak-
ing learning on eq.(7) is motivated from the well known
harmony principle of the Ying-Yang philosophy, which is
different from making ���� by eq.(8) fit a set of samples
����



��� under the ML principle [21] or its approximation

[13] as well as simply the least mean square error criterion
[40], and also different from making ���� by eq.(10) satisfy
certain pre-specified properties such as maximum entropy
[4] or matching the following independent density [3]:

���� �
��


�����
�
��
 (10)



Under this harmony principle, the Ying-Yang pair by eq.(7)
is learned coordinately such that the pair is matched in a
compact way as the Ying-Yang sign shown in Fig.4. In other
words, the learning is made in a twofold sense that

	 The difference between the two Bayesian representa-
tions in eq.(7) should be minimized.

	 The resulted entire BYY system should be of the least
complexity.

Mathematically, this principle can be implemented by
[36, 31, 30]

�
�
���

������� (11)

������ � ������ ��
���������� �� �����������
��	����	�� � �� �� �

where � consists of all the unknown parameters in ������,
������, and ���� as well as ���� (if any), while � is the
scale parameter of the inner representation �. The task of
determining � is called parameter learning, and the task
of selecting � is called model selection since a collection
of specific BYY systems by eq.(7) with different scale val-
ues corresponds to a family of specific models that share
a same system configuration but in different scales. Fur-
thermore, the term �� � � �� �� imposes regularization
on learning [28, 30, 32], via two types of implementation.
One is called data smoothing that provides a new solution to
the hyper-parameter for a Tikinov-like regularization [22],
and the other is called normalization that causes a new con-
science de-learning mechanism similar to that of the rival
penalized competitive learning (RPCL) [39, 32, 30].

Usually ���� is fixed at a non-parametric Parzen window
density estimate [9]:

����� �
�



�

���������� �

���� (12)

where � � � is a given smoothing parameter, ����� �
�������� is simply empirical density. While ������ is ei-
ther free in a B-architecture or a parametric form in a BI-
architecture and thus will be pushed into its least complex-
ity form. E.g., ������ in a B-architecture will be determined
by �
�������������, resulting in the following least com-
plexity form:

������ � Æ�� � ������ ���� � 
���
�
�

�����������

 (13)

On the other hand, the matching nature of harmony learn-
ing will further push ������ and ���� towards their corre-
sponding least complexity forms, which makes model se-
lection possible, e.g., � is appropriately determined.

Referring details in [30], this least complexity nature in-
troduces a new mechanism that makes model selection im-
plemented either automatically during the following param-
eter learning with � initialized large enough:

�
�
�

����� ���� � ������� (14)

which makes � take a specific value such that � is effec-
tively reduced to an appropriate one, as shown in Fig.5(b).
This feature is not shared by the existing approaches in
the literature. By the conventional approaches, parameter
learning and model selection are made in a two-phase style.
First, parameter learning is made usually under the maxi-
mum likelihood principle. Then, model selection is made
by a different criterion, e.g., AIC [1], MDL [20], etc. These
model selection criteria are usually not good for parame-
ter learning, while the maximum likelihood criterion is not
good for model selection, especially on a small size of train-
ing samples.
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Figure 5. (a) Model selection made after pa-
rameter learning on every � in a given interval
�������, (b) Automatic model selection with pa-
rameter learning on a value � of large enough.

In certain circumstances. E.g., to compare with the ex-
isting model selection criteria such as AIC, MDL, the BYY
harmony learning by eq.(11) still needs to be implemented
in a two-phase style to make studies comparable. Specif-
ically, the first phase implementation of eq.(11) is made
with � enumerated from small values incrementally. At
each specific �, the inner representation � is pre-specified
to be uniform [30] such that automatic model selection will
not happen during learning by eq.(14) in the first phase, we
need to implement the second phase by the following type
of model selection criteria obtained from this mechanism:

���
�

����� ���� � ��������� (15)

as shown in Fig.5(a).
Moreover, in such a two phase style, parameter learning

for getting �� can be implemented with eq.(14) replaced by
the following Kullback divergence based parameter learn-
ing:

���
�

����� �
�
���������� ��

����������

����������
��	����	��
 (16)



Particularly, on a B-architecture, the minimization of the
above ����� with respect to a free ������ will result in

������ �
����������

����
� ���� �

�
������������	���

����� �
�
���� ��

����

����
��	��� (17)

which becomes equivalent to ML learning on ���� when
���� � ����� is given by eq.(12) [36]. In this case, we ac-
tually implement ML learning in the first phase and then
model selection by eq.(15) in the second phase.

Moreover, the implementation of both eq.(14) and
eq.(16) can be made by alternatively performing the fol-
lowing two steps:

Ying-step: fix ���� ��� update unknowns in ���� ���
Yang-step: fix ���� ��� update unknowns in ���� ���

(18)

which is called the Ying-Yang alternative procedure. It is
guaranteed that either of ����� and ����� gradually de-
creases until becomes converged. The details are referred to
[30].

3. Model Selection, Learning Regularization,
and Topological Preservation

The harmony learning by eq.(14) attempts to compress
the representation space via the least complexity nature that
is demonstrated with a winner-take-all (WTA) competition
by eq.(13). This type of parameter learning aims at a com-
pact inner representation with an automatic model selection
by discarding extra representation space during parameter
learning. However, there is no free lunch. The WTA oper-
ation by eq.(13) locally per sample will make learning be-
come sensitive to the initialization of parameters and the
manner that samples are presented, which usually leads to a
local maximum solution for eq.(14).

With a soft competition by ������ in eq.(17) to replace
the WTA competition by eq.(13), the ML learning, or equiv-
alently the KL learning by eq.(16) with a B-architecture and
an empirical density by eq.(12), is regularized with a more
spread inner representation that improves the local maxi-
mum problem. However, there is no free lunch too. It makes
the model selection ability considerably weaken, especially
on a small size of samples. Thus, making model selection by
eq.(15) is needed after parameter learning. However, as dis-
cussed previously in the introduction section, the two phase
style implementation costs computation extensively. Instead
of the two phase style, regularization to the WTA by eq.(13)
may also be imposed to the harmony learning by eq.(14)
such that automatic model selection still occurs via either
some external help or certain internal mechanism.

Externally, we can combine the KL learning by eq.(16)
with the harmony learning by eq.(14), by which we get a
spectrum of learning models. The details are referred to Sec.
23.4.2 in [26]. Another spectrum, that also varies between
model selection ability and regularization ability, can be ob-
tained via internally replacing ����� by a family of con-
vex functions for divergence measuring. Also, two differ-
ent forms of the term �� � � �� �� introduce two types of
regularization on learning under the name �-regularization.
The details are referred to Sec.22.6.3 in [25].

Internally, regularization to the WTA by eq.(13) can
be imposed during the harmony learning by eq.(14) via a
constrained ������ in a BI-architecture. Instead of letting
������ free to be decided by eq.(13), we consider a BI-
architecture with ������ designed in a structure that will
not lead to the WTA by eq.(13). Specifically, different struc-
tures of ������ will lead to regularization with different fea-
tures, which are shortly summarized under the name BI-
regularization.

Typical examples are discussed as follows:

(a) A collection of ordered winners We consider that a
collection of winners shares-the-all (STA) instead of
only one winner-take-all (WTA), such that the local
optimal problem can be alleviated. In the cases that �
takes discrete values, we consider

������� �
�
�����

����
��Æ�� � ���� (19)

where �� consists a collection of values that � � may
take, with each value denoting a unknown winner,
and the number of winners is decided by an award-
ing scheme, e.g., the number is ��� � � for a scheme
of one 1st prize, two 2nd prizes, four 3rd prizes. Cor-
respondingly, ������ represents the prizes to be pre-
sented to the winners, e.g., ������ takes the value 
�
for the 1st price only at one in ��, the value 
� for
the 2nd price at two in ��, and the value 
� for the
3rd price at four in ��, where we have 
� � 
� � 
�
and
�

����
����

�� � 	. Specifically, which ones in ��

get what prizes are determined by �
�������������
that lead to �� consisting of the first � largest values
of �����������, with the first one for the 1st prize, the
next two for the 2nd prizes, and the rest for the 3rd
prizes. Then, the parameters � of ����������� are up-
dated to increase the following �������

������� �
�
�����

����
�� �� �������������

 (20)

In implementation, it can be made via gradient ascend-
ing of either this ������� or ������ �� �������������
 per
�� � ��. For the latter, those updating rules for the



case with eq.(13) on �� can be directly adopted on ev-
ery �� � �� simply with the learning step size �� re-
placed by ��������.

(b) A winning team Instead of considering a collection
of winners, we can also consider that competition is
made among teams with each team consisting of indi-
viduals with similar qualifications. Thus, the winner-
take-all is replaced by “all the individuals of the win-
ning team share the all”. In implementation, we still
consider eq.(19) but with a different � � that consists
of one �� plus a set of values of � � that are close to ��.
Moreover, ������ takes 
� at �� and smaller values for
other �� according to its closeness to ��. E.g., in the
case that � is a binary vector, �� consists of those of ��

that differ from �� with only one bit. In the case that �
is real, we consider

������ � ������� �
�
���� (21)

with a given ��� � � that can be determined in cooper-
ation with a ��-regularization.

(c) Competitive experts Considering to approximate the
deterministic mapping function that has to be obtained
by eq.(13) via optimization, we consider
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from which eq.(13) is simplified into

������ � Æ�� � ������
���� � !
������������
������ (22)
����� � 
���
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That is, there are # experts that competes to perform
the mapping �
 �. In this case, its regularization role
can be observed from the perspective that the number
of local maximums in eq.(13) considerably reduces to
simply # possibilities. However, though the obtained
���� is a global solution of eq.(13) under the constraint
by eq.(22), it can be far away from the global solution
of eq.(13) with no constraint on ������. This can af-
fect the performance of the learned BYY system too.
One solution is let # to be large enough.

(d) ������ in specific structure In certain situa-
tions, we know or approximately know the structure
of ������ from considering the optimal inverse struc-
ture of ����������. One example is encountered when
both ������ and ���� are Gaussian. In this case, it fol-
lows from eq.(13) that

���� � $���
 (23)

Another example is using ������ in eq.(17), especially
a Gaussian mixture when ������ � ������ ����,
which was firstly proposed in [32] and has been fur-
ther shown in [15] that this type of regularization actu-
ally performs a RPCL-like learning mechanism.

It also deserves to note that the a joint consideration
on the structure of ������ and the form of the term � � �
� �� �� may further lead to an improvement. One typical
case is the structure given by either eq.(23) or eq.(22) where
we know an analytic expression of ���� that is usually dif-
ferentiable with respect to �. In this case, with ���� �
����� by eq.(12) put into eq.(11), we get

������ � �
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��� �� ��������������
� �� �����
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&� ��'���

&�&��

���� � �� � ������

'��� � ����������������
 (24)

In this case, �� � �����, data smoothing regularization
acts in the domain of � directly via � and in the domain of �
indirectly via � and '���. Ignoring the part of �������, the
above equations returns to the case of Eqn.(30) in [24].

However, the above eq.(24) is not applicable when ����
by eq.(13) does not give analytic expression or the ob-
tained expression is too complicated to compute its sec-
ond order derivatives. Instead, we consider eq.(21) and
�� � ������ ���, with data smoothing regularization act-
ing in the domain of � directly via �� and in the domain of
� directly via ��. The details are referred to Sec.2(B) in [31]
and Sec.2.2.2 in [30].

3.1. Kohonen Learning, Multi-set Mixture, and
Topological Map

Winner Neighborhood

before update after update

Figure 6. A team wins, a team gains

We further consider eq.(19) but with �� being a winning
team and that � � � takes a set of discrete labels with each



discrete label denoting a location index on a lattice topol-
ogy as shown Fig.2. It follows from eq.(19) with � replaced
by � that we have

������� �
�
�����

����
��Æ��� ���
 (25)

In this case, �� can be a winning region that consists of a
set of �� that are located in the neighborhood of � �. To get a
better understanding, we focus at the following special case

�� � 
���
�
�

�

�
�

����� �� �������
 � ���
 
�

����� �

�
	� (� � � �,
�
�
� � �� � � ��,

(26)

where ����� puts a heavy weight at � and much lowered
weight � ) ( ) 	 at its neighbors in ��. As shown in
Fig.6, instead of each individual participating the competi-
tion, each node together with its neighbors joints in the com-
petition. Then, the updating is made as in eq.(5) and eq.(6).
That is, we get a strategy that a team wins, a team gains. At
the beginning, ( can be set at a very small value and thus the
situation is similar to the Kohonen map. As learning goes,
( gradually increases such that neighbors take their roles in
the competition. This can avoid that an already organized
part of map is disturbed by an isolated abnormal winner.
Roughly, the Kohonen learning can be regarded as a rough
approximation of this third strategy.

Firstly proposed in 1994 [38, 37], the multi-set mod-
elling learning is proposed for modelling objects in typi-
cal shapes such as lines, circles, and ellipses, as well as
pre-specified templates [38, 37] in the fields of computer
vision and image recognition. Main results and certain his-
toric remarks have been recently summarized in [28] under
the name of multi-set-mixture.

Though topological learning in eq.(5) and eq.(6) applies
to objects in any distribution �������, an efficient implemen-
tation can be made only when each ������� is Gaussian, i.e.,
eq.(4) is a Gaussian mixture. However, Gaussian mixture
and multi-set-mixture become conceptually equivalent and
exchangeable only on tasks of modelling lines, planes, and
subspaces. For the tasks of modelling circles, ellipses, and
other pre-specified shapes, multi-set-mixture goes far be-
yond Gaussian mixture, for which we need a new technique
to implement its learning.

As shown in Fig.7(a), samples from each object include
one deterministic part plus random noise. The determinis-
tic part is described by �����, a set of finite points or a con-
tinuous set of real points in *�, subject to a parametric set �
of a finite number of unknown parameters to be determined.
Each ����� represents a shape such as line, curve, and ellip-
sis, as well as a pre-specified shape. Subject to such a set
�����, a sample � is represented by

��� � 
�� ���
�������

+��� ���

Figure 7. Multi-sets mixture

+��� �� � 
����� ���� ���� �� � �� �� (27)

where ��� is called the best reconstruction of � by �����,
and ���� ��� � ���� ���� is called the reconstruction error of
����� per sample �. Moreover, +��� �� is a given cost mea-
sure for the discrepancy ���� �� such that +��� �� � � and
+��� �� � � if and only if ���� �� � � or � � �. The most
widely used +��� �� is

+��� �� � ���� ������
� ���� ��� (28)

which is called the Mahalanobis distance with�� being pos-
itively defined, e.g., it can be obtained from the Riemannian
metric [2] on �����. This +��� �� degenerates to the square
distance between �� � when �� � � . In this case, we call ���
the least square reconstruction of � by �����.

The best modelling of ����� to a given set of samples is
made by determining �� such that

���
��


�
���

+��� ���� +��� ��� � 
����� ���� � ���
�������

+��� ���

(29)
where +��� ��� denotes the cost between the discrepancy be-
tween � and its best reconstruction ��� via �����. It can get
an explicit expression when the parameter set represents
a line, a plane, a subspace, and a circle [28]. Generally it
is obtained via a minimizing procedure via searching �� �.
While parameters ���� can be learned via RPCL learning
[34]:

����� � ������� � ���������+��� ����

���� �

��
�
(�� if � � �� � 
�����
 +���� �
�,
�(�� � � 
���
�
 ���� +���� �
�,
�� otherwise.

(30)

More generally, given a set of samples �� that represents
a contour of a specific shape, we have �� 
���� � �� for a
shape resulted from a displacement 
�, and

����� � �,�*�-���� � 
�� � �� � ���� (31)



where *�-�� is a rotation matrix and �� � �
�� -�� ,��. It
represents a shape resulted from a displacement 
�, a rota-
tion of an angle -� and a scaling by ,�, as shown in Fig.
7(b). Correspondingly, fitting the shape by eq.(29) becomes
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����

��� � ,�*�-���� � 
���
�
 (32)

Conceptually, a finite mixture can be applied to de-
scribe the above multi-set modelling. However, directly
considering � leads to a mixture of non-Gaussian den-
sities is not easy to implement [36, 35] since we do not
know nonGaussian distributions of �. Instead, we can re-
gard the reconstruction error ����� ��� coming from a
Gaussian ��������� and as a whole � comes from a
Gaussian mixture ������ �

�	
��� �����������. Con-

sidering the BYY harmony learning by eq.(11), with
���� �� �� � ������ ������������ as ���������� and
���� �� �� � ������ ������������ as ����������, given
���� � ����� and ������� �� � ��������� ���� �

��� we
have

� �
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where .� is irrelevant to learning, since knowing �� already
means that it does not relate to any other thing.

When � � �, from the above ����� we can implement
topological learning on a multi-set mixture by eq.(5) or plus
eq.(26) with ������� replaced by ���������. Moreover, ��

is still updated by eq.(6) and updating on � � takes the fol-
lowing specific form

����� � ����� � ��
&�� ���� ���

&��
���
� ����� ���� �� � ��
 (34)

When � �� �, a regularization under the name of data
smoothing takes its action via updating �� modified as fol-
lows:

����
� � �	� ����

���
� � (35)
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Moreover, the value of � is determined via
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where �� can be learned via a gradient ascending on
� ��� � ����� ��

�����
��

. Details about data smoothing reg-
ularization are referred to [26].

In special case that �� has only one element, with

������ �
��������� ����������	
��� ��������� ���������

� (37)

and eq.(5) and eq.(6) implemented with � � � ���������,
we return to an adaptive EM algorithm for �
������ on
a multi-set mixture. After learning, we can also select the
number / of objects via ���	 0�/� with

0�/� � �
�

	�
���

�������� ��%�����
� 
� �����

� �� �����
 (38)

It should be noted that regarding the reconstruction error
����� ��� coming from a Gaussian ��������� works well in
the cases of representing a line, a plane, and a subspace but
only acts as a kind of rough approximation in the cases of
representing of a circle and an ellipse.

Given any point �, its best reconstruction ��� by a cir-
cle is given by the intersecting point of the circle and the
straight line from � to the center of the circle. The error
����� ��� � �� � ����

� can range from � to � when � is
outside the circle but only from � to *� when � is inside the
circle, where * is the radius of the circle. Thus, instead of
���������, a better representation for ������ is given as fol-
lows:

������ �

�
���������� for � outside the circle,
'���� ����

��� for � inside the circle,
(39)

where '��� � � is monotonically decreasing from '��� �

��������� to '�*�� � � subject to
� ��

� '���	� � �
�.
For examples, '��� can be monotonically decreasing lin-
early or quadratically.

Moreover, an ellipse can be parameterized as
��� 
��-��-��� 
� � *� with � � 	1
��	� ,�� � � � � ,�

being a positive diagonal matrix and - is a rotation ma-
trix. Via a transformation � � ����-�� � 
�, the el-
lipse in the � domain is mapped into a circle �� � � *�

in the � domain. Thus, one way is to turn every sam-
ple �� into �� � ����-��� � 
� and find ��� as the intersect-
ing point of the circle �� � � *� and the straight line from



�� � ����-��� � 
� to the origin �. Then, we make learn-
ing in the space of � to fit a circle �� � � *� by considering
���� ����

� � �����-����
�� ����
� to determine all the un-

known parameters, which is equivalent to fitting an ellipse
in the original space of �.

This transformation technique applies directly to a
set of samples from only one ellipse. When the sam-
ples come from / ellipses, an ellipse can be param-
eterized as �� � 
��

�-�� ��-�� � 
�� � *�
� with

�� � 	1
��	� ,���� � � � � ,���
 being a positive diagonal ma-
trix and -� is a rotation matrix. Via a transformation
�� � ����

� -��� � 
��, the ellipse is mapped into a cir-
cle ��� �� � *�

� . If we already know �� from the ellipse �, we
can turn it into ���� � ����

� -����
�� and then fit it as above
discussed. However, when the information about each sam-
ple from which ellipse is missing, each sample can be
mapped into ����� � � 	� � � � � / possible values. A solu-
tion is selecting one with �� � 
���
�� �������. Each
time after parameters are updated the space of �, ����� ��
is also updated by ������� � ���������� that can be calcu-
lated in the space of �.

4. Independent Subspace and Binary Factor
Analysis

4.1. Independent Subspace
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Figure 8. Subspace structures spanned by linear
independent base vectors and featured by proba-
bilistic independent coordinate variables

As shown in Fig.8, a typical dependence structure, that
can provide an overall insight on a set of samples in a high
dimensional space � � *� with � � ������ � � � � ����
� , is
an appropriate linear subspace that covers most of samples.
Such a subspace is featured by the following three ingredi-
ents:

	 a set of bases vectors 

 � *�� � � 	� � � � ��
that span the subspace, which provides the support on
which data samples can have different specific distri-
butions. To avoid redundance, it is naturally that all

the 

 � *�� � � 	� � � � �� are mutually linear inde-
pendent. That is,

	�2����
 �� �� � � �
�� � � � � 
�

 (40)

	 coordinates � � ������ � � � � ����
� , with each ��
� de-
noting the corresponding coordinate on the basis 
 
 for
representing each �, that is, we have

�� �
��


���
�
�

 � (41)

for representing � � *�. A set of samples from a spe-
cific distribution ���� is mapped into a inner represen-
tation by a specific distribution ���� supported on a
subspace with a much lower dimension �. To maxi-
mize the representative capacity, redundance between
any pair ���� and ��
� should be removed. In a proba-
bilistic sense, it means that eq.(10) is satisfied.

	 the residual � � �� � � that indicates how well a set
of samples is described by this subspace. � � � means
that � is located within the subspace and � is com-
pletely represented by ��, and � �� � means that � is lo-
cated outside the subspace and �� is a projection of � on
the subspace, with an error � for using �� to represent
�. If the best subspace is found to represent the sam-
ples, we have either � � � for every sample when the
samples of � have not been polluted by noise or other-
wise � �� � describes the noise. This � should be inde-
pendent from � and often regarded as from Gaussian
�������� with � being usually isotopic � � ��� or
sometime diagonal in a complicated situation.

The above discussion is made on assuming that both the ori-
gins of � and � coordinates are located at zero. Generally,
we can get � � � or � � 3 located at zero. It follows from
�� �� � � and eq.(41) that we have

� �

��
�
�� � �� (a) 4� � �, 4� � �,
�� � �� � (b) � � 4���4�,
��� � 3� � �� �� (c) 3 � 4�� � � 4�,

� � �
�� � � � � 
�
� (42)

which, especially the case (a), is widely referred under dif-
ferent names in the literatures. One is called linear genera-
tive model since it describes how � is generated via a linear
model. The other is called latent or hidden model since �

is not directly visible from observation. It is also called fac-
tor analysis (FA) model, regarding the components of � as
the underlying factors.

Several typical examples of eq.(42) have been investi-
gated in the past decades, mainly featured by ��� �
�� in dif-
ferent distributions.

When ��
� is a real variable from a Gaussian distribu-
tion ����
���� ,�
� ��, eq.(42) in its case (a) has been widely
studied in the literature of statistics under the name of factor



analysis. Here, we call it Gaussian factor analysis and leave
the name of factor analysis for the general case of eq.(42)
with eq.(10). Particularly, we are lead to principal compo-
nent analysis (PCA) when � � ��� . Further studies have
also been made in recent years on Eq.(42) in its case (b)
with ��
� being a real variable from a nonGaussian distribu-
tion. One particular example of such ��� �
�� is the follow-
ing Gaussian mixture:

� � 3 � +� 4� � 3�

��+�
�� �
�
�

 
����
�
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��� (43)
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Moreover, when ,
�
� �
� 
 �� � � 	� � � � � /, we are lead

to the case that ��
� is constrained to take only finite iso-
lated points ��� � � 	� � � � � / (shortly � is used to denote the
choice ��
� � ��). The details of studies are referred to [29].

4.2. Binary Factor Analysis and Adaptive Algo-
rithm

When �
�
�
� is a binary number that comes from a

Bernoulli distribution:

����
�� � �3�
���
���

�	� 3�
�������� � (44)

eq.(42) of case (b) with � �� � has been studied under the
name of Binary Factor Analysis (BFA) [33, 31, 30] or mul-
tiple cause model [21, 7].

It follows from eq.(18) that we can obtain an adaptive al-
gorithm that implements parameter learning as follows:
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��� � 3��� � ��+��

���� � ���� � ��Æ��

where Æ� is a step of moving along the ascent
direction of ��������+� ���� subject to eq.(40)�

�6� ���� � �	� ����
��� � ��Æ�� 4� � ���

�
� �

Æ� �

��
�
4�� � is general,
	1
��4�
� � is diagonal,
�
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%��4�
�� � � ��� ,

�.� updating ����
�� by 7���
 � 7���
 � ��+
�
�
� �

3�
� ��� �
	

	 � ��!���
�

� (45)

If 3�
� ����	� 3�
� ����
 � constantly�

discard the component � �
�� 


where �� � � is a learning step size, it can be different for
updating different parameters, we simply use the same nota-
tion �� for simplicity, and 	1
��8
 means the diagonal part
of the matrix 8.

One example for Æ� in (a) is

Æ� � ��+
�
� � (46)

which makes the computing on updating � very sim-
ple. However, to keep eq.(40) satisfied, we need to com-
pute 	�2����
 per updating or frequently. If we find
	�2����
 � � constantly, we need to reduce the di-
mension of � from � to � � 	. After such a reduc-
tion, the previous learning result may be disturbed. If still
	�2����
 � � constantly, we need to further reduce the di-
mension of �. Such a process will repeat until eq.(40)
becomes always satisfied.

Another example for Æ� in (a) is same as that introduced
in Sec.5.3(3) in [29] or more clearly in Sec.IV(B) [23]. That
is, we make the following singular value decomposition
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where �
 is a 	-dimension vector and 9
 is a �-dimension
vector. It can be observed that 	�2����
 � � if any one of
	
 � � � 	� � � � �� is zero. Thus, we remove the correspond-
ing �
 � 9
 � ��
� if 	
 � � constantly. This type of dimension
reduction of � makes the previous learning result disturbed
in a minimum extent. To save the computation of making
the SVD decomposition � � :5; � , updating � is re-
placed by updating :� ;�5 as follows:
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where the updating on ; and : is made under the con-
straint ; �; � � and ::� � � .

During learning, maximizing
��


���3
�
� �� 3�
� � �	 �

3�
�� �� �	� 3�
��
 will also push 3�
� ����	�3�
� ����


� constantly if the dimension �
�
�
� is extra [29]. When this

happens, we can remove the corresponding � 
 � 9
 � �
�
�.

If needed, we may also alternatively implement BFA in
a two stage style. At the first stage, parameter learning is
made either by the ML learning [5, 12, 33] or by the above
learning with every 3 �
� � �
� and Æ� given by eq.(46). In
this case, there is no need to keep eq.(40) satisfied. At the
second stage we select a best number � by

���
�

0���� 0��� � �
�	 ���� � 0���� (48)
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Figure 9. A mixture of � Gaussian clusters
with their means located on vertices of a
polyhedra that is obtained by an affine trans-
formation from a cubic.
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5. Gaussian Densities on Projected Polyhedra

We can get further insights on BFA from the following
two aspects:

	 In a special case with � � ��� and 3 � �, it im-
plements ����4�� � � � ���� subject to � com-
ing from eq.(10) with eq.(44). That is, it minimizes the
residual � � � � �� that � is represented by its projec-
tion �� � �� � � on the subspace spanned by the col-
umn vectors of � while the projection is constrained to
take only � or 	 according to eq.(44). In other words,
�� can only be the sum of a subset of the column vec-
tors of �.

	 ���� that corresponds to eq.(42) is a mixture of ��

Gaussians with each Gaussian having a same covari-
ance matrix � but its mean locating at one vertex of a
polyhedra, which, as shown in Fig.9, is obtained by an
arbitrary affine transformation from a � dimensional
hypercubic. In this way, �� mean vectors are obtained
from the � column vectors of � only. Moreover, the
proportion of each Gaussian is simply ���� with� free
parameters instead of ���	 free parameters. Since the
number of free parameters has been reduced signifi-
cantly, this constrained Gaussian mixture gets a better
generalization ability.

Following the BYY harmony learning with a BI-
directional regularization at the special case given by

eq.(19), we consider
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�
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where �" consists of < and a set of values that is different
from < by only one bit. The idea is that a vertex < and its
neighboring vertices should describe samples that are simi-
lar in certain extent. Thus, the mapping to a vertex is shared
with a small fraction ( by its neighboring vertices. Due to
this constraint, we get

�< � 
���
�
"

5�<� ����

5�<� ��� �
�
��
	

�����5��� ���
 (50)

Correspondingly, learning by eq.(45) is implemented with
the following modifications:

= 
#� � >2�� Instead of getting only one ��, a set �	"

of samples of � is obtained� (51)
= 1#� � >2�� each updating is repeated for every

�� � �	" with �� replaced by ��������.

Moreover, ( can be a very small value at the beginning and
then gradually increases as learning goes.

With the above learning, similar patterns will be mapped
onto vertices that are nearby each other. That is, the map-
ping may reserve the topological relation among patterns as
well. As a result, not only we may use a sample with certain
information missing to reconstruct the corresponding pat-
tern but also we may recall out a number of patterns that are
similar to a particular one.

6. BFA Variants

A binary factor based subspace is also useful to another
important class of applications that each component � ���

only takes 	 or �. That is, both � and � are binary vectors. In
such cases, the BFA is no longer applicable directly. If using
the probabilities? ����� to describe how � is generated from
�, the number of free parameters will be an order of �����,
which needs a large size of samples to learn. Many efforts
have been made in the current literature to handle this type
of problems. One example is called multiple cause mixture
[21]. It models each bit ���
� � 	�

�
��	���
�
� via binary


�
 and then matches the observed bit ��
� with a heuris-
tic cost function. In this setting, the number of free param-
eters reduces significantly to �	��. Also, the ML learn-
ing is proposed on this model [7], with each binary code
� interpreted as Bernoulli via defining the probability that
��
� � 	 in help of a generating model 	�

�
��	� ��
�
�.



However, the process of learning the values of 
 ��
 is a com-
binatorial optimization that needs to search ��� choices.

We consider that � is a real matrix via the following
structure [27, 29]:
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with the updating on � still made by eq.(45) with � � � ���
�.

Though being able to turn a combinatorial enumeration
into gradient based local search, the representation in the
form

��
�����

�����
�
�

�	 � ���������
� can not cover mutual
information among the components of �. To improve this
shortcoming, we here propose a generalized BFA that is
able to handle the case that both � and � are binary vec-
tors, still in help of the model eq.(42). We consider an ob-
servation space with noise �. Its dimension # may be dif-
ferent from the dimensions of both �� �. In this space, �
is not directly observable but observed via a set of lin-
ear bases vectors �@�� � � � � @�
 � $ with the coordinates
������ � � � � ����
� � �, respectively, i.e., $� � �� is ob-
served.

In implementation, we get �� by the Yang step in eq.(45)
with �� replaced by ��� � $��. Then we update � and
����
�� by the Ying step (b) in eq.(45). Moreover, we make
other updating as follows:

�� �$�� ��+� � ��

���� � ���� � ����+
�
� �

$��� � $ ��� � �����
�
� 
 (53)

After learning, we set up a mapping �� 
 �� via $�� � ���
inserted into the Yang step in eq.(45) in place of � �. Also,
we set up a mapping �� 
 �� via �� � 
���
�� �$� �
�+� � ���. This bi-directional binary relation can be ap-
plied to rule based inferences. Also, this generalized BFA
can be directly modified to cover the cases that each � ���

takes a number of discrete values.

In certain applications, we encounter the so called non-
negative factor analysis problem with both �� � only tak-
ing negative values. Actually, the above BFA and extensions
can be regarded as special examples of this type. Other ex-
amples come from the cases that the components of � are
real positive numbers, which can also be handled by the
BFA via a slight modification
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Alternatively, we can also turn each component of �� �
���� to a nonnegative value via a simple nonlinear trans-
form, e.g., � � A� [29] with the following modification
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In addition, the generalized BFA by eq.(53) can also be
directly applied to the cases that the components of � are
real positive numbers.

Again, all the above learning algorithms can be extended
to the case of eq.(51) with 5�<� ��� in eq.(50).

Still, in the updating by eq.(53), eq.(54), and eq.(55), we
need to compute 	�2����
 per updating or frequently. If
we find 	�2����
 � � constantly, we need to reduce the di-
mension of � until eq.(40) become always satisfied.

7. Concluding Remarks

From the perspective of BYY harmony learning with a
bi-directional architecture, the Kohonen map type of topo-
logical structure is revisited with a new insight and a new
variant. Then, it has been further extended to a multi-set
-mixture based topological map for object detection. More-
over, an adaptive BFA algorithm is provided for learning
a type of Gaussian mixture with �� Gaussian densities lo-
cated on vertices of a projected hyper polyhedra structure
that are represented via only � real vectors, with an appro-
priate � determined automatically during learning. Also,
another topological type is introduced into this projected
hyper polyhedra structure.
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Summary. Mining frequent sequential patterns is a relevant data mining task,
which finds applications such as web mining, bioinformatic data analysis, and text
mining. A further recent step is the exploitation of sequential information for clas-
sification purposes.

In this paper we address the problem of mining sequential classification rules.
Unfortunately, while high support thresholds may yield an excessively small rule set,
the solution set becomes rapidly huge for decreasing support thresholds. In this case,
the extraction process becomes time consuming (or is unfeasible), and the generated
model is too complex for human analysis.

We propose two compact forms to encode the knowledge available in a sequential
classification rule set. These forms are based on the abstractions of general rule,
specialistic rule, and complete compact rule. The forms are obtained by extending
the concept of closed itemset and generator itemset to the the context of sequential
rules. Experimental results show that a significant compression ratio is achieved by
means of both proposed forms.

1 Introduction

Association rules [2] describe the co-occurence among data items in a large amount
of collected data. They have been profitably exploited for classification purposes
[10, 14, 5]. In this case, rules are called classification rules and their consequent
contains the class label. Classification rule mining is the discovery of a rule set in
the training dataset to form a model of data, also called classifier. The classifier is
then used to classify new data for which the class label is unknown.

Data items in an association rule are unordered. However, in many application
domains (e.g., web log mining, DNA and proteome analysis) the order among items
is an important feature. Sequential patterns have been first introduced in [3] as a
sequential generalization of the itemset concept. In [20, 27] efficient algorithms to
extract sequences from datasets are proposed. The algorithms are based on lattice
theory and prefix-projection. In this paper, we propose classification rules based on
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sequential patterns. We define as sequential classification rule an implication where
the antecedent is a sequence and the consequent is a class label. This definition is a
classification specialization of the notion of sequential association rule proposed in
[24] for web logging applications.

In large or highly correlated datasets, rule extraction algorithms have to deal
with the combinatorial explosion of the solution space. This causes (i) the rule ex-
traction process to be frequently unfeasible, and (ii) the solution set to be hardly
understandable by a human being. To cope with this problem, pruning of the gen-
erated rule set based on some quality indexes (e.g., χ2, confidence and support) is
usually performed. In this way rules which are redundant from a functional point
of view [10, 14] are discarded. A different approach consists in generating equiva-
lent representations [4] that are more compact and without information loss. The
compact form in [4] is an extension of the concepts of closure and generator itemset
[19, 16, 17, 18, 15, 6, 25] to the associative classification domain.

In this paper we propose two compact forms to represent sets of sequential
classification rules. These forms are based on the concepts of closed sequence and
generator sequence, and use them to summarize a large rule set with a small num-
ber of compact rules. The first compact form is based on the concept of generator
sequence, which is an extension to sequential patterns of the concept of generator
itemsets [18]. Generator sequences code the minimal and non redundant informa-
tion with respect to all sequences coded into a closed sequence. Based on generator
sequences, we define general sequential rules. The collection of all general sequential
rules extracted from a dataset represents a sequential classification rule cover. A
rule cover encodes all useful classification information in a sequential rule set (i.e.,
is equivalent to it for classification purposes), but does not allow the regeneration
of the complete rule set.

While the notion of generator sequence, to our knowledge, is new, closed se-
quences have been introduced in [23, 21]. A closed sequence is the maximal se-
quence representing all sequences coded in a closure. Based on closed sequences,
we define closed sequential rules. A closed sequential rule is the most specialistic
(i.e., characterized by the longest sequence) rule into a set (closure) of equivalent
rules. Unfortunately, closed sequences, differently from generator sequences, do not
yield a classification rule cover. The second proposed compact form exploits jointly
closed sequences and their associated generator sequences. In particular, to allow
regeneration of the complete rule set, to each closed sequential rule is associated the
complete set of its generator sequences.

We also introduce a specialized type of sequence, the contiguous sequence. A
sequence is contiguous when the items appearing in it are always adjacent (i.e., no
other items are interleaved). Contiguous sequences are interesting in many biological
contexts like DNA and proteome analyis, where the domain of items is characterized
by very low cardinality. All theoretical results presented in this paper hold for both
the general and contiguous sequence domains.

The paper is organized as follows. Section 2 introduces the problem statement
and basic definitions. Sections 3 and 4 describe the compact forms for sequences and
for sequential rules, respectively. Section 5 reports preliminary experimental result
on the compression effectiveness of the proposed techniques. Finally, Section 6 draws
conclusions and outlines future work.
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2 Problem statement

In this section we introduce notation and fundamental definitions for sequential data
mining.

Definition 1 (Sequence). Let I be a set of items. A sequence S on I is an ordered
list of events, denoted S = (e1, e2, . . . , en), where each event ei ∈ S is an item in I.

In a sequence, each item can appear multiple times, in different events. The
overall number of items in S is the length of S, denoted |S|. A sequence of length n
is called n-sequence.

In this paper we focus on single item sequences. In these sequences, each event
contains a single item. Our definition of sequence is a restriction of the definition
of sequence proposed in [3, 27], where each event contains more items. Single item
sequences seem more adequate for specific application domains where each element
of the sequence is a single symbol (e.g., a word or an aminoacid).

A dataset D for sequence mining consists of a set of sequences. Each sequence in
D is characterized by a unique identifier, named Sequence Identifier (SID). When
dataset D is used for classification purposes, each sequence in D is labeled by means
of a class label c. Hence, dataset D is a set of tuples (SID, S, c), where S is a
sequence identified by the value SID and c is a class label belonging to the set C of
class labels in D. Table 1 reports a very simple sequence dataset, used as a running
example in this paper.

SID Sequence Class

0 ADCA c1

1 ADCBA c2

2 ABE c1

3 FGHFJ c1

4 FGIFJ c1

Table 1. Example sequence dataset D

In the following, we introduce the concept of subsequence with constraints.

Definition 2 (Matching function). Let X = (x1, x2, . . . , xl) and Y = (y1, y2, . . . , ym)
be two arbitrary sequences. A function ψ : {1, . . . , m} −→ {1, . . . , l} is a matching
function from Y to X if ψ is strictly monotonically increasing and ∀j ∈ {1, . . . , m}
it is yj = xψ(j).

Definition 3 (Constrained Subsequence). Let Ψ be a set of matching functions
between two arbitrary sequences, and X = (x1, x2, . . . , xl) and Y = (y1, y2, . . . , ym)
two arbitrary sequences. Y is a subsequence of X with respect to Ψ , written as Y vΨ

X, iff ∃ψ ∈ Ψ matching Y to X.

When Ψ is the universe of all possible matching functions, we omit it for the
sake of readability and we say simply that sequence Y is a subsequence of sequence
X.
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A particular type of subsequence relation is the contiguous subsequence relation,
where the elements of sequence Y match with elements of sequence X without gap,
i.e., no other element is allowed to be interleaved. In this case, the matching function
can be characterized as ψ (j) = offset + j. When the first (last) |Y | elements of X
are equal to the elements of Y in the same order, Y is a prefix (suffix) subsequence
of X.

Consider the example dataset in Table 1. DA is a non-contiguous subsequence
of both sequences ADCA and ADCBA. Sequence DC is a contiguous subsequence
of ADCA, where the matching function is ψ(j) = 1 + j. Sequence CD is not a
subsequence of any sequence in the example dataset because it is not possible to
build a matching function with respect to Definition 2.

The contiguity constraint is particularly interesting in the biological application
domain. In DNA or proteome, which are long sequences of symbols, there is high
correlation between contiguous elements, but correlation rapidly decreases with dis-
tance. With this rationale, we exploit the contiguity constraint to reduce the problem
complexity and the number of extracted sequences with a low loss of representative-
ness.

The support of a sequence X [3] in a dataset D is the number of sequences in D
that contain X. Formally, sup (X) = Card ({(SID, S) ∈ D : X vΨ S}). A sequence
X is frequent with respect to a given support threshold minsup when sup(X) ≥
minsup.

A sequential rule [3] is an implication in the form X → Y , where X and Y are
sequences in D. X and Y are respectively the antecedent and the consequent of the
rule. In this paper we derive from sequential rules the classification rules to be used
for classification purposes.

Definition 4 (Sequential Classification Rule). A sequential classification rule
in D is an implication r : X → c, where X is a sequence in D, and c is a class label
in C.

Differently from general sequential rules, the consequent of a sequential classifi-
cation rule belongs to set C, which is disjoint from I. We say that a rule r : X → c
covers (or classifies) a data object d if XvΨd. In this case, r classifies d by assigning
to it class label c. Obviously, the contiguity constraint in the rule antecedent yields
contiguous sequential classification rules.

Similarly to associative classification, we measure the quality of a sequen-
tial classification rule r : X → c by means of two quality indexes [10, 14],
named rule support and rule confidence. The indexes measure the estimated ac-
curacy of r in predicting the correct class for a data object d. The rule sup-
port is the number of sequences in D which contain X and are labeled by c,
sup(r) = Card ({(SID, S, c) ∈ D : X vΨ S ∧ c = ci}). The rule confidence is given
by the ratio conf(r) = sup(r)/ sup(X). A sequential rule is said to be frequent with
respect to a given support threshold minsup if sup(r) ≥ minsup.

3 Compact Sequence Representations

To tackle with the generation of a large number of association rules, several alter-
native forms have been proposed for the compact representation of frequent item-
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sets. Among them, maximal itemsets [7], closed itemsets [15, 26], free sets [11],
disjunction-free generators [12], and deduction rules [13].

Recently, in [21, 23] the concept of closed itemset has been extended to represent
frequent sequences.

Definition 5 (Closed sequence). An arbitrary sequence X in D is a closed se-
quence with respect to a matching function set Ψ iff @Y in D such that (i) X @Ψ Y
and (ii) sup(X) = sup(Y ).

In [21, 23] the definition of closed sequence was proposed in the case of uncos-
trained matching. In this paper, we address the case of contiguous closed sequence,
when the sequence contains adjacent elements, and non-contiguous closed sequence
when matching is unconstrained.

Intuitively, a closed sequence is the maximal subsequence common to a set of
sequences in D. A closed sequence X is a compact representation of all the subse-
quences Y that are (i) subsets of it, and (ii) included in the same sequences in D. The
closed sequence X which encodes Y is called the sequential closure of Y . A sequence
database D can be encoded by means of the whole set of its closed sequences.

In the example dataset, ADA is a non-contiguous closed sequence, which rep-
resents the sequences ADA, AD, DA, AA, and D contained in sequences 0 and 1.
Instead, ADC is a contiguous closed sequence, also contained in sequences 0 and 1.
ADC, AD, DC, C and D are the sequences represented in it.

To completely characterize closed sequences, in this paper we also extend the
concept of generator itemset [17, 18] to the domain of sequences. A generator se-
quence is the shortest sequence among those represented in a closed sequence.

Definition 6 (Generator sequence). An arbitrary sequence X in D is a generator
sequence with respect to a matching function set Ψ iff @Y in D such that (i) Y @Ψ X
and (ii) sup (X) = sup (Y ).

Analogously to closed sequences, the contiguity constraint yields contiguous gen-
erators, while the absence of constraint gives non-contiguous generators. In the ex-
ample dataset, D and AA are non-contiguous generators for the non-contiguous
closed sequence ADA. C and D are contiguous generators for the contiguous closed
sequence ADC.

Based on Definition 6, all the sequences represented in a closed sequence X can
be generated starting from every generator sequence in X and “extending” it within
X. In other words if Z is a sequence represented by a closed X and an associated
generator Y vΨ X, then Z is contained in X, and Y is contained in Z.

In the context of association rules, the closure for an arbitrary itemset is unique.
The property of uniqueness is lost in the context of sequences for both contiguous
and non-contiguous sequences. Hence, an arbitrary sequence X can be encoded by
a set of closed sequences. We call this set, the closure sequence set of X, denoted
CS(X). From this property it follows that a given generator sequence can generate
different closed sequences.

For example, consider the contiguous closed sequences FG and FJ in the exam-
ple dataset. The set of generators for FG is {F , G}, and for FJ is {F, J}. Hence,
generator sequence F is associated to both closed sequences. Instead, G is a gener-
ator only for FG while J only for FJ .
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4 Compact Representations of Sequential Classification
Rules

In this section we propose two compact representations to encode the knowledge
available in a sequential classification rule set. These representations are based on
the concepts of closed and generator sequence introduced in the previous section.

The next theorem exploits the concept of sequential closure to characterize a set
of sequential classification rules having the same values for both rule support and
confidence.

Theorem 1. Let ri : M → ci be an arbitrary sequential classification rule in D,
where M is a closed sequence in D. Then, ∀rj : X → cj in D, with ci = cj and
M ∈ CS(X), is (i) sup(ri) = sup(rj), and (ii) conf(ri) = conf(rj).

Proof. By hypothesis, M ∈ CS(X). Hence, for the properties of the sequential clo-
sure presented in Section 3, M and X are contained in the same sequences in D.
Hence, sup(M) = sup(X). Furthermore, rules ri and rj are contained in the same
subset of sequences in D, labeled by class ci = cj , and thus sup(ri) = sup(rj). It
trivially follows that conf(ri) = conf(rj).

By theorem above, rules with the same consequent, and whose antecedents have
the same sequential closure, are characterized by the same values of support and
confidence. For example, consider the two contiguous rules AD → c1 and DC → c1

in the example dataset. These rules have both equal support and confidence since the
contiguous closed sequence ADC belongs to the sequential closure set of both AD
and DC. Analogously, non-contiguous rules DA → c1 and AA → c1 have the same
values of support and confidence, since both sequences DA and AA are encoded in
the non-contiguous closed sequence ADA. We note that the theorem above states a
sufficient but not necessary condition.

In the next section we exploit the theorem above to introduce the concepts of
general and specialistic classification rule. These rules characterize the more general
(shorter) and more specific (longer) classification rules in a given classification rule
set. We then exploit the concepts of general and specialistic rule to define the two
compact forms presented in Section 4.2 and 4.3, respectively.

4.1 General and Specialistic Rule

In associative classification [10, 14, 22], a shorter rule (i.e., a rule with less elements
in the antecedent) is often preferred to longer rules with lower confidence and/or
support with the intent of both avoiding the risk of overfitting, and reducing the
size of the classifier. However, in some applications (e.g., modeling surfing paths in
web log analysis [24]), longer sequences may be more accurate since they contain
more signature information about the user-access patterns. In these cases, longest-
matching rules may be preferred to shorter ones.

To characterize both kind of rules, we propose the definition of specialization of
a sequential classification rule.

Definition 7 (Classification Rule Specialization). Let ri : X → ci and rj :
Y → cj be two arbitrary sequential classification rules in D. rj is a specialization of
ri iff (i) X@ΨY , (ii) ci = cj, (iii) sup(ri) = sup(rj), and (iv) conf(ri) = conf(rj).
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Based on Definition 7, a classification rule rj is a specialization of a rule ri if
ri is more general than rj , i.e., ri has fewer conditions than rj in the antecedent.
Hence, any data object covered by rj can be also covered by ri, while the vice versa
is not true. rj and ri both assign the same class label and have equal support and
confidence.

Definition 7 is based on a similar definition proposed in the context of associative
classification rules [4]. With respect to the definition of specialistic rule proposed in
[10, 14, 22], the definition in [4] is more restrictive. In fact the two rules are required
to have the same confidence, support and class label.

Based on Definition 7, we now introduce the concept of general rule. This is
the rule with the shortest antecedent, among all rules having same class label, rule
support and confidence.

Definition 8 (General Rule). Let R be the set of frequent sequential classification
rules in D, and ri ∈ R an arbitrary rule. ri is a general rule in R iff @rj ∈ R, such
that ri is a specialization of rj.

In the example dataset, D → c1 is a contiguous general rule with respect to the
rules DC → c1 and ADC → c1. Instead, AA → c1 is a non-contiguous general rule
for the non-contiguous rule ADA → c1.

The next lemma formalizes the concept of general rule by means of the concept
of generator sequence. The lemma follows from Definitions 6 and 8.

Lemma 1 (General Rule). Let R be the set of frequent sequential classification
rules in D, and r ∈ R an arbitrary rule. r is a general rule in R iff X is a generator
sequence in D.

Based on Definition 7, we define the concept of specialistic rule.

Definition 9 (Specialistic Rule). Let R be an arbitrary set of frequent sequential
classification rules in D, and ri ∈ R an arbitrary rule. ri is a specialistic rule in R
iff @rj ∈ R such that rj is a specialization of ri.

Based on the definition above, for a specialistic rule r ∈ R, there is no rule
in R such that r is included in it, and the two rules have both equal support and
confidence. For example, ADC → c1 is a contiguous specialistic rule in the example
dataset, with support 20% and confidence 50%. The contiguous rules ADCA → c1

and ADCBA → c1 which include it have support equal to 20% and confidence
100%.

The next lemma formalizes the concept of specialistic rule by means of the
concept of closed sequence. The lemma follows from Definitions 6 and 9.

Lemma 2 (Specialistic Rule). Let R be the set of frequent sequential classification
rules in D, and r ∈ R an arbitrary rule. r is a specialistic rule in R iff X is a closed
sequence in D.

4.2 Sequential Classification Rule Cover

In this section we present a compact form which is based on the general rules in a
given set R. This form allows the classification of unlabeled data without informa-
tion loss with respect to the complete rule set R. Hence, it is equivalent to R for
classification purposes.
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Intuitively, we say that two rule sets are equivalent if they contain the same
knowledge. When referring to a classification rule set, its knowledge is represented
by its capability in classifying an arbitrary data object d. Note that d can be matched
by different rules in R. Each rule r labels d with a class c. The estimated accuracy
of r in predicting the correct class is usually given by r’s support and confidence.

The equivalence between two rule sets can be formalized in terms of rule cover.

Definition 10 (Sequential Classification Rule Cover). Let R1 and R2 ⊆ R1

be two arbitrary sequential classification rule sets extracted from D. R2 is a sequential
classification rule cover of R1 if, (i) R2 is minimal, and ∀ri ∈ R1 and ri : X → ci,
∃rj ∈ R2 and rj : Y → cj, such that (ii) Y vΨ X, (iii) ci = cj, (iv) sup(ri) =
sup(rj), and (v) conf(ri) = conf(rj).

When R2 ⊆ R1 is a classification cover of R1, the two sets classify in the same
way an arbitrary data object d. If a rule ri ∈ R1 labels d with class c, then in R2

there is a rule rj , not necessarily identical to ri, which labels d with the same class.
ri and rj have both same support and same confidence. It follows that R1 and R2

are equivalent for classification purposes.
For a given rule set R, the subset of its general rules is a general classification

rule cover of R. The next theorem proves this property. From the theorem it follows
that this compact representation of R is equivalent to it for classification purposes.

Theorem 2 (Sequential Classification Rule Cover). Let R be the set of fre-
quent sequential rules in D, and G the set of frequent generator sequences in D.
The subset of rules in R having as antecedent the elements of G, is a sequential
classification rule cover of R

CRC = {r : G → c|G ∈ G ∧ r ∈ R} (1)

Theorem 2 can be proved based on the characteristics of the generator sequences.
Consider an arbitrary rule ri : X → c in R. Two options are possible. (i) X is a
generator sequence. Hence, ri belongs to CRC. (ii) X is not a generator sequence.
In this case, there must be at least a rule rj : Y → c in R such that Y is a generator
sequence and ri is a specialization of rj based on Definition 7. Hence, rj belongs to
CRC. From (i) and (ii) it follows that CRC is a sequential classification rule cover
of R according to Definition 10.

Figure 1 reports the classification rule cover for the example dataset, when rules
are extracted by considering minsup = 1 and enforcing the contiguity constraint. We
note that the sequential classification rule cover set does not allow the regeneration
of the complete rule set.

4.3 Complete Compact Classification Rule Set

In this section we present a compact form to encode a classification rule set, which,
differently from the classification rule cover presented in the previous section, allows
the regeneration of the original rule setR. Hence, it is named complete. The proposed
representation relies on the notions of closed and generator sequences.

In the compact form, both general and specialistic rules are explicitly repre-
sented. All the remaining rules are summarized by means of an appropriate encod-
ing. The compact form consists of a set of elements named compact rules. Each
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Rule Sup [%] Conf [%]

E → c1 40 100

F → c1 40 100

I → c1 40 100

J → c1 40 100

G → c1 20 100

H → c1 20 100

AB → c1 20 100

BA → c2 20 100

CA → c1 20 100

CB → c2 20 100

A → c1 40 66

B → c1 20 50

B → c2 20 50

C → c1 20 50

C → c2 20 50

D → c1 20 50

D → c2 20 50

A → c2 20 33

Fig. 1. Sequential classification rule cover with contiguity constraint for the example
dataset (minsup = 1)

compact rule includes a specialistic rule, a set of general rules, and encodes a set of
rules that are specializations of them.

Definition 11 (Compact Rule). Let M be an arbitrary closed sequence in D,
and G the set of its generator sequences. Let c ∈ C be an arbitrary class label. Then,
F : (G, M) → c is a compact rule in D.

An arbitrary compact rule F : (G, M) → c represents all the rules r : Y → c
in D with the following characteristics: r is labeled with the same class as F , and
M belongs to the sequential closure set of Y , i.e., M ∈ CS(Y ). Hence, the rule set
represented in F includes: (i) the rule r : M → c, which is a specialistic rule since
M is a closed sequence; (ii) the set of rules r : G → c, G ∈ G, that are general
rules since G is a generator sequence; (iii) a set of rules r : Y → c that are a
specialization of rules in (ii). For these rules, the antecedent Y is a subsequence of
M (i.e., YvΨM), and it completely includes at least one of the generator sequences
in G (i.e., ∃G ∈ G|GvΨY ).

Based on the selected matching functions in Ψ , a compact rule can represent a
set of contiguous or non-contiguous sequential classification rules. In the example
dataset, the contiguous classification rules C → c1, D → c1, AD → c1, DC → c1,
and ADC → c1 are represented in the compact rule ({C, D} , ADC) → c1. Instead,
the non-contiguous classification rules E → c1, AE → c1, BE → c1, and ABE → c1

are encoded in the compact rule (({E} , ABE) → c1).
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As stated in the next lemma, the rules represented in a compact rule are char-
acterized by the same values of rule support and confidence. The lemma directly
follows from Definition 11 and Theorem 1.

Lemma 3. Let F : (G, M) → c be an arbitrary compact rule in D. For each rule r
represented in F is (i) sup(r) = sup(M → c), and (ii) conf(r) = conf(M → c).

We use the concept of compact rule to encode the set R of frequent sequential
classification rules. The next theorem proves that the compact rule set representing
R is minimal and complete, since it represents all the rules in R.

Theorem 3 (Compact classification rule set). Let R be the set of frequent
sequential classification rules in D. Let M be the set of frequent closed sequences,
and G the set of frequent generator sequences in D. The compact rule set

CCRS = {F : (G, M) → c}, (2)

is a minimal, complete representation of R iff ∀r : X → c in R such that X ∈ M,
then ∃F : (G, M) → c in CCRS with (i) M = X and (ii) G includes all generator
sequences for X.

The theorem above can be proved based on the characteristics of the closed and
generator sequences. The rules in R having as antecedent either a generator or a
closed sequence are explicitly represented in the set CCRS. Hence, the set R can
be generated from the compact rules in CCRS. It follows that the set CCRS is a
complete representation of R. Furthermore, let remove an arbitrary compact rule
from CCRS. Hence, the rules encoded in the compact rule and having as antecedent
either a generator or a closed sequence can not be generated from the set CCRS. It
follows that the set CCRS is a minimal representation of R.

Figure 2 shows the compact classification rule set for the example dataset when
enforcing the contiguity constraint. When minsup = 1, the sequential classification
rule set includes 53 contiguous rules. The corresponding compact rule set includes
14 compact rules. Hence, the compression factor achieved in this case is 26.4%.

5 Experimental results

Preliminary experimental results have been run to evaluate the compression achiev-
able by means of the proposed compact representations. Experiments have been run
by considering the four datasets in Figure 3, where the number of items, sequences,
and class labels for each dataset are reported. The Reuters-21578 news dataset [9]
includes textual data. The other three are biological datasets: DNA and Promot-
ers [9], including collections of DNA sequences, and the Escherichia Coli’s protein
sequences from RCSB Protein Data Bank [8].

We developed an algorithm to extract the compact classification rule set from
a sequential dataset. The sequential classification rule cover representation can be
easily derived from it. Currently, the algorithm focuses on the extraction of the
compact forms with contiguity constraint. However, it can be easily extended to
support the extraction of the compact forms without constraint. The algorithm is
based on a levelwise search [1], and computes the set of frequent closed sequences in
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Compact rule Represented rules Sup [%] Conf [%]

({G} , G) → c1 G → c1 40 100

({F, G} , FG) → c1 F → c1, G → c1, FG → c1 40 100

({F, J} , FJ) → c1 F → c1, J → c1, FG → c1 40 100

({E, AB} , ABE) → c1
E → c1, AB → c1,

20 100
BE → c1, ABE → c1

({CA} , ADCA) → c1
CA → c1, DCA → c1,

20 100
ADCA → c1

({BA, CB} , ADCBA) → c2

BA → c2, CB → c2,

20 100
CBA → c2, DCB → c2,

ADCB → c2, DCBA → c2,
ADCBA → c2

({H} , FGHFJ) → c1

H → c1, GH → c1,

20 100
HF → c1, FGH → c1,
GHF → c1, HFJ → c1,

FGHF → c1, GHFJ → c1,
FGHFJ → c1

({I} , FGIFJ) → c1

I → c1, GI → c1,

20 100
IF → c1, FGI → c1,
GIF → c1, IFJ → c1,

FGIF → c1, GIFJ → c1,
FGIFJ → c1

({A} , A) → c1 A → c1 40 66

({B} , B) → c1 B → c1 20 50

({B} , B) → c2 B → c2 20 50

({C, D} , ADC) → c1
C → c1, D → c1, AD → c1,

20 50
DC → c1, ADC → c1

({C, D} , ADC) → c2
C → c2, D → c2, AD → c2,

20 50
DC → c2, ADC → c2

({A} , A) → c2 A → c2 20 33

Fig. 2. Compact classification rule set with contiguity constraint for the example
dataset (minsup = 1).

increasing length. At the kth iteration, the algorithm generates the set of frequent
closed sequences of length k. Each closed sequence is provided of the necessary

Dataset Sequences # Items # Classes #

DNA 2000 4 3

Promoters 107 4 2

E. Coli 1186 20 8

Reuters-21578 6490 28982 10

Fig. 3. Datasets.
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information to compute the compact classification rules encoded by it. The algorithm
was coded in standard ANSI C. Experiments were run on an Intel Pentium 4, with
1.5GHz CPU clock rate and 1GByte RAM.

We performed rule extraction for decreasing support thresholds. For each dataset,
in Figure 4 we report the number of rules in the frequent sequential classification
rule set (R), in the classification rule cover (CRC), and in the compact classifica-
tion rule set (CCRS). Figure 4 also shows the compression rate (CF%) achieved by
means of the two compact representations. This index measure the ratio between
the number of rules in the compact form, and in the set R.

Results show that the proposed compact representations yield significant benefits
for low support thresholds. In this case, set R contains a large number of rules, while
both compact forms have a significantly smaller size. For example, with support
0.05%, DNA dataset yields over 4 million rules, but only 110884 compact rules
(with CF about 2.45%, i.e., about 100 times smaller) and 167455 general rules (with
CF about 3.70%). When increasing support, the compact forms get close to the
whole rule set R.

Higher compression rates are achieved in the datasets where the information is
more correlated. In these datasets, especially when considering low support thresh-
olds, a set of subsequences can appear repeatedly in the training dataset. The two
proposed compact representations allow modelling this regularity. Examples are the
collections of DNA sequences (DNA and Promoters datasets), and textual data
(Reuters dataset). A different behaviour characterizes the dataset representing pro-
teins (E. Coli dataset), where the compression rate is lower. This effect is probably
due to the fact that proteome contains less redundant information with respect to
DNA.

We also performed preliminary experiments on classification accuracy by ex-
ploiting the compact forms proposed in this paper. We used a modified version of
L3 algorithm [5], which yielded encouraging accuracy results.

6 Conclusions and future work

In this paper we have introduced two compact representations to encode the knowl-
edge available in a sequential classification rule set. The sequential classification rule
cover is defined by means of the concept of generator sequence and yields a simple
rule set, which is equivalent to the complete rule set. Compact rules are characterized
by a more complex structure, based on closed sequences and their associated genera-
tor sequences. The complete compact rule set, while providing a similar compression
ratio, allows us to regenerate the entire set of frequent sequential classification rules
from the compact form.

Preliminary experiments on textual and biological datasets show that the com-
pression ratio is significant for low support thresholds and correlated datasets. In
this case, traditional techniques would generate a huge amount of classification rules.

As future work, we plan to exploit our compact representations to design an
effective classifier. A promising direction is the integration of both sequential and
associative classification rules, to exploit both the specific characterization provided
by sequential rules and the general representation given by associative classification
rules.
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a) Reuters-21578

sup sup R CCRS CRC
[%] [abs] # CF [%] # CF [%]

0.05 2 530639 48336 9.11 58793 11.08

0.1 7 10307 9345 90.67 9400 91.20

0.5 33 1401 1401 100.00 1401 100.00

1.0 65 835 835 100.00 835 100.00

b) DNA

sup sup R CCRS CRC
[%] [abs] # CF [%] # CF [%]

0.05 1 4527168 110884 2.45 167455 3.70

0.10 2 416657 109044 26.17 117647 28.24

0.20 4 90551 65914 72.79 66666 73.62

0.50 10 27006 26754 99.07 26765 99.11

1.00 20 12966 12963 99.98 12963 99.98

c) Promoters

sup sup R CCRS CRC
[%] [abs] # CF [%] # CF [%]

1 2 147462 2910 1.97 4753 3.22

2 3 31345 2834 9.04 3369 10.75

4 5 2509 1884 75.09 1935 77.12

8 9 1013 985 97.24 991 97.83

d) E. Coli

sup sup R CCRS CRC
[%] [abs] # CF [%] # CF [%]

0.10 2 825204 359823 43.60 368645 44.67

0.20 4 261848 253243 96.71 253887 96.96

0.50 9 126813 126746 99.96 126748 99.95

1.00 17 67134 67128 99.99 67128 99.99

2.00 34 43100 43100 100.00 43100 100.00

Fig. 4. Frequent classification rule set (R), sequential classification rule cover
(CRC), and compact classification rule set (CCRS).
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In recent years, support vector machine (SVM) [2][3] has attracted lots of interest for its
capability in solving classification and regression problems. Successful applications of SVM
have been reported in various areas, including but not limited to areas in communication
[4], time series prediction [5], and bioinformatics [1]. In many applications, it is desirable
to know not only the classification decisions but also what leads to the decisions. However,
SVMs offer little insight into the reasons why SVM has made its final results. It is desirable
to develop a rule extraction algorithm to reveal knowledge embedded in trained SVMs and
represent the classification decisions based on SVM classification results by linguistic rules.

Rule extraction from SVM can facilitate data mining clients in many aspects:

• Increase perceptibility from SVM decisions

• Refine initial domain knowledge, for example, remove irrelevant attributes which do
not play a role in rule decision making

• Explain data concepts by linguistic rules to clients

• Find active attributes in decision making

This paper exploits the fact that the decisions from a non-linear SVM classifier could
be decoded into linguistic rules based on the information provided by support vectors and
decision function. Given a support vector of a certain class, cross points between each
line, which is extended from the support vector along each axis, and SVM decision hyper-
curve are searched first. A hyper-rectangular rule is derived from these cross points. The
hyper-rectangle is tuned by a tuning phase in order to exclude those out-class data points.
Finally, redundant rules are merged to produce a compact rule set. Simultaneously, impor-
tant attributes could be highlighted in the extracted rules. Rule extraction results from our
proposed method could follow SVM classifier decisions very well. Comparisons between our
method and other rule extraction methods are also carried out on several benchmark data
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sets. Higher rule accuracy is obtained in our method with fewer number of premises in each
rule.
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Abstract

Despite the existence of data mining standards such
as Crisp-DM, SEMMA, PMML, up to date, data mining
projects are being developed more as an art than as a sci-
ence. The process depends completely on the expertise of
the data miner since no method is available to make the pro-
cess systematic and automatic. This is due to a lack of data
mining problem conceptualization. In this sense, a deep un-
derstanding of both of the data to be analyzed and the ap-
plication domain of the results as well as of the data mining
functions is needed. Knowing the meaning of the data to
be analyzed: facts they represent, constraints and context
under which they were captured and the constrains under-
neath the data mining functions to be applied, will make it
possible to find out whether the business goals to achieve
are feasible. However, up to date, there is no formal method
to describe this elements in such a way that the quality of
results quality can be assure. In this paper, we present the
basis for an abstract model to conceptualize these elements.
This setting is a step towards a methodology for data min-
ing project development that will be in itself the main basis
for automatizing the process.

1 Introduction

Data is the key element of every data mining project.
Data must represent the part of the real world domain that
it is going to be analyzed. Moreover, data must be under-
stood so that its correctness and adequacy to the problem
to be solved can be evaluated. The process of knowledge
creation and enhancement comes from information which
is nothing else than data that have been collected, accessed,
formatted and analyzed [21]. Consequently, the success of a
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data mining project needs to be secured far before the mod-
elling step. More precisely, success depends firstly on the
Business Understanding, Data Understanding and Data Pre-
processing steps which are currently being developed as an
art.
According to [21], one of the essential elements of effective
mining is the availability of domain relevant data: “ your
analysis is only as good as the data you use . The author
also establishes, among the common pitfalls of data mining
implementation, the following:

• Not being able to efficiently communicate mining re-
sults within an organization.

• Not having the right data to conduct effective analysis.

• Not using existing data correctly.

The question that arises is whether the adequateness of a
set of data for a problem can be established when prepar-
ing the project plan and how this set of data can be used to
produce the expected results. Up to date, there is no formal
methodology to help with this task. In order to do so, a con-
ceptualization of the data mining problem together with the
data will be needed. This conceptual model will facilitate
communication among the human resources involved: the
data analyst, the data engineer, the domain expert and the
data miner analytical personnel [18].
Such conceptualization would be the key to establishing
which business objectives have a chance to be achieved and
under which circumstances, and it would be a first step to-
wards the automatization of the data mining process.
Only the experience of expert data miners can help in solv-
ing this task. In order to automatize the process, the set
of factors that the expert takes into account when deciding
which business objectives are feasible or not it would have
to be analyzed. Going deeper into the process it is clear that
the adequateness of the data is analyzed taking into account
goals to fulfil. Finally, this can be translated into analyz-
ing whether the data, together with the knowledge extracted



from the experts, can be transformed so that just by being
the input of a certain data mining algorithm will produce the
required patterns.
Thus, quality of the data, in this context, is not only related
to the technical quality, let us say, proper model, percentage
of null values, . . . but it also has to do with the meaning of
the attributes, precedence of each piece of data, relationship
among data, and finally how the data fulfil the requirements
of the data mining functions.
In this paper, we present a first approach towards a system-
atic way to develop data mining project by means of the
conceptualization of each factor involved in the proper de-
velopment: standard representation of goals to fulfil, tech-
niques to be used, and any information to be analyzed be-
fore the project plan is developed. Thus, independently of
who the person to develop the problem may be, the tasks
to be performed together with the inputs, outputs, and risks
will be settled in a standard way.
The rest of the paper has been organized as follows. Section
2 presents the related work in which it will be clear that al-
though some efforts have been made towards a data mining
methodology, no such methodology already exists mainly
because the conceptualization of the problem is missing.
In section 3 a deep analysis of problem is done so to dis-
cover the elements to conceptualize: business domain on
the one hand, data mining functions on the other. Section
4.2 presents a deeper analysis of the data sources as they
are the main source of information in a data mining prob-
lem. To end with in section 5 discussion and conclusions
of the research so far as well as future lines of study are
outlined.

2 Related Work

In the information age when data generated and stored
by modern organizations increase in an extraordinary way,
data mining tasks [35] become a necessary and fundamen-
tal technology. A lot of data mining research has been fo-
cusing on the development of algorithms for performing
different tasks, i.e. clustering, association and classifica-
tion. [27] [36] [22] [34] [29] [30] [17] [4] [25] [5] [24]
[14], and on their applications to diverse domains. Though
one major challenge in data mining according to [11]is get-
ting researchers to agree on a common standard for pre-
processing tasks, standards related to applying the data
mining process to operational processes, and systems. In
this sense, the Predictive Model Markup Language(PMML)
[12] provides several components (Data Dictionary, Min-
ing Schema, Transformation Dictionary, Models) useful for
producing data mining models. The Data Dictionary in-
cludes only information about type of data and range of val-
ues. Semantic information is not taken into account.
Several proposals have been developed in order to offer

a guide to implementing data mining projects [13][32][7].
The Common Warehouse Model for Data Mining (CWM
DM) [13] proposed by the Object Management Group, in-
troduces a CWM Data Mining metamodel integrated by the
following conceptual areas: A core Mining metamodel and
metamodels representing the data mining subdomains of
Clustering, Association Rules, Supervised, Classification,
Approximation, and Attribute Importance.
The Cross-Industry Standard Process for Data Mining
(CRISP-DM), was proposed in 1997 [7] to establish the
standard data mining process. CRISP-DM steps include
several phases: business understanding, data understanding,
data preparation, modelling , evaluation and deployment.
AT 1999 SAS Institute proposed the SEMMA methodology
integrated by five phases: Sample, Explore, Modify, Model
and Assess. The data mining process starts by taking a rep-
resentative sample of the target population to which a confi-
dence level is associated. Then, this sample is explored and
analyzed using visualization and statistical tools in order to
obtain a set of significant variables that will become the in-
put for a selected model.The selected model is analyzed.
The goal of this step is to determine relationships among
variables. In this phase, both statistical methods (e.g. dis-
criminant analysis, clustering, and regression analysis)and
data-oriented methods (e.g. neural networks, decision trees,
association rules) can be used. In this process the final phase
consists of evaluating the model and comparing it with dif-
ferent statistical methods and samples.
All of the above models depend heavily on the analysts
(business, domain experts, data miners) knowledge. There
seems to exist a need for an intermediate level of conceptu-
alization which can provide an interface between the experts
and the clients.
According to Grossman et al. [11] “ although efforts have
been done to homogenize terminology and concepts among
standards more work is required ”. A framework to develop
a unified model for data mining is proposed in [19]. The
goal of the model is to provide a uniform data structure for
all data mining patterns and operators to manipulate them.
The model is designed under a three-view architecture (Pro-
cess view, model view and data view) that includes a pro-
cess model and data views. The model view contains a set
of mining models with information about mining results.
All these approaches and standards do not take the seman-
tics of the data into account.
On the other hand, new techniques to add semantics to data
mining tasks have been proposed. However, the semantics
of the data in the data mining process has been strongly re-
lated to human involvement in the process itself. Data min-
ing projects involve qualified personnel [18], i.e. business
analysts, data analysts, data engineers, domain experts, data
miners, knowledge engineers, strategy managers, project
managers [20]. A significant contribution to semantic data



has been done by the semantic web community [23][2]
[8][31] to enrich web resources with metadata. In the web
domain, both semantics and mining are combined [2] to im-
prove web mining results with ontologies and metadata. In
order to add semantics to web documents, Berendt et al.
[2] proposed several approaches to extract semantics from
the web to help knowledge engineers. Several studies have
been developed for using ontologies to improve web content
mining. An interesting proposal, calledM4, dealing with a
metadata structure is presented in [1]. Based on case-based
reasoning, an approach that enables automatization of pre-
processing and reusability of defined preprocessing cases
for data mining applications, is proposed. In this proposal,
a case is defined in terms of the specification of a data min-
ing task, the data to be mined and the set of preprocessing
operators to be applied to the data.M4, the Mining Mart
MetaModel, is a metamodel designed for a metadata-driven
software package to perform preprocessing for data mining.

3 Analysis of the Problem

Business Intelligence [6] is: “ a fairly new term that in-
corporates a broad variety of processes and technologies to
harvest and analyze specific information to help a business
make sound decisions ”.
In this paper we use the term business to refer to any ac-
tivity developed in a company in the most general sense,
no matter the nature and aim of such activity (commercial,
governmental, education, . . . ). Data mining is one of the
technologies that make Business Intelligence solutions be
implemented. In fact, in any business intelligence solution
should include a data mining project to extract the intel-
ligence of the business that will be accordingly deployed.
However, data mining projects are being developed more as
an art than as an engineering process.
The only approach to develop a task in a systematic way is
described in Crisp-DM. However, complete tasks develop-
ment is dependant on the data miner expert.
Data mining experts have made the process of translating
business goals into data mining goals, automatic. When do-
ing so, the expert does not only take into account data min-
ing techniques but also their constraints, inputs, outputs, the
order in which algorithms will be applied and dependencies
between inputs and outputs. As part of the process, the ex-
pert automatically evaluates different choices depending on
the intermediate results and/or inputs. The quality of the
overall process will finally determine the quality of the ob-
tained results.
The first question that arises is: Which is the methodol-
ogy to be followed to translate business objectives into data
mining objectives? Unluckily, there is no such methodol-
ogy but if we think on how to obtain it new questions will
arise: How a business objective is expressed? Do we have

any standard to express business objectives in a uniform
way? What is a data mining goal? How are data mining
goals achieved? Which are the requirements of data mining
functions? Do we have a standard to establish data mining
goals?.
The main goal is then, to make this process explicit: to gen-
erate a method to perform the required tasks in a systematic
way. This method will guarantee the automatic generation
of feasibility plans for each business goal being translated
into data mining goals no matter who the person in charge
of the process may be. A first step towards this method will
be the definition of certain mechanisms of abstraction to ob-
tain a model of the objectives of the project.
The goal of this abstraction is to provide data mining ana-
lyst with a method to systematically describe the goals of
the project. Deeply analyzing any activity of the organi-
zation (even external to it) that generate data that will be
potentially used as input in a data mining project as well
as the data themselves and the data mining functions will
highlight important concepts that are common in any data
mining project independently of the domain. These aspects
will set the basis for a definition of elements that will make
it possible to represent (to abstract) the business domain that
is the target of the data mining solution.

Figure 1. Project Plan Definition Process

Figure 1 depicts the basic steps, tools and intermediate re-
sults that underlay the establishment of a systematic method
to define data mining goals.
Previous to the definition of such a model there is a need to
find a standard way to represent all the elements identified
as relevant in the business domain to be analyzed. Manda-
tory elements that compose this information are: objectives



and motivations underlying the project, scope of applica-
tion of the expected results and structure, content and flow
of the data to be analyzed. Besides, technical elements re-
lated to the very nature of the data mining project will have
to be incorporated to the previous information. The blend-
ing and abstraction of these two pieces of information, will
result not only in a model of shared understanding for client
and data miner but will also be a tool to determine factible
data mining goals and consequently the basis to establish
milestones to achieve along the project development. In
figure 1, DMMO (Data Mining Modelling Objects) denotes
the set of all the compounding elements of the Modelling
Language. Elements of the business domain will be ab-
stracted using DMMO, generating the Business Objective
Model. Together with this intermediate model, a document
that we have called Requirements Assesment will be pro-
duced. This is a first approach to project goals in which
special attention is given to critical factors in the develop-
ment (risks, constraints, information required, . . . ). Critical
factors will depend both on the goals themselves and on the
tools and techniques used to achieve them.
The requirement assessment document will be analyzed
jointly with the client to enrich and refine the previous busi-
ness goals model. The resulting model from this analysis is
what has been called Feasible Business goals Model in the
figure. In this model, goals previously identified but ana-
lyzed as not feasible have been removed. From the refined
model and making used once again of DMMO the project
plan will be produced almost in a automatic way as the
model will represent relevant aspects both of the domain
and of the tools themselves. Due to the abstraction capa-
bility of the elements of DMMO we propose, the plan will
contain detail information about: techniques, tools, kind of
data mining to be solved, inputs, outputs, flor of data and de-
pendencies. Thus, risk and contingencies, cost, milestones,
. . . will be identified.

3.1 Setting/Abstracting business objectives

A data mining project arises when a given organization
needs to solve a set of problems that can be addressed by
means of data mining techniques. In a data mining project
some critical success factors can be identified. However, the
most important factor is related to the clear understanding
of the business goals. Moreover, once the goals are under-
stood, they must be translated into data mining goals and
then, into data mining problem types. A data mining expert
who knows what type of problems can be solved, and which
are the most suitable techniques, algorithms and tools to be
applied, is required.
However, not only identifying the data mining problems to
be solved is enough. We should also be able to find out if the
available data to be analyzed fulfil a set of general require-

ments or conditions. As it was said in 4.1, every problem
type will require different kinds of data. In the following,
we will describe the different existing problems as well as
their requirements.
Eliciting, analyzing and graphically depicting concepts is
no easy task [10]. The bottom line to business success is
to increase the knowledge of decision makers at every level
of an organization. The process of knowledge creation and
enhancement comes from information which is nothing else
than data that have been collected, accessed, formatted and
analyzed [21].
For data mining to be successful, a good understanding of
the business objectives that finally establish the require-
ments of the system to be developed is needed. Indepen-
dently of how good the data mining techniques can be, a
system whose requirements are poorly specified will end up
with a disappointed end user [28]. Both the client and the
data miner play an important role when establishing busi-
ness goals. The client has to formulate his problem while
the data miner tries to understand it in order to be able to
translate it into data mining functions. During this task, it
is relevant to keep in mind the following aspects (inspired
from software engineering [28]: “ Business domain as well
as functional domain of the problem has to be represented
and understood ”.

3.1.1 Business domain

Every data mining project can collectively be described as
data analysis and knowledge extraction to obtain the intelli-
gence of the business. This definition contains the key to un-
derstand business objectives in a data mining project: Data.
Data do not only represent the activities or business pro-
cesses that have generated them. Activities are influenced
by relevant factors of the business that are also hidden in the
data themselves. Consequently, data implicitly carry impor-
tant knowledge about the business that should be extracted
to be able to correctly capture the information hidden in
data. Along this section, we will try to highlight which are
these determinant factors so to take them into account in the
abstraction mechanism.
Though talking about intelligence, data mining does not in-
volve deductive processes. On the contrary, it is an induc-
tive process that analyzes the data to extract knowledge: it
accepts data from different sources, manipulates them and
obtains an output and patterns of knowledge, that if of good
quality, will be deployed. This is the general setting of the
process no matter the domain or organization we are deal-
ing with.
In the process of data analysis and knowledge extraction,
different perspectives of the data being analyzed are taken
into account: data sources, information content of the data
(knowledge to explain the data), data structure and data



flow. To fully understand the process, all of them must be
considered.
Related to the content, data have to be enriched so that goals
can be fulfilled. Data that are the source of a data mining
project were never designed, captured and stored thinking
they would become the input of the data mining process.
Consequently, an effort is needed to transform them so that
knowledge can be extracted. However, the aim of any data
mining project is to help the decision maker do a better job.
Thus, any element that can be determinant when making a
decision should be analyzed. In this sense, the mayor prob-
lem is establishing these elements as it is as equally fatal
to leave one element out as it is to introduce erroneous el-
ements. In any case, elements that can be decisive when
making decisions have to do with the operations developed
in the company, the internal organization of the company
as well as business rules, and finally the external conditions
related to the business (competitors) and general (political,
social, . . . , ) events. In order for the process to be data miner
and client independent, this is to say, to be able to obtain the
same goals no matter who the experts leading and develop-
ing the process are, a systematic abstract way to express this
content information is needed. The first naı̈ve approach is to
conceptualize this information to discover the concepts and
properties the available data represent with respect to the
business. Only this way, we should be able to establish if
data comply with the requirements of each function within
the data mining process. Data content is deeply dealt with
in section 4.

3.2 Setting/Abstracting the data mining functions
domain

Lots of classifications of data mining problems can be
found in the literature. In [7] authors describe six kinds of
problems: data description and summarization, segmenta-
tion, concept description, classification, prediction and de-
pendency analysis. Usually the data mining project involves
different problem types that together will achieve the goals
of the project. In [16] and [3] the various types of data min-
ing algorithms such as memory-based reasoning, link anal-
ysis, decision trees, neural networks, . . . are explained. Data
mining common tasks are identified: classification, estima-
tion, prediction, affinity grouping, clustering and descrip-
tion. Moreover, they explain which data mining techniques
are more appropriate for every type of problem.
Although in [3] it is stated which data-mining techniques
are best for what types of business applications, it starts
with data mining objectives already identified. A further de-
scription of the problem, so that a mapping could be done
between business objectives and data mining problems, is
missing. This mapping will help on the one hand to see if
certain business objectives are feasible or not, and, on the

other, it would provide means to interpret the patterns to be
obtained.
In order to do a mapping between business goals and data
mining goals, a conceptualization of the data mining func-
tions definition needs to be established for each kind of
problem: constraints, required inputs for each input, rela-
tionship with the business, expected outputs, techniques that
are appropriate, . . . . This conceptualization could be used
in the business understanding step to establish requirements
to fulfil certain goals.
Related to data mining conceptualization, not only each
function has to be dealt with. Data are transformed along
the data mining process in order to obtain the proper re-
sults. Settled this way, the input data will be transformed
generating intermediate data that will sometimes become fi-
nal results and after more transformations, will produce the
output. Along the process, more data can enter from inter-
nal or external sources. Transformations applied over the
data will define the process to be developed.
The data going through the set of transforming steps would
have to comply with the requirements of each transforming
function. These functions requirements can be divided into
two categories depending on its relation to data semantics.
Requirements that are data semantics independent are the
ones related to the function itself regardless of the domain.
Thus, certain algorithms require data to have a special for-
mat or auxiliary structures to run (hierarchies, . . . .).
Besides, there are requirements made by the function to the
input data depending on the semantics of the data. Consider,
for example, a clustering function. If demographic clusters
are required with such an such support, then the data to en-
ter will have to be related to demographics. This is why
we say that requirements will be related to data structure as
well as to content and both are important when establishing
the goals together with the data flow.
On the other hand, data mining patterns cannot be inter-
preted depending only on the function or/and technique
used to obtain it. Thus after applying any function, lets take
clustering as an example, a set of patterns is obtained but
to evaluate their quality and consequently the success of the
process, not only measures related to the patterns, clusters
in this case, (number of elements, cohesion, . . . ) are needed
but also some values to measure the results according to
user expectations. The latter are a mixture of understanding
the meaning of each pattern, cluster, together with the busi-
ness requirements.
The conceptualization of the data mining problems will also
provide a basis for understanding the meaning of the ob-
tained patterns, analyzing the features of the instance of the
problem that has been performed.
However, data mining problems cannot be analyzed to ab-
stract common features on their own. Data mining prob-
lems impose certain requirements to the input data. These



requirements (content, structural, . . . ) have to be complied
with by the input data to obtain the appropriate result. Con-
sequently, there is a need before deeply analyzing data min-
ing problems to further analyze data from different perspec-
tives, including technical, structure and content.

4 A first approach to Data Conceptualization

In [26] the key to a data mining successful project is out-
lined: think about the data that you need to gather from the
perspective of the information you want to deliver.
Discovering behaviors, patterns or trends is only possible if
we have data about the domain we want to analyze. How-
ever, having data does not mean that the discovery process
is going to be successful. Data must fulfil a set of critical
requirements in such a way that by analyzing them a partic-
ular problem can be solved.
In this context, good quality data means adequateness of the
data to fulfil a goal. Thus Adequateness can only be ana-
lyzed studying the requirements that goal fulfilment impose
on data.

4.1 Critical Requirements of Data

There are some critical requirements related to data that
will lead a data mining project to be successful.

Quality Data mining is the process of analyzing a huge
amount of data intended to find useful information for
decision making. However, if there is no useful infor-
mation hidden in the data, it will obviously be impos-
sible to obtain interesting results. As in [7], it is possi-
ble to figure it out at the very beginning of the project.
During the Data Understanding phase it is possible to
guess first findings or initial hypothesis and their im-
pact on the remainder of the project. Besides, the ana-
lyst should examine some aspects of the data that may
have altered the results of the analysis or could have
even made achieving the goals of the project impos-
sible. Some common aspects to check include [33]:
missing or null values; whether all possible values are
represented; the plausibility and the spelling of values;
attributes providing the same information but in differ-
ent formats.

Interpretation The interpretation of the findings extracted
from the data depends on how well we understand the
data. This understanding is at the same time related
to the context or environment as well as to the domain
they stand for. Data interpretation is closely related
to their semantics. Data by themselves do not mean
much. Making use of meta data information will fa-
cilitate data understanding and would make the inter-

pretation of the results of a data mining project a lot
easier.

UsefulnessData analysis experts should be familiar with
the types of problems they are able to solve as well as
with the algorithms, techniques and tools to be used.
Each problem type requires data of a particular nature.
It calls for a team task between a data engineer and a
data analyst [18] to identify the types of data required
for every data mining problem to be solved for fulfill-
ing a project goals. For instance, if a fraud detection
model is to be obtained (a classification model), trans-
actional information as to where frauds occurred as
well as information related to the people involved, will
then be needed. Consequently, the potentiality of the
data for each problem type should be analyzed. It may
happen that a particular attribute considered essential
in some cases it might just be considered obvious in
others.

Hence, when facing a data mining project apart from iden-
tifying goals, types of problems to be solved and tech-
niques to be applied, understanding the available data will
be needed to measure their quality, their degree of inter-
pretability and their utility.

4.2 Towards Data typification

It is necessary to make use of meta data information
about the data to be analyzed wherever we can. Meta data
should include information not only about the source of the
data but also about the concepts they stand for.
As in [26], there are three types of data depending on the
source which should be used in every data mining project.
Generally, we can find data sources within and outside a
business organization.

• Transactional data. This is very relevant in a data min-
ing project because, as in the case of a business orga-
nization, the data contain information about the activ-
ities the company is involved on. Typically, internal
data is considered more valuable data, because they
reveal true insights into the business and its products
[9]. Therefore, they will represent the customer’s past
behaviour. And, as it is well known, analyzing past
behavior is the best way to predict future ones.

• Collected data. Transactional data about the activities
performed by the business organization is often spread
all over the different databases of the company. Col-
lecting these data is and effort that is worth trying. It
increases the possibility of enriching transactional data
with more information that will, for sure, improve the
quality of the analysis to be carried on.



Both transactional and collected data can be consid-
ered internal data, as they are coming from the internal
databases of the company.

• External data. Typically, the internal data of the com-
pany stand for just a subset of the total amount of in-
formation that could be useful for analysis. Therefore,
these data must often be enriched or complemented
with external data sources such as surveys, panels,
micro-marketing tools, . . . .

Taking into account the aspects of the domain to be ana-
lyzed and whose data we are talking about we distinguish
three different types of data.[15].

• Content data. It consists of data related to individual
events, for instance, interactions with the users. It is
fact oriented since it records the details or facts of cus-
tomer encounters. It reflects an activity that has oc-
curred.

• Contextual data. These type of data refers to the condi-
tions or environment under which whatever individual
event occurs. It provides one additional level of infor-
mation complementary to content data, giving a more
comprehensive view of those factors that could have
influenced the customers behavior. This kind of in-
formation is changing across time so it is important to
record not only present conditions but those that hap-
pened in the past. In the case of a company, this set of
data could include the context of the company (suppli-
ers, competitors, marketing campaigns, . . . ), context of
the customers (demographics, economics, psychology,
. . . ) and general context (politics, laws, economics,
market, . . . ).

• Analytical data. The integration of data coming from
individual events and from the context will be the in-
put for analytical processes. The analysis will evaluate
the relationship between the occurred events under dif-
ferent circumstances identifying patterns, trends and
behaviors. The results of this analysis will be part of
analytical information to be incorporated to every in-
telligence process within a company, for instance.

The above described classifications are not independent of
each other. On the contrary, they are complementary and
different since the criteria to classify the data is also differ-
ent. The effective integration of these data types will lead
the data mining project to be successful.
The principles towards the first steps to data abstraction lay
underneath these typifications. This is just a first approach
to data abstraction but the important point to be highlighted
is that any of the classifications presented above do include
information about the gathered data related not only to the
data themselves but to the organization and/or activities

generating them. Enriching the data this way provide an-
alysts with a tool to establish whether relevant data for data
mining functions are available so that feasible data mining
goals can be stated and consequently, so can be business
objectives.

5 Discussion and Conclusion

The main reason for data mining to be developed more
as and art than as a science can be found in the lack of
an abstract description of the elements involved: data and
the domain they represent on the one hand and data min-
ing functions on the other. Such a conceptualization of the
problem would make it possible to automatize or at least to
help developers to decide about the feasibility of the goals
to be achieved. In this paper, we have presented a first ap-
proach to such abstraction. Our approach is towards an ab-
stract description of the data involved, domain independent
and goals oriented. Goal oriented means that the abstraction
main aim is to help analyzing goals that will be feasible. For
this purpose the abstraction will have to collect information
related to the main factors in the process: the business goals
themselves on the one hand, and the data mining functions
on the other.
Thus, data abstraction has to gather all relevant informa-
tion that would be important for the business goals to be
achieved, this is to say, not only the data itself related to
the activity generating it; factors involved, relationship with
other activities, external factors influencing the values, . . . ,
but also capturing and abstracting information related to
content, transaction and context. On the other hand, data
mining functions abstraction has to include not only the
information related to the function itself: technique, kind
of patterns it generates, but most importantly, requirements
and constraints the data has to comply in order to generate
the proper set of patterns. Both abstractions will provide the
analyst with enough information to study the adequateness
of the data for a given business problem and at the end, the
feasibility of each goal. Not only feasibility will be estab-
lished and consequently the project plan, but the model will
help preparing the risk plan since the set of requirements for
each task would be analyzed.
The paper has presented a deep analysis of the approach
and a first data typification has been presented. We are cur-
rently working on the data mining function global abstrac-
tion. Once the concepts to abstract will be clear, our next
goal for the data mining model to be obtained is the repre-
sentation of the elements in a standard way.
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Abstract.

A new approach to missing attribute values, based on
the idea of an attribute-concept value, is studied in the
paper.  This approach, together with two other approaches
to missing attribute values, based on "do not care"
conditions and lost values are discussed using rough set
methodology, including attribute-value pair blocks,
characteristic sets, and characteristic relations.
Characteristic sets are generalization of elementary sets
while characteristic relations are generalization of the
indiscernibility relation.  Additionally, three definitions of
lower and upper approximations are discussed and used
for induction of certain  and possible rules.

1. Introduction

In this paper data sets are presented in the form of
decision tables, where columns are labeled by variables
and rows by case (or example) names.  Variables are
categorized into independent variables, also called
attributes, and dependent variables, also called decisions.
Usually decision tables have only one decision.  The set of
all cases that correspond to the same decision value is
called a concept (or a class).

In most papers on rough set theory it is assumed that
values, for all variables and all cases, are specified.  For
such tables the indiscernibility relation, one of the most
fundamental ideas of rough set theory, describes cases that
can be distinguished from each other.

However, in many real-life applications, data sets have
missing attribute values, or, in different words, the
corresponding decision tables are incompletely specified.
For simplicity, incompletely specified decision tables will
be called incomplete decision tables.

In data mining two main strategies are used to deal
with missing attribute values.  The former strategy is based
on conversion of incomplete data sets (i.e., data sets with
missing attribute values) into complete data sets and then
acquiring knowledge, e.g., by rule induction or tree
generation from complete data sets.  In this strategy
conversion of incomplete data sets to complete data sets is
a preprocessing to the main process of data mining.  In the
later strategy, knowledge is acquired from incomplete data
sets taking into account that some attribute values are
missing.  The original data sets are not converted into
complete data sets.

Typical examples of the former strategy include [4,
11]:
• replacing missing attribute values by the most common

(most frequent) value of the attribute,
• replacing missing attribute values restricted to the

concept.  For each concept missing attribute values are
replaced by the most common attribute value restricted
to that concept,

• for numerical attributes, missing attribute value may be
replaced by the attribute average value,

• for numerical attributes, missing attribute value may be
replaced by the attribute average value restricted to the
concept,

• assigning all possible values of the attribute.  A case
with a missing attribute value is replaced by a set of new
examples, in which the missing attribute value is
replaced by all possible values of the attribute,

• assigning all possible values of the attribute restricted to
the concept,

• ignoring cases with missing attribute values.  An
original data set, with missing attribute values, is
replaced by a new data set with deleted cases containing
missing attribute values,

• considering missing attribute values as special values.



The later strategy is exemplified by the C4.5 approach
to missing attribute values [18] or by a modified LEM2
algorithm [10, 13].  In both algorithms original data sets
with missing attribute values are not preprocessed, i.e.,
data sets are not preliminarily converted into complete
data sets.

Note that from the view point of rough set theory, in the
former strategy the conventional indiscernibility relation
may be applied to describe the process of data mining
since, after preprocessing, the data set is complete (has no
missing attribute values).  Furthermore, lower and upper
approximations, other basic ideas of rough set theory, are
also conventional.

In this paper we will concentrate on the later strategy
used for rule induction, i.e., we will assume that the rule
sets are induced from the  original data sets, with missing
attribute values, not preprocessed as in the former strategy.

We will assume that there are three reasons for decision
tables to be incomplete.  The first reason is that an
attribute value, for a specific case, is lost.  For example,
originally the attribute value was known, however, due to
a variety of reasons, currently the value is not available.
Maybe it was recorded but later it was erased.  The second
possibility is that an attribute value was not relevant—the
case was decided to be a member of some concept, i.e.,
was classified, or diagnosed, in spite of the fact that some
attribute values were not known.  For example, it was
feasible to diagnose a patient in spite of the fact that some
test results were not taken (here attributes correspond to
tests, so attribute values are test results).  Since such
missing attribute values do not matter for the final
outcome, we will call them "do not care" conditions.  The
third possibility is a partial "do not care" condition: we
assume that the missing attribute value belongs to the set
of typical attribute values for all cases from the same
concept.  Such a missing attribute value will be called an
attribute-concept value.  Calling it concept "do not care"
condition would be perhaps better, but this name is too
long.

The main objective of this paper is to study incomplete
decision tables, assuming that in the same decision table
some attribute values may be lost, some may be "do not
care" conditions, and some may be attribute-concept
values.  Decision tables with lost values and "do not care"
conditions were studied in [7–9, 12].

For such incomplete decision tables there are three
special cases: in the first case all missing attribute values
are lost, in the second case all missing attribute values are
"do not care" conditions, and in the third case all missing
attribute vales are attribute-concept values.  Incomplete
decision tables in which all attribute values are lost, from
the viewpoint of rough set theory, were studied for the first

time in [13], where two algorithms for rule induction,
modified to handle lost attribute values, were presented.
This approach was studied later in [20–22], where the
indiscernibility relation was generalized to describe such
incomplete decision tables.

On the other hand, incomplete decision tables in which
all missing attribute values are "do not care" conditions,
again from the view point of rough set theory, were
studied for the first time in [4], where a method for rule
induction was introduced in which each missing attribute
value was replaced by all values from the domain of the
attribute.  Originally such values were replaced by all
values from the entire domain of the attribute, later by
attribute values restricted to the same concept to which a
case with a missing attribute value belongs.  Such
incomplete decision tables, with all missing attribute
values being "do not care conditions", were extensively
studied in [14, 15], including extending the idea of the
indiscernibility relation to describe such incomplete
decision tables.

Rough set methodology for incomplete decision tables
with missing attribute values of the type attribute-concept
values is presented in this paper for the first time,  though
it was briefly mentioned in [10].

In general, incomplete decision tables are described by
characteristic relations, in a similar way as complete
decision tables are described by indiscernibility relations
[7].

For complete decision tables, once the indiscernibility
relation is fixed and the concept (a set of cases) is given,
the lower and upper approximations are unique.

For incomplete decision tables, for a given
characteristic relation and the concept, there are three
different possible ways to define lower and upper
approximations, called singleton, subset, and concept
approximations [7].  The singleton lower and upper
approximations were studied in [14, 15, 20–22].  Similar
ideas were studied in [2, 19, 23–25].  In this paper we
further discuss applications to data mining of all three
kinds of approximations: singleton, subset and concept.
As it was observed in [7], singleton lower and upper
approximations are not applicable in data mining.

The next topic of this paper is demonstrating how
certain and possible rules may be computed from
incomplete decision tables.  An extension of the well-
known LEM2 (Learning from Examples Module, version
2) rule induction algorithm [1, 5], called MLEM2, was
introduced in [6].  LEM2 is a component of the LERS
(Learning from Examples based on Rough Sets) data
mining system.  Originally, MLEM2 induced certain rules
from incomplete decision tables with numerical attributes
and with missing attribute values interpreted as lost.



Using the idea of lower and upper approximations for
incomplete decision tables, MLEM2 was further extended
to induce both certain and possible rules from a decision
table with some numerical attributes and with some
attribute values being lost and some attribute values being
"do not care" conditions.

2. Complete data: elementary sets and
indiscernibility relation

An example of a decision table, taken from [10], is
presented in Table 1.

Table 2.  An example of a complete decision table

Attributes Decision

Temperature Headache Nausea Flu

1 high yes no yes
2 very_high yes yes yes
3 high no no no
4 high yes yes yes
5 high yes yes no
6 normal yes no no
7 normal no yes no
8 normal yes no yes

Rows of the decision table represent cases, while
columns are labeled by variables.  The set of all cases will
be denoted by U .   In Table 1, U  = {1, 2, ..., 8}.
Independent variables are called attributes  and a
dependent variable is called a decision and is denoted by d.
The set of all attributes will be denoted by A.  In Table 1,
A  = {Temperature, Headache, Nausea}.  Any decision
table defines a function r that maps the direct product of U
and A into the set of all values.  For example, in Table 1,
r(1, Temperature) = high.  Function r describing Table 1
is completely specified (total).  A decision table with
completely specified function r will be called completely
specified, or, for the sake of simplicity, complete.

Rough set theory [16, 17] is based on the idea of an
indiscernibility relation, defined for complete decision
tables. Let B  be a nonempty subset of the set A  of all
attributes.  The indiscernibility relation IND(B ) is a
relation on U defined for x, y Œ U as follows

(x, y) Œ IND(B) if and only if r(x, a) = r(y, a)
for all a Œ B.

The indiscernibility relation IND(B) is an equivalence
relation.  Equivalence classes of IND(B) are called

elementary sets of B  and are denoted by [x]B.  For
example,  for Table 1, elementary sets of IND(A) are {1},
{2}, {3}, {4, 5}, {6, 8}, {7}.  The indiscernibility relation
IND(B) may be computed using the idea of blocks of
attribute-value pairs.  Let a be an attribute, i.e., a Œ A and
let v be a value of a for some case. For complete decision
tables if t = (a, v) is an attribute-value pair then a block of
t, denoted [t], is a set of all cases from U that for attribute
a have value v.  For Table 1,

[(Temperature, high)] = {1, 3, 4, 5},

[(Temperature, very_high)] = {2},

[(Temperature, normal)] = {6, 7, 8},

[(Headache, yes)] = {1, 2, 4, 5, 6, 8},

[(Headache, no)] = {3, 7},

[(Nausea, no)] = {1, 3, 6},

[(Nausea, yes)] = {2, 4, 5, 7}.

The indiscernibility relation IND(B) is known when
known are all elementary blocks of IND(B ).  Such
elementary blocks of B  are intersections of the
corresponding attribute-value pairs, i.e., for any case x Œ
U,

[x]B = « {[(a, r(a, v))] | a Œ B}

We will illustrate the idea how to compute elementary
sets of B for Table 1 and B = A.

[1]A = [(Temperature, high)] « [(Headache, yes)] «

[(Nausea, no)] = {1},

[2]A = [(Temperature, very_high)] « [(Headache, yes)]
« [(Nausea, yes)] = {2},

[3]A = [(Temperature, high)] «  [(Headache, no)] «

[(Nausea, no)] = {3},

[4]A = [5]A = [(Temperature, high)] « [(Headache, yes)]
« [(Nausea, yes)] = {4, 5},

[6]A = [8]A = [(Temperature, normal)] « [(Headache,
yes)] « [(Nausea, no] = {6, 8},

[7]A = [(Temperature, normal)] « [(Headache, no] «

[(Nausea, yes)] = {7}.



3. Incomplete data: characteristic sets and
characteristic relations

For data sets with missing attribute values, the
corresponding function r  is incompletely specified
(partial).  A decision table with incompletely specified
function r  will be called incompletely specified, or
incomplete.

In the sequel we will assume that all decision values are
specified, i.e., they are not missing.  Also, we will assume
that all missing attribute values are denoted by "?", by "*"
or by "–", lost values will be denoted by "?", "do not care"
conditions will be denoted by "*", and attribute-concept
values by "–".  Additionally, we will assume that for each
case at least one attribute value is specified.

Incomplete decision tables are described by
characteristic relations instead of indiscernibility relations.
Also, elementary sets are replaced by characteristic sets.
An example of an incomplete table is presented in Table 2.

Table 1.  An example of an incomplete decision
table

Attributes Decision

Temperature Headache Nausea Flu

1 high – no yes
2 very_high yes yes yes
3 ? no no no
4 high yes yes yes
5 high ? yes no
6 normal yes no no
7 normal no yes no
8 – yes * yes

For incomplete decision tables the definition of a block
of an attribute-value pair must be modified.
• If an attribute a there exists a case x such that r(x, a) =

?, i.e., the corresponding value is lost, then the case x
should not be included in any block [(a , v)] for all
values v of attribute a.

• If for an attribute a there exists a case x such that the
corresponding value is a "do not care" condition, i.e.,
r(x , a) = *, then the corresponding case x should be
included in blocks [(a, v)] for all specified values v of
attribute a.

• If for an attribute a there exists a case x such that the
corresponding value is a attribute-concept value, i.e.,
r(x , a) = –, then the corresponding case x should be

included in blocks [(a, v)] for all specified values v of
attribute a that are members of the set V(x, a), where

V(x, a) = {r(y, a) | y Œ U, r(y, d) = r(x, d)},

and d is the decision.
These modifications of the definition of the block of

attribute-value pair are consistent with the interpretation of
missing attribute values, lost, "do not care" conditions, and
attribute-concept values.  Also, note that the attribute-
concept value is the most universal, since if V(x, a) = Ø,
the definition of the attribute-concept value is reduced to
the lost value, and if V(x, a) is the set of all values of an
attribute a, the attribute-concept value becomes a "do not
care" condition.

For Table 2, for case 1, r(1, Headache) = –, and V(1,
Headache) = {yes}, so we add the case 1 to [(Headache,
yes)].  For case 3, r(1, Temperature) = ?, hence case 3 is
not included in either of the following sets: [(Temperature,
high)], [(Temperature, very_high)], and [(Temperature,
normal)].  Similarly, r(5, Headache) = ?, so the case 5 is
not included in [(Headache, yes)] and [(Headache, no)].
Also, r(8, Temperature) = –, and V(8, Temperature) =
{high, very_high}, so the case 8 is a member of both
[(Temperature, high)] and [(Temperature, very_high)].
Finally, r(8, Nausea) = *, so the case 8 is included in both
[(Nausea, no)] and [(Nausea, yes)].  Thus,

[(Temperature, high)] = {1, 4, 5, 8},

[(Temperature, very_high)] = {2, 8},

[(Temperature, normal)] = {6, 7},

[(Headache, yes)] = {1, 2, 4, 6, 8},

[(Headache, no)] = {3, 7},

[(Nausea, no)] = {1, 3, 6, 8},

[(Nausea, yes)] = {2, 4, 5, 7, 8}.

For a case x Œ U, the characteristic set KB(x) is defined
as the intersection of the sets K(x, a), for all a Œ B.  If r(x,
a) is specified, then K(x, a) is the block [(a, r(x, a)] of
attribute a and its value r(x, a).  If r(x, a) = * or r(x, a) = ?
then the set K(x, a) = U .  If r (x , a ) = –, then the
corresponding set K(x, a) is equal to the union of all blocks
of attribute-value pairs (a, v), where v Œ V(x, a).  The way
of computing characteristic sets needs a comment.  For
both "do not care" conditions and lost values the
corresponding set K (x, a ) is equal to U  because the
corresponding attribute a does not restrict the set KB(x): if
r(x, a) = *, the value of the attribute a is irrelevant; if r(x,
a) = ?, only existing values need to be checked.  However,



the case when r(x, a) = – is different, since the attribute a
restricts the set KB(x).  Furthermore, the description of
KB(x) should be consistent with other (but similar) possible
approaches to missing attribute values, e.g., an approach in
which each missing attribute value is replaced by the most
common  attribute value restricted to a concept.  Here the
set V(x, a) contains a single element and the characteristic
relation is an equivalence relation.  Our definition is
consistent with this special case in the sense that if we
compute a characteristic relation for such a decision table
using our definition or if we compute the indiscernibility
relation as for complete decision tables using definitions
from Section 2, the result will be the same.  For Table 2
and B = A,

KA(1) = {1, 4, 5, 8} « {1, 2, 4, 6, 8} « {1, 3, 6, 8} =

{1, 8},
KA(2) = {2, 8} « {1, 2, 4, 6, 8} « {2, 4, 5, 7, 8} =

{2, 8},
KA(3) = U « {3, 7} « {1, 3, 6, 8} = {3},

KA(4) = {1, 4, 5, 8}« {1, 2, 4, 6, 8} « {2, 4, 5, 7, 8} =

{4, 8},
KA(5) =  {1, 4, 5, 8} « U  « {2, 4, 5, 7, 8} = {4, 5, 8},

KA(6) =  {6, 7} « {1, 2, 4, 6, 8} « {1, 3, 6, 8} = {6},

KA(7) =  {6, 7} « {3, 7} « {2, 4, 5, 7, 8} = {7}, and

KA(8) =  ({1, 4, 5, 8}» {2, 8}) « {1, 2, 4, 6, 8} « U =

{1, 2, 4, 8}.

The characteristic set KB(x) may be interpreted as the
smallest set of cases that are indistinguishable from x using
all attributes from B, and using given interpretation of
missing attribute values.  Thus, KA(x) is the set of all cases
that cannot be distinguished from x using all attributes.
Also, note that the previous definition is an extension of a
definition of KB(x) from [7–9, 12]: for decision tables with
only lost values and "do not care" conditions, both
definitions are identical.

The characteristic relation R (B )  is a relation on U
defined for x, y Œ U as follows

(x, y) Œ R(B) if and only if y  Œ KB(x).

The characteristic relation R(B) is reflexive but—in
general—does not need to be symmetric or transitive.
Also, the characteristic relation R(B) is known if we know
characteristic sets K(x) for all x Œ U.  In our example, R(A)

= {(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4),
(5, 5), (5, 8), (6, 6), (7, 7), (8, 1), (8, 2), (8, 4), (8, 8)}.

For decision tables, in which all missing attribute
values are lost, a special characteristic relation LV(B) was
defined by J. Stefanowski and A. Tsoukias in [21], see also
[20, 22].  Characteristic relation LV(B ) is reflexive,
but—in general—does not need to be symmetric or
transitive.

For decision tables where all missing attribute values
are "do not care" conditions a special characteristic
relation DCC(B) was defined by M. Kryszkiewicz in [14],
see also, e.g., [15].  Relation DCC(B) is reflexive and
symmetric but—in general—not transitive.

Obviously, characteristic relations LV(B) and DCC(B)
are special cases of the characteristic relation R(B).  For a
completely specified decision table, the characteristic
relation R(B) is reduced to IND(B).

4. Lower and upper approximations

For completely specified decision tables lower and
upper approximations are defined using the indiscernibility
relation.  Any finite union of elementary sets of B is called
a B-definable set.  Let X be any subset of the set U of all
cases.  The set X is called concept and is usually defined as
the set of all cases defined by a specific value of the
decision.    In general, X  is not a B-definable set.
However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X,
denoted by BX and defined as follows

{x Œ U | [x]B Õ X }.

The second set is called an B-upper approximation of
X, denoted by XB  and defined as follows

{x Œ U | [x]B « X ≠ Ø }.

The above way of computing lower and upper
approximations, by constructing them from singletons x,
will be called the first method.  The B - l o w e r
approximation of X  is the greatest B-definable set,
contained in X.  The B-upper approximation of X is the
least B-definable set containing X.

As it was observed in [16], for complete decision tables
we may use a second method to define the B - lower
approximation of X, by the following formula

» {[x]B  | x Œ U, [x]B Õ X}

and the B-upper approximation of x may de defined, using
the second method, by

»{[x]B  | x Œ U, [x]B « X ≠ Ø).



For Table 1 and B  = A , A-lower and A-upper
approximations are:

A{1, 2, 4, 8} = {1, 2},
A{3, 5, 6, 7} = {3, 7},
A {1, 2, 4, 8} = {1, 2, 4, 5, 6, 8},
A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

For incompletely specified decision tables lower and
upper approximations may be defined in a few different
ways.  To begin with, the definition of definability should
be modified.  Any finite union of characteristic sets of B is
called a B-definable set.  Following [7], we suggest three
different definitions of approximations.  Again, let X be a
concept, let B be a subset of the set A of all attributes, and
let R(B) be the characteristic relation of the incomplete
decision table with characteristic sets K(x), where x  Œ  U.
Our first definition uses a similar idea as in the previous
articles on incompletely specified decision tables [14, 15,
20–22], i.e., lower and upper approximations are sets of
singletons from the universe U satisfying some properties.
Thus we are defining lower and upper approximations by
analogy with the above first method, by constructing both
sets from singletons.  We will call these definitions
singleton.  A singleton B-lower approximation of X is
defined as follows:

BX = {x Œ U | KB(x) Õ X }.

 A singleton B-upper approximation of X is

XB  = {x Œ U | KB(x) « X ≠ Ø }.

In our example presented in Table 2 let us say that B =
A .  Then the singleton A -lower and A -upper
approximations of the two concepts: {1, 2, 4, 8} and {3, 5,
6, 7} are:

A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 6, 7},
A {1, 2, 4, 8} = {1, 2, 4, 5, 8},
A {3, 5, 6, 7} = {3, 5, 6, 7}.

Note that A {3, 5, 6, 7} = {3, 5, 6, 7}.  However, the
set {3, 5, 6 7} is not A-definable, so a set of rules, induced
from {3, 5, 6, 7}, cannot cover precisely this set.  In
general, singleton approximations should not be used for
data mining.

The second method of defining lower and upper
approximations for complete decision tables uses another
idea: lower and upper approximations are unions of

elementary sets, subsets of U.  Therefore we may define
lower and upper approximations for incomplete decision
tables by analogy with the second method, using
characteristic sets instead of elementary sets. There are
two ways to do this.  Using the first way, a subset B-lower
approximation of X is defined as follows:

BX = »{KB(x) | x Œ U, KB(x) Õ X }.

A subset B-upper approximation of X is

XB  = »{KB(x) | x Œ U, KB(x) « X ≠ Ø }.

Since any characteristic relation R(B) is reflexive, for
any concept X , singleton B -lower and B-upper
approximations of X are subsets of subset B-lower and B-
upper approximations of X, respectively.  For the same the
decision presented in Table 2, the subset A-lower and A-
upper approximations are:

A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 6, 7},
A {1, 2, 4, 8} = {1, 2, 4, 5, 8},
A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

The second possibility is to modify the subset definition
of lower and upper approximation by replacing the
universe U from the subset definition by a concept X.  A
concept B-lower approximation of the concept X is defined
as follows:

BX = »{KB(x) | x Œ X, KB(x) Õ X }.

Obviously, the subset B-lower approximation of X  is
the same set as the concept B-lower approximation of X.
A concept B-upper approximation of the concept X is
defined as follows:

XB  = »{KB(x) | x Œ X, KB(x) « X ≠ Ø } =
»{KB(x) | x Œ X}.

The concept B-upper approximation of X are subsets of
the subset B-upper approximations of X.  For the decision
presented in Table 2, the concept A-lower and A-upper
approximations are:

A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 6, 7},
A {1, 2, 4, 8} = {1, 2, 4, 8},
A {3, 5, 6, 7} =  {3, 4, 5, 6, 7, 8}.

For complete decision tables, all three definitions of
lower approximations, singleton, subset and concept,
coalesce to the same definition.  Also, for complete



decision tables, all three definitions of upper
approximations coalesce to the same definition.  This is
not true for incomplete decision tables, as our example
shows.

5. Rule induction

The same idea of blocks of attribute-value pairs is used
in the rule induction algorithm LEM2.  LEM2 explores the
search space of attribute-value pairs.  Its input data file is a
lower or upper approximation of a concept, so its input
data file is always consistent.  Rules induced from the
lower approximation of the concept certainly describe the
concept, so they are called certain.  On the other hand,
rules induced from the upper approximation of the concept
describe the concept only possibly (or plausibly), so they
are called possible [3].

Rules in LERS format (every rule is equipped with three
numbers, the total number of attribute-value pairs on the
left-hand side of the rule, the total number of examples
correctly classified by the rule during training, and the
total number of training cases matching the left-hand side
of the rule) induced from Table 2 using concept
approximations are:

the certain rule set:

2, 3, 3
(Temperature, high) & (Headache, yes) -> (Flu, yes)

1, 2, 2
(Temperature, very_high) -> (Flu, yes)

1, 2, 2
(Temperature, normal) -> (Flu, no)

1, 2, 2
(Headache, no) -> (Flu, no)

and the possible rule set:

2, 3, 3
(Temperature, high) & (Headache, yes) -> (Flu, yes)

1, 2, 2
(Temperature, very_high) -> (Flu, yes)

2, 1, 3
(Temperature, high) & (Nausea, no) -> (Flu, no)

1, 2, 2

(Temperature, normal) -> (Flu, no)

1, 2, 2
(Headache, no) -> (Flu, no)

6. Conclusions

Three approaches to missing attribute values are
presented in a unified way.  The main applied tool is a
characteristic relation, a generalization of the
indiscernibility relation.  It is shown that all three
approaches to missing attribute values may be described
using the same idea of attribute-value blocks.  Moreover,
attribute-value blocks are useful not only for computing
characteristic sets but also for computing characteristic
relations, lower and upper approximations, and, finally for
rule induction.  Additionally, using attribute-value blocks,
it is quite easy to combine a few strategies to handle
missing attribute values within the same data set.  Thus,
the entire data mining process, starting from computing
characteristic relations and ending with rule induction,
may be implemented using the same simple tool: attribute-
value blocks.
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Abstract 
 

This paper proposes a fuzzy data-mining algorithm 
for extracting both association rules and membership 
functions from quantitative transactions. The number of 
membership functions for each item is not predefined, but 
can be dynamically adjusted. A GA-based framework for 
finding membership functions suitable for mining 
problems is proposed. The encoding of each individual is 
divided into two parts. The control genes are encoded 
into bit strings and used to determine whether 
membership functions are active or not. The parametric 
genes are encoded into real-number strings to represent 
membership functions of linguistic terms. The fitness of 
each set of membership functions is evaluated using the 
fuzzy-supports of the linguistic terms in the large 1-
itemsets and the suitability of the derived membership 
functions. The suitability of membership functions 
considers overlap, coverage and usage factors. 
 
 
1. Introduction 
 

Data mining is most commonly used in attempts to 
induce association rules from transaction data. 
Transaction data in real-world applications, however, 
usually consist of quantitative values. Designing a 
sophisticated data-mining algorithm able to deal with 
various types of data presents a challenge to workers in 
this research field.  

Recently, fuzzy set theory has been used more and 
more frequently in intelligent systems because of its 
simplicity and similarity to human reasoning. In [4], we 
proposed a mining approach that integrated fuzzy-set 
concepts with the apriori mining algorithm [1] to find 
interesting itemsets and fuzzy association rules in 
transaction data with quantitative values. In that paper, 
the membership functions were assumed to be known in 
advance. The given membership functions may, however, 

have a critical influence on the final mining results. This 
paper thus modifies the previous algorithm and proposes 
a new fuzzy data-mining algorithm for extracting both 
association rules and membership functions from 
quantitative transactions. 

In the past, Srikant and Agrawal proposed a mining 
method [7] to handle quantitative transactions by 
partitioning the possible values of each attribute. Hong et 
al. proposed a fuzzy mining algorithm to mine fuzzy rules 
from quantitative data [4]. They transformed each 
quantitative item into a fuzzy set and used fuzzy 
operations to find fuzzy rules. Wang et al. used GAs to 
tune membership functions for intrusion detection 
systems based on similarity of association rules [11]. 
Kaya et al. [6] proposed a GA-based clustering method to 
derive a predefined number of membership functions for 
getting a maximum profit within an interval of user 
specified minimum support values. In this paper, we will 
try to derive an unknown number of membership 
functions from quantitative transactions by using a 
divide-and-conquer genetic strategy. 
 
2. A GA-Based Mining Framework 
 

In this section, the fuzzy and GA concepts are used to 
discover both useful association rules and suitable 
membership functions from quantitative values. A GA-
based framework for achieving this purpose is proposed 
in Figure 1.  
The proposed framework is divided into two phases: 
mining membership functions and mining fuzzy 
association rules. Assume the number of items is m. In the 
phase of mining membership functions, it maintains m 
populations of membership functions, with each 
population for an item Ij (1  j ≤  m). Each chromosome 
in a population represents a possible set of membership 
functions for that item. Next, in the phase of mining fuzzy 
association rules, the sets of membership function for all 
the items are  gathered together and used to mine the 
interesting rules from the given quantitative database. Our 
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fuzzy mining algorithm proposed in [5] is adopted to 
achieve this purpose. 
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Figure 1: The proposed GA-based framework for fuzzy mining 

 
3. Chromosome Representation 
 

Several possible encoding approaches in GAs have 
been described in [2, 8, 9, 10]. In this paper, we adopt the 
encoding approach similar to that in [8]. Each individual 
is divided into two parts, control genes and parametric 
genes. In the first part, control genes are encoded into bit 
strings and used to determine whether parametric genes 
are active or not. In the second part, each set of 
membership functions for an item is encoded as 
parametric genes with real-number schema.  

Assume the membership functions are triangular. Three 
parameters are thus used to represent a membership 
function. Each parametric gene thus consists of three real 
values. Figure 2 shows an example for item Ij, where Rjk 
denotes the membership function of the k-th linguistic 
term and rjkp indicates the p-th parameter of fuzzy region 
Rjk. 

 
Membership 

value
1

Rj1

Quantity

Rjk Rjl

rj11 rj12 rj13rj21 rj22 rj23rjl1 rjl2

Membership 
value

1
Rj1

Quantity

Rjk Rjl

rj11 rj12 rj13rj21 rj22 rj23rjl1 rjl2  
Figure 2: The set of membership functions for item Ij

The parametric genes of item Ij can be represented as a 
string of rj11rj12rj13rj21rj22rj23 … rjl1rjl2rjl3, where rjl3 = ∞. 
The control genes of Item Ij can be represented as a bit 
string of bj1bj2…bjT, where T is the maximum possible 
number of linguistic terms. The bit bji indicates whether 
the i-th membership function is active or not. If bji=1, the 
i-th membership function is active, meaning it will be 
used in the later fuzzy mining process. If bji=0, it is 
inactive. All the individuals in the same population thus 
have the same string length. Below, an example is given 
to demonstrate the process of encoding membership 
functions. 

 
Example 1: Assume there are four items in a 

transaction database: milk, bread, cookies and beverage. 
Also assume a possible set of membership functions for 
Item milk is given as shown in Figure 3. 

milk

4 9 13

Low Middle High

Quantity

Membership 
value

3 50 11

milk

4 9 13

Low Middle High

Quantity

Membership 
value

3 50 11  
Figure 3: An example of a possible set of membership functions 

for Item milk 

There are three active linguistic terms, Low, Middle, 
and High, for this item. According to the proposed 
encoding scheme, the individual for representing the set 
of membership functions in Figure 3 is encoded as shown 
in Figure 4.  
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Figure 4: The chromosome representation for the set of 

membership functions in Figure 3 

 
4. Mining Membership Functions and Fuzzy 

Association Rules 
 
4.1 Initial Population 
 

A genetic algorithm requires a population of feasible 
solutions to be initialized and updated during the 
evolution process. As mentioned above, each individual 
within the population is a set of triangular membership 
functions for a certain item. Each membership function 
corresponds to a linguistic term in the item. The initial set 



of chromosomes is randomly generated with some 
constraints of forming feasible membership functions. 

 
4.2 Fitness and Selection 
 

In order to develop a good set of membership functions 
from an initial population, the genetic algorithm selects 
parent sets of membership functions with high fitness 
values for mating. An evaluation function is defined to 
qualify the derived sets of membership functions. Before 
the fitness of each set of membership functions is 
formally described, several related terms are first 
explained below. 

The overlap ratio of two membership functions Rjk and 
Rji (k < j) is defined as the overlap length divided by the 
minimum of the right span of Rjk and the left span of Rji. 
That is,  
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where overlap(Rjk, Rji) is the overlap length of Rjk and Rji. 
If the overlap length is larger than the minimum of the 

above two half spans, then these two membership 
functions are thought of as a little redundant. Appropriate 
punishment must then be considered in this case. Thus, 
the overlap factor of the membership functions for an 
item Ij in the chromosome Cq is defined as: 
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The coverage ratio of membership functions for an item 
Ij is defined as the coverage range of the functions 
divided by the maximum quantity of that item in the 
transactions. The more the coverage ratio is, the better the 
derived membership functions are. Thus, the coverage 
factor of the membership functions for an item Ij in the 
chromosome Cq is defined as: 
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where range(Rj1, Rj2, …, Rjl) is the coverage range of the 
active membership functions, l is the number of active 
membership functions for Ij, and max(Ij) is the maximum 
quantity of Ij in the transactions. 

The usage ratio of membership functions for an item Ij 
is defined as the number of large-1 itemsets for Ij divided 
by the number of active linguistic terms. Note that the 
maximum possible number of large-1 itemsets for an item 
is the number of its active linguistic terms. The more the 
usage ratio is, the better the derived membership 
functions are. Thus, the usage factor of the membership 

functions for an item Ij in the chromosome Cq is defined 
as: 
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where lCq is the active linguistic terms of chromosome Cq, 
and max(| |, 1) is the maximum of the number of large-
1 itemsets and 1. 

qCL1

The suitability of the set of membership functions in a 
chromosome Cq is thus defined as k1*overlap_factor(Cq)+ 
k2*coverage_factor(Cq)+ k3*usage_factor(Cq), where k1, 
k2, k3 are weighting factors. 

The fitness value of a chromosome Cq is then defined as: 
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where  is the set of large 1-itemsets obtained by using 
the set of membership functions in C

qCL1

q, and 
fuzzy_support(X) is the fuzzy support of the 1-itemset X 
derived from Cq in the given transaction database. 

The suitability factor used in the fitness function can 
reduce the occurrence of the two bad kinds of 
membership functions shown in Figure 5, where the first 
one is too redundant, and the second one is too separate. 
It can also help generate an appropriate number of 
membership functions for an item. 
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Figure 5: Two bad sets of membership functions 

The overlap factor in suitable(Cq) is designed for 
avoiding the first bad case, and the coverage factor is for 
the second one. 
 
4.3 Genetic Operators 
 

Genetic operators are important to the success of 
specific GA applications. In our approach, different 
crossover operators are performed for control genes and 
parametric genes. For control genes, the single-point 
crossover and the binary one-point mutation operators 
are used. For parametric genes, the max-min-
arithmetical (MMA) crossover operator proposed in [3] 
and the one-point mutation for real numbers are used. 
The max-min-arithmetical (MMA) crossover operator 
proceeds as follows. Assume there are two parent 
chromosomes with their parametric genes as 
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The max-min-arithmetical (MMA) crossover operator 
will generate the following four candidate chromosomes 
from them. 
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where the parameter d is either a constant or a variable 
whose value depends on the age of the population. The 
best two chromosomes of the four candidates are then 
chosen as the offspring. 

The one-point mutation operator for real numbers will 
create a new fuzzy membership function by adding a 
random value ε (may be negative) to one parameter of an 
existing linguistic term, say Rjk. Assume that rjkp 
represents a parameter of Rjk. The parameter of the newly 
derived membership function may be changed to rjkp + ε 
by the mutation operation. Mutation at a parameter of a 
fuzzy membership function may, however, disrupt the 
order of the resulting fuzzy membership functions. These 
fuzzy membership functions then need rearrangement 
according to their values. An example is given below to 
demonstrate the mutation operation. 

 
Example 2: Continuing from Example 1, assume the 

mutation point is set at c122 and the random value ε  is set 
at 3. The mutation process is shown in Figure 6. 
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Figure 6: A mutation operation 

 
5. The Proposed Mining Algorithm 
 

According to the above description, the proposed 
algorithm for mining both membership functions and 
fuzzy association rules is described below. 

The proposed mining algorithm: 
INPUT: A body of n quantitative transaction data, a set of 

m items, a maximum possible number T of 
linguistic terms, a support threshold α, a 
confidence threshold λ, and a population size P. 

OUTPUT: A set of fuzzy association rules with its 
associated set of membership functions. 

STEP 1: Randomly generate m populations, each for an 
item; Each individual in a population represents 
a possible set of membership functions for that 
items.  

STEP 2: Encode each set of membership functions into a 
string representation in the way mentioned 
above. 

STEP 3: Calculate the fitness value of each chromosome 
in each population by the following substeps: 

STEP 3.1: For each transaction datum Di, i=1 to n, 
and for each item Ij, j=1 to m, transfer the 
quantitative value  into a fuzzy set 
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using the corresponding membership 
functions represented by the 
chromosome, where jkR  is the k-th 
fuzzy region (term) of item Ij,  is 

’s fuzzy membership value in 
region jk , and l (= |I

)(i
jlf

)(i
jv

R j|) is the number of 
active linguistic terms for Ij. 

STEP 3.2: For each item region Rjk, calculate its 
scalar cardinality on the transactions as 
follows: 

∑
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STEP 3.3: For each Rjk , 1 ≤ j ≤ m and 1≤ k ≤ | jI |, 
check whether its countjk  over n is larger 
than or equal to the minimum support 
threshold α. If Rjk satisfies the above 
condition, put it in the set of large 1-
itemsets (L1). That is: 

       L1 = {Rjk | countjk /n ≥ α, 1≤ j≤m  

   and 1≤ k | I≤ j | }. 
STEP 3.4: Set the fitness value of the chromosome as 

the sum of the fuzzy supports (the scalar 
cardinalities / n) of the fuzzy regions in L1 
divided by suitability(Cq). That is: 
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STEP 4: Execute crossover operations on each population. 
STEP 5: Execute mutation operations on each population. 
STEP 6: Using the selection criteria to choose individuals 

in each population for the next generation.  
STEP 7: If the termination criterion is not satisfied, go to 

Step 3; otherwise, do the next step. 
STEP 8: Gather the sets of membership functions, each of 

which has the highest fitness value in its 
population. 

 
The sets of the best membership functions gathered 

from each population are then used to mine fuzzy 
association rules from the given quantitative database. 
Our fuzzy mining algorithm proposed in [5] is then 
adopted to achieve this purpose. It first transforms each 
quantitative value into a fuzzy set of linguistic terms 
using the derived membership functions. It then calculates 
the scalar cardinality of each linguistic term on all the 
transaction data. The mining process based on fuzzy 
counts is then performed to find fuzzy association rules. 
 
6. An Example 
 

In this section, an example is given to illustrate the 
proposed mining algorithm. Assume there are four items 
in a transaction database: milk, bread, cookies and 
beverage. The data set includes the six transactions shown 
in Table 1.  

Table 1. Six transactions in this example 
TID Items 
T1 (milk, 5); (bread, 10); (cookies, 7); (beverage, 7).
T2 (milk, 7); (bread, 14); (cookies, 12). 
T3 (bread, 15); (cookies, 12); (beverage, 10). 
T4 (milk, 2); (bread, 5); (cookies, 5). 
T5 (bread, 9). 
T6 (milk, 13); (beverage, 12). 

Assume the maximum possible number (T) of fuzzy 
regions for each item is set at 4. The actual number of 
membership functions of each item will be derived by the 
proposal mining algorithm. Four populations are 
randomly generated, each for one item. Assume the 
population size is 10 in this example. Each population 
then includes 10 individuals. Each individual in the first 
population is a set of membership functions for item milk. 
Similarly, an individual in the other populations is a set of 
membership functions respectively for bread, cookies, 
and beverage. 

Each set of membership functions for an item is 
encoded into a chromosome according to the proposed 
representation. Assume the ten individuals in each of the 
four populations are randomly generated. The fitness 
value of each chromosome is then calculated. Take the 
chromosome C1 in Population3 as an example. The 
membership functions in C1 for cookies are represented as 
(1 1 1 1, 0 3 5, 3 5 10, 6 13 16, 15 20 20). The 
quantitative value of each item in each transaction datum 
is transformed into a fuzzy set according to the active 
membership functions represented by that chromosome. 
Take the first item in transaction T1 as an example. The 
contents of T1 include (milk, 5), (bread, 10), (cookies, 7), 
and (beverage, 7). The amount “7” of item cookies is then 
converted into the fuzzy set: 
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by using the membership functions in C1 in Population3. 
The fuzzy count of any fuzzy region is checked against 
the predefined minimum support value α. Assume in this 
example, α is set at 0.25. Two large 1-itemset, 
cookies.LowMiddle and cookies.MiddleHigh, are thus 
derived from the membership functions of C1 in 
Population3. The fuzzy support of cookies.LowMiddle and 
cookies.MiddleHigh are 0.266 and 0.31. The suitability of 
C1 is calculated as overlap_factor(C1) + 
coverage_factor(C1) + usage_factor(C1) = 3 (= (0 + 0 + 0 
+ 0 + 0 + 0) + 1 + 2). The fitness value of C1 is thus 
(0.266 + 0.31)/3 (= 0.192). The fitness values of all the 
chromosomes in the four populations are calculated with 
their results shown in Table 2. 

Table 2. The fitness values of all the chromosomes in the four 
initial populations 

Population1 f Population2 f 
C1 0 C1 0.286 
C2 0.084 C2 0.104 
C3 0 C3 0.177 
C4 0.057 C4 0.200 
C5 0 C5 0 
C6 0.043 C6 0.253 
C7 0 C7 0.070 
C8 0 C8 0.242 
C9 0 C9 0.183 
C10 0 C10 0.074 

Population3 f Population4 f 
C1 0.192 C1 0.049 
C2 0.073 C2 0.075 
C3 0.077 C3 0.065 
C4 0.240 C4 0 
C5 0.066 C5 0.044 
C6 0.044 C6 0.062 
C7 0 C7 0.058 
C8 0.065 C8 0.060 
C9 0 C9 0.060 



C10 0.214 C10 0.083 

The crossover and mutation operators are then 
executed on the populations to generate possible offspring. 
The best ten chromosomes in each population are then 
selected as the next generation. The same procedure is 
then executed until the termination criterion is satisfied. 
The best chromosome (with the highest fitness value) is 
then output as the membership functions for deriving 
fuzzy association rules. After the evolutionary process 
terminates, the final set of membership functions for each 
item is shown in Figure 7. 
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Figure 7: The final set of membership functions 

After the membership functions are derived, the fuzzy 
mining method proposed in [5] is then used to mine fuzzy 
association rules from the quantitative database. 
 
7. Experimental Results 
 

In this section, experiments made to show the 
performance of the proposed approach are described. 
They were implemented in Java on a personal computer 
with Intel Pentium 4 2.00GHz and 256MB RAM. 64 
items and 10000 transactions were used in the 
experiments. In each data set, the numbers of purchased 
items in transactions were first randomly generated. The 
purchased items and their quantities in each transaction 
were then generated. An item could not be generated 
twice in a transaction. The initial population size P is set 
at 50, the crossover rate pc is set at 0.8, and the mutation 
rate pm is set at 0.01. The parameter d of the crossover 
operator is set at 0.35 according to [3] and the minimum 
support α is set at 400. 

After 500 generations, the final membership functions 
are apparently much better than the original ones. For 
example, the initial membership functions of some four 
items among the 64 items are shown in Figure 8. 
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Figure 8: The initial membership functions of some four items 

In Figure 8, the membership functions have the bad 
types of shapes that are defined in the previous section. 
After 500 generations, the final membership functions for 
the same four items are shown in Figure 9. It is easily 
seen that the membership functions in Figure 9 is better 
than those in Figure 8. The two bad kinds of membership 
functions don’t appear in the final results. The adopted 
fitness function thus works. 
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Figure 9: The final membership functions of some four items 

after 500 generations 

The average fitness values of the chromosomes in 
population1 along with different numbers of generations 
are shown in Figure 10. As expected, the curve gradually 
goes upward, finally converging to a certain value. The 
other populations have similar behavior. 
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Figure 10: The average fitness values along with different 

numbers of generations in population1



 
8. Conclusion and Future Works 
 

In this paper, we have proposed a GA-based fuzzy 
data-mining algorithm for extracting both association 
rules and membership functions from quantitative 
transactions. The number of membership functions for 
each item is not predefined, but can be dynamically 
adjusted. Since the fitness of each set of membership 
functions is evaluated by the fuzzy-supports of the 
linguistic terms in the large 1-itemsets and the suitability 
of the derived membership functions, the derivation 
process can easily be done by the divide-and–conquer 
strategy. The experimental results show that the proposed 
fitness function works. Our approach can reduce human 
experts' intervention during the mining process, thus 
saving much acquisition time. In the future, we will 
continuously attempt to enhance the GA-based mining 
framework for more complex problems. 
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Abstract 
Rough set theory has attracted much attention in 

modeling with imprecise and incomplete information. A 
generalized approximation space, called fuzzy probability 
approximation space has been proposed by introducing 
probability into fuzzy approximation space. The novel 
definition combines three types of uncertainty into a 
model. Information or knowledge is considered as a 
partition of the universe in rough set framework. We 
introduce novel entropy to measure knowledge quantity 
implied in fuzzy probability approximation space. It’s 
shown that the information measure for fuzzy probability 
approximation space is a rational extension of the 
Shannon’s one and it will degrade to Shannon’s entropy in 
case where attributes are nominal and objects are 
equality-probable. Then a uniform information measure 
for Pawlak’s rough set model, fuzzy rough set model and 
fuzzy probability rough set model is formed based on 
Yager’s entropy. 
 

1 Introduction 

Rough set methodology has been witnessed great 
success in modeling imprecise and incomplete 
information. Rough set methodology presents a novel 
paradigm to deal with uncertainty and has been applied to 
feature selection [1, 2], knowledge reduction [3], rule 
extraction [4,5,6], uncertainty reasoning [7,8] and 
granularity computing [9,10,39,43,44,45].The Pawlak’s 
rough set model doesn’t consider uncertainty induced by 
fuzziness and probability in applications. Some 
generalizations of Pawlak’s model were proposed where 

fuzzy sets and fuzzy relations exist. Rough set theory and 
fuzzy set theory were put together, rough-fuzzy sets and 
fuzzy-rough sets were defined in [11,12]. The properties 
and axiomatization of fuzzy rough set theory [13-17] were 
analyzed in detail. And the generalized methods were 
applied to mining stock price [18], vocabulary for 
information retrieval  [19] and fuzzy decision rules [20, 
21]. 

The normal rough set models, both Pawlak’s rough set 
model and fuzzy rough set model, implicitly take an 
assumption that the objects are equality-probable. 
However, in practice it is not necessary that the objects 
are uniformly distributed. A probability distribution may 
be defined over U. A theory on probability approximation 
space or a probability rough set model is desirable in this 
case. 
 Given a universe U, a probability distribution on U, and 
some nominal, real-valued or fuzzy attributes, it’s 
interesting in constructing a measure to compute the 
discernibility power of a family of attributes or 
equivalence relations, which can lead to likelihood to 
compare the knowledge quantity generated by different 
attributes or relations. It will help us find the important 
attribute set and redundancy of information system. 
Shannon [22] defined an information measure of a 
random variable within the frame of communication 
theory. Forte and Kampe [23, 24] gave the axiomatic 
information measure, where the word “information” was 
associated both to measures of events and measures of 
partitions and suggested that the uncertainty measure is 
associated to a family of partitions of a given referential 
space. In [26, 27]a measure, suitable to operate on 



domains over which fuzzy equivalence relations have 
been defined, was introduced, where the semantics of 
fuzzy events was taken into account. Uncertainty measure 
on fuzzy partitions generated by fuzzy equivalence 
relations was analyzed in documents [28, 29].  
 In rough set framework, attributes are called knowledge 
which is used to classify the elements into indiscernible 
clusters. Knowledge introduced by an attribute set implies 
in the partitions of a referential universe. More knowledge 
will lead to a finer partition, and then we can get a more 
perfect approximation of a subset in universe. Therefore 
knowledge decreases uncertainty in characterizing the 
concepts. Diminishment of uncertainty can be considered 
as an increase of knowledge. In this paper we will unify 
the representation and use the term “knowledge”, instead 
of uncertainty. First we use Shannon’s entropy to compute 
the knowledge quantity introduced by nominal attributes 
or crisp equivalence relations, then an extension 
information measure will be presented, which is suitable 
for the case where fuzzy attributes or fuzzy relations are 
defined. Based on the extension, the problem of 
measuring the information in fuzzy approximation spaces 
is solved.  
 The rest of the paper is organized as follows: we will 
review some definitions about fuzzy rough set model and 
give fuzzy probability rough set model in section 2. 
Section 3 introduced an extended information measure for 
fuzzy equivalence relation and fuzzy partition. Then we 
apply the proposed information measures to fuzzy 
probability approximation space section 4. The 
conclusion is given in section 5. 

2  Fuzzy probability approximation space 

In this section we will integrate three types of 
uncertainty — probability, fuzziness and roughness 
together, and present the definition of fuzzy probability 
approximation space.  

Definition 1 Given a non-empty finite set X, R is a 
relation defined on X, denoted by a relation matrix 
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where ]1  ,0[∈ijr  is the relation value of ix  and jx . 

 R is a fuzzy equivalence relation, if Xzyx ∈∀ ,, , 

R~  satisfies 
1) Reflectivity: UxxxR ∈∀=   ,1),( ; 
2) Symmetry:  Uyx,xyRyxR ∈∀=    ),,(),( ; 
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Given arbitrary set X, R is a fuzzy equivalence relation 
defined on X. Xyx ∈∀  , , some operations on relation 

matrices are defined as 
1) Xx,yyxRyxRRR ∈∀=⇔=   ),,(),(    2121 ; 
2) )},(  ),,(max{ ) ( 2121 yxRyxRyx,RRRR =⇔=  ; 
3) )},(  ),,(min{ ) ( 2121 yxRyxRyx,RRRR =⇔=  ; 
4) ),(),(    2121 yxRyxRRR ≤⇔⊆ . 

A crisp equivalence relation will generate a crisp 
partition and a fuzzy equivalence relation generates a 
fuzzy partition. 

Definition 2 The fuzzy equivalence classes generated by 
a fuzzy equivalence relation R is defined as 
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Example 1. Given an object set },,{ 321 xxxX = , 1R  is 
fuzzy equivalence relation on X  as follows: 
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Theorem 1. Given arbitrary set X, R is a fuzzy 
equivalence relation defined on X. The fuzzy quotient set 
of X by relation R is denoted by X. Xx,y ∈∀ , we have 

1) R(x, y)=0 ⇔  0][][ =RR yx   

2) 1][ =∨
∈

RXx
x  

3) RR yx ][][ =  ⇒  1),( =yxR  

Definition 3 A three-tuple >< RPU ~ , ,  is a fuzzy 
probability approximation space (shortly, FPAS) or a 
fuzzy probability information system (FPIS), where U is a 
nonempty and finite set, called the universe, P is the 
probability distribute over U, R is a family of fuzzy 
equivalence relations defined on U . 

Definition 4 Given a fuzzy probability approximation 
space >< RPU ~ , , , X~  is a fuzzy subset of U. The lower 
approximation and upper approximation, denoted by 

XR~  and XR~ , are defined as 
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These definitions are the rational extension of some 
models. Let’s derive the other model from these 
definitions.  

 
Case 1 X is a crisp subset and R is a crisp equivalence 
relation on U: 
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In this case these definitions are consistent with 
Pawlak, rough set model. 

 
Case 2 X is a fuzzy subset of U and R is a crisp 
equivalence relation on U: 
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In this case, the rough sets are called rough fuzzy sets. 
 
Case 3 X is a subset of U and R is a fuzzy equivalence 
relation on U: 
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From the above analysis we can conclude that the 
definitions of lower and upper approximations of fuzzy 
set in fuzzy information system are the rational 
generalizations of classic model. Fuzzy probability 
information system (FPIS) is the general case of the other 
rough set model. FPIS will degenerate to the normal fuzzy 
information system if probability distribution is uniform 
and fuzzy information system will degenerates to 
Pawlak’s rough set model if equivalence relation is crisp 
and X is the crisp subset of U.  

The membership of an object Ux ∈ , belonging to 
the fuzzy positive region is defined as 

)(sup ~
/

)(~ xXB
dUX

dPOS B
µµ

⊆
= . 

Definition 5 Given a fuzzy probability information 
system <U, P, A>, B and d are two subset of attribute set 
A, the dependency degree of d to B is defined as 

∑
∈

=
Ux

dPOSB xxpd
B

)()()( )(µγ . 

The difference between fuzzy approximation space 
and fuzzy probability approximation space is introducing 
probability distribute over U. This leads to a more general 
generalization of Pawlak’s rough set model. In classic 
rough set model take the equality-probability assumption. 
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This formula is the same as that in fuzzy rough set 
model [30], which shows that the fuzzy probability 
approximation space will degrade to a fuzzy 
approximation space when the equality-probability 
assumption is taken. 

Definition 6 Given a fuzzy information system <U, A, V, 
f>, AB ⊆ , Ba ∈ , if )/(/ aBUBU −= , we say 

knowledge a is redundant or superfluous in B. otherwise, 
we say knowledge a is indispensable. If any a belonging 
to B is indispensable，we say B is independent. If attribute 
subset AB ⊆  is independent and U/AU/B = , we say B 
is a reduct of A. 

Definition 7 Given a fuzzy information system <U, A, V, 
f>, dCA = . B is a subset of C. Ba ∈∀ , a is 

redundant in B relative to d if )()( dd BaB γγ =− , 

otherwise a is indispensable. B is independent if Ba ∈∀  
is indispensable, otherwise B is dependent. B is a subset 
of C.  B is a reduct of C if B satisfies: 
1) )()( CB dd γγ = ; 
2) )()( :B Ba-B dda γγ <∈∀ . 

Comparing the fuzzy probability approximation space 
with fuzzy approximation space we find that the central 
difference is in the function of dependency. In fuzzy 
approximation space, we assume the objects are 
uniformly distributed and ||/1)( Uxp i = . In the fuzzy 
probability approximation space the probability of ix  
is )( ixp . When the probability ||/1)( Uxp i = , the fuzzy 
probability approximation space degrades to a fuzzy 
approximation space, and if the equivalence relation and 
the object subset to be approximated are both crisp, we 
get a Pawlak’s approximation space. 

In applications the probability can be considered as a 

weight of the object. Probability is only one of the 
weighting methods. Weighting gives us a novel dimension 
to inject information out of data into processing, which 
can integrate the prior information with data. 

3 Information on fuzzy equivalence relations 

Shannon’s information measure just works in the case 
where a crisp equivalence relation or a crisp partition is 
defined, which is suitable for Pawlak’s rough set model. 
In this section we will give a novel formula to compute 
Shannon’s entropy for crisp relation matrix representation, 
and then a generalization of the entropy is proposed for 
fuzzy relation matrices. Furthermore, we will present 
another generalization for probability fuzzy information 
systems and use the proposed entropies to measure the 
information in fuzzy probability approximation spaces.  

3.1 Shannon’s entropy measures in relation matrix 
form for crisp equivalence relations 

Given an information system <U, A, V, f>, Arbitrary 
relation }1  ,0{→×⊆ UUR can be denoted by a relation 

matrix M(R): 
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where ijr  is the relation value between element ix  and 

jx . If R is an equivalence relation we say M(R) is an 

equivalence relation matrix. 
 An equivalence relation matrix satisfies: 
1) Reflectivity: UxxxR ∈∀=   ,1),( ; 
2) Symmetry:  Uyx,xyRyxR ∈∀=    ),,(),( ; 
3) Transitivity: ),(    1),(  ,1),( zxRzyRyxR ⇒== . 

Given an arbitrary set X, XXR ×⊆ , Xyx ∈∀ , , some 

operations on relation matrix are defined as 
1) Xx,yyxRyxRRR ∈∀=⇔=   ),,(),(    2121 ; 



2) )},(  ),,(max{ ) ( 2121 yxRyxRyx,RRRR =⇔=  ; 
3) )},(  ),,(min{ ) ( 2121 yxRyxRyx,RRRR =⇔=  ; 
4) ),(),(    2121 yxRyxRRR ≤⇔⊆ . 

There are some properties between crisp attribute set and 
relations induced by the corresponding attributes: 
1) BA RRBA =⇒= ; 
2) BA RRBA ⊆⇒⊇ ; 
3) BAC RRRBAC  =⇒= . 

The equivalence class contained ix  with respect to 

relation R is denoted by 









+++=
n

inii
Ri x

r
x
r

x
r

x 
2

2

1

1][  

where 1or    0=ijr . The cardinality of Rix ][  is defined 

as 
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Definition 8 Given an information system <U, A, V, f>, 
arbitrary equivalence relation R on U, denoted by a 
relation matrix M(R), then we define the information 
measure for relation R as 

i

n

in
RH ∑

=

−=
1

 log1)( , 

where 
n

x Ri
i

][|
= . 

Theorem 2 Given an information system <U, A, V, f>, 
AB ⊆ , BR  is an equivalence relation generated by 

attributes B on U. )(BH  is computed as Shannon’s one 
and )( BRH  is computed as definition 8. Then 

)()( BRHBH = . 

Proof.  Straightforward. 

Example 3. Assumed there are an information system 
with three objects, An equivalence relation matrix defined 
on the universe is 


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)(RM . 

The equivalence classes are },{ 21 xx  and }{ 3x . Then 
the information quantity is 
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The computation is the same as Shannon’ one in this case. 

Theorem 3 Given an information system <U, A, V, f>, 
ABE ⊆, , ER , BR  is two equivalence relation 

generated by attributes E and B. Eix ][  and Bix ][  is the 

equivalence classes induced by E and B. The joint entropy 
of E and B is 

∑
=

−==
n
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BiEi
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xx
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RRHEBH
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Theorem 4 Given an information system <U, A, V, f>, 
ABE ⊆, , ER , BR  is two equivalence relation 

generated by attributes E and B. Eix ][  and Bix ][  is the 

equivalence classes induced by E and B. The conditional 
entropy E conditioned to B )|( BEH  is  

∑
=

−==
n

i Bi

BiEi
BE x

xx
n

RRHBEH
1 |][|

|][][|
log1)|()|(
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Here the novel computational formulae of Shannon’s 
information will bring great advantage to generalize them 
to fuzzy cases. 

3.2 Information measure on fuzzy equivalence 
relations 

As we know, fuzziness exists in many real-world 
applications. Pawlak’s rough set model just works in the 
crisp case. D. Dubois etc. generalized the model to the 
fuzzy case. In this section we will present a generalization 
of Shannon’s entropy. The novel measure has a same form 
as Shannon’s one and can work in the case where a fuzzy 
equivalence relation is defined. 

Given a finite set U, A~  is a fuzzy or real-valued 



attribute set, which generates a fuzzy equivalence relation 

A
~R  on U. The fuzzy relation matrix )~( ARM  is denoted 

by 
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A )~(  

where ]1  ,0[∈ijr  is the relation value of ix  and jx . 

Definition 9 The fuzzy quotient set generated by the 
fuzzy equivalence relation is defined as 

n
iRixRU 1~ }]{[~/ ==  
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Definition 10 The cardinality |][| ~Rix of Rix ~][  is 

defined as 

∑
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As shown in example 1, 
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Definition 11 Information quantity of the fuzzy attribute 
set or the fuzzy equivalence relation is defined as  

∑
=

−==
n

i
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  log1)~()~(  , 

where 
n
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|][| ~
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This measure has the same form as the Shannon’s one 
defined as definition 8. But it has been generalized to the 
fuzzy case.  

The formula of information measure forms a map: 

+ℜ→RH  : , where R is a equivalence relation matrix, 

+ℜ  is the non-negative real-number set. This map builds 

a foundation on that we can compare the discernibility 
power, partition power or approximating power of 
multiple fuzzy equivalence relations. Entropy value 
increases monotonously with the discernibility power or 
the knowledge’s fineness. So the finer partition is, the 
greater entropy is, and the more significant attribute set is.  

Definition 12 Given a fuzzy information system <U, A~  

V, f>, A~  is the fuzzy attribute set. EB ~  ,~  are two 

subsets of A~ . EiBi xx ~~ ][  and  ][  are fuzzy equivalence 

classes containing ix  generated by EB ~
  ,

~ , respectively. 

The joint entropy of   ~B and E~  is defined as 
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Definition 13 Given a fuzzy information system <U, A~  

V, f>, A~  is the fuzzy attribute set. EB ~
  ,

~  are two 

subsets of A~ . EiBi xx ~~ ][  and  ][  are fuzzy equivalence 

classes containing ix  generated by EB ~  ,~ , respectively. 

The conditional entropy of E~  conditioned to   ~B is 
defined as 
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Theorem 5 )~()~~()~~( BHEBHB|EH −=  

Theorem 6  
1) 0)~( ≥ARH , “=” holds if and only if 1=ijr , ji ∀∀  , ; 

2) )}~(  ),~(max{)~~( BABA RHRHRRH ≥ ; 

3) )~()~~(~~
ABABA RHRRHRR =⇔⊆ . 

4) 0)~|~(~~
=⇔⊆ ABBA RRHRR  



Proof.  Straightforward. 

3.3 Information measures on fuzzy probability 
equivalence relation 

Shannon’s entropy and the proposed measure work on 
the assumption that all the objects are equality-probable. 
In this section we will give a generalization where a 
probability distribution is defined on U. 
 Given a fuzzy probability information system <U, A~  V, 
f, P>, A~  is the fuzzy attribute set , which generates a 
family of fuzzy equivalence relations on U, P is the 
probability distribution over U, )( ixp  is the probability 
of object ix . An arbitrary fuzzy equivalence relation 

UURB ×⊆
~  generated by attributes B~  is denoted by a 

relation matrix )~( BRM : 
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where ]1  ,0[∈ijr  is the relation value of ix  and jx . 
The fuzzy quotient set by the fuzzy equivalence relation 
is.  

n
iRixRU 1~ }]{[~/ == , where 
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Definition 14 The expected cardinality i  of a fuzzy 

equivalence class Rix ~][  is defined as 

ij
j
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n

1
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Definition 15 The information quantity of fuzzy attribute 

set B~  or fuzzy equivalence relation BR~  is defined as 

i

n

i
ixpPBH  log)(),~(

1
∑
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−=  

This measure is identical with Yager’s entropy [26] in 
the form, but different in the goal. The information 
measure we give is to compute the discernibility power of 
a fuzzy attribute set or a fuzzy equivalence relation where 

a probability distribute is defined on U. while Yager’s 
entropy is to measure the semantics of a fuzzy similarity 
relation. 

Definition 16 Given a fuzzy information system <U, A~  
V, f, P>, A~  is the fuzzy attribute set, P is the probability 
distribution on U. EB ~

  ,
~  are two subsets of A~ . 

EiBi xx ~~ ][  and  ][  are fuzzy equivalence classes 

containing ix  generated by EB ~  ,~ , respectively. The 

fuzzy equivalence relations induced by EB ~  ,~  are 
denoted by R~  and S~ .The joint entropy of EandB ~    ~ is 
defined as 

∑
=

−==
n

i
iixpPRHP)BEH

1
log)() , S~ ~( , ~ ~(  , 

where )()(
1

ijij

n

j
ji srxp ∧= ∑

=

 . 

Definition 17 The conditional entropy of E~  conditioned 
to   ~B is defined as 
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The forms of the proposed information measures are 
identical with that of Shannon’s ones, and they can be 
used to measure the information generated by a fuzzy 
attribute set, a fuzzy equivalence relation or a fuzzy 
partition. In the follows, the proposed information 
measures will be applied to fuzzy probability 
approximation Space. 

4. Information measures on fuzzy probability 



approximation space 

The above section presents an information measure for 
fuzzy equivalence relations when a probability 
distribution is defined. Here we will apply it to the fuzzy 
probability approximation space. 

Theorem 8 Given a fuzzy probability information system 
<U, A~  V, f, P>, A~  is the fuzzy attribute set, P is the 
probability distribution on U. EB ~  ,~  are two subsets of 
A~ . EiBi xx ~~ ][  and  ][  are fuzzy equivalence classes 

containing ix  generated by EB ~
  ,

~ , respectively. The 

fuzzy equivalence relations induced by EB ~
  ,

~  are 
denoted by R~  and S~ , respectively. Then we have: 

1) 0),~(:
~~ ≥⊆∀ PBHAB ; 

2) }),~(  ),,~(max{)  ~ ~( PBHPEHP,BEH ≥  

3) ),~(),~~H(  :~~or   ~~ PBHPEBRREB EB =⊆⊇  

4) 0),~|~(:~~or   ~~
=⊆⊇ PBEHRREB EB  

Theorem 9 Given a fuzzy probability information system 
<U, A~  V, f, P>, AB ~~

⊆ , Ba ~
∈ , 

),~(),~( paBHpBH −=  if a is redundant;  

),~(),~( paBHpBH −>  if B~  is independent. B~  is a 
reduct if B~  satisfies:  
1) ),

~
(),~( pAHpBH =  

2) ),~(),~(  :~ paBHpBHBa −>∈∀  

Definition 18. The significance of an attribute a in B is 
defined as 

),~(),~()~,( paBHpBHBaSIG −−= . 

Theorem 10 Given a fuzzy probability information 
system <U, A~  V, f, P>, dCA

~~~
= . B~  is a subset 

of C~ . Ba ~
∈∀ , ),~|(),~|( pBdHpaBdH =−  if a is 

redundant in B~  relative to d; 

),~|(),~|( pBdHpaBdH >−  if B~  is independent. B~  

is a reduct of  C~  relative to d~  if B~  satisfies: 
1) ),

~
|~(),

~
|~( pdCHpdBH = ; 

2) ),~|(),~|(   :~ pBdHpaBdHBa >−∈∀ . 

Definition 19. The relative significance of an attribute a 
in B is defined as 

),~|(),~|(),~,( pBdHpaBdHdBaSIG −−= . 

5. Conclusions 

The contribution of the paper is two-fold. On one side, 
we generalize the fuzzy approximation space to fuzzy 
probability approximation space by introducing a 
probability distribution on U. Furthermore, we propose 
novel information measures on fuzzy equivalence 
relations to compute the information quantity in fuzzy 
probability approximation space. 

The proposed fuzzy probability approximation space 
combines three types of uncertainty: randomicity, 
fuzziness and roughness together. It’s shown that the 
fuzzy probability approximation space will degrade to 
fuzzy approximation space when the equality-probability 
assumption holds. If equivalence relations and the subset 
to be approximated both are crisp, then approximation 
space is Pawlak’s one. The proposed measures integrate 
fuzziness, probability with roughness, which is showed a 
rational generalization of other cases. The methods to 
measure information in Pawlak’s approximation space, 
fuzzy approximation space and fuzzy probability 
approximation space are presented in uniform forms 
based on the generalizations. 
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Abstract - In this paper we present an ontology-based 
document clustering and summarization system, called BioLit-CS 
(Biomedical Literature Clustering and Summarization). The 
basic idea of our summarization method is first to integrate the 
ontology concepts into the vector representation of the document 
set, then to cluster the document set in document vector into 
topical groups. Within each topical group, saliency scores for key 
concepts and sentences are calculated based on the mutual 
reinforcement principle. The key concepts and sentences are 
ranked according to their saliency scores. Then, some (TOP n) of 
them are selected for inclusion in the top key concept list and the 
summaries of the documents. We use Relevance Novelty to 
minimize the redundancy of summary and to maximize both 
relevance and diversity for extracted sentences. The experimental 
results on a yeast gene related document set indicate that our 
system is very effective at generating a concise and informative 
summary for multiple documents with multiple topics. 

 
Index Terms - ontology, text clustering, text summarization, 

multi-document summarization, data mining, text mining 
 

I. INTRODUCTION 

The rapid electronic dissemination of research breakthrough 
has greatly accelerated the current pace of genomic and 

proteomics research. A lot of genomic knowledge and 
discovery is published and collected in huge biomedical 
literature databases such as MedLine. The number of articles 
or abstracts in these databases is growing at an unprecedented 
rate. Medline is the largest biomedical bibliographics database 
with more than 12 million abstracts collected from more than 
4000 journals in biomedical areas. More than 10,000 
documents are added to Medline every week. The sheer size of 
Medline can be daunting to many scientists involved in 
biomedical research. Biomedical researchers have suffered 
from dramatic information overload due to the unprecedented 
growth of biomedical literatures. One way to catch up with the 
latest information and to tackle the information overload is the 
use of a text summarization system, which can generate a 
semantically concise, coherent and informative summary to 
help domain experts quickly absorb and assimilate the latest 
information in their fields. 

Generally speaking, there are two approaches in text 
summarization: text extraction based methods and template 
based methods. Text extraction based methods, after data 
preprocessing, extract text based on user’s input/interest 
and/or rank the extracted text (usually sentences) based on 

some statistical or linguistic measures; a lot of heuristics that 
are empirically acquired are usually used. Template based 
methods first manually construct domain-specific templates 
and then fill the templates from the text. In both methods 
sentences are used as the basic processing units because a 
sentence is the discourse unit with the best balance of 
semantic granularity and self contained cohesiveness [1]. The 
sentences are ranked based on salient scores. The highly 
ranked sentences are included into a summary.  

In this paper we present an ontology-based Biomedical 
Literature multi-document clustering and summarization 
system BioLit-CS. The basic idea of our summarization 
method is to first integrate the ontology concepts into the word 
vector representation of the document set, then cluster the 
documents in the vector representation into a topical group. 
Within each topical group, saliency scores for key terms and 
sentences are calculated based on the mutual reinforcement 
principle [2]. The key terms and sentences are then ranked 
according to their saliency scores and are selected for 
inclusion in the top key terms list and summaries of the 
documents. We use Maximal Marginal Relevance [3], [4] to 
minimize the redundancy of the extracted sentences in the 
summary. 

The rest of this paper is organized as follows. In section 2 
we review some of the related work in multidocument 
summarization, text clustering and biological ontology. In 
Section 3, we first introduce the architecture of our system 
BioLit-CS and then discuss the technical details of ontology-
based clustering and summarization. We show the 
experimental results in Section 4 and conclude with discussion 
and future research plan in Section 5.  

II. RELATED WORK 
Here, we review some related works in the multi-document 

summarization, text clustering and biomedical ontologies 
fields and provide background information about them. 

A. Multidocument Summarization  
Text summarization has been studied since Luhn’s work [5] 

in 1958. A lot of approaches have been introduced. For 
example, there are statistical methods based on the bag-of-
words model, linguistic methods using natural language 
processing, knowledge-based methods using concepts and 
their relations and summary generation methods. The first 
three approaches try to seek the most important information 
(usually sentences or terms) for a condensed version of the 
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documents while the last approach generates completely a new 
summary that consists of informative terms, phrases, clauses 
and sentences. The main difficulty of the last approach is 
figuring out how to combine them to make sentences that are 
grammatically correct.  

In the bioinformatics field many multi-document 
summarization systems have also been introduced. TextQuest 
[6] is designed to summarize documents retrieved in response 
to a keyword(s) based search on PubMed. However, it does 
not retain the association between the genes and the retrieved 
documents. MedMiner [7] can provide summarized literature 
information on genes but it is limited when finding relations 
between two genes only. Also, it returns a few hundred 
sentences for the summary. Shatkay et al. [8] suggested a 
system, which attempts to find functional relations among 
genes on a genome-wide scale. However, this system requires 
the user to specify a representative document for each gene 
which describes the gene very well. Looking for the 
representative document may take a lot of time, effort and 
knowledge on the part of the user. In addition, as genes have 
multiple biological functions, it is very rare to find a document 
that covers all aspects of a gene across various biological 
domains. GEISHA [9] is based on the comparison of the 
frequency of abstracts linked to different gene clusters. 
Interpretation by the end user of the biological meaning of the 
terms is facilitated by embedding them in the corresponding 
significant sentences and abstracts and by establishing 
relations with other, equally significant terms.  

However, those approaches deal with all of the words in 
documents except stop words. A main drawback of these 
approaches is that many (semantically) unimportant words are 
involved with text summarization so that the quality and the 
performance of text summarization decrease because those 
words act as noise on summary processing. Unlike traditional 
text summarization approaches, the ontology-based text 
summarization method uses two kinds of ontology concepts: 
the concepts that are found in documents, and then the 
concepts that are found to be semantically relevant to those 
concepts through tracking their relationships. Ontology 
concepts as semantically salient terms are searched and valued. 
Therefore, more semantically concise summaries with better 
semantic meaning are expected.  

B. Text Clustering  
Existing text clustering solutions use all of the words in the 

documents except the stop words for their term vectors. Thus, 
it is not uncommon for such solutions to generate thousands of 
dimensions in the vector representation of documents. 
Moreover, they handle terms not semantically but only 
syntactically; thus, they ignore the similarity of terms and 
relationships between words such as synonyms, hyponyms 
and hypernyms defined in terminological resources in 
ontology. For example, semantically identical but differently 
spelled words (e.g., cancer, malignant tumor) are treated as 
completely different words in traditional document clustering 
approaches. Such term handling hampers document similarity 
measure processing. A good way to solve such a problem is 
the use of ontology on document clustering [10].  In our 
architecture, enriching the term vectors with concepts from 
ontology has three benefits. Firstly, it naturally resolves the 

synonym problem. Secondly, it can identify documents with 
different topic using high level (more general) concepts. 
Lastly, because the concepts that are found in the documents 
and the concepts that are relevant to those concepts are used 
on the vector construction, the dimensions are remarkably 
reduced, which in turn improves the clustering accuracy and 
efficiency. 

C. Biological Ontologies  
Biology researchers have suffered from inconsistent 

descriptions of gene products and ambiguous term definitions 
from disparate biology databases. This is called 
“communication problem” [11], which hampers the semantic 
computational processing of bioliterature, such as text 
summarization or document clustering. One of the promising 
solutions to the problem is the use of ontologies, which have 
gotten much attention recently in semantic web and 
bioinformatics communities. This is because ontologies 
explicitly conceptualize a domain without ambiguity, thus 
providing better understanding of the domain; they include a 
structured, controlled vocabulary with definition, the 
taxonomy of the vocabulary and all of the possible 
relationships among concepts. 

There are many biology/medical ontologies, such as Gene 
Ontology (GO) [12], UMLS, TAMBI Ontology, EcoCyc 
Ontology, etc. Each ontology is designed for a specific 
purpose. For example, GO is about gene product function. 
Current GO is from the result of the integration of 16 biology 
databases [12]. GO terms are taxonomically grouped into three 
areas: molecular function, biological process and cellular 
component which are considered independent of each other. 
GO terms are structured in a directed acyclic graph because it 
is very possible for a gene product that has many molecular 
functions to be used in many biological processes and to be 
related to many cellular components. For example, a GO term 
has relationships with more than 400 GO terms. Although GO 
terms are in the form of a graph, all GO terms are rooted 
(hierarchically arranged) to in GO_Ontology concept. 
However, a GO term may have many parents and/or many 
children in different levels. In this paper we focus on GO 
ontology because we will cluster and summarize document set 
related to genes and gene products. 

III. OVERVIEW OF BIO-CS ARCHITECTURE 
In order to summarize documents properly, two problems 

should be carefully handled: (1) documents are highly 
redundant in terms of information; and (2) documents contain 
various kinds of information. One of the promising approaches 
for the problems above is to cluster the document set because 
through document clustering similar documents are grouped 
together while dissimilar documents are grouped into different 
document clusters.  

Our approach follows this philosophy but with significant 
enhancement by integrating ontology into the clustering 
procedure. The principal idea of our approach is based on the 
usage of ontology for generating alternative representations of 
the given document set. The benefits of integrating ontology 
into document clustering and summarization can be three-fold; 
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� Ontology can clearly identify relationships among 

terms found in documents. Thus, by using concepts 
found in documents and their relationships, the 
document vectors inspired by ontology are able to 
contain a higher level of semantic meaning as well as 
the actual semantic meaning. For example, if a 
document that is relevant to sedan or convertible is 
converted into a vector representation using proper 
ontology, the vector representation can hold the higher 
level meaning of sedan or convertible, e.g. car or 
vehicle. Therefore, the ontology-based document 
vector can semantically represent the original 
document well and uncover the hidden meaning of 
documents. 

� Because only important terms (or ontology terms) are 
used in the document vector, which reduces the 
cardinality of document dimensions significantly, the 
clustering performance can be greatly increased. It 
should be noted that the vector elements of 
unimportant terms act as noise on calculating 
document similarity/distance. 

� Using different ontologies of different domains we 
can cluster documents in different ways because the 
same documents can be interpreted from different 
points of views. For instance, using generic ontology 
and molecular ontology biology documents can be 
clustered in the generic view or in molecular point of 
view. 
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Figure 1. The Architecture of Biomedical Literature 
Clustering and Summarization (Bio-CS) 

 
The architecture of our system BioLit-CS, which follows 

the pipeline architecture, is shown in Figure 1. The technical 
details of major steps are described in the following 
subsections. 

A. Ontology-based Biomedical Literature Clustering  

Instead of summarizing the whole document set relevant to 
a gene cluster, each gene cluster document set is first clustered 
using a clustering algorithm for better text summarization. Our 
rationale of document clustering before summarization is that 
the document set of a gene cluster contains various biological 

topics because genes in a cluster carry out multiple functions. 
Thus, clustering the document set guarantees a text 
summarization system the best input source because each 
document cluster only consists of similar documents. For 
better document summarization, document clustering can be a 
prerequisite. 

The traditional document clustering model, such as the bag-
of-word model, is often unsatisfactory since the model ignores 
the relationships among semantically similar terms; for 
example “car” and “automobile” or “cancer” and “malignant 
tumor” are treated as completely different terms in the model. 
Therefore, traditional clustering approach suffers three main 
problems. First, traditional document clustering is mostly seen 
as an objective method, which delivers rigidly defined results. 
This, however, runs contrary to the fact that different people 
have quite different needs with regard to document clustering 
because they may view the same documents from completely 
different perspectives (e.g., a clinical view vs. genetic view). 
Second, traditional document clustering typically takes place 
in the high-dimensional space of a word vector whose entries 
are attributes/properties for a document. However, using 
unimportant terms as vector entries negatively affects the 
clustering in high-dimensional spaces on clustering – besides 
the computational inefficiencies – because each entry is 
treated as the same regardless of its semantic importance and 
thus has the same distance from all other data points. Third, 
traditional document clustering per se does not provide an 
explanation for why a specific document is grouped into a 
particular cluster. 

Our approach deals with those problems by deeply 
integrating ontology in the clustering procedure. For the first 
problem using different ontologies from different domains 
provides multiple subjective perspectives about document 
clustering into the same document set. The second problem 
can be easily solved if ontology is used on document 
clustering because only ontology concepts as importance 
terms are involved in vector representation; thus, the 
cardinality of dimensions remarkably decrease. As a result, the 
performance and the efficiency of document clustering is 
greatly improved. For the third problem involving high-level 
concepts in vector representation by analyzing 
hyponyms/hypernyms relationships among concepts provides 
reasonable explanation of document clustering because those 
high-level concepts with much higher salient scores than 
normal concepts play an important role in distance/similarity 
measurement of document clustering. The explanation is 
based on those high-level concepts. Therefore, we expect 
better clustering performance in terms of the semantic, a 
computational benefit and flexibility with ontology on 
document clustering. Consequently, we believe the most 
important part in document clustering is the conversion from 
documents into document vectors. Without proper conversion, 
the document vectors do not represent the original documents 
well. Ontology plays a crucial part in the conversion. 

Our algorithm converts original documents into 
semantically well-represented document vectors for clustering. 
This is done by, firstly, calculating global and local measures 
of ontology concepts found in the documents. Then, each 
ontology concept is valued based on our own measure (called, 
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“thorough frequency”) that is figured out by its global measure 
and its descendants’ global measures. Finally for some 
qualified concepts, their parent concepts are involved in 
document vectors in order to represent high-level concepts of 
those terms in document vectors. As a result, ontology-based 
document vector can represent the original documents well by 
uncovering hidden high-level semantics. The big difference 
between traditional document vector conversion method and 
our ontology-based document vector conversion is that our 
conversion method involves not only terms found in 
documents in document vectors but also their parent concepts 
whose values are figured out by sophisticated ontology 
concept frequency measurement (“thorough frequency” in our 
term) using the ontology semantic net.  

 
Algorithm: Ontology-based document clustering 
Input: Document set (D); Ontology; any external    
            clustering algorithm  
Output: Document clusters 
Procedural: 
STEP 1: Calculating concept measures for Ci over 
documents (dp) 
 For dp ∈ D 
  For Ci  
   ( )

dpiLF C  

   ( )iGF C  
  End For 
 End For 

STEP 2: Valuing Ci from leaves to the root 
 For the leaves to the root 
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 End For 

STEP 3: Constructing DV 
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  End For 
 End For 

STEP 4: Applying DV to a clustering algorithm and 
Storing clusters to files 

 
In Step 1 for each ontology term (Ci) its measure is 

calculated over documents. The measure could be one that the 
Information Retrieval community has used, such as term 
frequency, document frequency, information gain, Z-score 

[13], etc. However, TF*IDF should not be used here because 
we use abstracts of papers, most GO concepts are found only 
once in the abstracts in which the concepts exist and GO 
concepts that are found frequently over documents should be 
regarded as salient concepts; TF*IDF assumes that salient 
terms are not found too frequently over all documents due to 
the nature of inversed document frequency (e.g., ‘the’, ‘that’, 
etc) and are found frequently in the documents in which the 
term exist due to the nature of term frequency. 

The frequencies are calculated in both the global (corpus) 
level and local (document) level. Global frequencies are 
summed up whenever the same concepts are found. For a 
document dp ∈ D (p = 1,…, n) the global frequency of a 
concept Ci is defined as: 

1,...,

( ) = ( )
dpi i

p n

GF C LF C
=
∑  

where GF(Ci) is the global frequency of a concept Ci and 
LF(Ci) is the local frequency of a concept Ci and 

dpiC is a Ci 

that is found in dp. The global frequencies are used for the 
calculation of thorough frequencies in Step 2. 

In Step 2 all the parent level concepts of concepts that are 
found in documents are valued by their children’s global 
frequencies plus their own global frequencies. For instance, if 
a concept’s GF is 5 and the summation of its all children’s 
GFs are 10, the new frequency (here, called “thorough 
frequency” in our term) of the concept is 15. This procedure 
starts from leaf level to the root. The thorough frequency (TF) 
of a concept (Ci) is mathematically defined as: 

{ | ( , )}

( ) = ( ) ( )
j j i j

i i
C C PC C C

TF C GF C GF C
∈

+ ∑ j  

where TF(Ci) is the thorough frequency of concept Ci and 
PC(Ci, Cj) means Ci is the parent level concept of Cj (a child). 
Through TF of a concept we estimate the importance of a 
concept in documents in terms of semantic. This is feasible 
because all relationships relevant to a concept are identified 
through the ontology semantic net. 

In Step 3, as the core of this procedure, the document vector 
is constructed. The vector elements/entries consist of the 
distinct concepts found in the whole document set plus all 
parent concepts of qualified concepts. The reason why their all 
of their parent concepts are also selected is to hold all the 
semantic meanings in ontology in document vector 
representation. Thus, document vector elements (DVE) are 
defined as: 

{ } { }{ }= | ( , ( )) ( 1i j j TF i ,.., )DVE C C PC C C i mδ+ =
 

where m is the distinct number of concepts found in the 
corpus and δTF(Ci) includes only Ci whose TF is bigger than 
the threshold value. For Ci whose TF is smaller than threshold 
value δTF(Ci) outputs nothing and thus, PC(Cj, δTF(Ci)) also 
outputs nothing (or an empty set). 

Instead of including all parent concepts of all distinct 
concepts only the parent concepts of qualified concepts are 
included into document vectors. In order to qualify concepts 
their thorough frequencies are used because we assume salient 
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concepts have big enough thorough frequencies; the 
assumption is based on the fact that semantically salient 
ontology concepts are frequently found over documents 
because the documents are related to a gene cluster. 

After selecting the concepts to be added to the document 
vectors we should consider which values should be assigned to 
the vector elements (selected concepts) as salient scores. For 
non-parent concepts, their local frequencies are assigned to a 
vector. For parent concepts as a whole, their thorough 
frequencies are used; if a local frequency already exists, it is 
replaced with the thorough frequency. This is defined as: 

{
{ }

= ( | ( , ( )))

( ) ( 1,...,
d p

p j j TF i

i

DV TF C PC C C

LF C p n

δ

+ =

}
)

 

where n is the number of documents. 
The rationale is that, for example, if a document talks about 

“nucleus”, the document is relevant to “intracellular” as an 
upper level concept and also “cell” as a more upper level 
concept (see Figure 2). With such information the document 
vectors can represent the semantics of the original document 
well. In addition, using such information makes the similarity 
and dissimilarity of documents clear because parent concepts 
have more salient values than non-parent concepts. This is 
possible because all possible relationships among concepts are 
analyzed. For example, suppose there are five documents 
about extracelluar, intracellular, membrane, DNA and RNA 
and those documents are encoded into document vector using 

proper ontology such as Gene Ontology in the same way in 
Steps 1, 2 & 3. Table 1 shows local and global frequencies of 
all concepts. This is a typical document vector conversion of 
traditional methods except the section of global frequencies. 
Table 2 shows the ontology-based document vector 
conversion. Note each frequency is based on the ontology in 
Figure 2 and document vector in Table 2 contains only local 
frequency values and thorough frequency values.  

Because the high-level (parent) concepts have more 
frequencies, the documents are easily semantically 
distinguished by the clustering algorithm; this can be easily 
explained using Euclidean distance. Only 2 document vector 
elements (DNA and RNA) mainly affect the calculation of the 
distance between DNA document and RNA document because 
they are split in Level 3 (in Figure 2) from the same parent 
(see Table 2 for the difference between the documents in 
vector elements). The distance above can be naturally smaller 
than the distance between extracelluar document and DNA 
document because they are broken down in Level 2 (in Figure 
2); more vector elements and higher frequencies are involved 
during the distance calculation (see Table 2). 

In Step 4 the document vectors are used as the input for any 
clustering algorithm. Using the clustering results of the 
clustering algorithm, document clusters are generated. For the 
document clustering, X-means [14], an extension of K-means, 
is used because X-means improves two major shortcomings of 
K-means. It scales better and automatically detects the number 
of clusters (k problem) using Bayesian Information Criterion.  
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Figure 2. A part of GO Ontology 

 
Table 1. A Document Vector containing Local Frequencies of Concepts 

 Extra. Intra. Cell Memb. nucleoid nucleus O.C.C. DNA RNA C.C. …
Extra. Doc. 6 0 0 0 0 0 0 0 0 0 …
Intra. Doc. 1 5 3 0 3 4 0 0 0 0 …
Memb. Doc. 0 1 3 5 0 0 0 0 0 0 …
DNA Doc. 0 0 0 0 0 0 0 3 1 0 …
RNA Doc. 0 0 1 0 0 0 0 1 4 0 …
Global 
Frequencies 7 6 7 5 3 4 0 4 5 0 …

 
Table 2. A Document Vector containing Local or Thorough Frequencies of Concepts 
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 Extra. Intra. cell Memb. nucleoid nucleus O.C.C. DNA RNA C.C. …
Extra. Doc. 6 0 0 0 0 0 0 0 0 41 …
Intra. Doc. 1 13 25 0 3 4 0 0 0 41 …
Memb. Doc. 0 1 25 5 0 0 0 0 0 41 …
DNA Doc. 0 0 0 0 0 0 9 3 1 41 …
RNA Doc. 0 0 1 0 0 0 9 1 4 41 …
 

Table 3. A Document Vector containing Local and Thorough Frequencies of Concepts for Full Text Documents 
 Extra. Intra. Cell Memb. nucleoid nucleus O.C.C. DNA RNA C.C. …
Extra. Doc. 26 0 5 0 0 0 0 0 2 0 …
Intra. Doc. 1 15 33 0 30 24 0 4 3 0 …
Memb. Doc. 4 1 25 28 0 2 0 0 0 0 …
DNA Doc. 2 0 3 0 1 0 0 32 1 0 …
RNA Doc. 0 0 2 0 0 0 0 1 41 0 …
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Figure 2. Data flow of Document Clustering and Summarization 

 
One may argue that, for example, Extra. or Intra. document 

may contain DNA or RNA as an unrelated term which can act 
as significant noise. The authors agree with that problem. 
However, our documents are abstracts of papers. Since 
abstracts are actually summaries of the original documents, it 
is rare that summaries contain unrelated GO concepts. If the 
full text is used instead of abstracts, such problem may arise as 
Table 3 shows (the measures which are italic and underlined 
are noises). However, this problem can be easily solved; for 
concepts whose measures are significant over documents, we 
include their parent concepts in document vectors.  
Alternatively for each concept Z-score can be used as a 
measure for this purpose because Z-score indicates the 
distance from the mean of a distribution normalized by the 
standard deviation of the distribution. Thus, significant 
concepts are easily identified from trivial concepts. 

For each document cluster, a term set and a sentence set 
are generated; term set T= {t1, t2, …,tn} which includes all 
terms found in the document set and sentence set S={s1, s2, 
…,sm} which contains all sentences. Here, bipartite graph is 
created between term set and sentence set. If a sentence (sm) 
contains a term (tn), an edge is created between sm and tn. The 
elements of two sets are vertices. Each edge may be weighted 
by the number of relationships between a sentence and a term 
or by a more elaborated measure (e.g., TF*IDF). A weight 
wmn indicates the weight on edge between sm and tn. 
Fundamentally the merit of a sentence depends on the terms 
the sentence contains and the merit of a term relies on the 
sentences that include the term. The following 
mathematically represents this principle. 

 

{ | ( , }
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B. Ontology-based Biomedical Literature Summarization 
After document clustering, as prerequisite for document 

summarization, each document cluster that is guaranteed to 
contain homogeneous documents is summarized. In this paper, 
we use a mutual reinforcement principle [2] to extract key 
phrase and sentences from the document that are added to the 
summary. The core of mutual reinforcement principle is that: 
“a term should have a high saliency score if it appears in many 
sentences with high saliency scores while a sentence should 
have a high saliency score if it contains many terms with high 
saliency score” [2]. We make undirected and weighted 
bipartite graphs for terms and sentences to extract salient 
terms and sentences from the graphs on the fly without 
extensive training process. 

 
 The function edge(sm,tn) indicates a sentence sm contains a 

term tn. This iterative process continues until it reaches a 
certain number of iterations. Finally TOP n terms and 
sentences are selected based on their salient scores and added 
to the summary. There are a lot of numerical computation 
methods developed to calculate the scores of terms and 
sentences efficiently. For more detailed discussion, please 
refer to [16]. 
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Here, we need to take one more step to deal with “summary 
sentence redundancy”. It is very possible that the newly 
extracted sentences to be added to summary are semantically 
similar to the previously extracted sentences. Extracting all 
similar sentences would produce a verbose and repetitive 
summary. The sentence extraction part of our system is similar 
to the domain-independent multidocument summarization in 
[3,4,17] in the way it clusters sentences across documents to 
help determine which sentences are central to the collection, 
as well as to reduce redundancy among sentences as it does 
not make use of comparisons to the centroids of the 
multidocument set. We will integrate the ideas from 
Maximum Marginal Relevance measure [3,4] and Cross 
Sentence Information Subsumption (CSIS) [17] to minimize 
redundancy and maximize both relevance and diversity for 
extracted sentences. In order to measure the similarities 
between two sentences (Si={ki1, ki2,…, kip} and Sj={kj1, kj2,…, 
kjq}) term sets are generated for each sentence.  And then 
every two terms from different term sets are compared. If two 
terms are exactly the same, the similarity score is 1. If two 
terms are different but they are related in the ontology, the 
similarity score is dependent on the semantic similarity in the 
ontology. There are many approaches to use the distance 
between two concepts in ontologies as the basis for their 
similarity [18]. For example, assuming the commonality 
between terms kiu and kjv in the ontology is Kp, where Kp is the 
most specific class that subsumes both kiu and kjv . We can 
define the semantic similarity as follows: 

2*log ( )
( , ) =

log ( ) log ( )
p

iu jv
iu jv

P K
d k k

P K P K+
 

where P(Kx) represents the probability that a randomly 
selected concept belong to the Kx in the ontology. The 
similarity measure of Si and Sj is defined as 
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IV. EXPERIMENTAL RESULTS 
We conducted some experiments on a yeast gene data set 

(http://rana.lbl.gov/EisenData.htm). In our experiment we 

considered the genes in a function family as a cluster and 
created 10 data sets. Table 4 shows 10 yeast gene function 
families as clusters and information about experiment data sets. 

The input data set is documents relevant to genes in clusters. 
For each gene its synonyms are searched; yeast synonym 
information is found at www.yeastgenome.org/gene_list.shtml. 
For each gene and its synonyms the relevant documents are 
fetched from PubMed using our PubMed search tool on the fly. 
The results of gene cluster 1 and 7 as samples are shown in 
Table 5. 

 
Table 4. Gene Clustering and Document Clustering 

Gene 
Cluster 

# 

# of genes in 
the cluster 
(including 
synonyms) 

# of 
relevant 
PubMed 

documents 

# of document 
clusters for 
each gene 

cluster 

Gene 
Function 

1 19 (25) 122 2 ATP 
synthesis 

2 19 (35) 519 6 Mitosis 

3 19 (69) 262 3 
Vaculolar 

protein 
targeting 

4 20 (30) 501 5 Silencing 

5 20 (34) 213 2 Fatty acid 
metabolism 

6 21 (35) 386 6 Meiosis 

7 21 (31) 242 3 Phospholipid 
metabolism 

8 22 (30) 203 3 TCA cycle 

9 42 (67) 640 6 Chromatin 
structure 

10 42 (75) 1874 15 DNA 
replication 

 

V. CONCLUSION 
In this paper we present a novel system Bio-CS for 

biomedical literature clustering and summarization. Our 
system integrates gene ontology, text clustering and text 
summarization. The experiment results on yeast gene 
expression data indicate that the Bio-CS can clusters can 
provide a concise and informative textual summary for the 
gene clusters. One of the challenging issues for summarization 
is how to organize the extracted sentences in a coherent way. 
We plan to integrate chronicle ordering to sort the extracted 
sentence and hope to report our findings in the near future. 

 

 

http://rana.lbl.gov/EisenData.htm


 
Table 5. The top 10 significant terms and the best sentence for each cluster  

Cluster # Cluster common 
terms 

Document 
Cluster # Key Terms Best Sentences 

1 

RNA; binding; 
chromosome; 
cytochrome; 
protein; telomere 

These data were in agreement with the sequence 
of the hypothetical protein L8003.20 whose 
primary structure was deduced from DNA 
sequencing of the yeast chromosome XII. 

1 

ATPase activity; 
DNA; 
Cell; 
membrane 
 2 

growth; 
phosphorylation; 
protein; translation; 
transport; vacuolar 
membrane 

We conclude that Yme1p is in part responsible 
for assuring sufficient F(1)F(0)-ATPase activity 
to generate a membrane potential in 
mitochondria lacking mitochondrial DNA and 
propose that Yme1p accomplishes this by 
catalyzing the turnover of protein inhibitors of 
the F(1)F(0)-ATPase. 

1 
DNA; RNA; cell; 
membrane; protein; 
transferase activity 

The phospholipid composition of yeast plasma 
membrane was manipulated by two different 
methods: (i) by using two auxotrophic strains 
KA101 (cho1) and MC13 (Cho+) which 
required phospholipid bases for growth and (ii) 
by supplementing Saccharomyces cerevisiae 
(3059) cells with high concentration of choline 
or ethanolamine. 

2 

DNA; RNA; cell; 
lipid biosynthesis; 
protein; 
transcription 

Expression of the C. albicans secretory aspartyl 
proteinase (SAP) and phospholipase B (PLB) 
virulence genes was determined by reverse 
transcription-PCR after the addition of 
caspofungin to cells grown for 15 h in 
Sabouraud dextrose broth. 

7 

Binding; 
Biosynthesis; 
Growth; 
holin 
 

3 

centromere; 
chromosome; lipid 
biosynthesis; 
phospholipid; 
transcription; 
vacuole 

Structural genes of phospholipid biosynthesis in 
the yeast Saccharomyces cerevisiae are 
transcriptionally co-regulated by ICRE 
(inositol/choline-responsive element) promoter 
motifs. 
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Abstract

The purpose of the present work is to construct a new method for approximation

of sets using two information systems simultaneously. Some properties and charac-

terizations are given and a comparison with the previous sorts of approximation is

obtained.

1. Introduction

A data set is represented as a table where each row represents a case, an event, a patient,

or simply an object. Every column represents an attribute (a variable, an observation, a

property, etc.) that can be measured for each object; the attribute may be also supplied

by a human expert or user. This table is called an information system. More formally, it

is a triple (X, T, t) [7] where X is a non-empty finite set of objects called the universe, and

T is a non-empty finite set of attributes such that t : X −→ Vt for all t ∈ T . The set Vt

is called the value set of t. The notion of equivalence is recalled first, A binary relation

R ⊆ X ×X which is reflexive (i.e., an object is in relation with itself xRx), Symmetric (if

xRy then yRx) and transitive (if xRy and yRz then xRz) is called an equivalence relation.

The equivalence class of an element x ∈ X consists of all objects y ∈ X such that xRy.

Let ζ = (X, A, t) be an information system obtained via data collected from an experiment

by a user then there is associated an equivalence relation Rζ

Rζ = {(x, y) ∈ X ×X : ∀ ti(x) = ti(y)},
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Rζ is called indiscernibity relation. If (x, y) ∈ Rζ , then objects x and y are indiscernible

from each other by attributes from A. The equivalence classes of an indiscraibility relation

R on a set X are denoted by [x]
R
, this class forms a base β

R
for a topology on X.

Kelly [8] introduced the concept of bitopological spaces as method of generalizes topo-

logical spaces. The field of bitopologies has achieved great success in abstract study [9].

To the best four Knowledge the notions of bitopological structures are not applied in the

field of set approximations one of this methods is rough set approach. The purpose of the

present work is to construct another approach for rough set analysis using bitopology, we

expert that this approach will give a general view for rough set concepts in the case of two

information systems resulting from two experiments or the view of two experts. However,

we hope that this work is an initial step for the application of bitopological concepts in the

fields of applications based on rough set concepts such as reduction of attributes, decision

tables used dependency of knowledge bases.

2. Set of pairwise approximation

If the attribute for each object are measured by two experts or users, we have two

tables or two information systems ζ = (X, T, t) and ζ
′

= (X, T, t
′
), we can obtain two

indiscernibity relations Rζ and Rζ′ . Consequently we have two bases βRζ
and βR

ζ
′ for two

topologies τ1 and τ2.

Example 1.1: In the following tables we have two information systems for five cases

X = {a, b, c, d, e} represent five patients, T = {t1, t2} attributes represent symptoms of dis-

eases and the values represent the type of symptoms as the following 1 means abdominal

pain, 2 means headache, 3 means fever, 4 means diarrhea

2



a

b

c

d

e

1

2

2

1

2

t1

3

4

3

3

4

t2

table(1)
Results from the medical expert (1)

a

b

c

d

e

1

2

1

1

1

t1

3

4

3

3

3

t2

table(2)
Results from the medical expert (2)

With respect to user (1) the reader will easily notice that cases a and d as well as b and

e have exactly the same values of conditions. Also with respect to user (2), the cases

a, b, cand d have the same values of conditions.

In table (1)

Rζ = {(x, y) ∈ X ×X : ti(x) = ti(y) ∀ x, y ∈ X, i, j ∈ {1, 2}}
Rζ = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, d), (d, a), (b, e), (e, b)}
βRζ

= {[x]Rζ
: x ∈ X} = {{a, d}, {b, e}, {c}}.

The topology induced by βRζ
as a base is

τ1 = {X, φ, {a, d}, {b, e}, {c}, {a, b, d, e}, {a, d, c}, {b, c, e}}

In table (2)

Rζ′ = {(x, y) ∈ X ×X : ti(x) = ti(y) ∀ x, y ∈ X, i, j ∈ {1, 2}}
Rζ′ = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, a), (a, d), (d, a),

(a, e), (e, a), (c, d), (d, c), (c, e), (e, c), (d, e), (e, d)}
βR

ζ
′ = {[x]R

ζ
′ : x ∈ X} = {{b}, {a, c, d, e}}.

The topology induced by βR
ζ
′ as a base is

τ2 = {X, φ, {b}, {a, c, d, e}}
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Definition 1.1. If we have two information systems ζ = (X, T, t) and ζ
′

= (X, T, t
′
)

and τ1, τ2 are two topologies induced by βRζ
and βR

ζ
′ respectively as a bases we can define

pairwise lower approximation for any subset A of X as the following

pL(A) = intτ1 (A) ∪ intτ2 (A)

. Also we define pairwise upper approximation for any subset A of X as the following

pU(A) = clτ1 (A) ∩ clτ2 (A)

In Example 1.1, if we let A = {b, d}. Then pL(A) = {b} and pU(A) = {a, b, d, c}
Proposition 1.1. One can easily show the following properties of pairwise approximations:

(1) pL(A) ⊆ A ⊆p U(A)

(2) pL(X) =p U(X) = X and pL(φ) =p U(φ) = φ

(3) pU(A ∪B) ⊇ pU(A) ∪ pU(B)

(4) pU(A ∩B) ⊆ pU(A) ∩ pU(B)

(5) pL(A ∩B) ⊆ pL(A) ∩ pL(B)

(6) pL(A ∪B) ⊇ pL(A) ∪ pL(B)

(7) If A ⊆ B implies pU(A) ⊆ pU(B) and pL(A) ⊆ pL(B)

(8) pU(X \ A) = X \ pL(A) and pL(X \ A) = X \ pU(A)

(10) pL(pL(A)) ⊆ pU(pL(A))

(11) pL(pL(A)) =p L(A)

(12) pU(pU(A)) ⊇ pL(pU(A))

(13) pU(pU(A)) =p U(A)
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Proof: We prove the parts (9) and (11) only, other parts are obtains similarly.

(9)

(pU(B))c = (clτ1(B) ∩ clτ2(B))c

= (clτ1(B))c ∪ (clτ2(B))c

= intτ1(B
c) ∪ intτ2(B

c)

= pL(Bc)

Similarly (11)

pL(pL(B)) = pL(intτ1(B) ∪ intτ2(B))

= intτ1(intτ1(B) ∪ intτ2(B)) ∪ intτ2(intτ1(B) ∪ intτ2(B))

= intτ1(B) ∪ intτ1(intτ2(B)) ∪ intτ2(intτ1(B)) ∪ intτ2(B)

= intτ1(B) ∪ intτ2(B)

= pL(B)

In the following example we show that the equality in parts (3), (5), (10) and (12) of

Proposition 1.1 are not true in general.

Example 1.2. Consider the two information systems as in Example 1.1.

part (1) Let A = {a}, B = {b}, we have pU(A) = {a, b}, pU(B) = {b} and pU(A ∪ B) =

{a, b, d, e}. Consequently pU(A ∪B) 6=pU(A) ∪ pU(B).

part (2) Let A = {a, c, d, e}, B = {a, b, d, e}, we have pL(A) = {a, c, d, e}, pL(B) =

{a, b, d, e} and pL(A ∩B) = {a, d}. Consequently pL(A ∪B) 6=pL(A) ∩ pL(B).

part (3) Let A = {a, b, c, d}, we have pL(pL(A)) = {a, b, c, d} and pU(pL(A)) = X.

Consequently pL(pL(A)) 6=p U(pL(A))

part (4) Let A = {e}, we have pL(pU(A)) = φ and pU(pU(A)) = {e}. Consequently

pU(pU(A)) 6=p L(pU(A))
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The following table show that the difference between approximations by using our ap-

proach and Pawlak’s approach.

Approximation by using one user Approximation by using two user

L(A) ⊆ A ⊆ U(A)

L(X) = U(X) = X

L(φ) = U(φ) = φ

U(A ∪B) = U(A) ∪ U(B)

U(A ∩B) ⊆ U(A) ∩ U(B)

L(A ∩B) = L(A) ∩ L(B)

L(A ∪B) ⊇ L(A) ∪ L(B)

If A ⊆ B implies U(A) ⊆ U(B)

L(A) ⊆ L(B)

L(X \ A) = X \ U(A)

U(X \ A) = X \ L(A)

L(L(A)) = U(L(A))

L(A) = L(L(A))

U(U(A)) = L(U(A))

U(A) = U(U(A))

pL(A) ⊆ A ⊆ pU(A)

pL(X) = pU(X) = X

pL(φ) = pU(φ) = φ

pU(A ∪B) ⊇ pU(A) ∪ pU(B)

pU(A ∩B) ⊆ pU(A) ∩ pU(B)

pL(A ∩B) ⊆ pL(A) ∩ pL(B)

pL(A ∪B) ⊇ pL(A) ∪ pL(B)

If A ⊆ B implies pU(A) ⊆ pU(B)

pL(A) ⊆ pL(B)

pL(X \ A) = X \ pU(A)

pU(X \ A) = X \ pL(A)

pL(pL(A)) ⊆ pU(pL(A))

pL(A) = pL(pL(A))

pU(pU(A)) ⊇ pL(pU(A))

pU(A) = pU(pU(A))

The emergence of two viewpoints increase sets which is definable internally or exter-

nally. One can define the following four basic classes of raugh sets.
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Definition 1.2. For any two information systems ζ = (X, T, t) and ζ
′
= (X, T, t

′
). The

set A ⊆ X is called:

(1) Roughly pairwise definable iff pL(A) 6= φ and pU(A) 6= X.

(2) Internally pairwise undefinable iff pL(A) = φ and pU(A) 6= X.

(3) Externally pairwise definable iff pL(A) 6= φ and pU(A) = X.

(4) Pairwise exact iff pL(A) = pU(A) = A.

We denote the set of all Roughly pairwise definable (resp. Internally pairwise unde-

finable, Externally pairwise definable and Pairwise exact) sets by RPD(X, τ1, τ2) (resp.

IPU(X, τ1, τ2), EPD(X, τ1, τ2) and PE(X, τ1, τ2)). In the case of using one of two infor-

mation systems ζ = (X, T, t) and ζ
′
= (X, T, t

′
) we denote the set of all Roughly definable

(resp. Internally undefinable, Externally definable and exact) sets by RD(X, τi) (resp.

IU(X, τi), ED(X, τi) and E(X, τi)) where i = 1, 2.

Remark 1.1 For any two information systems ζ = (X, T, t) and ζ
′
= (X, T, t

′
). The the

relations between the types of sets in Definition 1.2 with respect to two user and one user

as the following: for all i = 1, 2

(1) RPD(X, τ1, τ2) ⊇ RD(X, τi)

(2) IPU(X, τ1, τ2) ⊆ IU(X, τi)

(3) EPD(X, τ1, τ2) ⊆ ED(X, τi)

(4) PE(X, τ1, τ2) ⊇ E(X, τi)

Example 1.3. In Example 1.1,we have:

RPD(X, τ1, τ2) = {{b}, {c}, {a, b}, {c, e}, {a, c}, {a, d}, {b, c}, {b, d}, {b, e}, {c, d}, {a, b, d},
{a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, e}, {c, d, e}, {a, c, d, e}, {a, b, d, e}}.
RD(X, τ1) = {{c}, {a, d}, {b, c}, {b, e}, {c, d}, {c, e}, {a, b, d}, {a, b, e}, {a, c, d},
{a, d, e}, {b, c, e}, {a, b, d, e}}.
RD(X, τ2) ={{b}, {a, c, d, e}}.
IPU(X, τ1, τ2) = {{a}, {d}, {e}, {a, e}, {d, e}, φ}.
IU(X, τ1) = {{a}, {b}, {d}, {e}, {a, b}, {a, e}, {d, e}, {b, d}, φ}.
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IU(X, τ2) = {{a}, {c}, {d}, {e}, {a, c}, {a, d}, {a, e}, {d, e}, {c, d}, {c, e}, φ}.
EPD(X, τ1, τ2) = {X, {a, b, c}, {b, c, d}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e}}.
ED(X, τ1) = {X, {a, b, c}, {a, c, e}, {b, c, d}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {b, c, d, e}}.
ED(X, τ2) = {X, {a, b}, {b, c}, {b, d}, {b, e}, {a, b, c}, {a, b, d}, {a, b, e}, {b, c, d}, {b, c, e}, {b, d, e}
, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}}.
PE(X, τ1, τ2) = {X, {b}, {c}, {a, d}, {b, e}, {a, c, d}, {b, c, e}, {a, c, d, e}, {a, b, d, e}}
E(X, τ1) ={X, {c}, {a, d}, {b, e}, {a, c, d}, {b, c, e}, {a, b, d, e}}
E(X, τ2) = {X, {b}, {a, c, d, e}}

Rough set can be also characterized by the following cofficient αp(A) =| pL(A)

pU(A)
| called

the accuracy of pairwise approximation, where | A | denotes the cardinality of A 6= φ.

Obviously 0 ≤ αp(A) ≤ 1. If αp(A) = 1 the set A is an exact and if αp(A) < 1 the set A is

a rough set.

The relation between the degree of accuracy of pairwise approximation by using tow

information systems together and approximation by using each of the two information sys-

tem alone as the following αp(A) ≥ max{α1(A), α2(A)} where αp(A) is the accuracy of

pairwise approximation by two information systems (two users), α1(A) is the accuracy of

pairwise approximation by first information systems (user 1) and α2(A) is the accuracy of

pairwise approximation by second information systems (user 2).

The following table show that the degree of accuracy of approximation αp(A), α1(A)

and α2(A) for some sets in Example 1.1
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The set αij(A) α1(A) α2(A)

X 1 1 1

{a, b} 1
4

0 1
5

{a, b, c} 2
5

1
5

1
5

{b, d, e} 1
2

1
2

1
5

{a, c, d, e} 1 3
5

1

3. Real life application

In the following we will investigate the Middle East setution problem using our approach

and compare the results with the results of Pawlak [1] and M. M. Abd El-Monsef [2].

Pawlak and Skowron [3] characterize a rough set by a single membership function for any

subset A ⊆ X, a rough membership function is defined by

µA(x) =
| A ∩ [x]

R
|

| [x]
R
|

where | . | denotes the cardinality of a set.

Definition 2.1. If we have two information systems ζ = (X, T, t) and ζ
′

= (X, T, t
′
)

we can define the pairwise membership function by the relation

pµA(x) =
| A ∩ ([x]

Rζ
∪ [x]

R
ζ
′
) |

| ([x]
Rζ
∪ [x]

R
ζ
′
) |

where [x]
Rζ

( resp. [x]
R

ζ
′
) is the equivalent class of x with respect to information system

ζ = (X, T, t) (resp. ζ
′
= (X, T, t

′
) ) and | . | denotes the cardinality of a set.

In the folllowing we will showing the political situation of the Middle East problem by

using two veiws, the first veiw is befor Irak war and the other after it. Let us consider the

nine parties (objects) in this problem.
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(1) Egypt (2). Israeli (3). Jordan (4). Lebanaon (5). Palestine

(6) Syria (7). Saudi Arabia (8). Iraq (9). Kuwait (10). Kater.

The relation between those parties are determined by the following twelve issues (at-

tributes).

(a) Return of Golan Heights of Syria.

(b) Israeli military outposts on the Golan Heights.

(c) Israeli accupation zone in south Lebanon.

(d) Free access to all religious centers.

(e) Arab countries grant citizenship to palestinians who choose to remain within their

borders.

(f)Israeli retains East Al-Quads.

(g) Isolation and division of Al-Quads.

(h) Autonomous palestinian state on the West Bank and Gaza.

(i) Return of the West Bank and Gaza to Arab rule.

(j) Israeli military autpost along the Jordan river.

(k) Roed map.

(l) The segregation wall.

The following two table (information systems) summarize all the participants opinion on

the previous twelve issues before and after Iraq war. If the participant is against the issue

we put 0 and if the participant is neutral or favorable toward the issue we assign that by 1

10



Egypt
Israeli
Jordan
Lebanon
palestine
syria
KSA
Iraq
Kuwait
Qater

a

1
0
1
1
1
1
1
1
0
1

b

0
1
1
1
1
1
1
0
1
0

c

0
1
0
0
0
0
0
0
1
1

d

1
1
1
1
1
1
1
1
1
1

e

0
1
0
1
1
1
1
0
1
0

f

0
1
0
0
0
0
0
0
1
0

g

0
1
0
0
0
0
0
0
1
0

h

1
0
1
1
1
1
1
1
0
1

i

1
1
1
1
1
1
1
1
1
1

j

1
1
0
0
0
1
1
1
1
0

k

1
0
1
1
1
1
1
1
0
1

l

0
1
1
0
0
1
1
0
1
0

table (*)
Information system before Iraq war

Egypt
Israeli
Jordan
Lebanon
palestine
syria
KSA
Iraq
Kuwait
Qater

a

1
0
1
1
1
1
1
0
0
0

b

0
1
1
1
1
1
1
1
1
1

c

0
1
1
0
0
0
0
1
1
1

d

1
1
1
1
1
1
1
1
1
1

e

0
1
1
0
1
1
1
1
1
1

f

0
1
0
0
0
0
0
1
1
1

g

0
1
1
0
0
0
0
1
1
1

h

1
0
1
1
1
1
1
0
0
0

i

1
1
1
1
1
1
1
1
1
1

j

1
1
0
1
0
1
1
1
1
1

k

1
1
0
1
1
1
1
1
1
1

l

0
0
1
1
0
0
1
0
0
0

table (**)
Information system after Iraq war

In table (*)

we have the following equivalence class

[1]Rζ
= [8]Rζ

= {1, 8}
[2]Rζ

= [9]Rζ
= {2, 9}

[6]Rζ
= [7]Rζ

= {6, 7}
[4]Rζ

= [5]Rζ
= {4, 5}

[3]Rζ
= {3}

[10]Rζ
= {10}

In table (**)
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we have the following equivalence class

[1]R
ζ
′ = {1}

[2]R
ζ
′ = [8]R

ζ
′ = [9]R

ζ
′ = [10]R

ζ
′ = {2, 8, 9, 10}

[3]R
ζ
′ = {3}

[4]R
ζ
′ = {4}

[5]R
ζ
′ = {5}

The degree of membership of Israeli with respect to the set

A = {Egypt, Kuwait, Iraq, Kater, Palestine} with respect to one information system in table

(*) is

µA(2) =
| A ∩ [2]Rζ

|
| [2]Rζ

|

=
| {1, 5, 8, 9, 10} ∩ {2, 9} |

| {2, 9} |

=
1

2

The degree of membership of Israeli with respect to the set

A = {Egypt, Kuwait, Iraq, Kater, Palestine} with respect to tow information system is

µA(2) =
| A ∩ ([2]Rζ

∪ [2]R
ζ
′ ) |

| [2]Rζ
∪ [2]R

ζ
′ |

=
| {1, 5, 8, 9, 10} ∩ ({2, 9} ∪ {2, 8, 9, 10}) |

| {2, 9} ∪ {2, 8, 9, 10} |

=
3

4
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Abstract 

The principal focus is to examine the foundation of association (rule) mining (AM) 
via granular computing (GrC).  The main results is: The set of all high frequency patterns 
is the set of  set theoretical expresssions of the names of elementary granules or the well 
form formulas in deicion logic with large meaning set 

 
  

 
1.  INTRODUCTION 
 
What is data mining? The following informal 
paraphrase of Fayad et al. (1996)’s definition 
seems quite universal: Deriving useful 
patterns from data. The keys are data, 
patterns, derivation system, and useful-ness. 
We will examine critically the current 
practices of AM  
 
1.2. Basic Terms in Association Mining 
(AM) 
In AM, two measures, support and confidence, 
are the main criteria. It is well known among 
researchers the support is the main hurdle, in 
other words, high frequency patterns are the 
main focus. AM is originated from the market 
basket data (Agrawal, 1993). However, we 
will be interested in AM for relational tables. 
For definitive, we assert:  
 

1. A relational table is a bag relation, that is, 
repetitions of tuples are permissible 
(Garcia-Monila et al. 2002) 

2. An item is an attribute value,  
3. A q-itemset is a subtuple of length q, 
4. A  high frequency  pattern of length q is 

a q-subtuple if its number of occurrences 
is greater than or equal to a given 
threshold.  

 
2. EMERGING METHOD - GRANULAR 
COMPUTING 
 
Bitmap index is a common notion in database 
theory. The advantage of bitmap 
representation is computationally efficient 
(Louis and Lin, 2000), and the drawback is 
the order of the table has to be fixed (Garcia-
Molina, 2002). Based on granular computing, 
we propose a new method, called granular 
representations, that avoids this drawback.  
We will illustrate the idea by examples. The 
following example is modified from the text 
cited above (p. 702).  A relational table K is 
viewed as a knowledge representation of a set 
V, called the universe, of real world entities 
by tuples of data; see Table 1.

 

 



    
V  BusinesSize Bmonth   City BusinesSize Bmonth   City 
v1    TWENTY MAR NY  100011100 110011000 101000000  
v2    TEN MAR SJ   011100000 110011000 010011100 
v3    TEN FEB NY 011100000 001100000 101000000 
v4   K TEN FEB LA  011100000 001100000 000100011 
v5   → TWENTY MAR SJ   100011100 110011000 010011100  
v6    TWENTY MAR SJ   100011100 110011000 010011100  
v7    TWENTY APR SJ  100011100 000000100 010011100 
v8    THIRTY JAN LA  000000011 000000011 000100011  
v9    THIRTY JAN LA  000000011 000000011 000100011 
Relational Table  K   Bitmap Table B  

Table 1.  K and B are isomorphic 
 

BusinesSize Granular Representation  Bitmap Representation 
TWENTY ={v1, v5, v6, v7} =100011100 
TEN ={v2, v3, v4} =011100000 
THIRTY ={v8, v9} =000000011 
 GDM in Granules GDM in Bitmaps 

Table 2a.  Granular Data Model (GDM) for BusinesSize Attribute 
 

Bmonth Granular Representation  Bitmap Representation 
Jan ={v8, v9} =000000011 
Feb ={v3, v4} =001100000 
Mar ={v1, v2, v5, v6} =110011000 
APR ={v7} =000000100 
 GDM in Granules GDM in Bitmaps 

Table 2b.  Granular Data Model (GDM) for Bmonth attribute 
 

City Granular Representation  Bitmap Representation 
LA ={v4, v8, v9} =000100011 
NY ={v1, v3} ={v1, v3} 
SJ ={v2, v5, v6, v7} =010011100 
 GDM in Granules GDM in Bitmaps 

Table 2c.  Granular Data Model (GDM) for City attribute 
 
 

V  BusinesSize Bmonth   City BusinesSize Bmonth   City 
v1    TWENTY MAR NY   {v1,v5,v6,v7} {v1,v2,v5,v6} {v1,v3} 
v2    TEN MAR SJ   {v2,v3,v4} {v1,v2,v5,v6} {v2,v5,v6,v7}
v3    TEN FEB NY  {v2,v3,v4} {v3,v4} {v1,v3} 
v4   K TEN FEB LA  {v2,v3,v4} {v3,v4} {v4,v8,v9} 
v5   → TWENTY MAR SJ   {v1,v5,v6,v7} {v1,v2,v5,v6} {v2,v5,v6,v7}
v6    TWENTY MAR SJ   {v1,v5,v6,v7} {v1,v2,v5,v6} {v2,v5,v6,v7}
v7    TWENTY APR SJ  {v1,v5,v6,v7} {v7} {v2,v5,v6,v7}
v8    THIRTY JAN LA   {v8, v9} {v8,v9} {v4,v8,v9} 
v9    THIRTY JAN LA   {v8, v9} {v8,v9} {v4,v8,v9} 
  Bag Relation  K   Granulr Table G  

 



Table 2.  K and G are isomorphic 
 
 

3. GRANULAR DATA MODEL (GDM) –
TABLE IN FREE FORMAT 

A bitmap index for an attribute is a collection 
of bit-vectors, one for each possible value that 
may appear in the attribute. For the first 
attribute, BusinesSize (the amount of business 
in millions), the bitmap index would have 
nine bit-vectors. The first bit-vector, for value 
TWENTY, is 100011100, because the first, 
fifth, sixth, and seventh tuple have 
BusinesSize = TWENTY. The other two, for 
values TEN and THIRTY, are 011100000 and 
000000011 respectively; Table 1 shows both 
the original table and bitmap table. Bmonth 
means Birth month; City means the location 
of the entities. 

 
The middle columns of Table 2a, 2b and 2c 
define 3 partitions. The universe and such 3 
partions, denoted by (V, {EBusinesSize, EBmonth, 
ECity} ), determines the  granular table G and 
vice versa. More generally, a pair (V, E, C) is 
called a GDM, where E is a set of finite 
family of partitions, and C consists of the 
names of all elementary granules. A partition 
(equivalence relation) of V that is not in the 
given E is referred to as an uninterpreted 
attribute of GDM, and its elementary 
granules are un-interpreted attribute 
values. 

Next, we will interpret the bit-vectors in 
terms of set theory. A bit-vector can be 
viewed as a representation of a subset of V. 
For example, the bit-vector, 100011100, of 
BusinesSize = TWENTY says that the first, 
fifth, sixth, and seventh entities have been 
selected, in other words, the bit-vector 
represents the subset {v1, v5, v6, v7}. The 
other two bi-vectors, for values TEN and 
THIRTY, represent the subsets {v2, v3, v4} and 
{v8, v9} respectively. We summarize such 
translations in Table 2a,b,c. and refer to these 
subsets as elementary granules. 

 
GDM Theorem. The granular table G and its 
GDM determine each other.  
 
In view of Isomorphic theorem below, it is 
sufficient to do AM in GDM. 
 
4. ANALYSIS OF ASSOCIATION 
MINING (AM) 
 
To understand the mathematical mechanics of 
AM, let us ecamine how the information has 
been created and processed. We will take the 
deductive data mining approach.  

 
Some easy observations:  

1. The collection of elementary granules of 
an attribute (column) forms a partition, 
that is, all granules of this atribute are 
pairwise disjoint. This fact was observed 
by Pawlak (1982) and Tony Lee(1983).  

 
First, let us set up some terminology. A 
symbol is a string of "bits and bytes" that 
represents a slice of real world, however, such 
a real world meaning does not participate in 
the formal processing or computing. We term 
such a processing computing with symbols.  
In AI, such a symbol is termed a semantic 
primitive. (Feigenbaum, 1981).  A symbol is 
termed a word, if the intended real world 
meaning participates in the formal processing 
or computing. We term such a processing 
computing with words. Note that 

2. From Table 1 &  2, one can easily 
conclude that the relational table K, the 
bitmap table B and granular table G are 
isomorphic. Two tables are isomorphic 
if one can transform a table to the other 
by renaming all attribute values in a one-
to-one fashion. 

 

 



mathematicians use words (in group theory) 
as symbols; their words are our symbols.  
 
4.1.  Data Processing and Computing with 
Words 
 
In traditional data processing (TDP), a 
relational table is a knowledge representation 
of a slice of real world. So each symbol of the 
table represents (to human) a piece of the real 
world; however, such a representation is not 
implemented in the system. Nevertheless, 
DBMS,  under human commands, does 
process the data, for examples, Bmonth 
(attribute), April, March (attribute values) 
with human-perceived semantics. So in TDP  
the relational table is a table of words; TDP is  
human directed computing with words.        
 
4.2. Data Mining and Computing with 
Symbols 
 
In (automated) AM we use the table created 
in TDP.  However, AM algorithms regard the 
TDP data as symbols; no real world meaning 
of each word participates in the process of 

AM. High frequency patterns are completely 
deduced from the counting of the symbols. 
AM is computing with symbols. The input 
data of AM is a relational table of symbols, 
whose real wolrd meaning does not 
participate in formal computing. 
 
Under such a circumstance, if we replace the 
given set of symbols by a new set, then we 
can derive new patterns by simply replacing 
the symbols in “old” patterns. Formally, we 
have (Lin, 2002) 
 
Isomorphic Theorem   Isomorphic relational 
tables have isomorphic patterns. 
 
This theorem implies that the theory of AM is 
a syntactic theory. 
 
Example   From Table 3, it should be clear 
that the one-to-one correspondences between 
K and K’ induces consistently a one-to-one 
correspondence between the two sets of 
distinct attribute values.  We describe such a 
phenomenon by the statement: K and K’ are 
isomorphic. 

 
V  BusinesSize Bmonth   City U  W’t Name Material 
v1    TWENTY MAR NY   u1   20 SCREW STEEL  
v2    TEN MAR SJ   u2   10 SCREW BRASS 
v3    TEN FEB NY  u3   10 NAIL STEEL 
v4   K TEN FEB LA  u4  K 10 NAIL ALLOY 
v5   → TWENTY MAR SJ   u5  → 20 SCREW BRASS  
v6    TWENTY MAR SJ   U6   20 SCREW BRASS  
v7    TWENTY APR SJ  U7   20 PIN BRASS 
v8    THIRTY JAN LA   U8   30 HAMMER ALLOY  
v9    THIRTY JAN LA   U9   30 HAMMER ALLOY 
  Bag Relation  K   Bag Relation  K’ 

Table 3 The isomorphism of Table K and K’ 
 
 

K K’ GDM in Granules Support 
(TWENTY, MAR) (20, SCREW) ={v1, v5, v6, v7}∩{v1, v2, v5, v6} 3 
(MAR, SJ) (SCREW, BRASS) ={v1, v2, v5, v6}∩{v2, v5, v6, v7} 3 
(TWENTY, SJ) (20, BRASS) ={v1, v5, v6, v7}∩{v2, v5, v6, v7} 3 

Table 4. Three isomorphic 2-patterns;  support =cardinality of granules 
 

 



 

In Table 4, we display the high frequency 
patterns of length 2 from Table K, K’ and 
GDM; the three sets of patterns are 
isomorphic to each other.  So for AM, we can 
use any one of the three tables.  An 
observation: In using K or K’ for AM, one 
needs to scan the table to get the support, 
while in using GDM,  the support can be read 
from the cardinality of the granules, no 
database scan is required – one strength of 
GDM. Another observation: From the 
definition of elementary granules, it should be 
obvious that subtuples are mapped to the 
intersections of elementary granules; see 
Table 4. 
 
5. HIGH FREQUENCY PATTERNS ARE 
GRANULAR/DECISION FORMULAS  
 
Implicitly AM has assumed high frequency 
patterns are “expressions” of  the input  
symbols (elements of the input  relational 
table.)  Such assumptions are not made in 
other techniques. In neural network 
techniques, the input data are numerical, its 
patterns are not numerical “expressions.”  
They are essentially functions  that are 
derived from  activation functions (Park and 
Sanders, 1989; Lin, 1996).    
 
Let us back to AM, the implicit assumption 
simplifies the problem. What are the possible 
“expressions” of  the input  symbols?  There 
are two possible formalisms, logic formula 
and  set theoretical algebraic expression.  In 
logic form, we have several choices, 
deductive database systems, datalog, or 
decision logic among others  (Ullman, 1988-
89; Pawlak, 1991); we choose decision logic 
because it is simpler. In set theoretical form, 
we use GDM (Lin, 2000).  

     
5.1. Decision Logic Based Formula 
 
A high frequency pattern in decision logic is 
a logic formula, whose meaning set (support) 

has cardinality greater than or equal to the 
threshold.  
 
5.2. Granular Formulas - Set Theoretical 
Based Formulas 
 
A high frequency pattern in GDM is a 
granular expression, which is a set theoretical 
algebriac expression of elementary granules; 
when the expression is evaluated set 
theoretically, the cardinailty of the resultant 
set is greater than or equal to the threshold; 
we will call the algebraic expressions 
granular pattern. Note that several distinct 
algebraic expressions of elementary granules 
may have the same resultant set.  
 
Some observations: Informally, a logical 
formula of granular pattern is the “logic 
formula” of the names of elementary granules 
(Lin, 2000); more pricisely we translate 
elementary granules, ∪ and ∩ into their 
names, “or” and “and” respectively.  Next, we 
note that there are only finitely many distinct 
subsets that  can be generated by the 
intersections and unions of elementary 
granules in GDM. If we only consider the 
disjunct normal form, the  total possible high 
frequency patterns in AM is finite.   
 
6.  HIGH FREQUENCY PATTERNS BY 
LINEAR INEQUALITIES 

  
Let B be the Boolean algebra generated by 
the elementary granules; the partial order is 
the set theoretical inclusion ⊇. Then B is the 
set of all granular expressions. Let O be the 
smallest element (it is not necessary an empty 
set) and I is the greatest element (I is the 
universe V).  An element p is an atom, if  p ⊇ 
O, and there is no element x such that p ⊇ x ⊇ 
O. Each atom p is an intersection of some 
elementary granules.  Let S(b) be the set of all 
atom pj such that  pj  ⊆ b and s(b) be its 
cardinality. From  (Birkoff & MacLane, 1977, 
Chapter 11), we have 



 
Proposition.  Every b ∈ B can be expressed in 
the form b = p1∪  . . . ∪ps(b). 
 

For convenience, let us define an 
“operation” of a binary number x and a set S. 
We write S*x to mean the following: 
 

S*x = S,    if x=1 and S ≠ ∅ 
S*x = ∅,   if x=0 or  S = ∅ 

 
Let p1,  p2, . . ,pm be the set of all atoms in B. 
Then a granular expression b can be 
expressed as 

p1*x1  ∪  . . .  ∪  pm* xm . 
 

and its cardinality can be expressed as  
 

|b|  = ∑  | pi |*xi 
 
where | • |  is the cardinality of  • .   
 
Main Theorem.  Let s be the threshold. Then 
b is a high frequency pattern, if  
 

|b|  = ∑  | pi |*xi ≥ s (*) 
 
In applications, pi ‘s  are readily computable; 
it is the elementary granules of the 
intersection of  all partitions (defined by 
attributes); see the Table 1 and 2. So we only 
need to find all binary solutions of xi. The 
generators of the solution can be enumerated 
along the hyperplanes of the inequalities of 
the constraints.     
 
Observations: Theoretically, this is a 
remarkable theorem. It says all possible high 
frequency patterns can be found by solving 
linear inequalities. However, the practicality 
of the main theorem is highly depended on 
the complexity of the problem.  If  both | pi | 
and s are small, then the number of solutions 
will be out of hands, simply due to the size of 
the number. We would like to stress that the 
difficulty is simply due to the size of possible 

solutions, not the methodology. The result 
implies that the notion of high frequency 
patterns may not be tight enough. At this 
moment,  (*) is useful only if the number of 
attributes under considerations is small. 
 
7. FUTURE TRENDS  
 
7.1. Tighter Notion of Patterns  
 
Let us consider the real world meaning of  the 
patterns of length 2, namely,  (TWENTY, 
MAR) and (20, SCREW). What does this 
subtuple (TWENTY, MAR) mean?   20 
million dollar business on March ?  The last 
statement is not the original meaning of the 
schema: Originally it means v1, v5, v6  have 20 
million dollar busness and they were born in 
March. This subtuple has no meaning on its 
own. On the other hand, (20, SCREW)  from 
K’ is a valid pattern (most of screws have 
weight 20).  In summary, we have 
 
(TWENTY, MAR) from K  has no meaning 
on its own, 
(20, SCREW)  from K’ has a valid meaning. 
 
Let RW(K) be the Real World that K is 
representing. The summary implies that the 
subtuple (TWENTY, MAR), even though 
occurs very frequenly in the table, there is no 
real world event correspond to it.  The data 
implies that three entities v1, v5, v6  have 
common properties encoded by “Twenty” and 
“Mar.”  In the table K, they are “naively” 
summairzed into one concept  “(TWENTY, 
MAR).”  Unfortunately, in the real world 
RW(K), the three occurences of  “Twenty” 
and “Mar”   (from three entities, v1, v5, v6) do 
not integrate into an appropriete new concept 
“(TWENTY, MAR).”   Such “error” occurs,  
becuase high frequency is an inadequate or 
inaccurate criterion. We need a tighter notion 
of patterns.   
 

 



7.2. Semantic Oriented Data Mining  
 
If  we do know how to compute the semantics,  
then the computation should tell us that the 
repeated two words “TWENTY” and “MAR” 
can not be combined into a new concept 
regardless of high repetitions, and should be 
dropped out. So semantic oriented data 
mining is needed (Lin & Louie. 2001, 2002). 
As ontology, semantic web, and computing 
with words (semantic computing) are heating 
up, it could be a right time to move onto 
Semantic Oriented Data Mining. 
 
7.3. New Notions of Patterns and 
Algorithmic Information Theory 
 
In (Lin, 1993), based on algorithmic 
information theory or Kolmogorov 
complexity theory, we proposed that a non-
random (compressible string) is a string with 
patterns and the shortest Turing machine that 
generates this string is the pattern. We 
concluded, then, that a finite sequence (a 
relational table is a finite sequence) with long 
constant subsequences (the lenght of such 
constant sequence is the support) is trivially 
compressible (having a pattern). High 
frequency patterns are such patterns.  Taking 
the same thought, what would be the next less 
trivial compressible finite sequences?    
   
CONCLUSIONS 

Our analysis on association mining 
seems fruitful: (1) High frequency patterns 
are natural generalizations of association rules. 
(2) All high frequency patterns (generalized 
associations) can be found by solving linear 
inequalities.  (3) High frequency patterns are 
rather lean in semantics (Isomorphic 
Theorem). So semantic oriented AM or new 
notion of patterns may be needed.   
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Extended Abstract 
 
Due to the rapid growth of resources over the Web and the diversity of content within any web 
page, automatic tools are necessary to help users find, filter, and extract the desired information.  
Search engines have become indispensable tools for gathering web pages and documents that are 
relevant to a user's query. However, inconsistent, uninteresting and disorganized search results 
are often returned.  Without conceptual contexts, issues like polysemy, phrases and term 
dependency impose limitations on search technology.  Search results can be improved with 
mechanisms based on categories, subjects, and contents. 
 
Document clustering is considered as a mechanism to improve search results.  A good search 
engine needs to discriminate whether a piece of information is relevant to users' queries within a 
short time.  Short of the ability to extract semantic meaning from a document automatically, one 
can only hope to find a technique that can classify or cluster Web documents into semantic 
categories based on extracted features from those documents.  Given that multiple concepts can 
be simultaneously defined in a single Web page, it is hard to limit the number of concept 
categories in a collection of Web pages.  As a result, unsupervised clustering methods are better 
suited for document categorization on the huge, diverse, and scattered Web.  
 
Our observation is that the frequent itemsets (undirected association rules or simply associations) 
of key terms in a document collection form mathematically a simplicial complex; previously 
they have been identified as a hypergraph. The nodes correspond to key terms in a document 
collection, while simplexes or hyperedges reflect the strong associations among these key terms.  
Superficially, both hypergraphs and simplicial complexes have captured the essence of the 
associations of key terms. Yet, the natures of two mathematical systems are quite different, they 
would yield different theories. Hypergraphs are pure combinatoric concepts, while simplicial 
complexes are not only combinatoric, but are also topological concepts that are deepest layer of  
geometric facts. For example, distance is not topological notion. In other words, our clustering is 
independent of metric; that marks our different from many classical clustering methods. 
 
 
 

 



This paper presents a novel scheme to clustering documents based on simplicial complex in 
combinatorial topology.  The associations among frequently co-occurring terms in documents 
naturally form a (combinatorial) simplicial complex. We believe each connected component of 
such a complex represents a primitive concept in the document collection.  Based on these 
primitive concepts, documents can be clustered into meaningful groups. Experiments with three 
different data sets from web pages and medical literature have shown that the proposed 
unsupervised clustering approach performs significantly better than traditional clustering 
algorithms, such as k-means, AutoClass and Hierarchical Clustering (HAC).  The results indicate 
that geometric model is a strong model capturing associations among key terms  in text and is 
useful for automatic document clustering. 
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Abstract

This paper presents a novel model of concept representa-
tion using a multilevel geometric structure, which is called
Latent Semantic Networks. Given a set of documents, the
associations among frequently co-occurring terms in any of
the documents define naturally a geometric complex, which
can then be decomposed into connected components at var-
ious levels.

This hierarchical model of knowledge representation
was validated in the functional profiling of genes. Our ap-
proach excelled the tradtional approach of vector-based
document clustering by the geometrical forms of fre-
quent itemsets generated by the association rules. The
biological profiling of genes were a complex of con-
cepts, which could be decomposed into primitive concepts,
based on whichthe relevant literature could be clus-
tered in adequate ”resolution” of contexts. The hierarchi-
cal representation could be validated with tree-based bio-
medical ontological frameworks, which had been applied
for years, and been recently enriched by the online avail-
ability of Unified Medical Language System (UMLS) and
Gene Ontology (GO).

Demonstration of the model and the clustering would be
performed on the relevant GeneRIF (References into Func-
tion) document set of one gene. Our geometrical model is
suitable for representation of biological information, where
hierarchical concepts in different complexity could be ex-
plored interactively according to the context of application
and the various needs of the reserachers.

1. Introduction

One of the urgent need of bioinformatics in the post-
genomic era is to find ”biological themes” or ”topics” be-
tween genes or gene products, in order to ”drink from the
fire hose” from vast amounts of literature and experiment
results.

One approach of theme finding is to derive knowledge
directly without translation by another knowledge source,
e.g. a vocabulary system. One of the early successful ap-
proaches is direct mining from the source literature. The
relationships between genes are constructed by probabilis-
tic modes , such as Bayesian Networks. The most clinically
yielding is the PubGene project [4]. However, the interpre-
tation of the results is often qualitative, selectively on some
local findings in large graph models. The lack of overall pic-
ture is partly due to the exploration of individual genes with-
out preliminary grouping of some closely correlated genes.
The result relied on the quality of documents collected as
”relevant” to the target genes [8].

Subsequent researches to find ”molecular pathway” in
raw documents is vigorous use of natural language process-
ing techniques. One of the efforts with a long history of
literature mining in other medical domain is the GENIE
project, evolved from MEDLEE works [2]. Finely tuned
rule-based term tagging and processing improve the effi-
ciency, but the rule sets or knowledge sources they con-
structed cannot be reused by other applications or be val-
idated by others. Besides, the system is too large for per-
sonal document browsing.

The other approaches use external knowledge system,
such as keyword hierarchy, to group the raw gene infor-
mation to more biologically understandable ”themes”. The



early works are well reviewed by Shatkay in the analysis
of microarray data [8]. MedMesh is more recent work ad-
dressing on the MeSH systems (Medical Subject Heading)
of UMLS (Unified Medical Language System), but much
raw document processing is used and the approach was rel-
atively in a ”black box” [6]. After the advent of Gene On-
tology (GO) system, more tools were developed to apply
the ontological framework to impose domain knowledge on
analysis of raw data, which were listed under the section of
”GO tools” in the official site of the GO Consortium [1].

From the medical point of view, current application of
MeSH or GO is still in a very primitive developing stage.
One of the main reason lies on the nature of tree-based on-
tological system. For example, GO divides the functional
profiles into three branches from the root – the function do-
main, the process domain, and the anatomical domain. The
first two domaion are closely associated in many applica-
tion. The third domain is also dependent on the first two
”function” domains. In addition, the amount of annotations
of genes to the three domains are also unbalanced.

Our research addresses on the limitation of functional
analysis of genes, and proposed a new geometric model.
In what follows, we start by reviewing related work on the
models of the relationships between gene and gene prod-
ucts clustering in section 2. The concepts and definitions of
latent semantic networks based on geometric forms for the
frequent itemsets generated by association rules are given in
section 3. The clustering results for clustering of the func-
tioning profile of a gene are described in Section 4; followed
by the conclusion.

2. Related Work

Detecting knowledge based on the co-occurence of terms
or concepts is one of the basic mechanism of document
clustering, and was initially proposed to cluster genes into
biologically meaningful groups [4]. However, the charac-
teristics of the ”groups” could not be explained by the
co-occurrence alone. An approach of getting the biologi-
cal ”meaning” was by annotation with associated MeSH
and GO terms, which were both tree-based. Our work ap-
proaches the ”meaning” problem by proposing a new geo-
metric model of clustering in order to more adequately
present the network nature of the functioning profiles of
genes.

After Girvan and Newman’s work of ”community struc-
ture” in socal and biological networks [3], the nature of
graph structure inherent in a co-occurrence network began
to be explored. Wilkinson et al. [6] picked sets of genes cor-
related to user-selected keywords by partitioningthe com-
ponents of gene co-occurrence networks functionally corre-
lateed ”communities”. Wren et al. [9] studied the connec-

tions in the gene network to rank the ”cohesiveness” of co-
occurring genes, diseases, and chemical compounds.

The current published genetic analyses based on ”com-
munity” networks were calculated based on geometrical
measurement in the Euclidean space, which we considered
is a fundamental limitation of statistical calculation in docu-
ment or concept clustering. The clustering of distance mea-
surements between sets of more primitive concepts to form
higher hierarchy of concept groups is more applicable in
topological spaces than in Euclidean spaces. We proposed a
topologically based network more suitable for gene analy-
sis.

3. Geometric Representation of Concept

Term-term inter-relationships that are denoted by their
co-occurred associations can automatically model and ex-
tract the concepts from a collection of documents. These
concepts organize a multilevel and homogenous hierarchy
called a Latent Semantic Network. The most natural way to
represent a latent semantic network is expressed by using
the geometric and topologic notations, which can capture
the totality of thoughts expressed in this collection of doc-
uments; and a “simple component” (which is a r-connected
component) of a level of hierarchy represents some concept
inside this collection.

3.1. Combinatorial Geometry

Let us introduce and define some combinatorial topolog-
ical concepts. The central idea is n-simplex.

Definition 1 A n-simplex is a set of independent abstract
vertices [v0, . . . , vn+1].

Geometrically 0-simplex is a vertex, 1-simplex an edge (a
vertex pair), 2-simplex a triangle, 3-simplex a tetrahedron.
A n-simplex is the n + 1 dimensional analog. This is the
smallest convex set in a Euclidean space Rn+1 containing
n + 1 points v0 . . ., vn+1 that do not lie in a hyperplane of
dimension less than n. For example, there is the standard n-
simplex

δn = {(t0, t1, . . . tn+1) ∈ Rn+1 |
∑

i

ti = 1, ti ≥ 0}

Definition 2 A face of a n-simplex [v0, . . . , vn+1] is
a r-simplex [vj0 , . . . , vjr+1 ] whose vertices is a sub-
set { v0, . . . , vn+1 } with cardinality r + 1.

Definition 3 A complex is a finite set of simplices that sat-
isfies the following two conditions:

• Any face of a simplex from a complex is also in this
complex.



• The intersection of any two simplices from a complex
is either empty or is a face for both of them.

The vertices of the complex v0, v1, · · ·, vn is the union of all
vertices of those simplces. [7]

Definition 4 A hereditary n simplex, or abbreviated to be
n-H-simplex is a special complex of n dimensions that con-
sists of one n-simplex and all its faces.

Definition 5 A (n, r)-skeleton (denoted by Sn
r ) of n-

complex is a n-complex whose k-faces(k ≤ r) are re-
moved

Definition 6 For any non-empty two simplices A, B are
said to be r-connected if there exits a sequence of k-
simplices A = S0, S1, . . . , Sm = B such that Sj and Sj+1

has an h-common face for j = 0, 1, 2, . . . , m − 1; where
r ≤ h ≤ k ≤ n.

Definition 7 The maximal r-connected subcomplex is
called a r-connected component. Note For a r-connected
component implies there does not exist any r-connected
component that is the superset of it.

3.2. Simple Concept Geometric Structure

In our application each vertex is a key term, so a sim-
plex defines a set of key terms in a collection of docu-
ments. Hence, we believe a simplex represents a primi-
tive concept in the collection. For example, the 1-simplex
[Wall, Street] represents a primitive concept in financial
business. The 0-simplex [Network] might represent many
different concepts, however, while it is combined with some
other terms would denote latent semantic concepts, such as,
these 1-simplices [Computer, Network], [Traffic, Network],
[Neural, Network], [Comunication, Network], and so on,
demonstrate distinct concepts and identify more obvious se-
mantic than 0-simplex. Of course, the 1-simplex [Neural,
Network] is not conspicuous than the 2-simplices [Artifi-
cal Neural Network] and [Biology, Neural, Network].

A collection of documents most likely consists of sev-
eral distinct primitive concepts. Such a collection of primi-
tive concepts is combinatorial a complex.

An idea (in the forms of complex of keywords) may con-
sist of a lot of primitive concepts (in the form of simplices)
that are embedded in a document collection. Some primi-
tive concepts may share a common primitive concept, some
may not. This situation may be captured by a combinatorial
complex of key terms: An idea in the forms of a complex
of keywords may consist of a lot of primitive concepts in
the form of simplices. Some primitive concepts (simplices)
may share a common concept (a common face), some may
not.

Example 1 In Figure 4, we have an idea that consist of
twelve terms that organized in the forms of 3-complex. Two

Simplex(a, b, c, d) and Simplex(w, x, y, z) are two maxi-
mal H-simplices with the highest rank 3. Considering (3, 1)-

Figure 1. A complex with twelve vetrics.

skeleton, S3
1 , by removing all 0-simplices, the other sim-

plices in it can be listed.

• Simplex(a, b, c, d) and its ten subsimplices:

– Simplex(a, b, c)
– Simplex(a, b, d)
– Simplex(a, c, d)
– Simplex(b, c, d)
– Simplex(a, b)
– Simplex(a, c)

....

• Simplex(a, c, h) and its three subsimplices:

– Simplex(a, c)
– Simplex(a, h)
– Simplex(c, h)
...

There does not exist any common faces between any two
simplices, so that eight maximal connected components are
in S3

2 . So does S3
3 , there are only two maximal connected

components in it because the maximum rank of simplices in
it is 3.

A maximal connected component of a skeleton repre-
sents a complex of association rules, i.e., a set of concepts.
If a maximal connected component of a skeleton contains
only one simplex, this component is said to organize a prim-
itive concept.

Definition 8 A maximal connected component is said to be
independent if it is composed of a single simplex, i.e., there
is no common face between two maximal connected compo-
nents.



3.3. Issue

From a collection of documents, a complex of associ-
ation rules can be generated. A skeleton of a complex is
closed, because all subcomplexes of a complex are also in
the skeleton according to subsimplices in each composite
simplex of a complex in a skeleton are also included in the
simplex, which satisfies the apriori property. As seen in Ex-
ample 1, all connected components in S n

k are contained in
Sn

r , where k ≥ r. Based on that, the goal of this paper is to
establish the following belief.

Claim A maximal independent connected component of a
skeleton represents a primitive concept in this collec-
tion of documents.

Figure 2. A simple skeleton S3
1 of example is

composed of three terms {tA, tB, tC} from
a collection of documents, where each sim-
plex is identified by its tfidf value and all 0-
simplices have been removed (the nodes are
drawn by using dash circles).

Example 2 Given a skeleton, S2
1 , of association rules de-

picted in Figure 2, it is a 2-complex composed of the term
set V ={tA, tB , tC} in a collection of documents. In the
skeleton, all 0-simplices are neglect, i.e., the terms de-
picted in dash lines. The simplex set S ={Simplex1,
Simplex2, Simplex3, Simplex4} (Simplex1 is a 2-simplex
and Simplex2, Simplex3 as well as Simplex4 are 1-
simplices) represents generated frequent itemsets from V ,
and W ={wA,B , wC,A, wB,C , wA,B,C} denote their cor-
responding supports.

This complex is also a pure 2-simplex, i.e. triangle,
with one maximal independent connected component. The
boundary of 2-H-simplex has four 0-faces (0-simplexes) and
three 1-faces (1-simplexes). Since all the simplexes are in
the complex, it is a closed complex. Therefore, we can say
this complex represent a concrete concept. In general, the
n-simplex has the following geometric property.

Property 1 The boundary of a n-H-simplex has n + 1 0-
faces (vertices), n(n+1)

2 1-faces (edges), and
(
n+1
i+1

)
i-faces

(i ≤ n), where
(
n
k

)
is a binomial coefficient.

This geometric representation properly satisfies the apri-
ori property of association rules: if the support of an item
set {t1, t2, · · ·, tn} is bigger that a minimum support, so are
all the nonempty subsets of it. In a complex, the universe
of vertices organizes 1-simplices, i.e., frequent 1-itemsets,
the universe of 1-simplex represents all possible frequent
1-itemsets and frequent 2-itemsets, and so on.

According to Example 1, it is obvious that simplices
within the higher level skeleton Sn

r is contained in the
lower level skeleton Sn

k with the same n-complex, r ≥
k. Figure 3 shows the network hierarchy of the exam-
ple, each skeleton is represented as a layer. For the pur-
pose of simplicity, skeletons induced from r-complex, in
which 0 ≤ r < 3, are neglected. The most distinct con-
cepts of all (without a common concept between them)
are existed in the topmost layer, although they could be
empty concepts, which means there does not exist any
non-overlapped concepts. In this example, the H-simplices
Simplex(a, b, c, d) and Simplex(w, x, y, z) are two maxi-
mal independent connected components that demonstrate
two discriminating primitive concepts. The H-simplices at
the lower layers could have a common face between them.
Therefore, the concepts denoted by those H-simplices are
vague discriminated as shown in Figure 4 in that an over-
lapped concept induced by a common face is existed. As
seen in the skeleton S3

1 , the maximal connected compo-
nents generated from simplex Simplex(a, b, c, d) and sim-
plex Simplex(a, c, h) have a common face Simplex(a, c)
that makes some documents not able to properly discrim-
inated in accordance with the generated association rules
from term a and term c, so are the other maximal con-
nected components in the skeleton. Because of the inter-
section produced by such subsimplices, some documents
would be vague classified into two clusters. The lower the
skeleton layer is, the serious the concept overlapping situa-
tion is.

4. Finding Maximal Connected Components

For the context of latent semantic ideas within a col-
lection of documents, it is naturally that some similar con-
cepts would be cross-referenced among the collection, espe-



Figure 3. A simple latent semantic net-
work with its hierarchical structures is
generated from Example 1. Obviously
the skeleton (3, 3)-Skeleton at the top-
most layer composed of two maximal con-
nected components as two distinct concepts
Simplex(a, b, c, d) and Simplex(w, x, y, z) is con-
tained in the skeleton at the lower layer. Ex-
cept the topmost layer, all the concepts are in
some sort of vague discrimination. The bot-
tom layer contains only one connected com-
ponent, which is a 3-complex. All the con-
cepts are mixed together that make several
primitive concepts are non-distinguishable
in this connected component.

cially for a collection of homogeneous documents. There-
fore, some professional used words or phrases are often
taken to denote a specific idea. No doubt that we can iden-
tify them by the usage of those terms. As we already known
the best way to recognize them is according to term-term
inter-relationships, which are term associations. Following
the above statement, combinatorial geometry based latent
semantic networks are the perfect model for illustrating the
concepts in a huge variety of high-dimensional data, such
a document collection. The algorithm for finding all con-
cepts, i.e., maximal connected components, which is gen-
erated from the co-occurred terms in a collection of docu-
ments, will be introduced as follows.

Figure 4. Each cluster of documents is iden-
tified by a maximal connected component.
Some cluster may overlap with other cluster
because of the common face between them.

4.1. Data Structure

In order for the further discussion on the algorithm, let us
make the following definitions of the use of geometric no-
tations to represent latent semantic networks on association
rules.

Definition 9 In a latent semanic network, let V be the
set of single terms in a collection of documents, i.e., 0-
simplices, and E be the set of all r-simplices, where r ≥ 0.
If SimplexA is in E , its support is defined as w(SimplexA),
i.e., the tfidf of all terms in SimplexA co-occurred in a col-
lection of documents.

A network, which is a complex in geometry, can be rep-
resented as a matrix.

Example 3 As seen in Example 2, the 2-simplex of the net-
work is the set {tA, tB, tC}, which is also the maximal con-
nected component that represents a primitive concept in a
document collection. As Venn diagram, the incident matrix
I and the weighted incident matrix IW of the network are
as follows.

I =

⎛
⎝

1 0 1 1
1 1 1 0
1 1 0 1

⎞
⎠ .

IW =

⎛
⎝

wA,B,C 0 wA,B wC,A

wA,B,C wB,C wA,B 0
wA,B,C wB,C 0 wC,A

⎞
⎠ .



The rows correspond to the terms and the columns corre-
spond to the simplices.

Each simplex denotes a connected component, i.e., an
undirected association rules. If the simplex is a maximal
connected component, it defines a maximal frequent item-
set. The number of terms in this connected component de-
fines its rank, that is, if its rank is r it is equivalent to fre-
quent r + 1-itemsets.

4.2. Algorithm

As we already known, a r-H-simplex denotes a r-
connected component, which is a frequent r + 1-itemset.
If we say a frequent itemset Ii identified by an H-simplex
Simplexi is a subset of a frequent itemset Ij identi-
fied by Simplexj, it means that Simplexi ⊂ Simplexj.
An H-simplex Simplexi is said to be a maximal con-
nected component if no other H-simplex Simplex j ∈ E is
the superset of Simplexi for i �= j. Documents can be au-
tomatically clustered based on all maximal connected
components. It provide a soft-computing that allows over-
lapped concepts exist within a collection of documents.

All connected components are convex hulls, the inter-
section of connected components is nothing or a connected
component. It would induce an vague region for concept
discrimination if the intersection is a non-empty simplex.
This common face will induce an unspecified concept be-
tween them as we have mentioned before. It is not neces-
sary to consider this common face because it has been con-
sidered in its super-simplices.

Example 4 As shown in Figure 5, one component is orga-
nized by the H-simplex Simplex1 = {tA, tB, tC}, the other
is generated by the H-simplex Simplex5 ={tC, tD, tE}.

The boundary of a concept defines all possible term as-
sociations in a document collection. Both of them share a
common concept that can be taken as a 0-simplex {tC},
which is an 1-item frequent itemset {tC}.

Property 2 The intersection of concepts is nothing or a
concept that is a maximal H-simplex belonging to all in-
tersected concepts.

Since there is at most one maximal H-simplex in the in-
tersection of more than one connected components and the
dimension or rank of the intersection is lower than all in-
tersected simplices. It is convenient for us to design an effi-
cient algorithm for documents clustering based on all maxi-
mal connected components in a complex skeleton by skele-
ton. It does not need to traverse all complex.

5. Demonstrations

Demonstration were performed on the relevant GeneRIF
(References into Function) document set, publicly available

Figure 5. A complex is composed of two
maximal connected components generated
by two 2-H-simplices Simplex(tA, tB, tC) and
Simplex(tC, tD, tE). Both of them contain a
common face Simplex(tC) that produces an
undiscriminating concept region.

in the EUtils web service of the NCBI Entrez site. Our geo-
metrical model is suitable for representation of biological
information, where hierarchical concepts in different com-
plexity could be explored interactively according to the con-
text of application and the various needs of the reserachers.

The biological background of the experiment is briefly
described here, with the terms or the concepts quoted.
”CARD15” gene was found equivalent with ”NOD2” gene
in recent years. This CARD15/NOD2 gene was discov-
ered associated with inflammatory bowel diseases (”IBDs”)
in 2000, and vigorous correlation studies were performed
to elucidate the position on the genome or several candi-
date ”chromosomes”. The pathogenesis was proposed later
to be ”barrier” break in the intestinal (”mucosa”) defense
mechanism due to the genetic defect, then the focus of re-
searchers shifted to the functioning domain of ”inflamma-
tion” – ”TNF”, ”TLR4”, ”NF-KappaB”, and ”Paneth cell”.

The GIF document set of CARD15 gene was queried.
The abstracts were retrieved, and the important keywords
and synonyms were processed by a dictionary derived from
UMLS thethaurus. The co-occurences between the terms
were calculated, weighted by TFIDF measurements. In this
implementation, the term nodes were ranked by TFIDF
weighting, and directed graphes were displayed for addi-
tional arrangement of the terms after suggestion by medical
domain experts. Our model does not imply directed associ-
ation.

The nodes of relevant concepts were rendered by the
default setting of ATT GraphViz, the layout algorithm of
which was according to geometrically even distribution of
the nodes and their edges. The nodes with more intercon-



Figure 6. Functional profiles of the CARD15 gene, rendered by GraphViz. The direction of edges are
based on TFIDF weighting in this implementation. Our model does not imply directed association.

nections or edges were positioneded together, compatible
with the clusters of concepts in our model.

In Figure 6, the whole picture of term co-occurrence was
shown. In Figure 7, the threshold of visible co-occurrence
(the support) was raised, to show the 4-H-simplex or 5-
H-simplex concept clusters. Three groups of 4-connected
components or 5-connected components were shown in the
left, the midlle, and the right regions, corresponding to the
concept clusters of the new focus of ”inflammatory process”
and the older topics and genetic association and chromo-
some localization.

The left ”inflammatory process” cluster was the 5-
frequent itemset with ”TLR”, ”Paneth cell”, ”TNF”, ”bar-
rier”, and ”mucosa”. The middle and right clusters were two
4-H-simplex, connected by the intersection of the ”chro-
mosome 1” node.

6. Conclusion

Polysemy, phrases and term dependency are the limi-
tations of web search technology [5]. In the biomedical
queries and concept analysis, the problem becomes more
severe.

A group of solid term associations can clearly identify

a concept. Most methods no matter what is k-means, HCA,
AutoClass or PDDP classify or cluster documents from the
represented matrix of a set of documents. It is inefficient
and complicated to discover all term associations from such
a high-dimensional and sparse matrix. Given a collection of
documents, the associations among frequently co-occurring
terms in any of the documents define naturally a geomet-
ric complex, which can then be decomposed into connected
components at various levels and connected components
can properly identify concepts in a collection of documents.

The paper presents a noval approach based on finding
maximal connected components for clustering of the func-
tional profile of genes. The r-simplexs, i.e., connected com-
ponents, can represent the concepts in a collection of rele-
vant documents. It illustrates that geometric complexes are
a perfect model to denote association rules in text and is
very useful for automatic document clustering and concept
grouping, as demonstrated in our experiment in the func-
tional analysis of gene-related documents.
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Abstract
Naïve association rules may result if the underlying cau-
sality of the rules is not considered. The greatest impact
on the decision value quality of association rules may
come from treating association rules as causal statements
without understanding whether there is, in fact, underlying
causality. A complete knowledge of all possible factors
(i.e., states, events, constraints) might lead to a crisp de-
scription of whether an effect will occur. However, it is
unlikely that all possible factors can be known. Common-
sense understanding and reasoning accepts imprecision,
uncertainty and imperfect knowledge. The events in an
event/effect complex may be incompletely known; as well
as, what constraints and laws the complex is subject to.
Usually, commonsense reasoning is more successful in
reasoning about a few large-grain sized events than many
fine-grained events. A satisficing solution would be to
develop large-grained solutions and only use the finer-
grain when the impreciseness of the large-grain is
unsatisfactory.

1. Introduction

One of the cornerstones of data mining is the develop-
ment of association rules. Association rules greatest im-
pact is in helping to make decisions. One measure of the
quality of an association rule is its relative decision value.
Association rules are often constructed using simplifying
assumptions that lead to naïve results and consequently
naïve and often wrong decisions. Perhaps the greatest area
of concern about the decision value is treating association
rules as causal statements without understanding whether
there is, in fact, underlying causality.

Causal reasoning occupies a central position in hu-
man reasoning. It plays an essential role in human deci-
sion-making. Considerable effort over thousands of years
has been spent examining causation. Whether causality
exists at all or can be recognized has long been a theoreti-
cal speculation of scientists and philosophers. Serious
questions have been asked whether commonsense percep-
tions of the world match the underlying reality. These
concerns run from the implications of Zeno’s paradox
[Zeno, 449 B.C.] and Plato’s cave [380 B.C.] to Ein-
stein’s relativity theory and modern string theory. An in-
troduction to some of these issues may be found in
Mazlack [2004].

At the same time, people operate on the common-
sense belief that causality exists.

Causal relationships exist in the commonsense world;
for example:

When a glass is pushed off a table and breaks on
the floor

it might be said that
Being pushed from the table caused the glass to
break.

Although,

Being pushed from a table is not a certain cause
of breakage; sometimes the glass bounces and
no break occurs; or, someone catches the glass
before it hits the floor.

Counterfactually, usually (but not always),
Not falling to the floor prevents breakage.

Sometimes,
A glass breaks when an errant object hits it, even
though it does not fall from the table.

Positive causal relationships can be described as: if α
then β (or, α → β). For example:

When an automobile driver fails to stop at a red
light and there is an accident it can be said that
the failure to stop was the accident’s cause.

However, negating the causal factor does not mean
that the effect does not happen; sometimes effects can be
overdetermined. For example:

An automobile that did not fail to stop at a red
light can still be involved in an accident; another
car can hit it because the other car’s brakes
failed.

Similarly, simple negation does not work; both be-
cause an effect can be overdetermined and because negative
statements are weaker than positive statements as the
negative statements can become overextended. It cannot be
said that ¬α → ¬β, for example:

Failing to stop at a red light is not a certain
cause of no accident occurring; sometimes no
accident at all occurs.

Some describe events in terms of enablement and use
counterfactual implication whose negation is implicit; for
example [Ortiz, 1999a]:



Not picking up the ticket enabled him to miss the
train.

There is a multiplicity of definitions of enable and
not-enable and how they might be applied. To some de-
gree, logic notation definitional disputes are involved.
These issues are possibly germane to general causality
theory. However, it is not profitable to the interests of
this paper to consider notational issues; this paper is con-
cerned with the less subtle needs of data analysis.

Negative causal relationships are less sure; but often
stated; for example, it is often said that:

Not walking under a ladder prevents bad luck.

Or, usually (but not always),
Stopping for a red light avoids an accident.

In summary, it can be said that the knowledge of at
least some causal effects is imprecise for both positive and
negative descriptions. Perhaps, complete knowledge of all
possible factors might lead to a crisp description of
whether an effect will occur. However, it is also unlikely
that it may be possible to fully know, with certainty, all
of the elements involved. Consequently, the extent or
actuality of missing elements may not be known. Addi-
tionally, some well described physics as well as neuro-
biological events appear to be truly random [Freeman,
1995]; and some mathematical descriptions randomly un-
certain. If they are, there is no way of avoiding causal
imprecision.

Coming to a precise description of what is meant by
causality is difficult. There are multiple and sometimes
conflicting definitions. For an introductory discussion of
these issues, see Mazlack [2004]. Recognizing many
things with absolute certainty is problematic. As this is
the case, our causal understanding is based on a foundation
of inherent uncertainty and incompleteness. Consequently,
causal reasoning models must accommodate inherent
ambiguity. For an introductory discussion of this, see
Mazlack [2003a].

It may well be that a precise and complete knowledge
of causal events is not possible or at least uncertain. On
the other hand, we have a commonsense belief that causal
effects exist in the real world. If we can develop models
tolerant of imprecision, it would be useful. Also, to some
degree, the degree of importance that some of these items
have decreases as grain size increases.

2. Satisficing

People do things in the world by exploiting common-
sense perceptions of cause and effect. Manipulating per-
ceptions has been explored [Zadeh, 1999] but is not the
focus of this paper. The interest here is how perceptions
affect commonsense causal reasoning, granularity, and the
need for precision.

When trying to precisely reason about causality, com-
plete knowledge of all of the relevant events and circum-
stances is needed. In commonsense, every day reasoning,
approaches are used that do not require complete knowl-
edge. Often, approaches follow what is essentially a satis-
ficing [Simon, 1955] paradigm. The use of non-optimal
mechanisms does not necessarily result in ad hocism;
Goodrich [2000] states:

“Zadeh [1998] questions the feasibility (and wis-
dom) of seeking for optimality given limited re-
sources. However, in resisting naïve optimizing,
Zadeh does not abandon the quest for justifiability,
but instead resorts to modifications of conventional
logic that are compatible with linguistic and fuzzy
understanding of nature and consequences.”

Commonsense understanding of the world tells us
that we have to deal with imprecision, uncertainty and im-
perfect knowledge. This is also the case with scientific
knowledge of the world. An algorithmic way of handling
imprecision is needed to computationally handle causality.
Models are needed to algorithmically consider causes and
effects. These models may be symbolic or graphic. A
difficulty is striking a good balance between precise for-
malism and commonsense imprecise reality.

3. Complexes

When events happen, there are usually other related
events. The entire collection of events can be called a
complex. The events can be called the elements of the
complex.

A “mechanism” [Simon, 1991] or a “causal complex”
[Hobbs 2001, 2003] is a collection of events whose occur-
rence or non-occurrence results in a consequent event
happening. Hobbs’ causal complex is the complete set of
events and conditions necessary for the causal effect
(consequent) to occur. Hobbs suggests that human casual
reasoning that makes use of a causal complex does not
require precise, complete knowledge of the complex.
(Different workers may use the terms “mechanism and
“causal complex” differently; I am using them as these
author’s use them.)

Each complex, taken as a whole, can be considered to
be a granule. Larger complexes can be decomposed into
smaller complexes; going from large-grained to small-
grained. For example, when describing starting an auto-
mobile, A large-grained to small-grained, nested causal
view would start with

When an automobile’s ignition switch is turned on,
this causes the engine to start.

But, it would not happen if a large system of other nested
conditions were not in place.

There has to be available fuel. The battery has to
be operational. The switch has to be connected to
the battery so electricity can flow through it. The
wiring has to connect the switch to the starter
and ignition system (spark plugs, etc.). The
engine has to be in good working order; and so
forth.

Turning the ignition switch on is one action in a
complex of conditions required to start the engine. One of
the events might be used to represent the collection of
equal grain sized events; or, a higher level granule might
be specified with the understanding that it will invoke a
set of finer-grained events. In terms of nested granules, the
largest grained view is: turning on the switch is the sole
causal element; the complex of other elements represents
the finer-grains. These elements in turn could be broken



down into still finer-grains; for example, “available fuel”
could be broken down into:

fuel in tank, operating fuel pump, intact fuel lines,
and so forth.

start car: turn on ignition switch

wires 
connect:

battery to 
ignition 
switch

wires 
connect:
ignition 
switch to 
starter, 
spark 
plugs

battery 
operational

available 
fuel

fuel 
in 

tank

operating 
fuel 
pump

intact 
fuel 
lines

...turn on 
ignition 
switch

Figure 1. Nested causal complex.

Sometimes, it is enough to know what happens at a
large-grained level; at other times it is necessary to know
the fined grained result. For example, if

Bill believes that turning the ignition key of his
automobile causes the automobile to start.

It is enough if
Bill engages an automobile mechanic when his
automobile does not start when he turns the key
on.

However,
The automobile mechanic needs to know a finer-
grained view of an automobile’s causal complex
than does Robin.

Instead of being concerned with all of the fined
grained detail, a better approach may be to incorporate
granulation using rough sets and/or fuzzy sets to soften
the need for preciseness. And then accept impreciseness in
the description. Each complex can be considered to be a
granule. Larger complexes can be decomposed into smaller
complexes. Thus, going from large-grained to small-
grained.

Hobbs [2001] uses first order logic to describe his
causal complexes. Pearl [2000] develops probabilistic
causal networks of directed graphs (DAGs).

The causal complexes explicitly considered by Hobbs
and Pearl have a required structure that may be overly re-
strictive for commonsense causal understanding, namely:
• If all of the events in the causal complex appropriately

happen, then the effect will occur
• There is nothing in the causal complex that is irrelevant
to the effect

These requirements are probably too precise and ex-
tensive to be realized in a commonsense world. Some-
times, only some of the events need to happen. For
example,

Someone may be able to save more money:
• If their taxes are lowered or
• If they earn more money.

Either even may lead to greater savings. However,

Neither may result in increased savings if they
also have to pay a large divorce settlement.

So, if all of the events happen, the effect may happen. If
some of the events happen, the effect may happen. In the
commonsense world, we rarely whether all of the events
are in a complex are necessary. For example,

A man may want to attract the attention of a
woman. He may do a large number of things (e.g.,
hair, clothes, learn to dance, etc.). If he does at-
tract the woman, he may never know which things
were relevant and which were not

An issue is how to distinguish between what is in a
complex and what is not. Another issue is how to dis-
tinguish between the things that deserve to be called
“causes” and those that do not. Hobbs suggests that a con-
sideration of causal complexes can be divided into:
• Distinguishing what events are in a causal complex from
those outside of it. [Lewis, 1973] [Oritz, 1999b]
[Simon, 1952, 1991] [Pearl, 2000]

• Within a causal complex, recognizing the events that
should be identified as causes from those that are not.
[Macke, 1993] [Shoham, 1990]

Nested granularity may be applied to causal com-
plexes. A complex may be several larger grained elements.
In turn, each of the larger grained elements may be a com-
plex of more fine grained elements. Recursively, in turn,
these elements may be made up still finer grained ele-
ments. In general, people are more successful in applying
commonsense reasoning to a few large grain sized events
than the many fine grained elements that might make up a
complex.

A question concerning complexes is: To what extent
can we increase the causal grain size and still have useful
causal information? Conversely, can we start with a large-
grained causal event and then derive the finer-grained
structure? Can we measure and/or control the imprecision
involved in changing grain size? If we start with a large-
grained structure and resolve it, will our computational
complexity burdens be reduced?

Complexes often may be best handled on a black-box,
large grained basis. That is, it can be recognized that a
complex exists; but we do not necessarily need to deal
with the details internal to the complex.

3. Recognizing Causality Is Of Interest In
Many Domains

Recognizing causality is of interest in many areas. Of
particular interest to this paper are areas where the analysis
is non-experimental. The world is taken as it is and not
subject to experimentation. In the computational sciences,
data mining is of concern. An area not well known to
people working in the computational sciences is
economics.

Perhaps, the applied area that has the greatest history
of attempting to deal with causality and non-observational
data is economics. Econometrics is distinguished from
statistics by econometrics interest in establishing causa-
tion [Hoover, 2003]. How and if causality can be recog-
nized has been a significant area of discussion. Some of
this discussion mirrors discussion that has gone on in the



computational sciences. Hoover provides a good entry to
the discussion of causality in economics.

Hume [1777/1902, p 165], as a philosopher, sug-
gested that causal statements are really about constant
conjunction and time ordering. However, when speaking
as an economist, Hume [1742/1985, p 304] was less in-
sistent on causal ordering: “it is of consequence to know
the principle whence any phenomenon arises, and to dis-
tinguish between a cause and a concomitant effect.” The
issue of causal ordering is also often of importance to
those modeling causality in data discovery.

Data mining analyzes data previously collected; it is
non-experimental. There are several different data mining
products. The most common are conditional rules or as-
sociation rules. Conditional rules are most often drawn
from induced trees while association rules are most often
learned from tabular data.

IF Age < 20
THEN vote frequency is: often

with {belief = high}

IF Age is old
THEN Income < $10,000

with {belief = 0.8}

Figure 2. Conditional rules.

Customers who
buy beer and sausage

also tend to buy hamburger
with {confidence = 0.7}
in {support = 0.15}

Customers who
buy strawberries

also tend to buy whipped cream
with {confidence = 0.8
in {support = 0.2}

Figure 3. Association rules.

At first glance, conditional and association rules seem
to imply a causal or cause-effect relationship. That is:

A customer’s purchase of both sausage and beer
causes the customer to also buy hamburger.

Unfortunately, all that is discovered is the existence of a
statistical relationship between the items. They have a
degree of joint occurrence. The nature of the relationship
is not identified. Not known is whether the presence of an
item or sets of items causes the presence of another item
or set of items; or the converse, or some other phenome-
non causes them to occur together.

Purely accidental relationships do not have the same
decision value, as do causal relationships. For example,

IF it is true that buying both beer and sausage
somehow causes someone to buy beer,
• THEN: A merchant might profitably put beer (or

the likewise associated sausage) on sale

• AND at the same time: Increase the price of
hamburger to compensate for the sausages'
reduce sale price.

On the other hand, knowing that
Bread and milk are often purchased in the same
store visit

may not be as useful decision making information as both
products are commonly purchased on every store visit. A
knowledge of frequent co-occurrences of bread and milk
purchases might lead us to placing the bread and milk at
opposite ends of the store to force shoppers to visit more
of the store and consequently make more impulse buying
decisions. However, there is a limit to how often when
such a physical distance distribution can be reasonably
effected. What is most valuable is knowledge of true
causal relationships.

Tangentially, what might be of interest is discovering
if there is a causal relationship between the purchase of
bananas and something else. (It turns out that bananas are
the most frequently purchased food item at Wal-Mart
[Nelson, 1998]).

When typically developed, rules do not necessarily de-
scribe causality. The association rule’s confidence measure
is simply an estimate of conditional probability. The
association rule’s support indicates how often the joint
occurrence happens (the joint probability over the entire
data set). The strength of any causal dependency may be
very different from that of a possibly related association
value. In all cases

confidence ≥ causal dependence
All that can be said is that associations describe the
strength of joint co-occurrences.

Sometimes, the association might be causal; for ex-
ample, if

Someone eats salty peanuts and then drinks
beer.

or
Someone drinks beer and then becomes
inebriated.

there may be a causal relationship. On the other hand, if
A rooster grows and then the sun rises.

or
Someone wears a ‘lucky’ shirt and then wins a
lottery.

there may not be a causal relationship. Recognizing true
causal relationships would greatly enhances the decision
value of data mining results.

The most popular market basket association rule de-
velopment method identifies rules of particular interest by
screening for joint probabilities (associations) above a
specified threshold.

4.1 Association Rules Without An Underlying
Causal Basis Can Lead To Naïve Decisions

Association rules are used is to aid in making retail
decisions. However, simple association rules may lead to
errors. Errors might occur; either if causality is recognized
where there is no causality; or if the direction of the causal
relationship is wrong [Silverstein, 1998a] [Mazlack,



2003b]. Errors might occur; either if causality is recog-
nized where there is no causality; or if the direction of the
causal relationship is wrong. For example, if

A study of past customers shows that 94% are
sick.

• Is it the following rule?
Our customers are sick, so they buy from us.

• Is it the following complementary rule?
If people use our products, they are likely to be-
come sick.

• Is there no relationship between product purchase and
illness?

Consequently, from a decision making viewpoint, it is
not enough to know that

People both buy our products and are sick.
What is needed is knowledge of what causes what, if any-
thing at all.

If causality is not recognized, the naïve application of
association rules can result in bad decisions [Silverstein,
1998a]. This can be seen in an example from Mazlack
[2003]:

Example:
At a particular store, a customer buys:

• hamburger 33% of the time
• hot dogs 33% of the time
• both hamburger and hot dogs 33% of the
time

• sauerkraut only if hot dogs are also
purchased

This would produce the binary transaction matrix:

    hamburger   hot dog   sauerkraut
t1      1          1           1
t2      1          0           0
t3      0          1           1

Figure 4. Binary transaction matrix for hamburger,
hot dog, and sauerkraut purchases.

This in turn would lead to the associations
(confidence):
• (hamburger, hot dog) = 0.5
• (hamburger, sauerkraut) = 0.5
• (hot dog, sauerkraut) = 1.0
All of the support levels are adequately high for
this application.

If the merchant:

• Reduced price of hamburger (as a sale item)

• Raised price of sauerkraut to compensate (as
the rule hamburger fi sauerkraut has a high
confidence.

• The offset pricing compensation would not work,
as the sales of sauerkraut would not increase
with the sales of hamburger. Most likely, the
sales of hot dogs (and consequently, sauer-
kraut) would likely decrease as buyers would
substitute hamburger for hot dogs.

4.2 Association Rules That Do Not Take Into
Account Quantities Can Result In Misleading
Causal Inferences

Association rules are often formed by reducing all val-
ues to binary zeros and ones.

This is an early technique that was and is used in data
mining when analyzing market basket data. However, it is
essentially flawed. Quantities do matter; some data co-oc-
currences are conditioned on there being a sufficiency of a
co-occurring attribute. Also, some relationships may be
non-linear based on quantity [Mazlack, 2003b]

Example:

Situation: Customers frequently buy either
wine or beer for themselves in varying
amounts. However, when buying for a party,
they often purchase both beer and wine and
they usually purchase in larger quantities.

Actual basket:  Binary basket:

  Beer   Wine       Beer     Wine  

  6   0           1    0

  0   1           0    1

 12   0           1    0

  0   3           0    1

 24   4           1    1

 24   5           1    1

 48   2           1    1

Figure 5. Beer, wine transactions: quantified and
binary.

Missed rule: When at least 24 beers purchased,
wine also purchased;
Otherwise, there is no relationship
between beer and wine.

Naïvely constructing an association rule on non-quan-
tified, binary data would find a rule that misleadingly
represents the situation; i.e.,

Misleading rule: When beer is purchased, wine is
also purchased

{confidence = 0.6}

{support = 0.43}

This rule is misleading because it naïvely implies
that purchase probabilities are uniform; in fact, they are
not. Under one set of conditions, beer and wine are never
purchased together under one set of conditions; and, under
another set of conditions they are always purchased to-
gether.

In neither case is there a direct causal relationship. In
the quantified rule case, the larger quantities of beer and
wine are caused by a third factor (a party).

5. DESCRIBING CAUSALITY

In some ways, someone may object to this paper, as
it does not offer much in the way of solutions. It mostly
identifies needs. Part of a reply is that there is limited



space and time. Another is that recognizing a need is the
first step to finding a solution. Another is that both rec-
ognizing and defining causality is still a very complex and
difficult problem, even after over 3,000 years of effort.

Various causality descriptions and discovery tools
have been suggested. It may eventually turn out that dif-
ferent subject domains may have different methodological
preferences. This section is intended to give a selective,
non-complete, taste.

5.1 Intuitive Graph Based Approaches

Different aspects of causality have been examined. As
in Figure 6, the idea of “positive” causation (α → β) is at
the core of commonsense causal reasoning. Often a posi-
tive causal relationship is represented as a network of
nodes and branches [Mazlack, 2003a]. In part because of
their intuitive appeal, there have been many approaches to
recognizing causality that use graphs.

βα

Figure 6. Diagram indicating that a is causally de-
pendent on b.

There are a number of different books describing vari-
ous aspects of causal graphs. Among them are: Gammer-
man [1999], Glymour [2001], Hausman [1988], Pearl
[2000], Shafer [1996], Spirtes [1993].

5.2 Directed Graphs

Various graph based Bayesian based methods have
been suggested to recognize causality. Probably the best
known is the class of methods based on Directed Acyclic
Graphs (DAGs). The most fully developed approach is
Pearl [2000]. Silverstein [1998] followed a similar
approach.

Pearl [1991] and Spirtes [1993] claim that it is possi-
ble to infer causal relationships between two variables
from associations found in observational
(nonexperimental) data without substantial domain knowl-
edge. Spirtes claims that directed acyclic graphs could be
used if (a) the sample size is large and (b) the distribution
of random values is faithful to the causal graph. Robins
[1999] argues that their argument is incorrect. Lastly,
Scheines [1994] only claims that in some situations will
it be possible to determine causality. Their discussion is
tangential to the focus of this paper; going deeply into
their discussion is outside this paper’s scope. It is enough
to note that these methods are possibly the most thor-
oughly developed methods of computational causal
analysis.

From the commonsense causal reasoning view, the
various directed graph methods have similar liabilities,
specifically. Mazlack [2004] discusses and lists and dis-
cusses some of the problems.

5.3 Negation And Counterfactuals

Negation or counterfactuals (¬α → ¬β) also have a
place, although it may result in reasoning errors. For ex-
ample, the rule:

If a person drinks wine, they may become
inebriated.

cannot be simply negated to
If a person does not drink wine, they will not be-
come inebriated.

One reason is that effects can be overdetermined; that
is: more than one item can cause an effect. If so, eliminat-
ing one cause does not necessarily eliminate the effect. In
this case:

A person may also drink beer or whiskey to ex-
cess and become inebriated.

Events that do   not happen can similarly be overdeter-
mined. From a commonsense reasoning view, it is more
likely that things do not happen than they do. For exam-
ple, Oritz [1999a] says that it is not true that

His closing the barn door caused the horse not
to escape.

because the horse might not have attempted to escape even
if the door was open. Therefore, a false counterfactual is:

If he had not closed the barn door, the horse
would have escaped.

Similarly, for example, the rule
If a person smokes, they will get cancer.

cannot be simply negated to
If a person does not smoke, they will not get
cancer.

Again, effects can be overdetermined. In this case,
People who do not smoke may also get cancer.

Another idea that is sometimes involved in causal rea-
soning is causal uncorrelatedness [Shafer, 1999] where if
two variables have no common cause they are causally
uncorrelated. This occurs if there are no single events that
cause them to both change.

Similarly, Dawid [1999] focuses on the negative; i.e.,
when α does not affect β. Dawid speaks in terms of unre-
sponsiveness and insensitivity. If β is unresponsive to α
if whatever the value of α might be set to, the value of β
will be unchanged. In parallel, if β is insensitive to α  if
whatever the value α may be set, the uncertainty about β
will be unaffected. Along the same vein, Shoham [1990,
1991] distinguishes between causing, enabling, and pre-
venting. The enabling factor is often considered to be a
causal factor. Shoham distinguished between background
(enabling) conditions and foreground conditions. The back-
ground (enabling) conditions are inferred by default. For
example [Shoham, 1991]:

“If information is present that the key was turned
and nothing is mentioned about the stated about
the state of the battery, then it is inferred that the
motor will start, because the battery is assumed,
by default to be alive.

Given this distinction, causing is taken to refer to the
foreground conditions where enabling and preventing refer
to the background conditions (in this example, turning the



key causes the motor to start, the live battery enables it,
the dead battery prevents it).”

Other ideas that are sometimes involved in causal rea-
soning are causal uncorrelatedness [Shafer, 1999] where if
two variables share no common cause they are causally
uncorrelated. This occurs if there are no single events that
cause them to both change. Similarly, causal independence
occurs when speaking about probabilities.

5.4 Observational And Non-Observational Data

Statistics is the traditional tool used to discover cau-
sality when handling experimental data. The standard
method in the experimental sciences of recognizing cau-
sality is to perform randomized, controlled experiments.
This produces experimental data. Depending on their de-
sign, randomized experiments may remove reasons for
uncertainty whether or not a relationship is casual.

However, the data of greatest interest in the computa-
tional sciences, particularly data mining, is non-experi-
mental. This is because analysis is performed on large
quantities of warehoused data. In this domain, traditional
statistical methods are either not useful an/or are often too
computationally complex.

Even if some experimentation is possible, the
amount of experimentation in contrast to the amount of
data to be mined will be small. This said; some work has
been done using chi-squared testing to reduce the search
space [Silverstein, 1998].

Several areas can only wholly (economics, sociology)
or partially develop non-experimental data. In these areas,
investigators can either abandon the possibility of discov-
ering causal relationships; or, claim that causality does
not exist. There continue to be efforts to discover causal
relationships areas where only non-observational data is
available. Among the books considering causality in non-
experimental data are: Asher [1983], Blalock [1964], Berry
[1984], Hilborn [1997], Shipley [2000].

6. EPILOGUE

One of the corner stones of data mining is the devel-
opment of association rules. Association rules greatest
impact is in helping to make decisions. One measure of
the quality of an association rule is its relative decision
value. Association rules are often constructed using sim-
plifying assumptions that lead to naïve results and conse-
quently naïve and often wrong decisions. Perhaps the
greatest area of concern is treating association rules as
causal statements without understanding whether there is,
in fact, underlying causality.

Causal relationships exist in the commonsense world.
Knowledge of at least some causal effects is imprecise.
Perhaps, complete knowledge of all possible factors might
lead to a crisp description of whether an effect will occur.
However, in our commonsense world, it is unlikely that
all possible factors can be known. In commonsense, every
day reasoning, we use approaches that do not require
complete knowledge.

People recognize that a complex collection of ele-
ments causes a particular effect, even if the precise ele-
ments of the complex are unknown. They may not know

what events are in the complex; or, what constraints and
laws the complex is subject to. Sometimes, the details
underlying an event are known to a fine level of detail,
sometimes not. Generally, people are more successful in
reasoning about a few large-grain sized events than many
fine-grained events. Perhaps, this can transfer over to
computational models of causality.

A lack of complete, precise knowledge should not be
discouraging. People do things in the world by exploiting
our commonsense perceptions of cause and effect. When
trying to precisely reason about causality, we need com-
plete knowledge of all of the relevant events and circum-
stances. In commonsense, every day reasoning, we use
approaches that do not require complete knowledge. Often,
approaches follow what is essentially a satisficing
paradigm.

Instead of being concerned with all of the fined
grained detail, a better approach may be to incorporate
granulation using rough sets and/or fuzzy sets to soften
the need for preciseness. And then accept impreciseness in
the description. Each complex can be considered to be a
granule. Larger complexes can be decomposed into smaller
complexes. Thus, going from large-grained to small-
grained.

Regardless of causal recognition and representation
methodologies, it is important to decision making to un-
derstand when association rules have a causal foundation.
This avoids naïve decisions and increases the perceived
utility of rules with causal underpinnings.

References

H. Asher [1983] Causal Model ing ,  Sage Publications,
Newbury Park, California

H. Blalock [1964] Causal Inferences in Nonexper i -
mental Research, W. W. Norton, New York

W. Berry [1984] Nonrecursive Causal Models ,  Sage
Publications, Newbury Park, California

A. Dawid [1999] “Who Needs Counterfactuals” in Causal
Models and Intelligent Data Management  (ed) A.
Gammerman) Springer-Verlag, Berlin

W. Freeman [1995] Societies Of Brains , Lawrence
Erlbaum, 1995

Gammerman (editor) [1999] Causal Models and I n t e l l i -
gent Data Management, Springer-Verlag, Berlin

M. Goodrich, W. Stirling, E. Boer [2000] “Satisficing Revis-
ited,” Minds and Machines, v 10, 79-109

Glymour [2001] The Mind’s Arrows, MIT Press
(Bradford), London

D. Hausman [1988] Causal Asymmetries ,  Cambridge
University Press, Cambridge, U.K.

R. Hilborn, M. Mangel  [1997] The Ecological De tec -
tive: Confronting Models With Data,  Princeton
University Press, Princeton, New Jersey

J. Hobbs [2001] “Causality,” Proceedings, Common Sense
2001, Fifth Symposium on Logical Formalizations o f



Commonsense Reasoning, New York University, New York,
May, 145-155

J. Hobbs [2003] “Causality And Modality: The Case Of
‘Would’,” to appear in Journal of Semantics

K. Hoover [2003] “Lost Causes,” HES Conference, Presiden-
tial Address, Durham, North Carolina

D. Hume [1742/1985] Essays: Moral, Political, And
Literary, Eugene Miller (ed.), Liberty Classics, Indianapo-
lis, 1985

D. Hume [1777/1902] “An Enquiry Concerning Human Under-
standing,” in L. Selby-Bigge (ed.) Enquiries Concern ing
Human Understanding And Concerning The Prin-
ciples Of Morals, 2nd edition, Clarendon Press, Oxford,
1902

D. Lewis [1973] Counterfactuals , Harvard University
Press, Cambridge University Press

L. Mazlack [2003a] "Commonsense Causal Modeling In The
Data Mining Context," IEEE ICDM FDM Workshop Proceed-
ings, Melbourne, Florida, November 19 - 22, 2003

L. Mazlack [2003b] “Causality Recognition For Data Mining
In An Inherently Ill Defined World,” 2003 BISC FLINT-CIBI
International Joint Workshop On Soft Computing For In-
ternet And Bioinformatics, December, 2003

L. Mazlack [2004] “Granular Causality Speculations,”
NAFIPS 2004, June, Banff

E. Nelson [1998, October 6] “Why WalMart sings, 'Yes, we
have bananas',” The Wall Street Journal, B1

C. Ortiz [1999a] “A Commonsense Language For Reasoning
About Causation And Rational Action,” Artificial Intelli-
gence, v 108, n1-2, p 125-178

C. Oritz [1999b] “Explanatory Update Theory: Applications
Of Counterfactual Reasoning To Causation,” Artificial Intel-
ligence, v 108, n 1-2, 125-178

Plato [380 B.C.] Republ ic ,  Book VII, paragraph 514-515,
G.M.A. Grube (translator), Hacket Publishing, Indianapolis,
Indiana, 1992, 186-187

J. Pearl, T. Verma [1991] ""A Theory Of Inferred Causation,"
Principles Of Knowledge Representation And Reasoning:
Proceedings Of The Second International Conference, Morgan
Kaufmann, 441-452

J. Pearl [2000] Causality , Cambridge University Press,
New York, NY

R. Robins, L. Wasserman [1999], "On The Impossibility Of
Inferring Causation From Association Without Background
Knowledge," in (eds) C. Glymour, G. Cooper, Computa-
tion, Causation, and Discovery  AAAI Press/MIT
Press, Menlo Park, 305-321

R. Scheines, P. Spirtes, C. Glymour, C. Meek [1994] Tetrad
II: Tools For Causal Model ing , Lawrence Erlbaum,
Hillsdale, NJ

G. Shafer [1999] “Causal Conjecture,” in Causal M o d e l s
and Intelligent Data Management  (ed) A. Gammer-
man) Springer-Verlag, Berlin

G. Shafer [1996] The Art of Causal Conjecture,  MIT
Press, Cambridge, Massachusetts
Y. Shoham [1990] “Nonmonotonic Reasoning And Causa-
tion,” Cognitive Science, v14, 213-252

B. Shipley [2000] Cause and Correlation in Biology,
Cambridge University Press, Cambridge, U.K.

Y. Shoham [1991] “Remarks On Simon’s Comments,” Cog-
nitive Science, v15, 301-303

C. Silverstein, S. Brin, R. Motwani [1998a] “Beyond Market
Baskets: Generalizing Association Rules To Dependence
Rules,” Data Mining And Knowledge Discovery, v 2, 39-68

C. Silverstein, S. Brin, R. Motwani, J. Ullman [1998b]
“Scalable techniques for mining causal structures,” Proceed-
ings 1998 VLDB Conference, New York, NY, August 1998,
594-605

H. Simon [1952] “On The Definition Of The Causal Rela-
tion,” The Journal Of Philosophy, v 49, 517-528. Reprinted
in Herbert A. Simon, Models Of Man, John Wiley, New
York, 1957

H. Simon [1953] “Causal ordering And Identifiability,” Re-
printed in Herbert A. Simon, Models Of Man, John Wiley,
New York, 1957

H. Simon [1955] “A Behavioral Model Of Rational Choice,”
Quarterly Journal Economics, v 59, 99-118

H. Simon [1991] “Nonmonotonic Reasoning And Causation:
Comment,” Cognitive Science, v 15, 293-300

P. Spirtes, C. Glymour, R. Scheines [1993] Causat ion ,
Prediction, and Search, Springer-Verlag, New York

L. Zadeh [1998] “Maximizing Sets And Fuzzy Markov Algo-
rithms,” IEEE Transactions on Systems, Man, and Cybernet-
ics - Part C: Applications and Reviews, v 28, 9-15

L. Zadeh [1999] “From computing With Numbers To Comput-
ing With Words - From Manipulation Of Measurements To
Manipulation Of Perceptions,” IEEE Transactions on Circuits
and Systems, v 45, n 1, 108-119

Zeno (of Elea) [449 B.C.] Paradox, in G. Kirk and J. Raven
(eds), The Presocratic Philosophers: A Cr i t i ca l
History with a Selection of Texts , Cambridge, Cam-
bridge University Press (1957)



Data Preprocessing and Data Mining
as Generalization Process

E. Menasalvas(1), Anita Wasilewska(2)

(1) Facultad de Informatica.
Universidad Politecnica de Madrid. Spain.

emenasalvas@fi.upm.es
(2) Department of Computer Science,

State University of New York,
Stony Brook, NY, USA .

anita@cs.sunysb.edu

Abstract

We define here a model in which data preprocessing and
data mining processes are are described as two different
types of generalization.

1 Introduction

The preprocessing of data is the initial and often crucial
step of the data mining process. We show here that the Gen-
eralization Model presented in [8] is strong enough to ex-
press not only the data mining stage of data mining process
but the preprocessing stage as well. Moreover, we show
that preprocessing stage and data mining stage generalize
data in a different way and that in fact, the generalization
proper (i.e. strong generalization in our model) occurs only
at the data mining stage. The preprocessing operations are
expressed in the model as a weak generalization. We show
that they lead to the strong information generalization in
the next, data mining proper stage and improve the quality
(granularity) of the generalization process.

2 Generalization Model

It is natural that when building a model of the data min-
ing process one has to include data preprocessing methods
and algorithms, i.e. one has to model within it preprocess-
ing stage as well as the data mining proper stage. In or-
der to achieve this task we introduce the preprocessing and
the data mining generalization relations (definitions 2.11,
2.10, respectively. We show that they are particular cases

of the information generalization relation as defined in our
generalization model (definition 2.1). We also prove (the-
orem 2.3) that the preprocessing relation is a special case
of the weak information generalization relation and it is
disjoint with our data mining generalization relation. This
means that within the framework of our general model we
were able to distinguish (as we should have) the preprocess-
ing generalization from the generalization that occurs in the
data mining proper stage.

Definition 2.1 A Generalization Model is a system

GM = (U, K, G, ¹)

where

U 6= ∅ is theuniverse,

K 6= ∅ is the set ofgeneralization states,

≺ ⊆ K ×K is a generalization relation;

We assume that the relation¹ is transitive.

G 6= ∅ is the set ofgeneralizations operators such that
for everyG ∈ G, for everyK, K ′ ∈ K,

G(K) = K ′ if and only if K¹K ′.

Definition 2.2 A Strong Generalization Model is the gen-
eralization model (definition 2.1) in which the information
generalization relation is not reflexive. We denote the gen-
eralization relation of the strong model by≺ and call it a
strong generalization relation.
A Weak Generalization Model is the generalization model
(definition 2.1) in which the information generalization re-
lation is reflexive. We denote the generalization relation of
the weak model by¹ and call it a weak generalization re-
lation.

Any Data Mining process starts with a certain initial set
of data. The model of such a process depends on represen-
tation of this data, i.e. it starts with an initial information
system

I0 = (U0, A0, VA0 , f0)

and we adopt theuniverseU0 as the universe of the model,
i.e.

GM = (U0, K, G, ¹).

In preprocessing stage of data mining process we might
perform the following standard operations:

1. eliminate some records, obtaining as result a new in-
formation system with an universeU ⊆ U0, or

2. eliminate some attributes, obtaining as result the in-
formation systemI with the set of attributesA ⊂ A0, or



3. perform some operations on values of attributes: nor-
malization, clustering, application of concept hierarchy on,
etc..., obtaining some setVA of values of attributes that is
similar, or equivalent toV0. We denote it by

VA ∼ V0.

Given an attribute valueva ∈ VA and a corresponding at-
tributev0

a ∈ V0 (for exampleva being a normalized form of
v0

a or va being a more general form as defined by concept
hierarchy ofv0

a) we denote this correspondence by

va ∼ v0
a.

We call any information systemI obtained by any of the
above operationa subsystem ofI0. We put it formally in
the following definition.

Definition 2.3 Given two information systemsI0 =
(U0, A0, VA0 , f0) and
I = (U,A, VA, f), we say thatI is a subsystem ofI0 and
denote it as

I ⊆ I0

if and only if the following conditions are satisfied

(i) U ⊆ U0,

(ii) A ⊆ A0, VA ∼ V0, and

(iii) the information functionsf andf0 are such that

∀x ∈ U∀a ∈ A(f(x, a) = va

⇔ ∃v0
a ∈ V0(f0(x, a) = v0

a ∩ v0
a ∼ va)).

In the data analysis, preprocessing and data mining al-
though we start the process with the information table (i.e.
we define the lowest level of information generalization as
the relational table) the meaning of the intermediate and fi-
nal results are considered to be of a higher level of gener-
alization. We represent those levels of generalization by a
sets of objects of the given (data mining) universeU , as in
[1], [6].

This approach follows the granular view of the data min-
ing and is formalized within a notion of knowledge gener-
alization system, defined in [8] as follows.

Definition 2.4 A knowledge generalization systembased
on the information systemI = (U,A, VA, f) is a system

KI = (P(U), A, E, VA, VE , g)

where

E is a finite set ofknowledge attributes (k-attributes)
such thatA ∩ E = ∅.

VE is a finite set ofvalues of k- attributes.

g is a partial function calledknowledge information
function(k-function)

g : P(U)× (A ∪ E) −→ (VA ∪ VE)

such that

(i) g | (⋃x∈U{x} ×A) = f

(ii) ∀S∈P(U)∀a∈A((S, a) ∈ dom(g) ⇒ g(S, a) ∈
VA)

(iii) ∀S∈P(U)∀e∈E((S, a) ∈ dom(g) ⇒ g(S, e) ∈
VE)

Any setS ∈ P(U) i.e. S ⊆ U is often calleda granule
or a group of objects.

Definition 2.5 The set

GrK = {S ∈ P(U) : ∃b ∈ (E ∪A)((S, b) ∈ dom(g))}
is calleda granule universeof KI .

Observe thatg is a total function onGrK .

Definition 2.6 We call the systemK = (GrK , E, VE , g) a
granule knowledge generalizationsystem.

The condition(i) of definition 2.4 says that whenE = ∅
the k-functiong is total on the set{{x} : x ∈ U} ×A and

∀x ∈ U∀a ∈ A(g({x}, a) = f(x, a)).

Definition 2.7 The set

Pobj(U) = {{x} : x ∈ U}
is called anobject universe. The knowledge generalization
system

Kobj = (Pobj(U), A, ∅, VA, ∅, g) = (Pobj(U), A, VA, g)

is called anobject knowledge generalizationsystem.

Theorem 2.1 For any information system

I = (U,A, VA, f),

the object knowledge generalization system

Kobj
I = (Pobj(U), A, VA, g)

is isomorphic withI. We denote it by

I ' Kobj
I .



The function

F : U −→ Pobj(U), F (x) = {x}
establishes (by condition(i) of definition 2.4) the required
isomorphism ofKobj

I andI.

Given initial information systemI0 = (U0, A0, VA0 , f0),
the object knowledge generalization system (definition??)

Kobj
I0

= (Pobj(U0), A, VA, g)

isomorphic withI0 i.e. Kobj
I0

' I0 is also calledthe
initial knowledge generalizationsystem.

Data Mining process in the preprocessing stage consists
of transformations the initialI0 into some ofI ⊆ I0

and subsequently, in the data mining proper stage, of
transformations of knowledge generalizations systemsKI

based onI ⊆ I0. The transformations in practice are
defined by different Data Mining algorithms, and in our
model by appropriate generalization operators. Any data
mining transformation starts, for unification purposes with
corresponding initial knowledge generalization systems
K1

I ' I. We hence adopt the following definition of the set
K of knowledge states.

Definition 2.8 We adopt the set

K = {KI : I ⊆ I0}
of all knowledge generalization systems based on the

initial information system (input data)I0 as the set of
knowledge states ofGM.

The setKprep ⊆ K such that

Kprep = {Kobj
I : Kprep

I ' I and I ⊆ I0}
is calleda set of preprocessing knowledge states, or pre-
processing knowledge systems ofGM.

Definition 2.9 Given setK of knowledge states (defini-
tion 2.8) based on the input dataI0 andK,K ′ ∈ K i.e.

K = (P(U0), A, E, VA, VE , g),

K ′ = (P(U0), A′, E′, VA′ , VE′ , g
′).

LetGK , GK′ be granule universes (definition 2.5) ofK,K ′

respectively. We definea weak generalization relation

¹ ⊆ K ×K
as follows:

K ¹ K ′ if and only if

(i) |GK′ | ≤ |GK |,
(ii) A′ ⊆ A.

If K ¹ K ′ we say that the systemK ′ is more or
equally general asK.

Observe that the relation¹ is reflexive and transitive,
but is not antisymmetric, as systemsK andK ′ such that
K ¹ K ′ may have different sets of knowledge attributes
and knowledge functions.

Definition 2.10 Let¹ ⊆ K × K be relation defined in the
definition 2.9.
A relation

≺dm ⊆¹
such that it satisfies additional conditions:

(iii) |GK′ | < |GK |,
(iv) ∃S ∈ GK′(|S| > 1)

is calleda data mining generalization relation.

Theorem 2.2 The relation≺dm is not reflexive, and the fol-
lowing properties hold.

(1) The weak generalization relation of definition 2.9 is the
weak information generalization relation of the gener-
alization model (definition 2.1),

(2) ≺dm ⊂¹,

(3) ≺dm is a strong information generalization of the
definition 2.2 and ifK ≺dm K ′ we say that the system
K ′ is more general thenK.

The preprocessing of data is the initial (an crucial) step
of the data mining process. We show now that we can
talk about preprocessing operations within our generaliza-
tion model. The detailed analysis of preprocessing methods
and techniques within it will be a subject of separate paper.

Definition 2.11 LetKprep ⊆ K be a the set of preprocess-
ing states (definition 2.8). A relation¹prep ⊆¹ defined as
follows:

¹prep = {(K,K ′) ∈¹: K, K ′ ∈ Kprep}
is calleda preprocessing generalization relation.

Theorem 2.3 The preprocessing generalization relation is
a weak generalization relation and is not a data mining gen-
eralization relation i.e.

¹prep ∩ ≺dm = ∅.



Within our framework the systemsK, K ′ such that
K¹prepK

′ are, in fact, equally general. So why do we
call some preprocessing operations a ”generalization”?
There are two reasons. One is that traditionally some
preprocessing operations have been always called by this
name. For example we usually state that we ”generalize”
attributes by clustering, by introducing attributes hierarchy,
by aggregation, etc. as stated on page 114 of the most
comprehensive, as far, Data Mining book ([2]).

....”Data transformation (preprocessing stage) can
involve the following .....
Generalization of the data , where low-level or
”primitive” (raw) data are replaced by higher
-level concepts through the use of concept
hierarchies. For example, categorical attributes
..... can be generalized to higher level concepts.
Similarly, values for numeric attributes,like ...
may be mapped to higher level concepts.” ....

The second, more important reason to call some prepro-
cessing operations a (weak) generalization is that they lead
to the ”strong” information generalization in the next, data
mining proper stage and we perform them in order to im-
prove the quality (granularity) of the generalization.

3 Generalization Models for Data Prepro-
cessing and Data Mining Process

It is natural that when building a model of the data min-
ing process one has to include data preprocessing methods
and algorithms, i.e. one has to model within it preprocess-
ing stage as well as the data mining proper stage. In order
to achieve this task we choose the notion of weak infor-
mation generalization relation as a component of our (the
most general) notion of the generalization model (defini-
tion 2.1). We have then introduced the preprocessing and
the data mining generalization relations (definitions 2.11,
2.10, respectively) and proved (theorem 2.3) that the pre-
processing relation is a special case of the weak informa-
tion generalization relation and it is disjoint with our data
mining generalization relation. This means that within the
framework of our general model we were able to distinguish
(as we should have) the preprocessing generalization from
the data mining proper stage generalization.

Consequently we define here the semantic models of
data preprocessing, data mining, and data mining precess.
They are all particular cases of our generalization model
(definition 2.1).

Definition 3.1 When we adopt the preprocessing general-
ization relation¹prep (definition 2.11) as the information

generalization relation of the generalization modelGM =
(U, K, G, ¹) (definition 2.1) we call the model thus ob-
tained aPreprocessing Modeland denote itPM, i.e.

PM = (U, Kprep, Gprep, ≺prep)

where

Kprep is the set of preprocessing knowledge states (defi-
nition 2.8),

Gprep ⊆ G called a set of preprocessing generalization
operators (to be defined separately).

The data mining proper stage is determined by the data
mining generalization relation and is defied formally as fol-
lows.

Definition 3.2 Let≺dm be the data mining generalization
relation (definition 2.10). AData Mining Model is a sys-
tem

DM = (U, K, Gdm, ≺dm)

where
Gdm ⊆ G

for Gdm 6= ∅ being a set of data mining generalization op-
erators defined in the next section.

Now, we express the whole data mining process within
our generalization model as follows.

Definition 3.3 A Data Mining Process Modelis a system

DMP = (U, K, Gp, ¹p),

where

(i) ¹p = ¹prep ∪ ≺dm,

(ii) Gp = Gprep ∪ Gdm,

The setGdm of data mining is defined in detail in [8], the
setGprep of data preprocessing operators will be a subject
of a separate paper.
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Ferńandez-Baizan. Modelization of rough set func-
tions in the KDD frame 1st International Confer-
ence on Rough Sets and Current Trends in Computing
(RSCTC’98) June 22 - 26 1998, Warsaw, Poland.

[13] Wojciech Ziarko, Xue Fei. VPRSM Approach to
WEB Searching Proceedings of Third International
RSCTC’02 Conference, Malvern, PA, USA, October
2002, pp. 514- 522. Springer Lecture Notes in Artifi-
cial Intelligence.

[14] Wojciech Ziarko.Variable Precision Rough Set Model
Journal of Computer and Systen Sciences, Vol.46.
No.1, pp. 39-59, 1993.

[15] J.T. Yao, Y.Y. Yao. Induction of Classification Rules
by Granular ComputingProceedings of Third Interna-
tional RSCTC’02 Conference, Malvern, PA, USA, Oc-
tober 2002, pp. 331-338. Springer Lecture Notes in Ar-
tificial Intelligence.



 



The iterative and interactive data mining process: the information systems 
development and knowledge management perspectives 

 
Mykola Pechenizkiy  
Dept. of CS and ISs 

University of Jyväskylä  
Finland 

mpechen@cs.jyu.fi 

Seppo Puuronen 
Dept. of CS and ISs  

University of Jyväskylä 
Finland  

sepi@cs.jyu.fi 

Alexey Tsymbal 
Dept. of CS  

Trinity College Dublin 
Ireland 

tsymbalo@tcd.ie 
 

Abstract 
 

Data mining (DM) and knowledge discovery are 
intelligent tools that help to accumulate and process data 
and make use of it. We review several existing 
frameworks for data mining that originate from different 
paradigms. These DM frameworks address various DM 
algorithms for the different steps of the DM process. 
However, usually each DM framework explains the 
nature of one particular type of the algorithms. Recent 
research has shown that many real-world problems 
require the integration of several DM algorithms 
originating from different paradigms in order to produce 
a better solution.  In this paper we introduce our vision 
how DM process modeling can take advantage of the 
research made in the areas of Information Systems 
Development and Knowledge Management.  
 
1. Introduction 
 

Data mining (DM) and knowledge discovery are 
intelligent tools that help to accumulate and process data 
and make use of it [6]. Data mining bridges many 
technical areas, including databases, statistics, machine 
learning, and human-computer interaction. The set of data 
mining processes used to extract and verify patterns in 
data is the core of the knowledge discovery process [24]. 
These processes include data cleaning, feature 
transformation, algorithm and parameter selection, and 
evaluation, interpretation and validation (Figure 1).  

Data 
cleaning 

Feature 
transformation 

Algorithm & 
parameter 
selection 

Evaluation, 
interpretation & 

validation 

 
Figure 1. Data mining process (adapted from [24]) 

 
The idea of learning from data is far from being new. 

However, likely due to developments in the database 
management field and due to the great increase of data 
volumes being accumulated in databases the interest in 
DM has become very intense. Numerous DM algorithms 
have recently been developed to extract knowledge from 
large databases. Currently, most research in DM focuses 
on the development of new algorithms or improvement of 

the speed or the accuracy of the existing ones [24].  
Relatively little has been published about theoretical 

foundations of DM. A few theoretical approaches to DM 
were proposed in [16]. A motivation for DM foundations 
development and requirements for a theoretical DM 
framework were also considered in [16]: a theoretical 
framework should be simple and easy to apply; it should 
contribute to DM algorithms and DM systems 
development; it should be able to model typical DM tasks 
like clustering, classification and rule discovery; it should 
recognize that DM is an iterative and interactive process, 
where a user has to be involved.   

In this paper (in Section 2) we consider several 
existing frameworks for data mining based on statistical, 
data compression, machine learning, philosophy of 
science, and database paradigms. We consider their 
advantages and limitations analyzing what these 
approaches are able to explain in the data mining process 
and what they do not. We believe that a reader will notice 
that each of the above DM frameworks is limited mainly 
to addressing one particular type of DM algorithms and 
that they rarely address the issues of iteration and 
interactivity. 

We introduce our vision how DM process modeling 
can take advantage of the research made in the areas of 
Information Systems Development (ISD) and Knowledge 
Management (KM). In Section 3 we refer to the 
traditional information system (IS) framework presented 
in [11] that is widely known in the IS community and is a 
synthesis of many other frameworks considered before it. 
For us this framework is more substantial than the others 
since it also focuses on the development process of 
information systems. We consider Nunamaker’s 
information systems development research framework 
[21] in the context of DM. We demonstrate how 
theoretical, constructive and experimental approaches can 
be applied iteratively and/or in parallel for the 
development of an artefact (a data-mining tool).  

In Section 4 we consider DM research in the context 
of a complex adaptive system that creates, receives, 
stores, retrieves, transforms, and transmits (meta-) 
knowledge to improve its ability to adapt to the 
environment and to develop (or better utilize available) 
DM techniques. 



We conclude briefly in Section 5 with a summary and 
further research topics. 

 
2. Review of some existing theoretical 
frameworks for data mining 
 

It this section we review basic DM frameworks and 
show that they deal mainly with DM techniques as such. 
Philosophy of science may help to understand the nature 
and scope of data mining techniques. However, as we 
conclude, present-day frameworks for DM lack in 
describing it as iterative and interactive process and in 
accounting social dimension of DM, i.e. involvement of a 
user. 

 
2.1. Statistical paradigms 
 

Generally, it is possible to consider the task of data 
mining from the statistical point of view, emphasizing the 
fact that DM techniques are applied to larger datasets than 
it is commonly done in applied statistics [10]. Thus the 
analysis of the appropriate statistical literature, where 
strong analytical background is accumulated, would solve 
most data mining problems. Many data mining tasks 
naturally may be formulated in statistical terms, and many 
statistical contributions may be used in data mining in a 
quite straightforward manner [9].  

According to [5] there exist two basic statistical 
paradigms that are used in theoretical support for DM. 
The first paradigm is so-called “Statistical experiment”. It 
can be seen from three perspectives: Fisher’s version that 
uses the inductive principle of maximum likelihood, 
Neyman-E.S. Pearson-Wald’s version that is based on the 
principle of inductive behavior, and Bayesian version that 
is based on the principle of maximum posterior 
probability. An evolved version of “Statistical 
experiment” paradigm is “Statistical learning from 
empirical process” paradigm [23]. Generally, many data 
mining tasks can be seen as the task of finding the 
underlying joint distribution of variables in the data. 
Good examples of this approach would be a Bayesian 
network or a hierarchical Bayesian model, which give a 
short and understandable representation of the joint 
distribution. Data mining tasks dealing with clustering 
and/or classification fit easily into this approach. 

The second statistical paradigm is called “Structural 
data analysis” and can be associated with singular value 
decomposition methods, which are heavily used, for 
example, in text mining applications. 

A deeper consideration of data mining and statistics 
can be found in [8]. Here, we just point out that the 
volume of the data being analysed and different 
educational background of researchers are not the most 
important issues that constitute the difference between the 
areas. Data mining is an applied area of science and 

limitations in available computational resources is a big 
issue when applying results from statistics to data mining. 
An important point is that the theoretical framework of 
statistics does not concern much about data analysis as an 
iterative process that generally includes several steps. 
However, there are persons (mainly with strong statistical 
background) who consider DM as a branch of statistics, 
because many DM tasks may be perfectly represented in 
terms of statistics. 
 
2.2. The data compression paradigm  

 
A data compression approach to data mining can be 

stated in the following way: compress the dataset by 
finding some structure or knowledge for it, where 
knowledge is interpreted as a representation that allows 
coding the data using a fewer amount of bits. For 
example, the minimum description length (MDL) 
principle [17] can be used to select among different 
encodings accounting to both the complexity of a model 
and its predictive accuracy. 

Machine learning practitioners have used the MDL 
principle in different interpretations to recommend that 
even when a hypothesis is not the most empirically 
successful among those available, it may be the one to be 
chosen if it is simple enough. The idea is in trading 
between consistency with training examples and 
empirical adequacy by predictive success as it is, for 
example, with accurate decision tree construction. 
Bensusan [2] connects this to another methodological 
issue, namely that theories should not be ad hoc that is 
they should not overfit the examples used to build it. 
Simplicity is the remedy for being ad hoc both in the 
recommendations of philosophy of science and in the 
practice of machine learning.  

The data compression approach has also connections 
with the rather old Occam’s razor principle that was 
introduced in the 14th century. The most commonly used 
formulation of this principle in data mining is "when you 
have two competing models which make exactly the same 
predictions, the one that is simpler is better". 

Many (if not every) data mining techniques can be 
viewed in terms of the data compression approach. For 
example, association rules and pruned decision trees can 
be viewed as ways of providing compression of parts of 
the data. Clustering approaches can also be considered as 
a way of compressing the dataset. There is a connection 
to the Bayesian theory for modeling the joint distribution 
– any compression scheme can be viewed as providing a 
distribution on the set of possible instances of the data.  
 
2.3. The machine learning paradigm  
 

The machine learning (ML) paradigm “let the data 
suggest a model” can be seen as a practical alternative to 



the statistical paradigm “fit a model to the data”. It is 
certainly reasonable in many situations to fit a small 
dataset to a parametric model based on a series of 
assumptions. However, for applications with large 
volumes of data under analysis the ML paradigm may be 
beneficial because of its flexibility within a 
nonparametric, assumption-free nature. 

We would like to focus here on a constructive 
induction approach. Constructive induction is a learning 
process that consists of two intertwined phases, one of 
which is responsible for the construction of the “best” 
representation space and the second concerns generating 
hypotheses in the found space [15]. Constructive 
induction methods are classified into three categories: 
data-driven (information from the training examples is 
used), hypothesis-driven (information from the analysis 
of the form of intermediate hypothesis is used) and 
knowledge-driven (domain knowledge provided by 
experts is used) methods. Any kind of induction strategy 
(implying induction, abduction, analogies and other forms 
of non-truth preserving and non-monotonic inferences) 
may potentially be used. However, the focus is usually on 
operating higher-level data-concepts and theoretical terms 
rather than pure data. 

Many DM techniques that apply wrapper/filter 
approaches to combine feature selection, feature 
extraction, or feature construction processes (as means of 
dimensionality reduction and/or as means of search for 
better representation of the problem) and a classifier or 
other type of learning algorithm may be considered as 
constructive induction approaches. 
 
2.4. The philosophy of science paradigm 
 

Categorization of subjectivist and objectivist 
approaches [4] can be considered in the context of DM. 
The possibility to compare nominalistic and realistic 
ontological believes gives us an opportunity to consider 
data that is under analysis as descriptive facts or 
constitutive meanings. The analysis of voluntaristic as 
opposed to deterministic assumptions about the nature of 
every instance constituting the observed data directs our 
attitude and understanding of that data. One possibility is 
to view every instance and its state as determined by the 
context and/or a law. Another position consists in 
consideration of each instance as autonomous and 
independent. An epistemological assumption about how a 
criterion to validate knowledge discovered (or a model 
that explains reality and allows making predictions) can 
be constructed may impact the selection of appropriate 
data mining technique. From the positivistic point of view 
such a model-building process can be performed by 
searching for regularities and causal relationships 
between the constitutive constructs of a model. And anti-
positivism suggests analyzing every individual 

observation trying to understand it and making an 
interpretation. Probably some of case-based reasoning 
approaches can be related to anti-positivism’s vision of 
the reality. 

An interesting difference in the views of the reality can 
be found considering ideographic as opposed to 
nomothetic methodological disputes. The nomothetic 
school does not see the real world as a set of random 
happenings. And if so, there must be rules that describe 
some regularities. Thus, nomothetic sciences seek for 
establishing abstract (general) laws that describe 
indefinitely repeatable events and processes. On the 
contrary, ideographic sciences are aimed to understand 
the unique and nonrecurrent events. They have 
connection to the ancient doctrine that “all is flux”. If 
everything were always changing, then any generalization 
intending to be applied for two or more presumably 
comparable phenomena would never be true. And 
‘averages’ of some measures (from the nomothetic way of 
thinking) usually is not able to represent the behaviour of 
a single event or entity. 
 
2.5. The database paradigm 
 

A database perspective on data mining and knowledge 
discovery was introduced in [12]. The main postulate of 
their approach is: “there is no such thing as discovery, it 
is all in the power of the query language”. That is, one 
can benefit from viewing common data mining tasks not 
as dynamic operations constructing new pieces of 
information, but as operations finding unknown (i.e. not 
found so far) but existing parts of knowledge. 

In [3] an inductive databases framework for the data 
mining and knowledge discovery in databases (KDD) 
modeling was introduced. The basic idea here is that the 
data-mining task can be formulated as locating interesting 
sentences from a given logic that are true in the database. 
Then discovering knowledge from data can be viewed as 
querying the set of interesting sentences. Therefore the 
term “an inductive database” refers to such a type of 
databases that contains not only data but a theory about 
the data as well [3].  

This approach has some logical connection to the idea 
of deductive databases, which contain normal database 
content and additionally a set of rules for deriving new 
facts from the facts already present in the database. This 
is a common inner data representation. For a database 
user, all the facts derivable from the rules are presented, 
as they would have been actually stored there. In a similar 
way, there is no need to have all the rules that are true 
about the data stored in an inductive database. However, a 
user may imagine that all these rules are there, although in 
reality, the rules are constructed on demand. The 
description of an inductive database consists of a normal 
relational database structure with an additional structure 



for performing generalizations. It is possible to design a 
query language that works on inductive databases. 
Usually, the result of a query on an inductive database is 
an inductive database as well. Certainly, there might be a 
need to find a solution about what should be presented to 
a user and when to stop the recursive rule generation 
while querying. We refer an interested reader to [3]. 
 
2.6. Conclusions on considered frameworks 
 

The reductionist approach of viewing data mining in 
terms of statistics has advantages of the strong theoretical 
background, and easy-formulated problems. The data 
compression and constructive induction approaches have 
relatively strong analytical background, as well as 
connections to the philosophy of science. In addition to 
the above frameworks there exists an interesting 
microeconomic view on data mining [14], where a utility 
function is constructed and it is tried to be maximized. 
The data mining tasks concerning processes like 
clustering, regression and classification fit easily into 
these approaches. Another interesting approach based on 
granular and rough computing can be found in [15] 

One way or another, we can easily see the exploratory 
nature of the frameworks for DM. Different frameworks 
account different data mining tasks and allow preserving 
and presenting background knowledge. However, what 
seems to be lacking in most approaches, are the ways for 
taking the iterative and interactive nature of the data 
mining process into account [16]. Furthermore, none of 
the above frameworks considers data mining in the 
context of an adaptive system that processes information. 
 
3. The information systems-based paradigm 
applied to data mining 
 

Information Systems (IS) are powerful instruments for 
organizational problem solving through formal 
information processing. In this section we consider a DM 
system as an adaptive IS that is armed with a number of 
techniques to be applied for a problem at hand. Since the 
variety of problems is changing over time, such a system 
has to be developed continuously towards the efficient 
utilization of available techniques and improvement of 
these techniques. We introduce an IS framework and an 
IS development framework and then consider how data 
mining can be seen as an iterative and interactive 
development process within this framework. 
 
3.1. The information systems perspective 
 

The traditional framework presented by Ives et al. [11] 
is widely known in the IS community. In this framework 
an IS is considered in an organizational environment that 

is further surrounded by an external environment. 
According to this framework an IS itself includes three 
environments: a user environment, an IS development 
environment, and an IS operations environment. There 
are accordingly three processes through which an IS has 
interaction with its environments: the use process, the 
development process, and the operation process.   

Analogously, a data-mining system can be considered 
as a system with a user environment, a DM development 
environment, and a DM operations environment (Figure 
2).  
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Figure 2. A model for DM research (adapted from [11]) 

 
However, in this paper, we focus on the development 

process of DM system and leave the operation and use 
processes for further research.  
 
3.2. The IS development perspective  
 

Iivari et al. [11] relate the IS development process to 
the constructive type of research based on their 
philosophical belief that development always involves 
creation of some new artefacts – conceptual (models, 
frameworks) or more technical artefacts (software 
implementations). The research approach is classified as 
constructive whereas scientific knowledge is used to 
produce either useful systems or methods, including 
development of prototypes and processes. It has been 
argued that the constructive type of research is important 
especially for applied disciplines of information systems 
and computer science [11], and DM may be considered as 
such a discipline. 

In [21] system development is considered as a central 
part of a multi-methodological information systems 
research cycle (Figure 3). Theory building involves 
discovery of new knowledge in the field of study, 
however it rarely contributes directly to practice. 
Nevertheless, the new theory often (if not always) needs 
to be tested in the real world to show its validity, 
recognize its limitations and make refinements according 
to observations made during its application. Therefore 
research methods can be subdivided into basic and 
applied research, as naturally both are common for any 
large system development project [21]. A proposed theory 



leads to the development of a prototype system in order to 
illustrate the theoretical framework on the one hand, and 
to test it through experimentation and observation with 
subsequent refinement of the theory and the prototype in 
an iterative manner. Such a view presents the framework 
of IS as a complete, comprehensive and dynamic research 
process. It allows multiple perspectives and flexible 
choices of methods to be applied during different stages 
of the research process. 

Theory Buildying 
Conceptual framework, 

Math. models and 
methods 

System 
Development 

Artefact construction, 
Technology transfer  

Experimentation 
Computer simulation, 

Field experiments, 
Lab experiments 

Observation 
Case studies, 
Field studies 

 
Figure 3. A multimethodological approach to the 

construction of an artefact for DM (adapted from [21]) 
 
 
3.3 Data mining as artefact development 

 
In this subsection we consider applying theoretical, 

constructive and experimental approaches with regard to 
Nunamaker’s framework in the context of data mining.  

If a stated research problem includes a verb like 
introduce, improve, maintain, cease, extend, correct, 
adjust, enhance and so on, the study likely belongs to the 
area of constructive research.  Indeed, these are the kind 
of actions that researchers in the area of data mining 
perform, when developing new theories and their 
applications. 

It is obvious that in order to construct a good artefact 
background knowledge is needed both about the 
artefact’s components, that are basic data mining 
techniques in the DM context and about components’ 
cooperation, that are commonly selection and 
combination techniques in the DM context. Beside this 
some background knowledge is also needed about 
artefact’s external environment, that are different real-
world problems, often called just datasets in the DM 
context.   

The evaluation process is an essential part of 
constructive research. Usually, the experimental approach 
is used to evaluate a DM artefact. The experimental 
approach, however, can be beneficial for theory testing 
and can result in new pieces of knowledge thus 
contributing to the theory-creating process. 

It does not matter is the subject of evaluation a new 

theory or a new artefact, the general principle of 
evaluation must hold. This general principle requires that 
the new theory or artefact must be better than its best 
challenger so far. A ‘goodness’ criterion of a built theory 
or an artefact can be multidimensional and it is sometimes 
difficult to be defined because of mutual dependence 
between the compromising variables. However, it is more 
or less easy to construct a criterion based on such 
estimates as accuracy of a built model and its 
performance. From the other hand, it is more difficult or 
even impossible to include into a criterion such important 
aspects as interpretability of the artefact’s output because 
estimates of such kind are usually subjective and can be 
evaluated only by the end-users of a system. 

Experimental studies are often divided in the IS 
community into ‘field’ or ‘laboratory’-based. In the first 
case different approaches are tested on so-called real-
world datasets with real users. In the second case 
systematically controlled experiments can be organized.  
Controlled experiments sometimes might produce more 
beneficial results for theory creating, since unlike real 
world datasets, synthetically generated data allow to test 
exactly the desired number of characteristics while 
keeping all the others unchanged. 

Theory testing might be seen at different levels. A 
low-level task is to evaluate how well a built model 
works. Another task is to analyse how the built model 
performs comparing to the other models. Then it is 
usually necessary to compare the algorithm selected to 
build the models with other algorithm(s). Finally, when 
‘laboratory’ experiments and evaluation are finished, it is 
necessary to organize ‘field’ experiments. 

These approaches can be applied iteratively and/or in 
parallel for the development of an artefact – a data-
mining tool, and contribute to theory creation and theory 
testing. 
 
4. The knowledge management paradigm 
applied to data mining 

 
In this section we propose to consider DM research in 

the context of a complex adaptive system that creates, 
receives, stores, retrieves, transforms, and transmits meta-
knowledge to improve its ability to adapt to the 
environment and to utilize available DM techniques more 
efficiently and effectively. 
 
4.1 Different types of knowledge and their 
transformations 

 
One common definition of knowledge is “justified 

belief that increases an entity’s capacity for effective 
action” [20]. In this section we consider different types of 
knowledge and their potential in the effective work and 



performance of a knowledge discovery system (KDS). 
Organizational knowledge can be seen as a 

hierarchical network of rules about specific data or 
information that has explanatory, predictive, and 
functional power.  These rules are categorized as 
procedural and declarative.  The procedural rules are 
“know-how” rules and the declarative rules are “know-
what” rules. “Knowing where” and “knowing when” 
represent spatial and temporal contexts of knowledge 
validity respectively. “Knowing why” provides a KDS 
with explanatory facilities when it is necessary to argue 
why a certain DM strategy is recommended or applied. 

Beside these technical issues of knowing with respect 
to knowledge management in KDS, we recognize three 
basic types of organizational types of knowing. 
“Knowing what-for” represents DM goals that reflect 
business goals, and account knowledge of the application 
domain. “Knowing who” involves information about 
“who knows what”. As the complexity of the knowledge 
increases, co-operation between groups (of DM experts, 
DM practitioners or intelligent knowledge repositories) 
tends to develop. “Knowing how much” accounts benefits 
of produced knowledge, resources required, related risks, 
etc. Although being important the last two knowings are 
not in the focus of this section.  

In Figure 4 we present the concept of knowledge and 
its transformations adapted from [22].  

Knowing how and why  

Capture, Transmission, 
Representation,  Archiving, Deletion 

Information Processing Knowing that and what 

Data 

Information 

Knowledge 

Wisdom 

Reality 

Data Processing 

Knowledge 
Processing 

Entities 

Attributes 

Knowing when, where and what for 

Figure 4. Transformations of data and knowledge 
concepts (adapted from [22]) 

 
Reality is related to entities whereas data are the 

attributes from those entities. When the current business 
problem is formulated as a DM task, data represents those 
attributes. Information is the result of data processing and 
the information associated with the “knowing that and 
what” type of knowledge. The concept of knowledge is 
defined as “knowing how and why” and is the result of 
information processing. Wisdom is associated with the 
knowing context of where and when certain knowledge is 
relevant and valid. All these types of knowing are utilized 
in many DM techniques. In the time dimension, data 
naturally deals with the past, information is used in the 
present and knowledge is to be utilized in the future work. 

Observing data, hypothesizing on it, and conducting 
experiments, new knowledge claims can be produced. 
These claims are validated, placed into the context and 
they become new knowledge. However, what is 
knowledge for one person or system may be used by 
another as the initial data (facts) for construction of 
higher-level pieces of knowledge. Therefore, 
transformations like “data – knowledge – meta-data – 
meta-knowledge – meta-meta-data – …” are rather 
natural. Thus, the knowledge discovery transformation of 
data into knowledge (Figure 4) may be applied at any 
level of knowledge, as the knowledge – data difference is 
inessential and subjective in our case. Any level may have 
a meta-level. Replacing data by meta-data, the 
transformation produces meta-knowledge instead of 
knowledge, and so on at the next level. Therefore it is 
often not so easy to determine whether knowing belongs 
to meta-data or meta-knowledge. Various meta-learning 
approaches applied within the instance space of problem 
space can be related to the Knowledge Management 
(KM) framework.  

In the next subsection we emphasize the view on 
knowledge as an entity that can be produced, moved, 
inspected, rejected, and assessed, just as a widget in a 
factory. We consider the primary knowledge management 
processes including knowledge creation, knowledge 
organization, knowledge distribution, and knowledge 
application. 
 
4.2 The knowledge management process in the 
context of meta-knowledge 
 

The goal of meta-knowledge management is to make 
more effective and efficient use of available data mining 
techniques. 

Generally, the problem of knowledge capture, storage, 
and dissemination is similar to data and information 
management in ISs, and therefore some executives prefer 
to view KM as a natural extension to IS functions [1]. 
According to [25] the most practical way to define KM is 
to show on the existing IT infrastructure the involvement 
of: (1) knowledge repositories, (2) best-practices and 
lessons-learned systems, (3) expert networks [these are 
DM experts], and (4) communities of practice [these are 
end-users]. 

The main idea of the continuous KM process is 
presented in Figure 5. We separate five key phases of this 
process. The first phase deals with knowledge 
identification, acquisition or creation.  

Knowledge 
Creation & 
Acquisition 

Knowledge 
Organization & 

Storage 

Knowledge 
Distribution & 

Integration 

Knowledge 
Adaptation & 
Application 

Knowledge Evaluation, Validation and Refinement 

Figure 5. The knowledge management process 



The second phase deals with knowledge organization 
and storage. In our context these processes are related 
mainly to knowledge representation issues. Minsky [19] 
discusses pros and cons of connectivist and structural 
approaches to knowledge representation, concluding that 
their combination would be natural, since usually at the 
lower levels of abstraction it tends to have a net 
architecture and tends to organize clusters and 
hierarchical structures at the higher levels of abstraction. 
The third phase is related to knowledge distribution and 
knowledge integration processes.  

Generally, we have four potential sources of 
knowledge to be integrated: (1) knowledge from an 
expert in data-mining, knowledge discovery, statistics and 
related fields; (2) knowledge from a data-mining 
practitioner; (3) knowledge from laboratory experiments 
on synthetic data sets; and, finally, (4) knowledge from 
field experiments on real-world problems.  

Beside this, research and business communities, and 
similar knowledge discovery systems themselves can 
organize different so-called trusted networks, where the 
participants are motivated to share their knowledge. 

Knowledge sharing, distribution, and integration is 
beneficial in two perspectives: (1) contributing from “an 
individual” to acceptance and accumulation of “group” 
and “organizational” knowledge; (2) external validity, 
refinement, contextualism and generality of knowledge. 

The fourth phase deals with knowledge adaptation and 
application processes.  

The fifth phase deals with the knowledge evaluation, 
validation and refinement processes. In order to keep the 
knowledge updated there is a need to have a monitoring 
process to control whether the discovered meta-
knowledge remains valid and a technique for continuous 
enhancement of knowledge. We consider these issues in 
the next subsection. 

 
4.3 Meta-knowledge repository lifecycle 

 
Since the repository is created it tends to grow and at 

some point of growth it naturally begins to collapse under 
its own weight, requiring major reorganization [25]. 
Therefore, the repository needs to be continuously 
updated, and some content needs to be deleted (if 
misleading), deactivated or archived (if it is potentially 
useful). Content may become less fragmented and 
redundant if similar contributions are combined, 
generalized and restructured. 

The process of filtering knowledge claims into 
accepted or suppressed is commonly applied in KM. This 
is even more important in meta-knowledge management 
since a plenty of claims are produced automatically (and 
therefore usually need to be filtered automatically). 

In Section 3.1 we mentioned the “knowing when” and 
“knowing where” contexts. The basic idea here is that 

when the environment changes (that in general may 
happen all the time), all of the general rules without 
specifying the context could become invalid. Therefore, it 
is highly desirable to make the knowledge repository 
adaptive, i.e. some knowledge should exist that would 
guide an organization to change the repository when the 
environment calls for it. 

Some knowledge claims are naturally in constant 
competition with the other claims.  Disagreements within 
the knowledge repository need to be resolved by means of 
generalization of some parts and contextualization of the 
others. In order to increase the quality and validity of 
knowledge, it needs to be continually tested, improved or 
removed (deactivated). Refinement leads to formulating a 
new knowledge claim, which requires a new process of 
testing and validation.  

Some basic principles of triggers can be introduced in 
the knowledge repository. Thus, for example, when some 
knowledge is falsified, the deductively inferred claims 
from the claims to be deleted should be deleted as well. 

We would like to clarify the notions of knowledge 
validity and knowledge quality with respect to the 
knowledge refinement process.  

The contexts “knowing when” and “knowing where” 
can be discovered before it appears in a real situation. So-
called zooming in and zooming out procedures can be 
used to find a context where theory can be falsified or 
supported. The goal of such procedures is in search for 
balance between generality, compactness, interpretability, 
and understandability and sensitiveness to the context, 
exactness, precision, and adequacy of meta-knowledge.  

The quality of knowledge can be estimated by its 
ability to help a KDS produce solutions faster and more 
effectively. To determine the relative quality of a 
validated knowledge claim, its value needs to be 
compared to the values of the other claims according to 
the existing criteria. In any case knowledge claims have 
both a degree of utility and a degree of satisfaction. 
However, the quality of knowledge is often context-
dependent. Therefore “where” and “when” context 
conditions may be important in many situations not only 
for knowledge validation but also for quality estimation. 

The quality of a knowledge claim is further dependent 
on the accuracy of the criteria used to evaluate it. Such 
criteria as complexity, usefulness, and predictive power 
are well formalised and easy to estimate. On the contrary, 
such criteria as understandability, reliability of source, 
explanatory power are rather subjective and therefore 
inaccurate.  

 
5. Conclusions 
 

In this paper we considered several frameworks for 
data mining based on different paradigms. We also 
considered advantages and limitations of the existing 



frameworks.  We introduced our vision how DM process 
modeling can benefit from the Information Systems 
Development and Knowledge Management perspectives. 
The ISD perspective is based on viewing DM as a 
continuous iterative and interactive process of developing 
DM techniques and their effective utilization for solving a 
current problem impacted by the dynamically changing 
environment. The KM paradigm views DM research in 
the context of a complex adaptive system that creates, 
receives, stores, retrieves, transforms, and transmits 
different types of knowledge.  

In this work we have not provided any examples that 
would demonstrate the applicability of the proposed 
adaptation of frameworks from IS and KM fields. 
However, we believe that our work could be helpful in 
the development of a new higher-level framework for 
DM, which can be suitable as for advancing research in 
DM as for DM artefact development activities. In 
particular, the corresponding IS research methods could 
be adapted and applied. 

We also hope that our work could raise a new wave of 
interest to the foundations of DM and to the analysis of 
the DM field from different perspectives, such as ISD and 
KM. 
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Abstract

Subjective measures are used to model interestingness
of rules (see [6], [1], [13], [14]). They are user-driven,
domain-dependent, and include unexpectedness, nov-
elty and actionability. A rule is actionable if user can do an
action to his/her advantage based on this rule [6]. This def-
inition, in spite of its importance, is rather vague and
it leaves open door to a number of different interpreta-
tions of actionability. In order to narrow it down, a new
class of rules (called action rules) constructed from cer-
tain pairs of association rules, has been proposed in [10]. A
formal definition of an action rule was independently pro-
posed in [4]. These rules have been investigated further in
[12] and [11].

To construct action rules it is required that attributes in
a decision system are divided into two groups: stable and
flexible. Flexible attributes provide a tool for making hints
to a user what changes within some values of flexible at-
tributes are needed to re-classify group objects, supporting
action rule, to another decision class. The strategy for gen-
erating action rules which was proposed in [11] is signifi-
cantly improved in this paper. The goal of the tree structure
used by DEAR-2 is to partition each set of all rules, hav-
ing the same decision value, into equivalence classes de-
fined by values of stable attributes (two rules belong to the
same equivalence class, if values of their the same stable
attributes are not conflicting each other). Now, instead of
comparing all rules, only rules between some equivalence
classes are compared to construct action rules. This strat-
egy significantly reduces the number of steps needed to gen-
erate action rules in comparison to DEAR system.

1. Introduction

There are two aspects of interestingness of rules that
have been studied in data mining literature, objective and
subjective measures (see [6], [1], [13], [14]. Objective mea-
sures are data-driven and domain-independent. Generally,
they evaluate the rules based on their quality and similarity
between them. Subjective measures, including unexpected-
ness, novelty and actionability, are user-driven and domain-
dependent.

A rule is actionable if user can do an action to his/her ad-
vantage based on this rule [6]. This definition, in spite of its
importance, is too vague and it leaves open door to a num-
ber of different interpretations of actionability. In order to
narrow it down, a new class of rules (called action rules)
constructed from certain pairs of association rules, has been
proposed in [10]. A formal definition of an action rule was
independently proposed in [4]. These rules have been inves-
tigated further in [11].

To give an example justifying the need of action rules, let
us assume that a number of customers decided to close their
accounts at one of the banks. To find the cause of their ac-
tion, possibly the smallest and the simplest set of rules de-
scribing all these customers is constructed. Next, we search
for a new set of rules, describing groups of customers from
which no-one left that bank, which classification parts are
maximally similar to the classification parts of the rules we
have. Now, by comparing these two groups of descriptions,
we may find not only the cause why these accounts have
been closed but also formulate an action which, if under-
taken by the bank, may prevent other customers from clos-
ing their accounts. Such actions are stimulated by action



rules and they are seen as precise hints for actionability of
rules. For example, an action rule may say that by sending
certain offer to a certain group of customers, it is guaran-
teed that these customers will not close their accounts and
they do not move to another bank. Sending that offer by reg-
ular mail or giving a call to all these customers are exam-
ples of an action associated with that action rule.

The strategy for generating action rules proposed in [11]
is significantly improved in the systemDEAR-2presented
in this paper. Initially, all rules discovered in the first step
of our new method are partitioned into decision classes
(two rules are in the same decision class, if they define the
same decision value). In the second step, for each decision
value, the algorithm based on tree structure is partitioning
all rules having that decision value into additional equiva-
lence classes defined by values of stable attributes (two rules
belong to the same equivalence class, if values of their sta-
ble attributes do not contradict each other). In the final step,
instead of comparing all rules, only rules between some
equivalence classes are compared in order to construct ac-
tion rules. This strategy significantly reduces the number of
steps needed to generate action rules in comparison to the
strategy (calledDEAR) proposed in [11].

2. Information System and Action Rules

An information system is used for representing knowl-
edge. Its definition, presented here, is due to Pawlak [7].

By an information system we mean a pairS = (U,A),
where:

• U is a nonempty, finite set called the universe,

• A is a nonempty, finite set of attributes i.e.a : U −→
Va is a function fora ∈ A, whereVa is called the do-
main ofa.

Elements ofU are called objects. For instance, they can
be interpreted as customers. Attributes can be interpreted
as features, offers made by a bank, characteristic conditions
etc.

In this paper we consider a special case of information
systems called decision tables [7]. In any decision table to-
gether with the set of attributes a partition of that set into
conditions and decisions is given. Additionally, we assume
that the set of conditions is partitioned into stable condi-
tions and flexible conditions. For simplicity reason, we as-
sume that there is only one decision attribute.Date of birth
is an example of a stable attribute.Interest rateon any cus-
tomer account is an example of a flexible attribute (depend-
able on a bank). We adopt the following definition of a de-
cision table:

a b c d

x1 0 S 0 L

x2 0 R 1 L

x3 0 S 0 L

x4 0 R 1 L

x5 2 P 2 L

x6 2 P 2 L

x7 2 S 2 H

x8 2 S 2 H

Table 1. Decision System

A decision table is any information system of the form
S = (U,A1 ∪ A2 ∪ {d}), whered 6∈ A1 ∪ A2 is a distin-
guished attribute called decision. The elements ofA1 are
called stable conditions, whereas the elements ofA2 are
called flexible conditions.

As an example of a decision table we take
S = ({x1, x2, x3, x4, x5, x6, x7, x8}, {a, c} ∪ {b} ∪ {d})
represented by Table 1. The set{a, c} lists stable at-
tributes,b is a flexible attribute andd is a decision attribute.
Also, we assume thatH denotes ahigh profit andL de-
notes alow one.

In order to induce rules in which the THEN part con-
sists of the decision attributed and the IF part consists of
attributes belonging toA1 ∪ A2, subtables(U,B ∪ {d}) of
S whereB is ad-reduct (see [7]) inS should be used for
rules extraction. ByL(r) we mean all attributes listed in the
IF part of a ruler. For example, ifr = [(a, 2) ∗ (b, S) −→
(d,H)] is a rule thenL(r) = {a, b}. By d(r) we denote the
decision value of a rule. In our exampled(r) = H. If r1,
r2 are rules andB ⊆ A1 ∪ A2 is a set of attributes, then
r1/B = r2/B means that the conditional parts of rulesr1,
r2 restricted to attributesB are the same. For example if
r1 = [(b, S) ∗ (c, 2) −→ (d,H)], thenr1/{b} = r/{b}.

In our example, we get the following optimal rules:
(a, 0) −→ (d, L), (c, 0) −→ (d, L),
(b,R) −→ (d, L), (c, 1) −→ (d, L),
(b, P ) −→ (d, L), (a, 2) ∗ (b, S) −→ (d,H),
(b, S) ∗ (c, 2) −→ (d,H).

Now, let us assume that(a, v −→ w) denotes the fact
that the value of attributea has been changed fromv to w.
Similarly, the term(a, v −→ w)(x) means thata(x) = v
has been changed toa(x) = w. Saying another words, the
property(a, v) of object x has been changed to property
(a,w).



Let S = (U,A1 ∪A2 ∪{d}) is a decision table and rules
r1, r2 have been extracted fromS. Assume thatB1 is a max-
imal subset ofA1 such thatr1/B1 = r2/B1, d(r1) = k1,
d(r2) = k2 andk1 ≤ k2. Also, assume that(b1, b2, ..., bp)
is a list of all attributes inL(r1) ∩ L(r2) ∩ A2 on which
r1, r2 differ andr1(b1) = v1, r1(b2) = v2,...,r1(bp) = vp,
r2(b1) = w1, r2(b2) = w2,...,r2(bp) = wp.

By (r1, r2)-action rule onx ∈ U we mean expressionr:

[(b1, v1 −→ w1) ∧ (b2, v2 −→ w2) ∧ ...
∧ (bp, vp −→ wp)](x) ⇒ [(d, k1 −→ k2)](x).

Object x ∈ U supports(r1, r2)-action ruler in S =
(U,A1 ∪A2 ∪{d}), if the following two conditions are sat-
isfied:

• (∀i ≤ p)[bi(x) = vi] ∧ d(x) = k1

• if y1 is the outcome of the ruler applied onx, then
there isy2 ∈ U such that:[[b ∈ L(r2)] =⇒ [b(y1) =
b(y2)]] ∧ [d(y2) = k2] ∧ (∀i ≤ p)[bi(y2) = wi]

By the support of action ruler, we mean
RSupS(r) = card{x ∈ U : x supportsr in S}.

By the confidence of action ruler, we mean
ConfS(r) = RSupS(r)/SupS(r1),
whereSupS(r1) is the support ofr1 in S.

Another words, objectx in S supports(r1, r2)-action
rule in S, if x supportsr1 and there isy in S which is
L(r2)-identical to the outcome of(r1, r2)-action rule ap-
plied onx and which supportsr2. Two objectsx, y in S are
B-identical, if(∀a ∈ B)[a(x) = a(y)].

To find the confidence of(r1, r2)-action rule inS, we di-
vide the number of objects supporting(r1, r2)-action rule
in S by the number of objects supporting ruler1 in S.

3. Discovering Extended Action Rules

The notion of an extended action rule was given in
[11]. In this section we present a new algorithm for dis-
covering extended action rules. Initially, we partition the
set of rules discovered from an information systemS =
(U,A1 ∪A2 ∪{d}), whereA1 is the set of stable attributes,
A2 is the set of flexible attributes and,Vd = {d1, d2, ..., dk}
is the set of decision values, into subsets of rules defining
the same decision value. Saying another words, the set of
rulesR discovered fromS is partitioned into{Ri}i:1≤i≤k,
whereRi = {r ∈ R : d(r) = di} for any i = 1, 2, ..., k.
Clearly, the objects supporting any rule fromRi form sub-
sets ofd−1({di}).

Let us take Table 1 as an example of a decision system
S. We assume thata, c are stable attributes andb, d are flex-
ible. The setR of certain rules extracted fromS is given be-
low:

a b c d

{x1, x2, x3, x4} 0 L

{x2, x4} R L

{x1, x3} 0 L

{x2, x4} 1 L

{x5, x6} P L

{x7, x8} 2 S H

{x7, x8} S 2 H

Table 2. Set of rules R with supporting ob-
jects

(a, 0) −→ (d, L), (c, 0) −→ (d, L),
(b,R) −→ (d, L), (c, 1) −→ (d, L),
(b, P ) −→ (d, L), (a, 2) ∗ (b, S) −→ (d,H),
(b, S) ∗ (c, 2) −→ (d,H).

We partition this set into two subsetsR1 = {[(a, 0) −→
(d, L)], [(c, 0) −→ (d, L)], [(b, R) −→ (d, L)], [(c, 1) −→
(d, L)], [(b, P ) −→ (d, L)]} andR2 = {[(a, 2) ∗ (b, S) −→
(d,H)], [(b, S) ∗ (c, 2) −→ (d,H)]}.

Assume now that our goal is to re-classify some objects
from the classd−1({di}) into the classd−1({dj}). In our
example, we assume thatdi = (d, L) anddj = (d,H).

First, we represent the setR as a table (see Table 2).
The first column of this table shows objects inS sup-

porting the rules fromR (each row represents a rule). The
first 5 rows represent the setR1 and the last two rows rep-
resent the setR2. In general case, assumed earlier, the num-
ber of different decision classes is equal tok.

The next step of the algorithm is to builddi-tree anddj-
tree. First, from the initial table similar to Table 2, we se-
lect all rules (rows) defining the decision valuedi. Simi-
larly, from the same table, we also select all rules (rows)
which define decision valuedj .

By di-tree we mean a treeT (di) = (Ni, Ei), such that:

• each interior node is labelled by a stable attribute from
A1,

• each edge is labelled either by a question mark or by
an attribute value of the attribute that labels the initial
node of the edge,

• along a path, all nodes (except a leaf) are labelled with
different stable attributes,

• all edges leaving a node are labelled with different at-
tribute values (including the question mark) of the sta-
ble attribute that labels that node,
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Figure 1. (d, L)-tree

• each leaf represents a set of rules which do not contra-
dict on stable attributes and also define decision value
di. The path from the root to that leaf gives the descrip-
tion of objects supported by these rules.

Now, taking(d, L) from our example as the valuedi, we
show how to construct(d, L)-tree for the set of rules rep-
resented by Table 2. The construction of(d, L)-tree starts
with a table corresponding to the root of that tree (Table 3
in Fig. 1). It represents the set of rulesR1 definingL with
supporting objects fromS. We use stable attributec to split
that table into 3 sub-tables defined by values{0, 1, ?} of at-
tributec. The question mark means an unknown value.

Following the path labelled by valuec = 1, we get ta-
ble T2. Following the path labelled by valuec = 0, we
get tableT3. When we follow the path labelled by value
[c =?][a = 0], we get tableT4. Finally, by following the
path having the label[c =?][a =?], we get tableT5.

Now, let us define(d,H)-tree using Table 4 as its root
(see Fig. 2). Following the path labelled by value[c =?],
we get the tableT6. When we follow the path labelled by
value[c = 2], we get the tableT7. Both tables can be eas-
ily constructed.

Now, it can be checked that only pairs of rules belonging
to tables{[T5, T7], [T5, T6], [T2, T6], [T3, T6], [T4, T7]}

  a b c 
{x 7,x8 } 2 S  
{x 7,x8}  S 2 

 

 a b 
{x 7,x8 }  2 S 
 

 a b 
{x 7,x8}   S 

 

c = ? c = 2 

Table 4 
 

Table T6 
 

Table T7 
 

Figure 2. (d, H)-tree

DataSet Rules Action Rules DEAR

Breast Cancer 20sec 27min 51sec

Cleveland 1min 09sec Over 8hrs

Hepatitis 54sec Over 8hrs

Table 3. Time needed to extract Rules and Ac-
tion Rules by DEAR

can be used in action rules construction. For each pair of ta-
bles, we use the same algorithm as in [11] to construct ex-
tended action rules.

This new algorithm (calledDEAR-2) was imple-
mented and tested on many datasets using PC with 1.8
GHz CPU. The time complexity of this algorithm was sig-
nificantly lower than the time complexity of the algo-
rithm DEAR presented in [11]. Both algorithms extract
rules describing values of the decision attribute be-
fore any action rule is constructed. The next two tables
show the time needed byDEAR and DEAR-2 to ex-
tract rules and next action rules from three datasets:Breast
Cancer, Cleveland. These threeUCI datasets are avail-
able at [http://www.sgi.com/tech/mlc/db/]. The first one has
191 records described by 10 attributes. OnlyAgeis the sta-
ble attribute. The second one has 303 records described
by 15 attributes. Only two attributesage and sexare sta-
ble. The last one has 155 records described by 19 at-
tributes. Again, only two attributesage and sex are sta-
ble.

The interface to both systems,DEAR and DEAR-2, is
written in Visual Basic. The first picture in Figure 3 shows
part of the interface to both systems. The user has an op-
tion to generate the coverings (see [7], [8]) for the decision



 
 
 

 

Figure 3. DEAR& DEAR-2Interface

DataSet Action Rules DEAR 2

Breast Cancer 3sec

Cleveland 54min 20sec

Hepatitis 51min 53sec

Table 4. Time needed to extract Action Rules
by DEAR-2

attribute and next use them in the process of action rules ex-
traction or, if he prefers, he can directly proceed to the rules
extraction step. It is recommended, byDEAR-2, to gener-
ate the coverings for the decision attribute if the informa-
tion system has many classification attributes. By doing this
we usually speed up the process of action rules extraction.
The second picture in Figure 3 shows how the results are
displayed byDEAR-2system.

4. Conclusion

SystemDEAR-2 initially generates a set of association
rules fromS (satisfying two thresholds, the first one for a
minimum support and second for a minimum confidence)
defining values of a chosen attribute, called decision at-
tribute inS, in terms of the remaining attributes.DEAR-2is
giving preference to rules which classification part contains
maximally small number of stable attributes inS. These
rules are partitioned byDEAR-2 into a number of equiv-
alence classes where each equivalence class contains only
rules which classification part has the same values of stable
attributes. Each equivalence class is used independently by
DEAR-2as a base for constructing action rules. The current
strategy requires the generation of association rules fromS
to form a base, before the process of action rules construc-
tion starts. We believe that by following the process similar
to LERS(see [5], [2]) orERID (see [3]) which is initially
centered on all stable attributes inS, we should be able to
construct action rules directly fromS and without the ne-
cessity to generate the base of association rules.
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Abstract

The former results concerning de�nability of association
rules in classical predicate calculi are summarized. A new
intuitive criterion of de�nability is presented. This criterion
concerns important classes of association rules. It is based
on tables of critical frequencies of association rules. These
tables were introduced as a tool for avoiding complex com-
putation related to the veri�cation of the association rules
corresponding to statistical hypotheses tests.

1. Introduction

The goal of this paper is to contribute to the theoretical
foundations of data mining. We deal with association rules
of the form ϕ ≈ ψ where ϕ and ψ are Boolean attributes
derived from the columns of the analysed data matrixM.
The association ruleϕ ≈ ψ says thatϕ and ψ are associated
in the way given by the symbol≈. The symbol≈ is called
4ft-quanti�er . It corresponds to a condition concerning a
four-fold contingency table ofϕ and ψ inM. Association
rules of this form were introduced and studied in [2]. They
were further studied in [4, 8], the results were partly pub-
lished e.g. in [5, 6, 7, 9].

The main presented result concerns de�nability of asso-
ciation rules in classical predicate calculi. It was shown in
[9] that the association rules can be understood as formulae
of monadic predicate observational calculi de�ned in [2].
Monadic predicate observational calculus is a modi�cation
of classical predicate calculus: only �nite models are al-
lowed and generalised quanti�ers are added. 4ft-quanti�er
≈ is an example of the generalised quanti�er.

There is a natural question of classical de�nability of as-
sociation rules i.e. the questionwhich association rules can
be expressed by means of classical predicate calculus(pred-
icates, variables, classical quanti�ers∀, ∃, Boolean connec-

tives and the predicate of equality). This question is solved
by the Tharp's theorem proved in [2].

The Tharp's theorem is but too general from the point
of view of association rules. A more intuitive criterion of
classical de�nability of association rules was proved in [4]
see also [9]. The �rst goal of this paper is to show that
this criterion can be further simpli�ed for several important
classes of association rules.

The simpli�ed criterion is based on tables of critical fre-
quencies (further only TCF instead of table of critical fre-
quencies). TCF's were introduced as a tool for avoiding
complex computation [2, 4] related to the association rules
corresponding to the statistical hypothesis tests. It means
that this paper deals with three features of association rules:

• classes of association rules

• tables of critical frequencies

• classical de�nability of association rules.

The second goal of this paper is to point out to the mutual
relations among these features.

A short overview of association rules of the formϕ ≈ ψ
is given in section 2. The classes of association rules are in-
troduced in section 3. The de�nition of TCF is based on
classes of association rules and it is given in Sect. 4. Re-
sults concerning classical de�nability of association rules
are presented in Sect. 5 and 6. Some concluding remarks
are in Sect. 7.

2 Association Rules

The association rules is an expressionϕ ≈ ψ where ϕ
and ψ are Boolean attributes and the symbol≈ is the 4ft-
quanti�er. The Boolean attributesϕ and ψ are derived from
basic Boolean attributes using propositional connectives∨,
∧ and ¬ in the usual way. The basic Boolean attribute is the
expressionA(α) where the symbolα denotes a subset of the



set of all possible values of the attributeA (i.e. column of
the analysed data matrixM.)

The basic Boolean attributeA(α) is true in the row o of
M if it is a ∈ αwhere a is the value of the attributeA in the
row o. The truth values of Boolean attributesϕ and ψ are
de�ned in the usual way. The value of the Boolean attribute
ϕ in the row o of the data matrixM is denoted ϕ(o,M). It
is ϕ(o,M) = 1 if ϕ is true in o and it is ϕ(o,M) = 0 if ϕ
is false in o.

The expressions A(1), B(1, 2), and C(4, 5) are exam-
ples of basic Boolean attributes derived from the attributes
- columns of the (very simple) data matrixM see Fig. 1.

row attributes basic Boolean attributes
ofM A B C A(1) B(1, 2, 3) C(4, 5)
o1 1 9 4 1 0 1
o2 1 2 6 1 1 0
...

...
...

...
...

...
...

on 2 4 5 0 0 1

Figure 1. Data matrixM

The 4ft-quanti�er≈ corresponds to a condition concern-
ing a four-fold contingency table of ϕ and ψ in M. This
table is denoted 4ft(ϕ, ψ,M) and it is called called 4ft ta-
ble of ϕ and ψ inM , see Table 1.

Table 1. 4ft table 4ft(ϕ, ψ,M) of ϕ and ψ inM
M ψ ¬ψ
ϕ a b
¬ϕ c d

Here a is the number of the rows ofM satisfying both
ϕ and ψ, b is the number of the objects satisfyingϕ and not
satisfying ψ, etc. We write 4ft(ϕ, ψ,M) = 〈a, b, c, d〉.

The association rule ϕ ≈ ψ is true in the analysed
data matrix M if the condition corresponding to the 4ft-
quanti�er ϕ ≈ ψ is satis�ed for the 4ft-table 4ft(ϕ, ψ,M).
We write V al(ϕ ≈ ψ,M) = 1 if ϕ ≈ ψ is true in the data
matrixM, otherwise we write V al(ϕ ≈ ψ,M) = 0.

Several examples of 4ft-quanti�ers follow.
The 4ft-quanti�er⇒p,Base of founded implication [2]

is de�ned for 0 < p ≤ 1 and Base > 0 by the condition
a
a+b ≥ p ∧ a ≥ Base . The association rule ϕ ⇒p,Base ψ
means that at least 100p per cent of objects satisfying ϕ
satisfy also ψ and that there are at leastBase objects ofM
satisfying bothϕ and ψ.

The 4ft-quanti�er ⇒!
p,α,Base of lower criti-

cal implication [2] is de�ned for 0 < p ≤ 1,
0 < α < 0.5 and Base > 0 by the condition

∑a+b
i=a

(
a+b
i

)
pi(1 − p)a+b−i ≤ α ∧ a ≥ Base. The

association rule ϕ ⇒p,Base ψ corresponds to a statistical
test (on the levelα) of the null hypothesisH0 : P (ψ|ϕ) ≤ p
against the alternative oneH1 : P (ψ|ϕ) > p. Here P (ψ|ϕ)
is the conditional probability of the validity ofψ under the
condition ϕ.

The 4ft-quanti�er⇔p,Base of founded double implica-
tion [3] is de�ned for 0 < p ≤ 1 and Base > 0 by the
condition a

a+b+c ≥ p ∧ a ≥ Base. The association rule
ϕ ⇔p,Base ψ means that at least 100p per cent of rows of
M satisfying ϕ or ψ satisfy both ϕ and ψ and that there are
at leastBase rows ofM satisfying bothϕ and ψ.

The 4ft-quanti�er ≡p,Base of founded equivalence [3]
is de�ned for 0 < p ≤ 1 and Base > 0 by the con-
dition a+d

a+b+c+d ≥ p ∧ a ≥ Base . The association rule
ϕ ≡p,Base ψ means that ϕ and ψ have the same value (ei-
ther true or false) for at least 100p per cent of all objects of
M and that there are at leastBase objects satisfying both
ϕ and ψ.

Fisher's quanti�er ∼α,Base [2] is de�ned for
0 < α < 0.5 and Base > 0 by the condition
∑min(r,k)
i=a

(ki)(n−kr−i)
(rn)

≤ α ∧ ad > bc ∧ a ≥ Base. This
quanti�er corresponds to the statistical test (on the levelα)
of the null hypothesis of independence ofϕ and ψ against
the alternative one of the positive dependence.

The 4ft-quanti�er→conf,sup is de�ned for 0 < conf <
1 and 0 < sup < 1 by the condition a

a+b ≥ conf ∧
a

a+b+c+d ≥ sup. It corresponds to the �classical� associa-
tion rule with con�dence conf and support sup [1].

Additional 4ft-quanti�ers are de�ned e.g. in [2, 3, 6].
The data mining procedure 4ft-Miner [10] deals with 14
types of 4ft-quanti�ers.

An example of association rule is the expression
A(1) ∧B(1, 2, 3)⇔p,Base C(4, 5)

It means that at least100p per cent of rows of data matrixM
satisfyingA(1) ∧ B(1, 2, 3) or C(4, 5) satisfy bothA(1) ∧
B(1, 2, 3) and C(4, 5) and that there are at leastBase rows
ofM satisfying bothA(1) ∧B(1, 2, 3) and C(4, 5).

The condition associated to the 4ft-quanti�er≈ de�nes
a {0, 1} - functionAsf≈ such that

Asf≈(a, b, c, d) =





1 if the condition associated to≈
is satis�ed for 〈a, b, c, d〉

0 otherwise.
(Here we write Asf≈(a, b, c, d) instead of
Asf≈(〈a, b, c, d〉).) This function is called associated
function of the 4ft-quanti�er≈, see [2]. It is de�ned for all
4ft tables 〈a, b, c, d〉.

Further we will write only ≈ (a, b, c, d) instead of
Asf≈(a, b, c, d). It means that the association ruleϕ ≈ ψ
is true in the analysed data matrixM iff ≈ (a, b, c, d) = 1
where 〈a, b, c, d〉 = 4ft(ϕ, ψ,M).



3 Classes of Association Rules

The classes of association rules are de�ned by classes of
4ft-quanti�ers. The association ruleϕ ≈ ψ belongs to the
class of implicational rules if the 4ft-quanti�er ≈ belongs
to the class of implication quanti�ers. We also say that the
association ruleϕ ≈ ψ is implicational rule and that the 4ft-
quanti�er≈ is implicational quanti�er. This is the same for
additional classes of association rules.

We are going to present some of classes of association
rules. We present more classes than we use in the main re-
sults concerning de�nability of association rules. The rea-
son is to point out to additional interesting properties of as-
sociation rules. The main results on de�nability concerns
implicational and equivalency rules only.

3.1 Implicational Quanti�ers

The class of implicational quanti�ers is de�ned in [2]
such that the 4ft-quanti�er≈ is implicational if

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ ≤ b

implies
≈ (a′, b′, c′, d′) = 1

for all 4ft tables < a, b, c, d > and < a′, b′, c′, d′ >. The
condition a′ ≥ a ∧ b′ ≤ b is the truth preservation con-
dition for implicational quanti�ers .

Let us assume that 〈a, b, c, d〉 is the 4ft table of ϕ and ψ
in data matrixM and that 〈a′, b′, c′, d′〉 is the 4ft table ofϕ
and ψ in data matrixM′. The truth preservation condition
a′ ≥ a ∧ b′ ≤ b means that in data matrixM′ there
are more rows satisfying bothϕ and ψ than in data matrix
M and that in M′ there are fewer rows satisfying ϕ and
not satisfying ψ than inM. In other words this condition
means that that the 4ft table 〈a′, b′, c′, d′〉 is �better from the
point of view of implication� than the 4ft table 〈a, b, c, d〉
(i-better, see [2]).

Thus it is reasonable to expect that if the implicational
rule ϕ ≈ ψ (i.e. the rule expressing implication by≈) is
true in data matrixM then it is also true in data matrixM′
that is better from the point of view of implication. This
expectation is ensured for implicational quanti�ers by the
above given de�nition.

It is easy to prove that the 4ft-quanti�er ⇒p,Base of
founded implication (see Sect. 2) is implicational. It is
proved in [2] that the 4ft-quanti�er⇒!

p,α,Base of lower crit-
ical implication (see Sect. 2) is also implicational.

Remark 1: It is also easy to prove for the implicational
quanti�er⇒∗ that the value⇒∗ (a, b, c, d) depends neither
on c nor on d. Thus we write only⇒∗ (a, b) instead of
⇒∗ (a, b, c, d) for the implicational quanti�er⇒∗.

There are various theoretical results related to the class
of implicational quanti�ers. Both practically useful and the-
oretically interesting are results concerning deduction rules
of the form ϕ⇒∗ψ

ϕ′⇒∗ψ′ where ϕ, ψ are Boolean attributes and
⇒∗ is the implicational quanti�er [2, 6]. There are also
results concerning implicational rules in data with missing
information see [2] and also [7].

3.2 Double Implicational Quanti�ers

We can try to express the relation of equivalence of
Boolean attributes ϕ and ψ in an analogy to propositional
logic. If u and v are propositions and both u → v and
v → u are true, then u is equivalent to v ( the symbol �→�
is here a propositional connective of implication). Thus we
can try to express the relation of equivalence of attributes
ϕ and ψ using a �double implicational� 4ft-quanti�er⇔∗
such that ϕ ⇔∗ ψ if and only if ϕ ⇒∗ ψ and ψ ⇒∗ ϕ,
where⇒∗ is a suitable implicational quanti�er.

If we apply the truth preservation condition for implica-
tional quanti�er to ϕ ⇒∗ ψ, we obtain a′ ≥ a ∧ b′ ≤ b.
If we apply it to ψ ⇒∗ ϕ, we obtain a′ ≥ a ∧ c′ ≤ c,
(c is here instead of b, see Table 1). This leads to the truth
preservation condition for double implicational quanti-
�ers a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c. Thus the class of double
implicational quanti�ers is de�ned in [8], (see also [3] and
[6]) such that the 4ft-quanti�er≈ is double implicational
if

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c

implies
≈ (a′, b′, c′, d′) = 1

for all 4ft tables< a, b, c, d > and < a′, b′, c′, d′ >.
It is easy to prove that the 4ft-quanti�er ⇔p,Base of

founded double implication see Sect. 2 is double im-
plicational. It can be also proved that the 4ft-quanti�er
⇔!
p,α of lower critical double implication [3] de�ned for

0 < p ≤ 1, 0 < α < 0.5 and Base > 0 by the condition∑a+b+c
i=a

(
a+b+c
i

)
pi(1 − p)a+b+c−i ≤ α ∧ a ≥ Base is

double implicational see [8].
Remark 2: The value⇔∗ (a, b, c, d) does not depend on

d for the double implicational quanti�er⇔∗. Thus we write
only ⇔∗ (a, b, c) instead of⇔∗ (a, b, c, d) for the double
implicational quanti�er⇔∗.

However it can be proved that there is no implicational
quanti�er⇒∗ such that⇔p,Base (a, b, c) = 1 if and only
if ⇒∗ (a, b) = 1 and ⇒∗ (a, c) = 1 and analogously for
4ft-quanti�er⇔!

p,α[8].
This fact led to the de�nition and study of the class of

pure double implicational quanti�ers and the class of strong
double implicational quanti�ers [8].



We say that the quanti�er⇔∗ is pure double implica-
tional if there is an implicational quanti�er⇒∗ such that

⇔∗ (a, b, c) = 1 if and only if ⇒∗ (a, b) ∧ ⇒∗ (a, c)

for each 4ft table < a, b, c, d >. We say that the quanti�er
⇔∗ is strong double implicational if there are two implica-
tional quanti�ers⇒∗1 and⇒∗2 such that `

⇔∗ (a, b, c) = 1 if and only if ⇒∗1 (a, b) ∧ ⇒∗2 (a, c)

for each 4ft table< a, b, c, d >.
It is easy to prove that each pure double implicational

quanti�er is strong double implicational and that each
strong double implicational quanti�er is double implica-
tional. There are interesting properties of pure double im-
plicational and of strong implicational quanti�ers [8].

Let us note that the quanti�ers⇔p,Base and ⇔!
p,α are

similar what concerns dealing with the sumb+ c. This sum
is treated in the same way as the frequencyb is treated in the
quanti�ers⇒p,Base and ⇒!

p,α, see above. This led to the
de�nition of the class of Σ-double implicational quanti�ers
[8]. The 4ft-quanti�er≈ is Σ-double implicational if

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ + c′ ≤ b+ c

implies
≈ (a′, b′, c′, d′) = 1

for all 4ft tables< a, b, c, d > and < a′, b′, c′, d′ >.
There are again various interesting results related to the

class of Σ-double implicational quanti�ers. An example
is a criterion of correctness of deduction rules of the form
ϕ⇔∗ψ
ϕ′⇔∗ψ′ where ϕ, ψ are Boolean attributes and⇔∗ is the
Σ-double implicational quanti�er [6].

3.3 Equivalence Quanti�ers

The double implicational quanti�er is an attempt to ex-
press the equivalence of Boolean attributesϕ and ψ in an
analogy to propositional logic. We start from the fact that
if u and v are propositions and both u → v and v → u are
true, then u is equivalent to v.

There is an other way to express the equivalence of the
propositions u and v. The propositions u and v are equiv-
alent if both u → v and ¬u → ¬v are true. Thus we can
try to express the relation of equivalence of the attributes
ϕ and ψ using an �equivalence� 4ft-quanti�er≡∗ such that
ϕ ≡∗ ψ if and only ifϕ⇒∗ ψ and ¬ϕ⇒∗ ¬ψ , where⇒∗
is the suitable implicational quanti�er.

If we apply the truth preservation condition for implica-
tional quanti�ers toϕ⇒∗ ψ we obtain a′ ≥ a ∧ b′ ≤ b. If
we apply it to ¬ϕ ⇒∗ ¬ψ, we obtain d′ ≥ d ∧ c′ ≤ c, (c
is here instead of b and d is instead of a, see table 1). This
leads to the truth preservation condition for equivalency

quanti�ers [2, 8]. Thus the class of equivalency quanti-
�ers is de�ned such that the 4ft-quanti�er≈ is equivalency
quanti�er if

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d

implies
≈ (a′, b′, c′, d′) = 1

for all 4ft tables< a, b, c, d > and < a′, b′, c′, d′ >.
Let us emphasize that the class of quanti�ers de�ned

by the truth preservation condition for equivalency quanti-
�ers was de�ned in the frame of development of the GUHA
method of exploratory data analysis about 35 years ago see
e.g. [2]. This class was denominated as a class of associa-
tional quanti�ers in [2]. However the termassociation rule
is now commonly used for the association rules with con-
�dence and support de�ned in [1]. We use, therefore, the
terms equivalency quanti�er and equivalency rule.

It is easy to prove that the 4ft-quanti�er ≡p,Base of
founded equivalence see Sect. 2 is equivalency. It can be
also proved that the 4ft-quanti�er≡!

p,α,Base of lower criti-
cal equivalence [3] de�ned for 0 < p ≤ 1, 0 < α < 0.5
and Base > 0 by the condition

∑n
i=a+d

(
n
i

)
pi(1 − p)n ≤

α ∧ a ≥ Base is equivalency see [8].
It is also proved in [2] that the Fisher's quanti�er, the

χ2-quanti�er∼2
α,Base and the quanti�er∼δ,Base of simple

deviation are equivalency (i.e. associational in the sense
of [2]) The χ2-quanti�er ∼2

α,Base is de�ned in [2] for
0 < α ≤ 0.5 and Base > 0 by the condition ad > bc ∧
a ≥ Base∧ (ad−bc)2

(a+b)(a+c)(b+d)(b+d) (a+b+c+d) ≥ χ2
α where

χ2
α is (1−α)-quantile of theχ2 distribution. The quanti�er
∼δ,Base of simple deviation is de�ned in [2] for0 ≤ δ and
Base > 0 by the condition ad > eδbc ∧ a ≥ Base.

It can be however proved that the 4ft-quanti�er
→conf,sup de�ned by the condition a

a+b ≥ conf ∧
a

a+b+c+d ≥ sup (see Sect. 2) that corresponds to the �clas-
sical� association rule is not equivalency [8] (i.e. not asso-
ciational in the sense of [2]).

We can de�ne classes of various equivalency quanti-
�ers analogously to the classes of pure double implicational
quanti�ers, of strong double implicational quanti�ers and
Σ-double implicational quanti�ers [8]. There are interest-
ing properties of the just de�ned equivalency quanti�ers see
[2, 6].

4 Tables of Critical Frequencies

Further we will denoteN+ = {0, 1, 2, . . .}∪{∞}. First
we prove the theorem about partial tables of maximal b.
(Please note that the equivalency quanti�er is the associa-
tional quanti�er according to [2]).



Theorem 1 Let ≈ be an equivalency quanti�er. Then
there is a non-negative function Tb≈ that assigns to each
triple 〈a, c, d〉 of non-negative natural numbers a value
Tb≈(a, c, d) ∈ N+ such that

1. For each b ≥ 0 it is ≈ (a, b, c, d) = 1 if and only if
b < Tb≈(a, c, d).

2. If a′ > a then Tb≈(a′, c, d) ≥ Tb≈(a, c, d).

Proof: Let us de�ne

Tb≈(a, c, d) = min{b| ≈ (a, b, c, d) = 0} .

Let us remember that≈ is equivalency. It means that

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d

implies
≈ (a′, b′, c′, d′) = 1

It means among other

I: If ≈ (a, b, c, d) = 0 and v ≤ a then also
≈ (v, b, c, d) = 0.

II: If ≈ (a, b, c, d) = 0 and w ≥ b then also
≈ (a,w, c, d) = 0.

The point II means that it is≈ (a, b, c, d) = 0 for each
b ≥ min{b| ≈ (a, b, c, d) = 0}.

We prove that the function de�ned in the above given way
has the properties 1. an 2.

1. Let us suppose b ≥ 0 and ≈ (a, b, c, d) = 1.
We have to prove b < Tb≈(a, c, d). Let us sup-
pose b ≥ Tb≈(a, c, d) = min{b | ≈ (a, b, c, d) = 0}.
It however means according to point II that
≈ (a, b, c, d) = 0. Thus it must be b < Tb≈(a, c, d).
Let us suppose b ≥ 0 and ≈ (a, b, c, d) = 0. We have
to prove b ≥ Tb≈(a, c, d). It but follows from the de�-
nition of Tb≈(a, c, d).

2. Let us suppose a′ > a and also Tb≈(a′, c, d) <
Tb≈(a, c, d). Let us denote e = Tb≈(a, c, d),
thus it is e > 0. It means Tb≈(a′, c, d) ≤
e − 1 and thus according to the de�nition of
Tb≈(a′, c, d) it is ≈ (a′, e − 1, c, d) = 0. Due
to point I it is also ≈ (a, e− 1, c, d) = 0. It
is but also e− 1 < e = Tb≈(a,c,d) and it means
≈ (a, e − 1, c, d) = 1 according to already proved
point 1. It is a contradiction and thus it cannot be
both a′ > a and Tb≈(a′, c, d) < Tb≈(a, c, d). It
but means that it followsTb≈(a′, c, d) ≥ Tb≈(a, c, d)
from a′ > a.

This �nishes the proof.

Let us remember that the value of⇒∗ (a, b, c, d) de-
pends neither on c nor on d for the implicational quan-
ti�er ⇒∗ and thus we write only ⇒∗ (a, b) instead of
⇒∗ (a, b, c, d), see Remark 1 in Sect. 3.

The just proved theorem has a direct consequence for the
implicational quanti�ers.

Theorem 2 Let ⇒∗ be an implicational quanti�er. Then
there is a non-negative non-decreasing functionTb⇒∗ that
assigns to each non-negative integera a value Tb⇒∗ ∈ N+

such that for each b ≥ 0 it is⇒∗ (a, b) = 1 if and only if
b < Tb⇒∗(a).

Proof: Due to the above mentioned Remark 1 we can only
put Tb⇒∗(a) = Tb⇒∗(a, 0, 0) where Tb⇒∗(a, c, d) is the
function from the theorem 1

We de�ne the notions of tables of maximalb on the basis
of just proved theorems.

De�nition 1
1. Let ≈ be an equivalency quanti�er and let c ≥ 0 and
d ≥ 0 be the natural numbers. Then the partial table
of maximal b for the quanti�er≈ and for the couple
〈c, d〉 is the function Tbp≈,c,d de�ned such that

Tbp≈,c,d(a) = Tb≈(a, c, d)

where Tb≈(a, c, d) is the function from the theorem 1.

2. Let⇒∗ be an implicational quanti�er. Then the func-
tion Tb⇒∗ from the theorem 2 is a table of maximal
b for the implicational quanti�er⇒∗.

3. Let T be a partial table of maximal b or a table of
maximal b. Then a step in the table T is each such
a ≥ 0 for which it is T (a) < T (a+ 1).

It is important that the function Tb⇒∗ makes it
possible to use a simple test of inequality instead
of a rather complex computation. For example we
can use inequality b < Tb⇒!

p,α,s
(a) instead of condition

∑a+b
i=a

(a+b)!
i!(a+b−i)!p

i(1− p)a+b−i ≤ α ∧ a ≥ s for quanti-
�er⇒!

p,α,s of lower critical implication, see section 2. An
other form of the table of critical frequencies for implica-
tional quanti�er is de�ned in [2].

Let us remark that it can be Tb⇒∗(a) = ∞. A triv-
ial example gives the quanti�er ⇒T de�ned such that
⇒T (a, b) = 1 for each a,b. Then it is Tb⇒T (a) =∞ for
each a.

The partial table of maximal b and table of maximal b
are called tables of critical frequencies. Further tables of
critical frequencies for Σ-double implicational quanti�ers
and for Σ-equivalence quanti�ers are de�ned and studied in
[8].



5 Classical De�nability and TCF

5.1 Association Rules and Observational Calculi

Monadic observational predicate calculi (MOPC for
short) are de�ned and studied in [2] as a special case of
observational calculi. MOPC can be understood as a mod-
i�cation of classical predicate calculus such that only �nite
models (i.e. data structures in which the formulas are inter-
preted) are admitted and more quanti�ers than∀ and ∃ are
used. These new quanti�ers are called generalised quanti-
�ers. The 4ft-quanti�er is a special case of the generalised
quanti�ers.

Classical monadic predicate calculus (CMOPC for short)
is a MOPC with only classical quanti�ers. In other words it
is a classical predicate calculus with �nite models. The for-
mulas (∀x)P1(x) and (∃x)(∃y)((x 6= y)∧P1(x)∧¬P2(y))
are examples of formulas of CMOPC.

If we add the 4ft-quanti�ers to CMOPC we get MOPC
the formulas of which correspond to association rules. Ex-
amples of such formulas are (⇒p,Base x)(P1(x), P2(x))
and (⇔p,Base x)(P1(x)∨P3(x), P2(x)∧P4(x)). The val-
ues of these formulas can be de�ned in Tarski style see [2].
We suppose that the formulas are evaluated in{0,1} - data
matrices (i.e. �nite data structures), see example in Fig. 2
where predicates P1, . . . , Pn are interpreted by columns -
functions f1, . . . , fn respectively.

row P1 P2 . . . Pn P1 ∨ P3 P2 ∧ P4

ofM f1 f2 . . . fn max(f1, f3) min(f2, f4)

o1 1 0 . . . 1 0 1
o2 0 1 . . . 1 1 0
...

...
... . . . ...

...
...

on 1 0 . . . 0 0 1

Figure 2. Example of {0,1} ­ data matrix

The rule (≈ x)(P1(x) ∨ P3(x), P2(x) ∧ P4(x)) can be
written in various forms, e.g. (≈)(P1 ∨ P3, P2 ∧ P4) or
P1 ∨ P3 ≈ P2 ∧ P4. Its evaluation is in any case based
on the value ≈ (a, b, c, d) where 〈a, b, c, d〉 is the 4ft-table
of P1(x) ∨ P3(x) and P2(x) ∧ P4(x) in the data matrix in
question. The same is true for each association rule of the
form (≈ x)(ϕ(x), ψ(x)).

Let us remark that the association rule of the form like
A(1, 2, 3) ≈ B(4, 5) can be understood (informally speak-
ing) like the ruleA1 ∨ A2 ∨ A3 ≈ B4 ∨ B5 where A1 is a
predicate corresponding to the basic Boolean attributeA(1)
etc.

5.2 De�nability and Associated Function

The natural question is what association rules are
classically de�nable. We say that the association rule
(≈ x) (ϕ(x), ψ(x)) - formula of MOPC is classically de-
�nable if there is a formulaΦ of CMOPC with equality such
that Φ is logically equivalent to (≈ x)(ϕ(x), ψ(x)). The
association rule (≈ x)(P1(x) ∨ P3(x), P2(x) ∧ P4(x)) is
e.g. classically de�nable if it is equivalent to the formula
created from the predicates P1(x), P2(x), P3(x), P4(x),
propositional connectives ¬,∨,∧ classical quanti�ers ∃, ∀
and from the binary predicate of equality =. The precise
formal de�nition is given in [2], see also [9]. If the as-
sociation rule (≈ x)(ϕ,ψ) is classically de�nable then we
also say that the 4ft-quanti�er≈ is classically de�nable and
vice-versa.

The question of classical de�nability of (not only) asso-
ciation rules is solved by the Tharp's theorem proved in [2].
The Tharp's theorem is but too complex and general from
the point of view of association rules. A more intuitive cri-
terion of classical de�nability of association rules is proved
in [4] see also [9]. This criterion is based on the associated
function Asf≈(a, b, c, d) of the 4ft-quanti�er ≈ (we write
sometimes only ≈ (a, b, c, d) instead of Asf≈(a, b, c, d),
see section 2).

The criterion uses the notion of interval inN 4 whereN
is the set of all natural numbers. It is de�ned as the set

I = I1 × I2 × I3 × I4

such that it is for i = 1, 2, 3, 4 Ij = 〈k, l) or Ij = 〈k,∞)
where 0 ≤ k < l are natural numbers. The empty set ∅ is
also the interval inN 4.

The criterion of classical de�nability of association rules
is given by the following theorem proved in [4], see also [9].

Theorem 3 The 4ft-quanti�er ≈ is classically de�nable if
and only if there areK intervals I1, . . . , IK in N 4, K ≥ 0
such that it is for each 4ft table 〈a, b, c, d〉

Asf≈(a, b, c, d) = 1 iff 〈a, b, c, d〉 ∈
K⋃

j=1

Ij .

5.3 De�nability of Equivalency Quanti�ers

We use the criterion of classical de�nability based on as-
sociated functions of 4ft-quanti�ers to give a very intuitive
necessary condition of classical de�nability of equivalency
rules. This condition says that if the equivalency quanti�er
is de�nable then its each partial table of maximal b of this
quanti�er has only �nite number of steps. It is proved in the
next theorem.



Theorem 4 Let ≈ be an classically de�nable equivalency
quanti�er. Then each its partial table of maximalb has only
�nite number of steps.

Proof: We suppose that ≈ is classically de�nable quanti-
�er. Thus according to the theorem 3 there areK intervals
I1, . . . , IK in N 4, K ≥ 0 such that it is for each 4ft table
〈a, b, c, d〉

Asf≈(a, b, c, d) = 1 iff 〈a, b, c, d〉 ∈
K⋃

j=1

Ij .

If K = 0 then it is ≈ (a, b, c, d) = 0 for each 4ft table
〈a, b, c, d〉 and it is Tbp≈,c,d(a) = 0 for each a and for each
partial table Tbp≈,c,d of maximal b of ≈. It but means that
each such partial table of maximalb has no step.

Let us suppose thatK > 0 and that

Ij = 〈aj , Aj) × 〈bj , Bj) × 〈cj , Cj) × 〈dj , Dj) .

Suppose that for c0 and d0 the partial tableTbp≈(a, c0, d0)
of maximal b has in�nitely many steps. It means that for
each natural n > 0 there are a > n and b > n such that
≈ (a, b, c0, d0) = 1. Thus there must be m ∈ 1, . . . ,K
such that

Im = 〈am,∞) × 〈bm,∞) × 〈cm, Cm) × 〈dm, Dm)

and c0 ∈ 〈cm, Cm) and d0 ∈ 〈dm, Dm).
We suppose that the partial table Tbp≈(a, c0, d0) of

maximal b has in�nitely many steps, thus there is also
a > am such that Tbp≈(a, c0, d0) < Tbp≈(a + 1, c0, d0).
Thus it is

≈ (a, T bp≈(a+ 1, c0, d0), c0, d0) = 0 .

Let us denote b′ = max(bm, T bp≈(a+ 1, c0, d0)), thus it is
≈ (a, b′, c0, d0) = 0 because of ≈ is equivalency (see also
point II in the proof of the theorem 1).

It is however 〈a, b′, c0, d0〉 ∈ Im and it means that
≈ (a, b′, c0, d0) = 1. It is a contradiction that �nishes
the proof.

5.4 De�nability of Implicational Quanti�ers

The next theorem shows that the necessary condition
of de�nability of equivalency rules proved in theorem 4 is
also the suf�cient condition of de�nability of implicational
quanti�ers.

Theorem 5 Let ⇒∗ be an implicational quanti�er. Then
⇒∗ is classically de�nable if and only if its table of maximal
b has only �nite number of steps.

Proof: Let Tb⇒∗ be a table of maximal b of⇒∗.
If ⇒∗ is classically de�nable then we prove that

Tb⇒∗ has only �nite number of steps in a similar way
like we proved in the theorem 4 that the partial table
Tbp≈(a, c0, d0) of maximal b has �nite number of steps.

Let us suppose that Tb⇒∗ has K steps where K ≥ 0 is
a natural number. We prove thatTb⇒∗ is classically de�n-
able.

First let us suppose that K = 0. We distinguish two
cases: Tb⇒∗(1) = 0 and Tb⇒∗(1) > 0.

If it is Tb⇒∗(1) = 0 then it is also Tb⇒∗(0) = 0 (there
is no step). It but means that⇒∗ (a, b, c, d) = 0 for each
4ft table 〈a, b, c, d〉 because of it cannot be b < 0. Thus it is
⇒∗ (a, b, c, d) = 1 if and only if 〈a, b, c, d〉 ∈ ∅. The empty
set ∅ is but also the interval inN 4 and the quanti�er⇒∗ is
according to the theorem 3 classically de�nable.

If it is K = 0 and Tb⇒∗(1) > 0 then it is
⇒∗ (a, b, c, d) = 1 if and only if

〈a, b, c, d〉 ∈ 〈0,∞) × 〈0, T b⇒∗(1)) × 〈0,∞) × 〈0,∞)

and thus the quanti�er⇒∗ (a, b, c, d) is de�nable accord-
ing to the theorem 3.

Let us suppose thatS > 0 is a natural number and that

0 ≤ a1 < a2 < . . . < aS

are all the steps in Tb⇒∗ . We will de�ne intervals
I1, I2, . . . , IS+1 in the following way.

If Tb⇒∗(a1) = 0 then I1 = ∅ otherwise

I1 = 〈0, a1 + 1)× 〈0, T b⇒∗(a1))× 〈0,∞)× 〈0,∞) .

For j = 2, . . . , S we de�ne

Ij = 〈aj−1, aj + 1)× 〈0, T b⇒∗(aj))× 〈0,∞)× 〈0,∞) .

The interval IS+1 is de�ned such that

IS+1 = 〈aS ,∞)× 〈0, T b⇒∗(aS))× 〈0,∞)× 〈0,∞) .

It is clear that the intervals I1, I2, . . . , IS+1 are de�ned
such that

⇒∗ (a, b, c, d) = 1 iff 〈a, b, c, d〉 ∈
S+1⋃

j=1

Ij

and according to the theorem 3 the quanti�er⇒∗ is de�n-
able. This �nishes the proof.

6 Unde�nability of Particular Quanti�ers

First we prove that the 4ft-quanti�ers ⇒p,Base of
founded implication,⇒!

p,α,Base of lower critical implica-
tion are not classically de�nable. We will use the following
lemmas.



Lemma 1 Let⇒∗ be an implicational quanti�er that satis-
�es the conditions

a) There is A ≥ 0 such that for each a ≥ A there is b such
that⇒∗ (a, b) = 0.

b) For each a ≥ 0 and b ≥ 0 such that⇒∗ (a, b) = 0 there
is a′ ≥ a for which it is⇒∗ (a′, b) = 1.

Then the tableTb⇒∗ of maximal b of⇒∗ has in�nitely many
steps.

Proof: If the quanti�er⇒∗ satis�es the condition a) then it
is Tb⇒∗(a) < ∞ for each a ≥ 0. If the quanti�er ⇒∗
satis�es the condition b) then there is for each a > A
such a′ > a that ⇒∗ (a′, T b⇒∗(a)) = 1. Thus it is
⇒∗ (a, T b⇒∗(a)) = 0 (by the de�nition of Tb⇒∗) and
⇒∗ (a′, T b⇒∗(a)) = 1. It means that between a and a′
there must be a step s of the table Tb⇒∗ .

We have proved that for eacha > A there is a step s ≥ a
of the table Tb⇒∗ . It but means that the table Tb⇒∗ has
in�nitely many steps. This �nishes the proof.

Lemma 2 Let us suppose that≈ is an equivalency quanti-
�er and c0 and d0 are natural numbers such that the follow-
ing conditions are satis�ed.

a) There is A ≥ 0 such that for each a ≥ A there is b such
that ≈ (a, b, c0, d0) = 0.

b) For each a ≥ 0 and b ≥ 0 such that≈ (a, b, c0, d0) = 0
there is a′ ≥ a for which≈ (a′, b, c, d) = 1.

Then the partial table Tbp≈(a, c0, d0) of maximal b of ≈
has in�nitely many steps.

Proof: The proof is similar to the proof of the lemma 2.

Lemma 3 Let us suppose that 0 < p < 1 and i ≥ 0 is a
natural number. Then it is

lim
K→∞

(
K

i

)
pi(1− p)K−i = 0·

Proof: It is:
(
K

i

)
pi(1− p)K−i ≤ Kipi(1− p)K(1− p)−i =

= Ki(1− p)K
(

p

1− p
)i

.

Thus it is enough to prove that forr ∈ (0, 1) and i ≥ 0 it is

lim
K→∞

KirK = 0·

To prove this it is enough to prove that forr ∈ (0, 1), real x
and a natural i ≥ 0 it is

lim
x→∞

xirx = 0 .

It is limx→∞ xi =∞, limx→∞ rx = 0 and thus according
to the l'Hospital's rule it is

lim
x→∞

xirx = lim
x→∞

xi

r−x
= lim
x→∞

(xi)(i)

(r−x)(i)
=

= lim
x→∞

i!
(− ln r)ir−x

= lim
x→∞

rx = 0 ,

where (xi)(i) is an i-th derivation ofxi and analogously for
(r−x)(i).

Lemma 4 Let us suppose a ≥ 0 and b ≥ 0 are natural
numbers. Then it is for eachk ∈ 〈0, b〉 and 0 < p < 1

lim
a→∞

(
a+ b

a+ k

)
pa+k(1− p)b−k = 0·

Proof: It is:
(
a+ b

a+ k

)
pa+k(1− p)b−k =

=
(

a+ b

a+ b− (a+ k)

)
pa+k(1− p)b−k =

=
(
a+ b

b− k
)
pa+k(1− p)b−k ≤

≤ (a+ b)b−kpa+k(1− p)b−k·
Thus it is enough to prove that it is

lim
a→∞

(a+ b)b−kpa = 0·

The proof of this assertion is similar to the proof of the as-
sertion

lim
K→∞

KirK = 0·
in the lemma 3.

Lemma 5

1. The 4ft-quanti�er⇒p,Base of founded implication sat-
is�es the condition a) from the lemma 1 for each
0 < p ≤ 1 and Base > 0.

2. The 4ft-quanti�er ⇒!
p,α,Base of lower critical impli-

cation satis�es the condition a) from the lemma 1 for
each 0 < p < 1, 0 < α < 0.5 and Base > 0.

Proof:

1. We have to prove that there isA ≥ 0 such that for each
a ≥ A there is b such that⇒p,Base (a, b) = 0 for each
0 < p ≤ 1 and Base > 0. Let us remember that
the 4ft-quanti�er⇒p,Base is de�ned by the condition
a
a+b ≥ p ∧ a ≥ Base·
Let be A > Base and a ≥ A. Then we choose b′ such
that b′ > a−p∗a

p . Then it is⇒p,Base (a, b′) = 0.



2. We have to prove that there isA ≥ 0 such that for each
a ≥ A there is b such that⇒!

p,α,Base (a, b) = 0 for
each 0 < p < 1, 0 < α < 0.5 and Base > 0. Let us
remember that the 4ft-quanti�er⇒!

p,α,Base is de�ned
by the condition

a+b∑

i=a

(
a+ b

i

)
pi(1− p)a+b−i ≤ α ∧ a ≥ Base .

Let be A > Base and a ≥ A. We show that there is a
natural b such that

a+b∑

i=a

(
a+ b

i

)
pi(1− p)a+b−i > α .

It is
∑a+b
i=a

(
a+b
i

)
pi(1− p)a+b−i > α if and only if

a−1∑

i=0

(
a+ b

i

)
pi(1− p)a+b−i ≤ 1− α

because of
∑a+b
i=0

(
a+b
i

)
pi(1− p)a+b−i = 1.

According to the lemma 3 there is a natural V > a
such that it is

(
V

i

)
pi(1− p)V−i ≤ 1− α

a

for i = 0, . . . , a− 1. Thus it is
a−1∑

i=0

(
V

i

)
pi(1− p)V−i ≤ 1− α

Let us choose b = V − a. It means
a−1∑

i=0

(
a+ b

i

)
pi(1− p)a+b−i ≤ 1− α

and it �nishes the proof.

Lemma 6
1. The 4ft-quanti�er⇒p,Base of founded implication sat-

is�es the condition b) from the lemma 1 for each
0 < p ≤ 1 and Base > 0.

2. The 4ft-quanti�er⇒!
p,α,Base of lower critical implica-

tion satisfy the condition satis�es the conditionb) from
the lemma 1 for each 0 < p < 1, 0 < α < 0.5 and
Base > 0.

Proof:

1. We have to prove that for each a ≥ 0 and b ≥ 0 such
that⇒p,Base (a, b) = 0 there is a′ ≥ a for that it is
⇒p,Base (a, b) = 1. The proof is trivial, we use the
fact that lima→∞ a

a+b = 1.

2. We have to prove that for each a ≥ 0 and b ≥ 0 such
that⇒!

p,α,Base (a, b) = 0 there is a′ ≥ a for that it is
⇒!
p,α,Base (a, b) = 1.

Let us suppose that⇒!
p,α,Base (a, b) = 0. It means

that a < Base or
∑a+b
i=a

(
a+b
i

)
pi(1− p)a+b−i > α .

According to the lemma 4 there is naturaln such that
for each e, e > n and k = 0, . . . , b it is

(
e+ b

e+ k

)
pe+k(1− p)b−k < α

b+ 1
·

Let us choose a′ = max{a, n,Base}. Then it is
a′ ≥ Base and also

a′+b∑

i=a′

(
a′ + b

i

)
pi(1− p)a′+b−i =

=
b∑

k=0

(
a′ + b

a′ + k

)
pa
′+k(1− p)b−k < α ·

Thus it is ⇒!
p,α,Base (a′, b) = 1 and it �nishes the

proof.

Theorem 6 The 4ft-quanti�er ⇒p,Base of founded impli-
cation is not classically de�nable for each0 < p ≤ 1 and
Base > 0.

The 4ft-quanti�er⇒!
p,α,Base of lower critical implica-

tion is not classically de�nable for each 0 < p < 1,
0 < α < 0.5 and Base > 0.

Proof: The table of maximal b of the 4ft-quanti�er⇒p,Base

of founded implication has in�nitely many steps according
to the lemmas 2, 5 and 6. Thus it is not classically de�nable
according to the theorem 5.

The proof for the quanti�er⇒!
p,α,Base is analogous.

Now we prove that the the Fisher's quanti�er∼α,Base, is
not classically de�nable. Let us remember that it is de�ned
for 0 < α < 0.5 and Base > 0 by the condition

min(r,k)∑

i=a

(
k
i

)(
n−k
r−i
)

(
r
n

) ≤ α ∧ ad > bc ∧ a ≥ Base·

We use the following results from [2].

De�nition 2 (see [2]) The equivalency quanti�er≈ is sat-
urable if it satis�es:

1. For each 4ft-table 〈a, b, c, d〉 with d 6= 0 there is an
a′ ≥ a such that≈ (a′, b, c, d) = 1.

2. For each 4ft-table 〈a, b, c, d〉 with a 6= 0 there is an
d′ ≥ d such that≈ (a, b, c, d′) = 1.



3. For each 4ft-table 〈a, b, c, d〉 there is a 4ft-table
〈a′, b′, c′, d′〉 such that a′ ≥ a, b′ ≥ b, c′ ≥ c, d′ ≥ d
and ≈ (a′, b′, c′, d′) = 0.

Theorem 7 The Fisher's quanti�er ∼α,Base is saturable
for 0 < α < 0.5 and Base > 0.

Proof: See [2].

Lemma 7 There are natural numbers c0 and d0 such that
the Fisher's quanti�er ∼α,Base satis�es the conditions a)
and b) from the lemma 2.

Proof: We prove that the conditions a) and b) are satis�ed
for c0 = 1 and d0 = 1. We have to proof

a) There is A ≥ 0 such that for each a ≥ A there is b such
that ∼α,Base (a, b, 1, 1) = 0.

b) For each a ≥ 0 and b ≥ 0 such that ≈ (a, b, 1, 1) = 0
there is a′ ≥ a for which∼α,Base (a′, b, 1, 1) = 1.

Let us choose b = a + 1 for each a ≥ Base, then it is
ad < bc and thus it is ∼α,Base (a, b, 1, 1) = 0. It means
that the condition a is satis�ed.

The condition b follows from the fact that the Fisher's
quanti�er∼α,Base is saturable, see theorem 7.

Theorem 8 The Fisher's quanti�er ∼α,Base is not classi-
cally de�nable for each 0 < α < 0.5 and Base > 0.

Proof: The partial table Tbp∼α,Base(a, 1, 1) of maximal b
of ∼α,Base has in�nitely many steps according to the lem-
mas 7 and 2. Thus it is not classically de�nable according
to the theorem 4.

7 Conclusions

We have presented a simple criterion of classical de�n-
ability of the important 4ft-quanti�ers. This criterion is
based on the tables of critical frequencies that are itself im-
portant tool for veri�cation of association rules. This crite-
rion depends on the class of association rules (i.e. the class
of 4ft-quanti�ers) we deal with. We also pointed out to the
relations of the classes of association rules to the important
deduction rules concerning association rules see Sect. 3.

Let us remark that there are further interesting and prac-
tically useful relations of tables of critical frequencies,
classes of association rules, logical properties of associa-
tion rules and properties of association rules in the data
with missing information. They are partly published in
[2, 5, 6, 7] and in more details investigated in [4, 8].
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[3] Hájek P, Havránek T, Chytil M (1983) GUHA Method.
Academia, Prague (in Czech)

[4] Rauch J (1986) Logical Foundations of Hypothesis
Formation from Databases. PhD Thesis, Mathemati-
cal Institute of the Czechoslovak Academy of Sciences,
Prague (in Czech)

[5] Rauch J (1997) Logical Calculi for Knowledge Discov-
ery in Databases. In: Zytkow J, Komorowski J (eds)
Principles of Data Mining and Knowledge Discovery.
Springer, Berlin Heidelberg New York

[6] Rauch J (1998) Classes of Four-Fold Table Quanti�ers.
In: Zytkow J, Quafafou M (eds) Principles of Data Min-
ing and Knowledge Discovery. Springer, Berlin Heidel-
berg New York

[7] J. Rauch (1998) �Four-Fold Table Calculi and Missing
Information� in Proc. Joint Conference on Information
Sciences, Durham, North Carolina

[8] Rauch J(1998) Contribution to Logical Foundations of
KDD. Assoc. Prof. Thesis, Faculty of Informatics and
Statistics, University of Economics, Prague (in Czech)

[9] J. Rauch (2003) De�nability of Association Rules in
Predicate Calculus. In: Lin T Y, Hu X, Ohsuga S, Liau
C J (eds) Foundations and New Directions in Data Min-
ing. IEEE Computer Society, Melbourne, Florida

[10] Rauch J, �Sim	unek M (2002) Alternative Approach to
Mining Association Rules. In: Lin T Y, Ohsuga S (eds)
The Foundation of Data Mining and Knowledge Dis-
covery (FDM02), IEEE Computer Society, Maebashi

[11] Tharp L H.(1973) The characterisation of monadic
logic. Journal of Symbolic Logic 38: 481�488



On the Recursion Theoretic Complexity of
Privacy Preserving Data Mining
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Data mining is the process of users posing queries and extracting in-
formation often previously unknown using machine learning and statistical
reasoning techniques. Because of data mining tools, even naive users can
now make correlations and associations. If the extracted information is sen-
sitive then there could be security violations. Furthermore, the extracted
information could violate the privacy of individuals. That is, data mining
is essentially a threat to security and privacy of individuals. Much of the
recent work has focused on privacy preserving data mining where the goal
is to carry out data mining, but at the same time ensure the privacy of the
individuals as much as possible.

In this paper we examine the privacy problem that results from data min-
ing as well as making associations and deductions and explore the recursion
theoretic complexity of the privacy problem. We view the privacy problem as
an aspect of the inference problem and give a definition of the problem based
on deductive databases. We then state and prove the unsolvability of the
general privacy problem and then obtain a characterization of this problem
with respect to recursion theory. We then provide directions for examining
the computational complexity of the privacy problem.
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Abstract

For the recent NIPS-2003 feature selection challenge
we studied ensembles of regularized least squares classi-
fiers (RLSC). We showed that stochastic ensembles of sim-
ple least squares kernel classifiers give the same level of ac-
curacy as best single RLSC. Results achieved were ranked
among top best at the challenge. We also showed that per-
formance of a single RLSC is much more sensitive to the
choice of kernel width than that of an ensemble. As a con-
tinuation of this work we demonstrate that stochastic en-
sembles of least squares classifiers with randomized ker-
nels and OOB-postprocessing often outperform the best sin-
gle RLSC, and require practically no tuning. We used the
same set of very high dimensional classification problems
presented at the NIPS challenge. Fast exploratory Random
Forests were applied for variable filtering first.

1. Introduction

Regularized least-squares regression and classification
dates back to the work of Tikhonov and Arsenin [15],
and has been re-advocated and revived recently by Poggio,
Smale and others [13, 6, 14, 12]. Regularized Least Squares
Classifier (RLSC) is an old combination of quadratic loss
function combined with regularization in reproducing ker-
nel Hilbert space, leading to a solution of a simple linear
system. In many cases in the work cited above, this sim-
ple RLSC appears to equal or exceed the performance of
support vector machines and other modern developments in
machine learning.

This simplicity of the RLSC approach is a major thread
in this paper. We verify the above mentioned findings us-
ing the NIPS 2003 Feature Selection Challenge datasets. All
these five datasets define binary classification problems.

The combination of RLSC with Gaussian kernels and the
usual choice of spherical covariances gives an equal weight
to every component of the feature vector. This poses a prob-
lem if a large proportion of the features consists of noise.
With the datasets of the challenge this is exactly the case.
In order to succeed in these circumstances, noise variables
need to be removed or weighted down. We applyensemble-
based variable filteringto remove noise variables. A Ran-
dom Forest (RF) is trained for the classification task, and an
importance measure for each variable is derived from the
forest [4]. Only highest ranking variables are then passed to
RLSC. We chose Random Forests (RF) for this task for sev-
eral reasons. RF can handle huge numbers of variables eas-
ily and global relative variable importance is derived as a
by-product of the forest construction with no extra compu-
tation involved.

In this paper we study empirically how a stochastic en-
semble of RLSCs with random kernel widths compares to
a single optimized RLSC. Our motivation to do this is the
well known fact that ensembles of simple weak learners are
known to produce stable models that often significantly out-
perform an optimally tuned single base learner [3, 9, 4].
Another motivating factor is the elimination of the kernel
width and regularization parameter selection procedures al-
together. A further advantage of ensembles is the possibil-
ity of parallelization. Using much smaller sample sizes to
train each expert of an ensemble could be faster than train-
ing a single learner using a huge data set.

For an ensemble to be effective, the individual experts
need to have low bias and the errors they make should be
uncorrelated [2, 4]. Using no regularization with LSC re-
duces the bias of the learner making it a good candidate for
ensemble methods. Diversity of the learners can be accom-
plished by training base learners using independent random
samples of the training data and by using random kernel
widths. The latter is the main topic of this paper.

The structure of this paper is as follows. We begin by
briefly describing the RLSC, theory behind it, and its con-



nections to support vector machines. We discuss ensembles,
especially ensembles of RLSCs and the interplay of regu-
larization and bias in ensembles. The scheme for variable
filtering using ensembles of trees is discussed next, after
which we describe experimentation with the NIPS2003 fea-
ture selection challenge data sets. We discuss our findings
regarding ensembles of random kernel LSCs, and conclude
by touching upon several possible future directions.

2. Regularized Least-Squares Classifica-
tion (RLSC)

In supervised learning the training data(xi, yi)m
i=1 is

used to construct a functionf : X → Y that predicts or
generalizes well. To measure goodness of the learned func-
tion f(x) a loss functionL(f(x), ytrue) is needed. Some
commonly used loss functions for regression are as follows:

• Square loss orL2: L(f(x), y) = (f(x)−y)2 (the most
common),

• Absolute value, orL1 loss:L(f(x), y) = |f(x)− y|,
• Vapnik’sε-insensitive loss:L(f(x), y) = (|f(x)−y|−

ε)+,

• Huber’s loss function :{
|y − f(x)|2, for |f(x)− y| ≤ δ
δ(|y − f(x)| − δ/2), otherwise

Examples of loss functions for classification are

• Misclassification:L(f(x), y) = I(sign(f(x)) 6= y)

• Exponential (Adaboost):L(f(x), y) = exp(−yf(x))

• Hinge loss (implicitly introduced by Vapnik) in binary
SVM classification:
L(f(x), y) = (1− yf(x)) · I(yf(x) > 1)

• Binomial deviance: L(f(x), y) = log(1 +
exp(−2yf(x)))

• Squared error:L(f(x), y) = (1− yf(x))2

Given a loss function, the goal of learning is to find an
approximation functionf(x) that minimizes the expected
risk, or the generalization error

EP (x,y)L(f(x), y) (1)

where P(x,y) is the unknown joint distribution of future ob-
servations (x,y).

Given a finite sample from the (X,Y) domain this prob-
lem is ill-posed. The regularization approach championed
by Tomaso Poggio and rooted in Tikhonov regularization
theory [15] restores well-posedness (existence, uniqueness,
and stability) by restricting the hypothesis space, the func-
tional space of possible solutions:

f̂ = arg min
f∈H

1
m

m∑
i=1

L(f(xi), yi) + γ ‖f‖2
K (2)

The hypothesis spaceH here is a Reproducing Kernel
Hilbert Space (RKHS) defined by kernelK, andγ is a pos-
itive regularization parameter.

The mathematical foundations for this framework as well
as a key algorithm to solve (2) are derived elegantly in [13]
for the quadratic loss function. The algorithm can be sum-
marized as follows:

1. Start with the data(xi, yi)m
i=1.

2. Choose a symmetric , positive definite kernel, such as

K(x, x′) = e−
||x−x′||2

2σ2 . (3)

3. Set

f(x) =
m∑

i=1

ciK(xi, x), (4)

wherec is a solution to

(mγI + K)c = y, (5)

which represents well-posed linear ridge regression.

The generalization ability of this solution, as well choos-
ing the regularization parameterγ were studied by Cucker
and Smale in [6, 7].

Thus, the regularized least-squares algorithm (RLSC)
solves a simple well defined linear problem. The solution is
a linear kernel expansion of the same form as the one given
by support vector machines (SVM). Note also that SVM
formulation naturally fits in the regularization framework
(2). Inserting the SVM hinge loss functionL(f(x), y) =
(1 − yf(x))+ to (2) leads to solving a quadratic optimiza-
tion problem instead of a linear solution to find coefficients
c in (4).

RLSC with quadratic loss function, that is more com-
mon for regression, has also proven to be very effective in
binary classification problems [14].

3. Model Averaging and Regularization

3.1. Stability

Generalization ability of a learned function is closely re-
lated to its stability. Stability of the solution could be loosely
defined as continuous dependence on the data. A stable so-
lution changes very little for small changes in data. A com-
prehensive treatment of this connection can be found in [2].

Furthermore, it is well known that bagging (bootstrap
aggregation) can dramatically reduce variance of unstable
learners providing some regularization effect [3]. Bagged
ensembles do not overfit, and they are limited by learning
power of base learners. Key to the performance is a low bias
of the base learner, and low correlation between base learn-
ers.



Evgeniou experimented with ensembles of SVMs [8]. He
used a few datasets from UCI tuning all parameters sepa-
rately for both a single SVM and for an ensemble of SVMs
to achieve the best performance. He found that both perform
similarly. He also found that generalization bounds for en-
sembles are tighter than for a single machine.

Poggio et al [12] studied the relationship between sta-
bility and bagging. They showed that there is a bagging
scheme, where each expert is trained on a disjoint subset
of the training data, providing strong stability to ensembles
of non-strongly stable experts, and therefore providing the
same order of convergence for the generalization error as
Tikhonov regularization. Thus, at least asymptotically, bag-
ging strongly stable experts would not improve generaliza-
tion ability of the individual member.

3.2. Ensembles of RLSCs

Since the sizes of the challenge datasets are relatively
small, we compare simple stochastic aggregation of LSCs
using random kernel widths to the best individually trained
RLSC.

We are looking for diverse low biased experts: for RLSC
bias is controlled by regularization parameter, andσ in
case of Gaussian kernel. Instead of bootstrap sampling from
training data which imposes a fixed sampling strategy, we
found that often much smaller sample sizes of the order of
30-50% of the data set size improve performance. A fur-
ther source of diversity is introduced by each expert having
a different random kernel width.

Combining the outputs of the experts in an ensemble can
be done in several ways. The simplest alternative is major-
ity voting over the outputs of the experts. In binary classi-
fication this is equivalent to averaging the discretized (+1,-
1) predictions of the experts. In our experiments this per-
formed better than averaging the actual numeric expert out-
puts before applying their decision function (sign).

A well known avenue to improve the accuracy of an en-
semble is to replace the simple averaging of individual ex-
perts by a weighting scheme. Instead of giving equal weight
to each expert, the outputs of more reliable experts are
weighted up. Linear regression can be applied to learn these
weights.

To avoid overfitting, the training material to learn this re-
gression should be produced by passing only such samples
through an expert, that did not participate in construction of
the particular expert. Typically this is done by using a sep-
arate validation data set. Since some of the datasets used
were very small in size, it was not useful to split the train-
ing sets further for this purpose. Instead, since each expert is
constructed only from a fraction of the training data set, the
rest of the data is available as “out-of-bag samples” (oob).

We experimented with two schemes to construct the
training data matrix. Since each expert populates the ma-
trix only with oob-samples, the empty spaces correspond-
ing to the training data of the expert can be filled in either
with zeroes, or with the expert outputs by passing the train-
ing data through the expert. The latter is optimistically bi-
ased, and the former is biased toward zero, the “don’t know”
condition. In the latter case we also upweighted the entries
by the reciprocal of the fraction of missing entries in order
to compensate for the inner product of the regression coef-
ficients with the entries to sum to either plus or minus one.

Since expert outputs are correlated (although the aim is
to have uncorrelated experts!) PCA regression can be ap-
plied to reduce the number of regression coefficients. Par-
tial Least Squares regression could also be used instead of
PCA regression.

4. Variable Filtering with Tree-Based Ensem-
bles

Practically for all datasets (except arcene) from the chal-
lenge we noticed significant improvement in accuracy when
only small (but important) fraction of the original variables
was used in kernel construction.

We used fast exploratory tree-based models for variable
filtering. One of many important properties of CART [5]
is its embedded ability to select important variables during
tree construction (greedy recursive partition, where impu-
rity reduction is maximized at every step), and therefore re-
sistance to noise. Variable importance then can be defined
as

M(xm, T ) =
∑
t∈T

∆I(xm, t) (6)

where∆I(xm, t) is the decrease in impurity due to an ac-
tual or potential split on variablexm at a nodet of the opti-
mally pruned treeT . The sum in (6) is taken over all inter-
nal tree nodes wherexm was a primary splitter or a surro-
gate variable. Consequently, no additional effort is needed
for its calculation.

Two recent advances in tree ensembles - Multivariate
Adaptive Regression Trees (MART) [10, 11] and Random
Forests (RF) [4] inherit all nice properties of a single tree,
and provide more reliable estimate of this value, as the im-
portance measure is averaged over the trees in the ensem-
ble

M(xi) =
1
M

M∑
m=0

M(xi, Tm). (7)

MART builds shallow trees using all variables, and
hence, can handle large datasets with moderate num-
ber of variables. RF builds maximal trees but chooses a
small random subset of variables at every split, and eas-
ily handles thousands of variables in datasets of moderate



size. For datasets massive in both dimensions a hy-
brid scheme with shallow trees and dynamic variable
selection has been shown to have at least the same ac-
curacy but to be much faster than either MART or RF
[1].

Note that the index of variable importance defined in the
above measures is the global contribution of a variable to the
learned model. It is not just a univariate response-predictor
relationship.

For the NIPS challenge we used RF to select important
variables. Forest was grown using the training data until
there was no improvement in the generalization error. Typ-
ically, this limit was around 100. As an individual tree is
grown, a random sample of the variables is drawn, out of
which the best split is chosen (instead of considering all of
the variables). The size of this sample was typically

√
N .

5. Experiments with NIPS 2003 Feature Se-
lection Challenge Data Sets

The purpose of the NIPS 2003 challenge in feature se-
lection was to find feature selection algorithms that signif-
icantly outperform methods using all features, on all five
benchmark datasets. The datasets and their (diverse) char-
acteristics are listed in Table 1.

Of these data sets, only Dorothea was highly unbalanced
with approximately 12% of samples in one class, and 88%
in the other. The rest of the sets had an approximately bal-
anced class distribution. All tasks are two-class classifica-
tion problems.

5.1. Variable Selection Experiments

Initial experimentation was performed to deter-
mine whether variable selection was necessary at all.
We trained ELSCs for madelon and dexter data sets. Re-
sults are given in Table 2 as the averages of ten-fold cross
validation.

These results clearly indicated that RLSC is sensitive to
noise variables in data, and that variable selection based on
importances derived from Random Forests works well.

For the rest of the experiments, we adopted the follow-
ing variable selection procedure. Variables are ranked by a
random forest as described in Sec. 4. If there are significant
cut-off points in the ranked importance, the variable set be-
fore the cut-off point is selected. Figure 1 shows a clear ex-
ample of such a cut-off point.

For each data set, the smallest possible variable set as in-
dicated by a cut-off point was tried first. If the results were
unsatisfactory, the next cut-off point was searched, and so
on, until satisfactory results were obtained. The maximum
number of variables considered was about 500. Full cross-

Figure 1. The importance of the top 33 out
of 500 variables of Madelon derived from a
training set of 2000 cases in 500 trees. Vari-
able importance has a clear cut-off point at
19 variables.

validation was thus not done over the whole possible range
of the number of selected variables.

Variable set was thereafter fixed to the one that pro-
duced the smallest cross-validation error, with two excep-
tions: Contrary to other data sets, on arcene the error rate
using the validation set did not follow cross-validation error
but was the smallest when all variables were used. Arcene
is evidently such a small data set that variable selection and
classifier training both using the 100 training samples, will
overfit. The second exception is dexter, which gave the best
results using 500 variables ranked by maximum mutual in-
formation with the class labels [16].

At this point we also experimented with variable stan-
dardization and weighting variables by their importance.
Due to lack of space these experiments are not tabulated,
but the decisions are summarized in table 3

5.2. Classification experiments with ELSCs using
random kernels

An individual RLSCs has two parameters that need to be
determined by cross-validation. These are the kernel width
σ2 and the regularization parameterγ. For a single RLSC,
regularization is critical in order not to overfit. The choice
of the parameter needs to be made by cross-validation,
and appears to be very data dependent. This leads to opti-
mization in a two-dimensional parameter space using cross-
validation. As an example, we present this optimization for
the Madelon data set in Fig. 2.

An ensemble of stochastic LSCs is less sensitive to ker-
nel width, does not require search for the regularization pa-
rameter, is not sensitive to the ensemble size (once it is large
enough), and is not very sensitive to the fraction of data
sampled to train each LSC [17]. Our motivation in using
random kernels, or more precisely, random kernel widths,



Set Size Type Number of of variables Training Examples Validation Examples

Arcene 8.7 MB Dense 10000 100 100
Gisette 22.5 MB Dense 5000 6000 1000
Dexter 0.9 MB Sparse integer 20000 300 300
Dorothea 4.7 MB Sparse binary 100000 800 350
Madelon 2.9 MB Dense 500 2000 600

Table 1. NIPS2003 Feature Selection Challenge Data

Data set Variables Error rate using Selected Error rate using
all variables variables selected variables

madelon 500 0.254 19 0.093
dexter 20000 0.324 109 0.074

Table 2. Comparison of no variable selection to variable selection.
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Figure 2. Single RLSC: Cross-validation ex-
perimentation in order to find the optimal
combination of kernel width and regulariza-
tion parameter for madelon data set. Vertical
axis is the 10-fold cross-validation error rate
on training data, horizontal axis is log10(γ),
and each curve corresponds to a specific ker-
nel width. Legend displays the multiplier to
d2

av = 37.5.

was to get rid of all these tunable parameters in ensemble
construction without sacrificing any of the generalization
performance.

Naturally, the kernel width cannot be completely ran-
dom, but in a reasonable range, which is determined by
the data. We sampled theσ2 uniformly in the range of
[d2

med, 4d2
min], wheredmed is the median distance between

samples, anddmin is the minimum distance between sam-
ples. This was found to be a reasonable range for all the five
diverse challenge datasets.

Data Optimized Optimized Random kernel
set RLSC ELSC ELSC

arcene 0.1331 0.1331 0.1130
gisette 0.0210 0.0210 0.0200
dorothea 0.1183 0.1183 0.1140
madelon 0.0700 0.0667 0.0717
dexter 0.0633 0.0633 0.0700

Table 4. Error rates using the separate valida-
tion data set after optimizing σ2 and γ for a
single RLSC, and σ2 and the fraction of data
sampled for each LSC in an ensemble of 200
classifiers. Random kernel ELSC required no
parameter tuning.

The ensemble size was fixed to 200, and the fraction of
training data to train each LSC was fixed to 0.5. These were
near-optimal values for ELSCs according to our earlier ex-
periments [17].

Ensemble output combination was done using PCA-
regression. We experimented also with plain regression us-
ing a mixture of training/oob samples or just the oob-
samples, but the differences were insignificant.

We present the final classification error rates in table
4. Even though there is no significant difference in vali-
dation error rates between using a single RLSC with op-
timized parameters, an ELSCs with optimized parameters,
or an ELSC with random kernel width, the fact that the lat-
ter can be trained without any necessary parameter/model
selection makes it a desirable alternative.



Data set Original variables Selected variables Selection method Standardize? Weighting?

madelon 500 19 RF yes no
dexter 20000 500 MMI yes by MI
arcene 10000 10000 none no no
gisette 5000 307 RF no no
dorothea 100000 284 RF no no

Table 3. Variable selection, standardization, and variable weighting decisions.

6. Future Directions

We describe an approach in this paper that consists of
two disjoint systems, Random Forests for variable selec-
tion, and ELSC for the actual classification. Even though
the two systems nicely complement each other, RF provid-
ing fast embedded variable selection and ELSC providing
highly capable base learners to compensate for the lack of
smoothness of the trees of an RF, an integrated approach
would be desirable. We describe an idea towards such a sys-
tem.

RF could act as one type of supervised kernel generator
using the pairwise similarities between cases. Similarity for
a single tree between two cases could be defined as the total
number of common parent nodes, normalized by the level
of the deepest case, and summed up for the ensemble. Min-
imum number of common parents to define nonzero simi-
larity is another parameter that could be used like width in
Gaussian kernels.

Figure 3 illustrates the difference between a Gaussian
kernel and the proposed supervised kernel.

An advantage of the method is that it works for any type
of data, numeric, categorical, or mixed, even for data with
missing values. This is because the base learners of the Ran-
dom Forest can tolerate these.

A further advantage is that explicit variable selection is
bypassed altogether. Important variables will become used
in the trees of the forest, and they thus participate implicitly
in the evaluation of the kernel.

7. Conclusion

We proposed a relatively straightforward approach to
create powerful ensembles of simple least square classi-
fiers with random kernels. We used recent NIPS2003 fea-
ture selection challenge data to evaluate performance of
such ensembles. The binary classification data sets consid-
ered in the challenge originated in different domains with
number of variables ranging from moderate to extremely
large and moderate to very small number of observations.
We used fast exploratory Random Forests for variable fil-
tering as a preprocessing step. The individual learners were
trained on small random sample of data with Gaussian ker-

nel width randomly selected from relatively wide range of
values determined only by basic properties of the corre-
sponding dissimilarities matrix. The random sample of data
used to build individual learner was relatively small. Modest
ensemble size (less than 200) stabilized the generalization
error. We used consistent parameter settings for all datasets,
and achieved at least the same accuracy as the best sin-
gle RLSC or an ensemble of LSCs with fixed tuned ker-
nel width. Individual learners were combined through sim-
ple OOB postprocessing PCA regression.

For high dimensional noisy problems variable filtering
with fast exploratory ensembles of random trees (Random
Forests with default parameter settings) showed to be very
effective preprocessing procedure.
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Abstract

Data mining has two requirements, accurate predictions
and comprehensible rules. Rule extraction from mathemat-
ical formulas such as neural networks or regression formu-
las is needed for perfect data mining techniques satisfying
the above two requirements. Rule extraction from neural
networks has been developed. “Rules” in the above sen-
tences basically mean the propositions of classical logic.
The propositions of classical logic extracted from trained
neural networks only approximately describe the trained
neural networks. Trained neural networks contain a lot
of information(knowledge) which cannot be described by
classical logic. There are several nonclassical logics such
as intuitionistic logic or modal logic. The propositions of
nonclassical logics can describe trained neural networks in
more detail than classical logic. In order to extract propo-
sitions of nonclassical logics from trained neural networks,
the relations between nonclassical logics and neural net-
works should be studied. This paper presents a preliminary
study towards extracting propositions of nonclassical log-
ics from trained neural networks. This paper shows that
trained neural networks can be represented by intuitionis-
tic modal logics. This paper also shows that the relation
between a neural network and the rule extracted from the
network is represented by an intuitionistic modal logic. The
relations between neural networks and nonclassical logics
are basically studied based on multilinear function space.

1 Introduction

Data mining has two requirements, accurate predictions
and comprehensible rules. The major data mining tech-
niques such as neural networks, statistics, decision trees or
association rules,cannot satisfy the above two data mining
requirements[17].

Rule extraction from mathematical formulas such as
neural networks or regression formulas is needed for per-
fect data mining techniques. Several researchers have
been developing techniques for rule extraction from neu-
ral networks[2]. The author also has been developing tech-
niques for rule extraction from mathematical formulas such
as neural networks or regression formulas[14],[15],[18].
The technique is called the Approximation Method. Based
on the Approximation Method, the author has been devel-
oping a data mining technique called Logical Regression
Analysis(LRA)[20].

“Rules” in the above sentences basically mean the propo-
sitions of classical logic. However, neural networks cannot
be represented by the propositions of classical logic. Rules
extracted from trained neural networks only approximately
represent the trained neural networks. In other words, the
neural networks contain a lot of information(knowledge)
which cannot be represented by the propositions of classical
logics extracted from the trained neural networks.

There are several nonclassical logics such as intuition-
istic logic or modal logic[9]. Propositions of nonclassical
logics can represent trained neural networks in more detail
than classical logic.

For example, let a neural network be trained with time
series data. Assume that the trained neural network con-
tains “Event A or event B necessarily happens after event
c has happened in some period.” This proposition cannot
be represented by classical logic, but can be represented by
temporal logics, which are modal logics[9].

As the above example showed, we can obtain a lot of
linguistic information(knowledge) from trained neural net-
works by extracting propositions of nonclassical logics.

In order to extract propositions of nonclassical logics
from trained neural networks, the relations between non-
classical logics and neural networks should be studied, and
it may be necessary to develop new nonclassical logics.

This paper presents a preliminary study towards extract-



ing propositions of nonclassical logics from trained neural
networks. As the first stage, this paper studies the relations
between nonclassical logics and neural networks.

This paper shows that neural networks can be regarded
as the propositions of intuitionistic logic and intuitionistic
modal logic[19].

We are interested in the relation between a neural net-
work and the Boolean function(=rule) extracted from the
network.

Many Boolean functions can be extracted from a trained
neural network. However, the Boolean functions should
well approximate the trained neural network. Therefore, the
Boolean function which is nearest to the neural network is
considered in this paper.

This paper shows that the relation between a neural net-
work and the Boolean function nearest to the network is
represented by intuitionistic modal logic���[1],[3].

The relations between neural networks and nonclassical
logics are basically studied based on multilinear function
space.

In the discrete domain, neural networks are multilinear
functions. Multilinear function space is the algebraic model
of intuitionistic logic. Multilinear function space is the al-
gebraic model of intuitionistic modal logic���. Therefore,
neural networks can be regarded as the propositions of in-
tuitionistic modal logic���. The relation between an neural
network and the Boolean function nearest to the neural net-
work is represented by intuitionistic modal logic���

Section 2 explains multilinear function space. Section 3
shows that multilinear function space is the algebraic model
of intuitionistic logic. Section 4 shows that multilinear
function space is the algebraic model of intuitionistic modal
logic���. Section 5 explains the relation between a neural
network and the Boolean function nearest to the neural net-
work. Section 6 shows that the relation between an neural
network and the Boolean function nearest to the neural net-
work is represented by intuitionistic modal logic���, and
shows an example of������ � �����	
.

In the continuous domain, similar discussions hold true,
which is explained in Section 7.

2 Multilinear function space

2.1 Multilinear functions

Definition 1 Multilinear functions of� variables are as fol-
lows:

�
��

���

���
���
�
� ������ �

where�� is real,�� is a variable, and�� is 0 or 1.

In this paper,� stands for the number of variables.

Example Multilinear functions of 2 variables are as fol-
lows:

��� � ��� �� � �	

Multilinear functions do not contain any terms such as

���
�
���
�
� � � ���� �

where
� � �. A function� � ��� ��� � � is a multilinear
function, because

���� � ��

holds in��� �� and so there is no term like

���
�
���
�
� � � ���� �
� � ��

in the functions. In other words, multilinear functions are
functions which are linear when only one variable is con-
sidered and the other variables are regarded as parameters.

2.2 Neural networks are multilinear functions in
the domain �0,1�

Theorem 2 When the domain is��� ��, neural networks
are multilinear functions.

Proof As described in 2.1, a function whose domain is
��� �� is a multilinear function. Therefore, when the do-
main is��� ��, neural networks are multilinear functions.

2.3 Multilinear functionspace of the domain ��� ��
is the linear space spanned by the atoms of
Boolean algebra of Boolean functions

Definition 3 The atoms of Boolean algebra of Boolean
functions of� variables are as follows:

�� �
��

���

����� �
 � �� 			� ���� (1)

where����� � �� or ��	

Example The atoms of Boolean algebra of Boolean func-
tions of 2 variables are as follows:
� � �� � � �� � � �� � � �	

Theorem 4 The space of multilinear functions (��� ��� �
�) is the linear space spanned by the atoms of Boolean
algebra of Boolean functions.

Proof Any Boolean function can be represented as the lin-
ear combination of the atoms, that is,

�
��

���

����� (2)



where�� in formula (2) is an atom,�� is 0 or 1, and
�

means logical disjunction.
Let logical conjunction, logical disjunction and negation

be represented by elementary algebra. In the domain��� ��,
logical conjunction� � � equals��, which is the product
of elementary algebra, and negation�� equals� � � of ele-
mentary algebra. Logical disjunction is calculated using de
Morgan’s law.

Table 1 shows the elementary algebra representations of
logical operations. In the table, l.o. stands for logical opera-
tion, and e.a.r. stands for elementary algebra representation.

Table 1. Elementary algebra representations
of logical operations

conjunction disjunction negation
l.o. �� � � � � ��

e. a. r. �� �� � � �� �� �

Table 2. Elementary algebra representations
of logical operations of atoms

conjunction disjunction negation
l.o. �� � �� �� � �� ��

e.a.r. ���� �� � �� �� ��

Table 2 shows the elementary algebra representations of
logical operations of atoms. The representation of formula
(2) by elementary algebra is the same as formula (2) when�

in formula (1) is interpreted as the product of elementary
algebra,

�
is interpreted as the sum of elementary algebra,

and �� is interpreted as�� �.
By extending the coefficients�� in formula (2) from

��� �� to real, the functions become real linear functions
as follows:

�
��

���

����� (3)

where�� is real and
�

means the sum of elementary alge-
bra.

A function in formula (3) is the multilinear function (of
variables), because a function in formula (3), that is, the
linear function of the atoms of Boolean algebra of Boolean
functions can be developed to a multilinear function, and a
multilinear function can be expanded by the atoms uniquely.
Example A linear function of the atoms of 2 variables is

��� � ��� � ��� � ���	

This function is transformed to the following:

��� � ��� �� � ��

where
� � �� �� � � �� � � �� �� � � �� �� � � �	
A multilinear function

��� � ��� �� � �

can be transformed into

��� � ��� � ��� � ����

where
� � �� � � � � �� � � � � �� � � � � �� � � �	

Now, it has been shown that the multilinear function
space of the domain��� �� is the linear space spanned by
the atoms of Boolean algebra of Boolean functions. The
dimension of the space is��.

Multilinear function space is made into a Euclidean
space, which is easily verified[11].

2.4 Vector representations of logical operations

The vector representations of logical functions are called
logical vectors.� ��������������� 		 stand for logical vectors.
Note that� stands for a function, while�� stands for a com-
ponent of a logical vector� .
Example

�		�� � �	��� �	�� � �	�

is transformed to

�	
�� � �	��� � �	��� � �	���	

Therefore, the logical vector is

��	
� �	�� �	���	��	

Vector representations of logical operations are as follows:

� � � � �������

� � � � ��� � �� � ������

� � ��� ���	

When multilinear functions are Boolean functions, the
above vector representations of logical operations are the
same as the representations below.

� � � � ��
����� �����

� � � � �������� �����

� � ��� ���	

The above representations appear in intermediate logic
LC [5] in Section 3.



Example Let � be� � � and let� be �� � ��. The logical
conjunction of� and� is as follows:

�� � �� � ��� � ��� � �� � �� � ��� � �� � �� � ��� � �

The logical vectors of� and�, that is,� and� are as follows:

� � ��� �� �� ��� � � ��� �� �� ���

where the bases are

� � � � ��� �� �� ��� �� �� � ��� �� �� ���

�� � � � ��� �� �� ��� ��� �� � ��� �� �� ��	

The logical conjunction off andg is as follows using the
above definition.

� � � � ��
����� ����

� ��
���� ����
���� ����
���� ����
���� ���

� ��� �� �� ��

� �

3 Multilinear function space is a model of
nonclassical logics

3.1 Multilinear function space is a model of intu-
itionistic logic

Heyting algebra, which is the algebraic model of intu-
itionistic logic, is defined as follows[4].

Definition 5 A Heyting algebra is a distributive lattice with
respect to��� and with� and	, and satisfies the following
formulas.

� � �� 
 �� � � � ��

�� 
 �� � � � ��

�� 
 �� � �� 
 �� � � 
 �� � ���

	� � � 	�

	 
 	 � �	

Complement� � is defined by

� � � � 
 		

Theorem 6 � ��� ���������	 � is a Heyting algebra
with the following definitions:

�� � � �
���� ���

�� � � ������ ���

� 
 � �

�
��� � ��
��� � ���

� � ��

	 � �	

Note that� and� are used instead of� and�, because�
and� stand for real numbers.

It can be easily verified that the above definitions satisfy
Definition 5.

Theorem 7 A subset of��� ��� (� is dimension) of multi-
linear function space is an algebraic model of intuitionistic
logic with the following definitions.

� � � �� �
������ ����

� � � �� �
������ ����

� 
 � �� ��� 
 ���

�� 
 �� ��

�
� ��� � ���
�� ��� � ���

Proof
The multilinear function space is a linear space spanned

by the atoms of Boolean algebra of Boolean functions, and
therefore, a subset of the space��� ��� (� is dimension)
is a direct product of the interval[0,1]. If an interval is a
model of a logic, the direct product of the intervals is also
a model of the logic[8]. Therefore, since an interval[0,1] is
an algebraic model of intuitionistic logic, a direct product
of intervals��� ��� is also an algebraic model of intuitionis-
tic logic. Therefore, the subset of the multilinear function
space��� ��� is an algebraic model of intuitionistic logic.

3.2 Nonclassical logics complete for multilinear
function space

Intuitionistic logic is not complete for the interval��� ��
as explained later. This subsection briefly explains the log-
ics complete for the interval��� ��.

The logics which are complete for the interval��� �� are
also complete for the direct product of the interval��� ��,
that is,��� ���[8]. The logics are continuously valued log-
ics. There are three logics which are complete for the in-
terval, that is, an intermediate logic LC (LC for short),
Łukasiewicz logic and product logic.

Logical conjunctions and logical implications are de-
fined as follows [7].

1.LC
��������
�� � � � � � min��� ��


���
���
�� � �� � �

�
� � � �
� otherwise

2. Łukasiewicz logic
��������
�� � � � � � max��� �� � � ��

���
���
�� � �� � � min��� �� �� ��

3. product logic
��������
�� � � � � � ��


���
���
�� � �� � �

�
� � � �
��� otherwise



In sequent calculus, there are three structure rules as fol-
lows:

contraction
�� �� �

�� �
�

weakening
�� �

�� � � �
�

exchange
�� �� �

�� �� �
	

Logics which do not have some of the above rules are called
substructural logics. In terms of contraction, LC satisfies
contraction, Łukasiewicz logic and product logic do not sat-
isfy contraction[10].

Due to space limitations, all three logics cannot be ex-
plained. Only LC is briefly explained. Similar explanations
hold for Łukasiewicz logic and product logic[7].

Intermediate logics are weaker than classical logic and
stronger than intuitionistic logic[4]. LC is an intermediate
logic, which was presented by Dummett[5]. The logic is
defined as follows[4].

LC=intuitionistic logic� ���  � � � � ���

where� and are logical formulas. LC stands for Logic
of Chain, which comes from the fact that the model of the
logic is a chain, that is, a linearly ordered set.

Intuitionistic logic is not complete for the model, that is,
intuitionistic logic cannot prove the relation below

���  � � � � ��� (4)

which corresponds to the following formula which holds in
any interval:

�� � �� � �� � ���

where� and� are points in the interval, while LC has the
axiom (4) and so LC is complete for the interval.

LC, Łukasiewicz logic or product logic is complete
for [0,1], while intuitionistic logic is not complete for
[0,1]. Therefore, in terms of detailed description, LC,
Łukasiewicz logic or product logic is better than intuitionis-
tic logic. However, the modal extension of LC, Łukasiewicz
logic or product logic has not been developed. Therefore,
in this paper, intuitionistic modal logics are discussed here-
inafter.

4 Multilinear function space is a model of in-
tuitionistic modal logic

Before the explanation of intuitionistic modal logic���,
classical modal logic�� is briefly explained.

4.1 Classical modal logic ��

Modal logics deal with modalities such as necessity, pos-
sibility, belief, knowledge, or tense. Necessity is denoted by
I, and possibility is denoted by C in this paper.

Modal logic� is the logic that has the following infer-
ence rule in addition to the axioms of classical propositional
logic.

!� "

I!� I"
Modal logic�� has the followings:

I!� !�

C!� IC!	

There are several models of modal logics such as Kripke
models or algebraic models. Modal algebras are the alge-
braic models of modal logics.
�� algebra is the algebraic model of��. When a unitary

operator� on Boolean algebra satisfies the following items,
then it is�� algebra:

Definition 8

#�� � �� � #� � #�

#� � �

$� � �#� ����Definition of$�

$�� � �� � $� �$�

#� � �

$� � #$�

4.2 ��� algebra

This subsection explains��� algebra, which is the alge-
braic model of intuitionistic modal logic���.

Definition 9 When a unitary operator� on Heyting alge-
bra satisfies the following items, then it is intuitionistic��
(���) algebra[1], [3]:

#�� � �� � #� � #��

#� � ��

$�� � �� � $� � $�

$	 � 	

#� � ��

$� � #$�	

While$ is defined as in classical modal logics,$ is not
necessarily defined as$� � �#� ��� in intuitionistic modal
logics. For example, in [6],# and$ are required to be
non-interdefinable[1].



# means necessity and$ means possibility.

Definition 10 # is defined as follows:

#� �� �#������

#���� �

�
����� � ��
���� � ���

where� � � � �.

$� is defined as follows:

$���� �

�
���� � ��
���� � ��	

This definition satisfies$� � �#� ���, although$ is not
necessarily defined as$� � �#� ��� in intuitionistic modal
logics. If$ is defined as

$���� �

�
���� � ��
����� � ���

where� � � � �, $� � �#� ��� is not satisfied. The
latter definition does not satisfy$� � #$� , but satisfies
#� � ##� . That is, if$ is defined in the latter manner, it is
another modal logic.

From the above definitions,#� � � , that is, the informa-
tion of #� is greater than the information of� , and so it is
reasonable that#� represents ‘f is necessary’.� � $� , that
is, the information of$� is less than the information of� ,
and so it is reasonable that$� represents ‘f is possible’.

Theorem 11 Hyper-rectangle
��

������ �� of the space of
multilinear functions with Definition 10 satisfies Definition
9. This can be easily verified.

From the above theorem, any hyper-rectangle
��

������ ��
of the space of multilinear functions with Definition 10 is
the model of���.

5 The relation between a neural network and
the Boolean function nearest to the neural
network

Many Boolean functions can be extracted from a trained
neural network. However, the Boolean functions should
well approximate the trained neural network. Therefore, the
Boolean function which is nearest to the neural network is
considered hereinafter.

This section deals with a unit of a neural network. The
discussion in this section is easily expanded to a neural net-
work with hidden units, which is explained later.

Let ����� 			� ��� stand for a unit of a neural network,
and�����
 � �� 			� ��� be the values of the unit. Let the

values of the unit be the interval [0,1], because the values of
a unit of a neural network are [0,1].

Let ����� 			� ��� stand for a Boolean function, and
������� � � or �� 
 � �� 			� ��� be the values of the Boolean
function.

The Boolean function nearest to the unit of a neural net-
work is as follows:

�� �

�
���� � �	���
���� � �	��	

This Boolean function is the nearest in Euclidean distance.
The Boolean function is represented as follows:

����� 			� ��� �
�
��

���

�����

where�� is calculated by the above formula, and�� is an
atom.

The rule extraction method based on the above approxi-
mation is called the Approximation Method[15],[18],[20].

Example

Let a unit of a neural network be as follows:

���� �� � %��	���� �	���� �	����

where%��� stands for sigmoid function. The values of
���� ��� ���� ��� ���� ��� and���� �� are as follows:
���� �� � %��	�� � �� �	�� � �� �	��� � %���	���
���� �� � %��	�� � �� �	�� � �� �	��� � %���		��
���� �� � %��	�� � �� �	�� � �� �	��� � %��		��
���� �� � %��	�� � �� �	�� � �� �	��� � %���	���	

%���	��� � �� %���		�� � �� %��		�� � �� and
%���	��� � �. Therefore, the values of the nearest Boolean
function���� �� are as follows:

���� �� � �� ���� �� � �� ���� �� � �� ���� �� � �	

The Boolean function���� �� is as follows:

���� �� � ���� ������ � ���� ����� � ���� ����� � ���� ����

���� �� � ����� � ���� � ���� � ���

���� �� � ���	

The relation between a unit of neural network and the
Boolean function nearest to the unit of the neural network
holds true in the case of the relation between a neural net-
work and the Boolean function nearest to the neural net-
work, which is obvious.



Table 3. Proof
�� � 0.5 0.5�
#�� 0 ��
$#�� 0 1

6 The relation between a neural network and
the Boolean function nearest to the neu-
ral network is represented by intuitionistic
modal logic ���

6.1 The relation between a neural network and
the Boolean function nearest to the neural net-
work

As explained previously, a multilinear function���
����� is approximated to a Boolean function��� �����(�� �
� or �� by the following method:

�� �

�
���� � �	���
���� � �	��	

Theorem 12

� � $#�

Proof The above theorem can be easily verified by Defini-
tion 10, where� � �	�. See Table 3.

Therefore, the relationship between a multilinear func-
tion and the nearest Boolean function can be represented as
intuitionistic modal logicIS5.
Example

As explained in Section 5,

���

is the nearest Boolean function to

���� �� � %��	���� �	��� � �	���	

Therefore,
��� � $#��

which represents ‘��� means that it is possible that� is nec-
essary.’

6.2 An example of a neural network

Let &� and&� be two trained neural networks, which
have hidden layers, two inputs� and�, two hidden units,
and one output. See Fig.1. The output function of each
unit is sigmoid function. Table 4 shows the training results
of weight parameters and biases of&�. Table 5 shows the
training results of weight parameters and biases of&�.

x

Input 
Layer

Hidden 
Layer

Output
Layer

y

w1

w4

w3

w2

h1

h2

w5

w6

z

Figure 1. Neural network

Table 4. Training results 1
unit w1(w3, w5) w2(w4,w6) bias

hidden unit 1 -4.87 -4.86 -6.70
hidden unit 2 -2.86 -2.88 3.50
output unit 7.61 -13.83 4.50

&� is as follows:
%��		�%���	���� �	�	�� 		���� ��	��%���	�	��

�	��� � �	��� � �	���	
From the above formula, the logical vector is calculated

as follows:
��	
�� �	��� �	��� �	����

where the coordinate system is

��� ���� ���� ����

The vector representation of nearest Boolean function is

��� �� �� ��	

The Boolean function is

��

Therefore,
�� � $#&�

The logical vector of&� is calculated in the same way
as follows:

��	��� �	
�� �	
�� �	

�	

The nearest Boolean function is

�� � ��� � ���� � �� � ��	

Table 5. Training results 2
unit w1(w3, w5) w2(w4,w6) bias

hidden unit 1 4.80 4.72 -2.31
hidden unit 2 -3.49 -3.56 1.67
output unit 5.81 -4.62 -0.42



Therefore,
�� � �� � $#&�

As showed above, trained neural networks can be repre-
sented by nonclassical logics.

The interpretations of I(necessity) and C(possibility) de-
pend on the data.

6.3 An example of voting-recordsdata

voting-recordsdata consists of the voting records of the
U.S. House of Representatives in 1984. Attributes are the
following policies and the attribute values are yes and no.

a; handicapped-infants: y,n
b; water-project-cost-sharing: y,n
c; adoption-of-the-budget-resolution: y,n
d; physician-fee-freeze: y,n
e; el-salvador-aid: y,n
f; religious-groups-in-schools: y,n
g; anti-satellite-test-ban: y,n
h; aid-to-nicaraguan-contras: y,n
i; mx-missile: y,n
j; immigration: y,n
k; synfuels-corporation-cutback: y,n
l; education-spending: y,n
m; superfund-right-to-sue: y,n
n; crime: y,n
o; duty-free-exports: y,n
p; export-administration-act-south-africa: y,n

Classes are Democrat and Republican. The number of sam-
ples is 435.

The neural network for learning������ � �����	
 data
consists of 16 inputs, 3 hidden units and 2 output units. The
learning method is the back-propagation method, the repe-
tition time is 2500, and the error after the learning is 0.005.

As explained in the preceding subsection, the whole net-
work can be described using intuitionistic modal logic���.
Here, another method is explained. First, each unit is de-
scribed by using intuitionistic modal logic���, and second,
the descriptions are merged.

The Boolean functions nearest to the hidden units are as
follows: �� stands for the output of a hidden unit.�� 			� �
stand for inputs, for example,� � � when handicapped-
infants is y and� � � when handicapped-infants is n.
hidden unit 1:0
hidden unit 2:����

hidden unit 3:����
 � �
�
output 1 (Republican):�� � ��
output 2 (Democrat):��� ���

By substituting the results of hidden units to output units,
the followings are obtained:

Republican:�����
 ��
� � ��
��

Democrat:�� � ��� � 

 � ��
	

The accuracy of the result is 94.4%.
The above results are Boolean functions approximating

the trained neural network. The relation between a unit of
a neural network and the Boolean function nearest to the
unit of the network is represented by intuitionistic modal
logic��� as explained previously. For example, hidden unit
2 is described as follows:

����
 � CI��	

The other units are described in the same manner.
Hidden unit 2 is described as

����
 � CI���

and hidden unit 3 is described as

����
 � �
� � CI��	

Therefore,
By the disjunction,

����
 � ����
 � �
� � CI�� � CI�� ���	

Output unit 1(��)(Republican) is described as

�� � �� � CI���

and
CI��� � ��� � CICI��	

Since I�� � �� � I� � I��

C�I�� � I��� � CICI���

and
CI�� � CI�� � CICI��	

Moreover, from formula (5)

����
 � ����
 � �
� � CICI��	

I stands for necessity and C stands for possibility, and
so the above formula can be interpreted with a modality.
However, the interpretation is not so interesting. Only two
modal operators cannot present interesting interpretations.
In order to obtain interesting results, many modal operators
and many modal logics should be studied.

7 In the case of continuous domains

So far, discrete domains have been discussed. This sec-
tion briefly explains continuous domains. The continuous
domain can be reduced to [0,1] domain by a certain normal-
ization, and so only [0,1] domain is discussed. The multi-
linear function space of [0,1] domain can be made into a
Euclidean space, and so the similar discussions hold true.
Details can be found in [11] and [18].



7.1 '

Definition 13 '� is defined as follows:
Let ���� be a real polynomial function. Consider the

following formula:
���� � ������� ��� � �����
where���� � ��� �, where� and� are real, that is,����
is the remainder.
'� is defined as follows:

'� � ���� � ����	

The above definition implies the following property:
'���

�� � ��
where
 � �.

Definition 14 In the case of� variables,
' is defined as follows:

' �
��
���

'�� 	

For example,

' ����� � � � �� � �� � � � �	

7.2 The multilinear function space in the domain
[0,1] is a Euclidean space

Definition 15 An inner product in the case of� variables
is defined as follows:

� �� � �� ��
�

�

�

' �������

where � and � are multilinear functions. The
above definition can satisfy the properties of inner
product[11],[12],[16].

Definition 16 Norm
� 
 is defined as follows:


� 
 �
�
� �� � �	

The distance between functions is roughly measured by
the norm. For example,�� is different from�. However,
by the norm, the distance between the two functions is 0,
because' in the norm

�
� �� � � �

�
��
�

�

�

' ������

identifies���
 � �� with �. Therefore, the two functions
are identified as being the same one in the norm. The norm
can be regarded as a qualitative norm, because, roughly
speaking, the norm identifies increasing functions as direct
proportions and identifies decreasing functions as inverse
proportions, and the norm ignores the function values in the
intermediate domain between 0 and 1.

Theorem 17 The multilinear function space in the domain
[0,1] is a Euclidean space with the above inner product:
Proof can be found in [11], [12] and [16].

The orthonormal system is as follows:

�� �
��
���

����� �
 � �� 			� ����

where����� � � � �� �� ��. It is easily understood that
these orthonormal functions are the expansion of atoms in
Boolean algebra of Boolean functions. In addition, it can
easily be verified that the orthonormal system satisfies the
following properties:

� ��� �� ��

�
��
 �� ���
��
 � ���

� �
�
��

���

� �� �� � ��	

Example In the case of 2 variables, the orthonormal
functions are as follows:

��� ���� ��� �� � ���� �� � ����� ��	

and the representation by orthonormal functions of�� ��
�� of two variables (dimension 4) is as follows:

� � � ����� ����� ��� � � �������� � �������� ��	

The functions obtained by extending the domain of
Boolean functions from��� �� to [0,1], is called continu-
ous Boolean functions, because the functions can satisfy the
axioms of Boolean algebra[13].

7.3 The relation between neural networks and
multilinear functions

When the domain is [0,1], neural networks are well ap-
proximated to multilinear functions with the following:

�� �

�
��
 � ��
��
 � ���

where� is a natural number. When� � �, the above ap-
proximation is the linear approximation. The approxima-
tion accuracy in [0,1] domain is better than in other do-
mains, because

1. ���
 � �� is monotone increasing in [0,1] domain.

2. When
 is small, 
�� � �
 is less than that in other
domains.

3. When�� is big,�� is almost 0 in��� �� (��( is a small
positive number.)



8 Conclusions

Extracting rules(=propositions of classical logic) from
trained neural networks is effective for understanding the
neural networks. However, the extracted rules approximate
the neural networks, and cannot describe a lot of linguis-
tic knowledge contained in the neural networks. The neural
networks can be described in detail using the propositions
of nonclassical logics.

In order to extract propositions of nonclassical logics
from trained neural networks, the relations between non-
classical logics and neural networks should be studied, and
it may be necessary to develop new nonclassical logics.

As a preliminary study towards extracting propositions
of nonclassical logics from trained neural networks, this
paper has studied the relations between nonclassical logics
and neural networks.

This paper has explained that neural networks can be
regarded as the propositions of intuitionistic logic and in-
tuitionistic modal logic, and the relation between a neural
network and the Boolean function nearest to the neural net-
work is represented by intuitionistic modal logic.

There are a lot of open problems on extracting proposi-
tions of nonclassical logics from trained neural networks.
Therefore, the author hopes that researchers will tackle this
field.
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Abstract

A contingency table summarizes the conditional frequen-
cies of two attributes and shows how these two attributes
are dependent on each other with the information on a par-
tition of universe generated by these attributes. Thus, this
table can be viewed as a relation between two attributes
with respect to information granularity. This paper focuses
on several characteristics of linear and statistical indepen-
dence in a contingency table from the viewpoint of gran-
ular computing, which shows that statistical independence
in a contingency table is a special form of linear depen-
dence. The discussions also show that when a contingency
table is viewed as a matrix, called a contingency matrix,
its rank is equal to 1.0. Thus, the degree of independence,
rank plays a very important role in extracting a probabilis-
tic model from a given contingency table. Furthermore, it is
found that in some cases, partial rows or columns will sat-
isfy the condition of statistical independence, which can be
viewed as a solving process of Diophatine equations.

1. Introduction

Statistical independence between two attributes is a very
important concept in data mining and statistics. The defini-
tion P (A,B) = P (A)P (B) show that the joint probabil-
ity of A and B is the product of both probabilities. This
gives several useful formula, such as P (A|B) = P (A),
P (B|A) = P (B). In a data mining context, these formu-
lae show that these two attributes may not be correlated with
each other. Thus, when A or B is a classification target, the
other attribute may not play an important role in its classifi-
cation.

Although independence is a very important concept, it
has not been fully and formally investigated as a relation
between two attributes.

In this paper, a statistical independence in a contingency
table is focused on from the viewpoint of granular comput-
ing.

The first important observation is that a contingency ta-
ble compares two attributes with respect to information
granularity. It is shown from the definition that statistifcal
independence in a contingency table is a special form of
linear depedence of two attributes. Especially, when the ta-
ble is viewed as a matrix, the above discussion shows that
the rank of the matrix is equal to 1.0. Also, the results also
show that partial statistical independence can be observed.

The second important observation is that matrix algebra
is a key point of analysis of this table. A contingency table
can be viewed as a matrix and several operations and ideas
of matrix theory are introduced into the analysis of the con-
tingency table.

The paper is organized as follows: Section 2 discusses
the characteristics of contingency tables. Section 3 shows
the conditions on statistical independence for a 2 × 2 ta-
ble. Section 4 gives those for a 2 × n table. Section 5 ex-
tends these results into a multi-way contingency table. Sec-
tion 6 discusses statistical independence from matrix the-
ory. Section 7 and 8 show pseudo statistical independence.
Finally, Section 9 concludes this paper.

2. Contingency Table from Rough Sets

2.1. Rough Sets Notations

In the subsequent sections, the following notations
is adopted, which is introduced in [2]. Let U denote
a nonempty, finite set called the universe and A de-
note a nonempty, finite set of attributes, i.e., a : U → Va

for a ∈ A, where Va is called the domain of a, respec-
tively. Then, a decision table is defined as an information
system, A = (U,A∪{D}), where {D} is a set of given de-
cision attributes. The atomic formulas over B ⊆ A ∪ {D}
and V are expressions of the form [a = v], called descrip-



tors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic for-
mulas over B and closed with respect to disjunction,
conjunction and negation. For each f ∈ F (B, V ), fA de-
note the meaning of f in A, i.e., the set of all objects in U
with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) =
v}

2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A =
U − fa

By using this framework, classification accuracy and cover-
age, or true positive rate is defined as follows.

Definition 1
Let R and D denote a formula in F (B, V ) and a set of
objects whose decision attribute is given as �, respectively.
Classification accuracy and coverage(true positive rate) for
R → D is defined as:

αR(D) =
|RA ∩ D|
|RA| (= P (D|R)), and

κR(D) =
|RA ∩ D|

|D| (= P (R|D)),

where |A| denotes the cardinality of a set A, αR(D) de-
notes a classification accuracy of R as to classification of
D, and κR(D) denotes a coverage, or a true positive rate
of R to D, respectively.

2.2. Two-way Contingency Table

From the viewpoint of information systems, a contin-
gency table summarizes the relation between two attributes
with respect to frequencies. This viewpoint has already been
discussed in [3, 4]. However, this study focuses on more sta-
tistical interpretation of this table.

Definition 2 Let R1 and R2 denote binary attributes in
an attribute space A. A contingency table is a table of
a set of the meaning of the following formulas: |[R1 =
0]A|,|[R1 = 1]A|, |[R2 = 0]A|,|[R1 = 1]A|, |[R1 =
0 ∧ R2 = 0]A|,|[R1 = 0 ∧ R2 = 1]A|, |[R1 = 1 ∧ R2 =
0]A|,|[R1 = 1 ∧R2 = 1]A|, |[R1 = 0 ∨R1 = 1]A|(= |U |).
This table is arranged into the form shown in Table 1,
where: |[R1 = 0]A| = x11 + x21 = x·1, |[R1 = 1]A| =
x12 + x22 = x·2, |[R2 = 0]A| = x11 + x12 = x1·, |[R2 =
1]A| = x21 + x22 = x2·, |[R1 = 0 ∧ R2 = 0]A| = x11,
|[R1 = 0∧R2 = 1]A| = x21, |[R1 = 1∧R2 = 0]A| = x12,
|[R1 = 1 ∧ R2 = 1]A| = x22, |[R1 = 0 ∨ R1 = 1]A| =
x·1 + x·2 = x··(= |U |).

R1 = 0 R1 = 1
R2 = 0 x11 x12 x1·
R2 = 1 x21 x22 x2·

x·1 x·2 x··
(= |U | = N)

Table 1. Two way Contingency Table

From this table, accuracy and coverage for [R1 = 0] →
[R2 = 0] are defined as:

α[R1=0]([R2 = 0]) = |[R1 = 0 ∧ R2 = 0]A|
|[R1 = 0]A| =

x11

x·1
,

and

κ[R1=0]([R2 = 0]) = |[R1 = 0 ∧ R2 = 0]A|
|[R2 = 0]A| =

x11

x1·
.

2.3. Multi-way Contingency Table

Two-way contingency table can be extended into a con-
tingency table for multinominal attributes.

Definition 3 Let R1 and R2 denote multinominal attributes
in an attribute space A which have m and n values. A
contingency tables is a table of a set of the meaning of
the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|,
|[R1 = Aj∧R2 = Bi]A|, |[R1 = A1∧R1 = A2∧· · ·∧R1 =
Am]A|, |[R2 = B1 ∧ R2 = A2 ∧ · · · ∧ R2 = An]A| and
|U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m). This ta-
ble is arranged into the form shown in Table 1, where:
|[R1 = Aj ]A| =

∑m
i=1 x1i = x·j , |[R2 = Bi]A| =∑n

j=1 xji = xi·, |[R1 = Aj ∧ R2 = Bi]A| = xij ,
|U | = N = x·· (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).

A1 A2 · · · An Sum
B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
...

...
...

. . .
...

...
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

Table 2. Contingency Table (m × n)



3. Statistical Independence in 2 × 2 Contin-
gency Table

Let us consider a contingency table shown in Table 1.
Statistical independence between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0]) × P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0]) × P ([R2 = 1])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1]) × P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1]) × P ([R2 = 1])

Since each probability is given as a ratio of each cell to N ,
the above equations are calculated as:

x11

N
=

x11 + x12

N
× x11 + x21

N
x12

N
=

x11 + x12

N
× x12 + x22

N
x21

N
=

x21 + x22

N
× x11 + x21

N
x22

N
=

x21 + x22

N
× x12 + x22

N

Since N =
∑

i,j xij , the following formula will be obtained
from these four formulae.

x11x22 = x12x21 or x11x22 − x12x21 = 0

Thus,

Theorem 1 If two attributes in a contingency table shown
in Table 1 are statistical indepedent, the following equation
holds:

x11x22 − x12x21 = 0 (1)
	


It is notable that the above equation corresponds to the fact
that the determinant of a matrix corresponding to this table
is equal to 0. Also, when these four values are not equal to
0, the equation 1 can be transformed into:

x11

x21
=

x12

x22
.

Let us assume that the above ratio is equal to C(constant).
Then, since x11 = Cx21 and x12 = Cx22, the following
equation is obtained.

x11 + x12

x21 + x22
=

C(x21 + x22)
x21 + x22

= C =
x11

x21
=

x12

x22
. (2)

This equation also holds when we extend this discussion
into a general case. Before getting into it, let us cosndier a
2 × 3 contingency table.

4. Statistical Independence in 2 × 3 Contin-
gency Table

Let us consider a 2 × 3 contingency table shown in Ta-
ble 3. Statistical independence between R1 and R2 gives:

R1 = 0 R1 = 1 R1 = 2
R2 = 0 x11 x12 x13 x1·
R2 = 1 x21 x22 x23 x2·

x·1 x·2 x···3 x··
(= |U | = N)

Table 3. Contingency Table (2 × 3)

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0]) × P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0]) × P ([R2 = 1])
P ([R1 = 0], [R2 = 2]) = P ([R1 = 0]) × P ([R2 = 2])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1]) × P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1]) × P ([R2 = 1])
P ([R1 = 1], [R2 = 2]) = P ([R1 = 1]) × P ([R2 = 2])

Since each probability is given as a ratio of each cell to N ,
the above equations are calculated as:

x11

N
=

x11 + x12 + x13

N
× x11 + x21

N
(3)

x12

N
=

x11 + x12 + x13

N
× x12 + x22

N
(4)

x13

N
=

x11 + x12 + x13

N
× x13 + x23

N
(5)

x21

N
=

x21 + x22 + x23

N
× x11 + x21

N
(6)

x22

N
=

x21 + x22 + x23

N
× x12 + x22

N
(7)

x23

N
=

x21 + x22 + x23

N
× x13 + x23

N
(8)

From equation (3) and (6),

x11

x21
=

x11 + x12 + x13

x21 + x22 + x23

In the same way, the following equation will be obtained:

x11

x21
=

x12

x22
=

x13

x23
=

x11 + x12 + x13

x21 + x22 + x23
(9)

Thus, we obtain the following theorem:

Theorem 2 If two attributes in a contingency table shown
in Table 3 are statistical indepedent, the following equa-
tions hold:

x11x22 − x12x21 = x12x23 − x13x22

= x13x21 − x11x23 = 0 (10)
	


It is notable that this discussion can be easily extended into
a 2xn contingency table where n > 3. The important equa-
tion 9 will be extended into

x11

x21
=

x12

x22
= · · · =

x1n

x2n

=
x11 + x12 + · · · + x1n

x21 + x22 + · · · + x2n
=

∑n
k=1 x1k∑n
k=1 x2k

(11)



Thus,

Theorem 3 If two attributes in a contingency table (2 ×
k(k = 2, · · · , n)) are statistical indepedent, the following
equations hold:

x11x22 − x12x21 = x12x23 − x13x22 = · · ·
= x1nx21 − x11xn3 = 0 (12)

	

It is also notable that this equation is the same as the equa-
tion on collinearity of projective geometry [1].

5. Statistical Independence in m × n Contin-
gency Table

Let us consider a m × n contingency table shown in Ta-
ble 2. Statistical independence of R1 and R2 gives the fol-
lowing formulae:

P ([R1 = Ai, R2 = Bj ]) = P ([R1 = Ai])P ([R2 = Bj ])
(i = 1, · · · ,m, j = 1, · · · , n).

According to the definition of the table,

xij

N
=

∑n
k=1 xik

N
×

∑m
l=1 xlj

N
. (13)

Thus, we have obtained:

xij =
∑n

k=1 xik × ∑m
l=1 xlj

N
. (14)

Thus, for a fixed j,

xiaj

xibj
=

∑n
k=1 xiak∑n
k=1 xibk

In the same way, for a fixed i,

xija

xijb

=
∑m

l=1 xlja∑m
l=1 xljb

Since this relation will hold for any j, the following equa-
tion is obtained:

xia1

xib1
=

xia2

xib2
· · · =

xian

xibn
=

∑n
k=1 xiak∑n
k=1 xibk

. (15)

Since the right hand side of the above equation will be con-
stant, thus all the ratios are constant. Thus,

Theorem 4 If two attributes in a contingency table shown
in Table 2 are statistical indepedent, the following equa-
tions hold:

xia1

xib1
=

xia2

xib2
· · · =

xian

xibn
= const. (16)

for all rows: ia and ib (ia, ib = 1, 2, · · · ,m).
	


6. Contingency Matrix

The meaning of the above discussions will become much
clearer when we view a contingency table as a matrix.

Definition 4 A corresponding matrix CTa,b
is defined as a

matrix the element of which are equal to the value of the cor-
responding contingency table Ta,b of two attributes a and b,
except for marginal values.

Definition 5 The rank of a table is defined as the rank of
its corresponding matrix. The maximum value of the rank is
equal to the size of (square) matrix, denoted by r.

The contingency matrix of Table 2(T (R1, R2)) is defined as
CTR1,R2

as below:⎛
⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎞
⎟⎟⎟⎠

6.1. Independence of 2 × 2 Contingency Table

The results in Section 3 corresponds to the degree of in-
dependence in matrix theory. Let us assume that a contin-
gency table is given as Table 1. Then the corresponding ma-
trix (CTR1,R2

) is given as:(
x11 x12

x21 x22

)
,

Then,

Proposition 1 The determinant of det(CTR1,R2
) is equal to

x11x22 − x12x21,

Proposition 2 The rank will be:

rank =

{
2, if det(CTR1,R2

) �= 0
1, if det(CTR1,R2

) = 0

From Theorem 1,

Theorem 5 If the rank of the corresponding matrix of a
2times2 contingency table is 1, then two attributes in a
given contingency table are statistically independent. Thus,

rank =

{
2, dependent

1, statistical independent

This discussion can be extended into 2 × n tables. Accord-
ing to Theorem 3, the following theorem is obtained.

Theorem 6 If the rank of the corresponding matrix of a
2 × n contigency table is 1, then two attributes in a given
contingency table are statistically independent. Thus,

rank =

{
2, dependent

1, statistical independent



6.2. Independence of 3 × 3 Contingency Table

When the number of rows and columns are larger than
3, then the situation is a little changed. It is easy to see that
the rank for statistical independence of a m×n contingency
table is equal 1.0 as shown in Theorem 4. Also, when the
rank is equal to min(m,n), two attributes are dependent.

Then, what kind of structure will a contingency matrix
have when the rank is larger than 1,0 and smaller than
min(m,n) − 1 ? For illustration, let us consider the fol-
lowing 3times3 contingecy table.

Example 1 Let us consider the following corresponding
matrix:

A =

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠ .

The determinant of A is:

det(A) = 1 × (−1)1+1det

(
5 6
8 9

)

+2 × (−1)1+2det

(
4 6
7 9

)

+3 × (−1)1+3det

(
4 5
7 8

)
= 1 × (−3) + 2 × 6 + 3 × (−3) = 0

Thus, the rank of A is smaller than 2. On the other hand,
since (123) �= k(456) and (123) �= k(789), the rank of A is
not equal to 1.0 Thus, the rank of A is equal to 2.0. Actually,
one of three rows can be represented by the other two rows.
For example,

(4 5 6) =
1
2
{(1 2 3) + (7 8 9)}.

Therefore, in this case, we can say that two of three pairs
of one attribute are dependent to the other attribute, but one
pair is statistically independent of the other attribute with re-
spect to the linear combination of two pairs. It is easy to see
that this case includes the cases when two pairs are statis-
tically independent of the other attribute, but the table be-
comes statistically dependent with the other attribute.

In other words, the corresponding matrix is a mixure of
statistical dependence and independence. We call this case
contextual independent. From this illustration, the follow-
ing theorem is obtained:

Theorem 7 If the rank of the corresponding matrix of a
3 × 3 contigency table is 1, then two attributes in a given
contingency table are statistically independent. Thus,

rank =

⎧⎪⎨
⎪⎩

3, dependent

2, contextual independent

1, statistical independent

It is easy to see that this discussion can be extended into 3×
n contingency tables.

6.3. Independence of m × n Contingency Table

Finally, the relation between rank and independence in a
multi-way contingency table is obtained from Theorem 4.

Theorem 8 Let the corresponding matrix of a given con-
tingency table be a m × n matrix. If the rank of the cor-
responding matrix is 1, then two attributes in a given con-
tingency table are statistically independent. If the rank of
the corresponding matrix is min(m,n) , then two attributes
in a given contingency table are dependent. Otherwise, two
attributes are contextual dependent, which means that sev-
eral conditional probabilities can be represented by a lin-
ear combination of conditional probabilities. Thus,

rank =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(m,n) dependent

2, · · · ,

min(m,n) − 1 contextual independent

1 statistical independent

7. Pseudo Statistical Independence: Example

The next step is to investigate the characteristics of lin-
ear independence in a contingency matrix. In other words,
a m × n contingency table whose rank is not equal to
min(m,n). Since two-way matrix (2 × 2) gives a simple
equation whose rank is equal to 1 or 2, let us start our dis-
cussion from 3 × 3-matrix, whose rank is equal to 2, first.

7.1. Three-way Contingency Table (Rank: 2)

Let M(m,n) denote a contingency matrix whose row
and column are equal to m and n, respectively. Then, a
three-way contingency table is defined as:

M(3, 3) =

⎛
⎝x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞
⎠

When its rank is equal to 2, it can be assumed that the third
row is represented by the first and second row:

(x31 x32 x33) = p(x11 x12 x13) + q(x21 x22 x23) (17)

Then, we can consider the similar process in Section 5 (13).
In other words, we can check the difference defined below.

∆(i, j) =
xij

N
−

∑n
k=1 xik

N
×

∑m
l=1 xlj

N
. (18)



Then, the following three types of equations are obtained by
simple calculation.

∆(1, j) = (1 + q)

{
x1j

3∑
k=1

x2k − x2j

3∑
k=1

x1k

}

∆(2, j) = (1 + p)

{
x2j

3∑
k=1

x1k − x1j

3∑
k=1

x2k

}

∆(3, j) = (p − q)

{
x1j

3∑
k=1

x2k − x2j

3∑
k=1

x1k

}

According to Theorem 4, if M(3, 3) is not statistically in-
dependent, the formula: x1j

∑3
k=1 x2k − x2j

∑3
k=1 x1k is

not equal to 1.0. Thus, the following theorem is obtained.

Theorem 9 The third row represened by a linear combina-
tion of first and second rows will satisfy the condition of sta-
tistical independence if and only if p = q.

We call the above property pseudo statistical independence.
This means that if the third column satisfies the following
constraint:

(x31 x32 x33) = (x11 x12 x13) + (x21 x22 x23),

the third column will satisfy the condition of statistical in-
dependence. In other words, when we merge the first and
second row and construct a 2 × 3 contingency table, it will
become statistical independent. For example,

D =

⎛
⎝ 1 2 3

4 5 6
10 14 18

⎞
⎠

can be transformed into

D′ =
(

5 7 9
10 14 18

)
,

where D′ is statistically independent. Conversely, if D′ is
provided, it can be decomposed into D. It is notable that the
decomposition cannot be uniquely determined. It is also no-
table that the above discussion does not use the information
about the columns of a contingency table. Thus, this discus-
sion can be extended into a 3 × n contingency matrix.

7.2. Four-way Contingency Table (Rank: 3)

From four-way tables, the situation becomes more com-
plicated. In the similar way to Subsection 7.1, a four-way
contingency table is defined as:

M(4, 4) =

⎛
⎜⎜⎝

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

⎞
⎟⎟⎠

When its rank is equal to 3, it can be assumed that the fourth
row is represented by the first to third row:

(x41 x42 x43 x44) = p(x11 x12 x13 x14)
+q(x21 x22 x23 x24)
+r(x31 x32 x33 x34) (19)

Then, the following three types of equations are obtained by
simple calculation.

∆(1, j) = (1 + q)

{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

+(1 + r)

{
x1j

4∑
k=1

x3k − x3j

4∑
k=1

x1k

}

∆(2, j) = (1 + p)

{
x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

+(1 + r)

{
x2j

4∑
k=1

x3k − x3j

4∑
k=1

x2k

}

∆(3, j) = (1 + p)

{
x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

+(1 + q)

{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

∆(4, j) = (p − q)

{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

+(r − p)

{
x3j

4∑
k=1

x2k − x1j

4∑
k=1

x1k

}

+(q − r)

{
x2j

4∑
k=1

x3k − x3j

4∑
k=1

x2k

}

Thus, the following theorem is obtained.

Theorem 10 The fourth row represened by a linear combi-
nation of first to third rows (basis) will satisfy the condition
of statistical independence if and only if ∆(4, j) = 0.

Unfortunately, the condition is not simpler than Theorem 9.
It is notable ∆(4, j) = 0 is a diophatine equation whose
trivial solution is p = q = r. That is, the solution space in-
cludes not only p = q = r, but other solutions. Thus,

Corollary 1 If p = q = r, then the fourth row satisfies the
condition of statistical independence.

The converse is not true.

Example 2 Let us consider the following matrix:

E =

⎛
⎜⎜⎝

1 1 2 2
2 2 3 3
4 4 5 5

x41 x42 x43 x44

⎞
⎟⎟⎠ .



The question is when the fourth row represented by
the other rows satisfies the condition of statistical in-
dependence. Since x1j

∑4
k=1 x2k − x2j

∑4
k=1 x1k =

−2, x1j

∑4
k=1 x3k − x3j

∑4
k=1 x1k = 6 and

x2j

∑4
k=1 x1k − x1j

∑4
k=1 x2k = −4, ∆(4, j) is equal to:

−2(p − q) + 6(r − p) − 4(q − r) = −8p − 2q + 10r.
Thus, the set of solutions is {(p, q, r)|10r = 8p + 2q},

where p = q = r is included.

It is notable that the characteristics of solutions will be char-
acterized by a diophantine equation 10r = 8p + 2q and a
contingency table given by a tripule (p, q, r) may be repre-
sented by another tripule. For example, (3, 3, 3) gives the
same contingency table as (1, 6, 2):⎛

⎜⎜⎝
1 1 2 2
2 2 3 3
4 4 5 5
21 21 30 30

⎞
⎟⎟⎠ .

It will be our future work to investigate the general charac-
teristics of the solution space.

7.3. Four-way Contingency Table (Rank: 2)

When its rank is equal to 2, it can be assumed that the
third and fourth rows are represented by the first to third
row:

(x41 x42 x43 x44) = p(x11 x12 x13 x14)
+q(x21 x22 x23 x24) (20)

(x31 x32 x33 x34) = r(x11 x12 x13 x14)
+s(x21 x22 x23 x24) (21)

∆(1, j) = (1 + q + s)

{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

∆(2, j) = (1 + p + r)

{
x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

∆(3, j) = (p − q + ps − qr)

×
{

x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

∆(4, j) = (r − s + qr − ps)

×
{

x1j

4∑
k=1

x2k − x2j

4∑
k=1

x2k

}

Since p − q + ps − qr = 0 and r − s + qr − ps = 0 gives
the only reasonable solution p = q and r = s, the following
theorem is obtained.

Theorem 11 The third and fourth rows represened by a lin-
ear combination of first and second rows (basis) will satisfy
the condition of statistical independence if and only if p = q
and r = w.

8. Pseudo Statiatical Independence

Now, we will generalize the results shown in Section 7.
Let us consider the n × m contingency table whose r rows
(columns) are described by n − s rows (columns). Thus,
we assume a corresponding matrix with the following equa-
tions. ⎛

⎜⎜⎜⎝
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎞
⎟⎟⎟⎠

(xn−s+p,1 xn−s+p,2 · · · xn−s+p,m) =
n−s∑
i=1

kpi(xi1 xi2 · · · xim)

(1 ≤ s ≤ n − 1, 1 ≤ p ≤ s) (22)

Then, the following theorem about ∆(u, v) is obtained.

Theorem 12 For a contingency table with size n × m:

∆(u, v) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−s∑
i=1

(1 +
n−s∑
p=1

kpi)

×
⎧⎨
⎩xuv(

m∑
j=1

xij) − xiv(
m∑

j=1

xuj)

⎫⎬
⎭

(1 ≤ u ≤ n − s, 1 ≤ v ≤ m)

n−s∑
i=1

m∑
j=1

n−s∑
q=1

xq1xij

×{(kuq − kui)

+kuq

n−s∑
p=1

kpi − kui

n−s∑
p=1

kpq

}

(n − s + 1 ≤ u ≤ n, 1 ≤ v ≤ m)

(23)

Thus, from the above theorem, if and only if ∆(u, v) = 0
for all v, then the u-th row will satisfy the condition of sta-
tistically independence. Especially, the following theorem
is obtained.

Theorem 13 If the following equation holds for all v(1 ≤
v ≤ m) , then the condition of statistical independence will
hold for the u-th row in a contingency table.

n−s∑
i=1

m∑
j=1

n−s∑
q=1

{(kuq − kui)

+kuq

n−s∑
p=1

kpi − kui

n−s∑
p=1

kpq

}
= 0 (24)



It is notable that the above equations give diophatine equa-
tions which can check whether each row (column) will sat-
isfy the condition of statistical independence. As a corol-
lary,

Corollary 2 If kui is equal for all i = 1, · · · , n − s , then
the u-th satisfies the condition of statistical independence.

The converse is not true.

Example 3 Let us consider the following matrix:

F =

⎛
⎜⎜⎜⎜⎝

1 1 2
2 2 3
4 4 5

x41 x42 x43

x51 x52 x53

⎞
⎟⎟⎟⎟⎠ ,

where the last two rows are represented by the first three
columns. That is, the rank of a matrix is equal to 3. Then,
according to Theorem 13, the following equations are ob-
tained:

(5k53 − k52 − 4k51)
× {k41 − 2k43 + (k51 − 2k53 − 1} = 0

(25)
(5k43 − k42 − 4k41)

× {k41 − 2k43 + (k51 − 2k53 − 1} = 0
(26)

In case of k41 − 2k43 + (k51 − 2k53 − 1) = 0, simple cal-
culations give several equations for those coefficients.

k41 + k51 = 2(k43 + k53) + 1
k42 + k52 = −3(k43 + k53)

The solutions of these two equations give examples of
pseudo statistical independence. 	


9. Conclusion

In this paper, a contingency table is interpreted from the
viewpoint of granular computing and statistical indepen-
dence. From the definition of statistical independence, sta-
tistical independence in a contingency table will holds when
the equations of collinearity(Equation 14) are satisfied. In
other words, statistical independence can be viewed as lin-
ear dependence. Then, the correspondence between contin-
gency table and matrix, gives the theorem where the rank of
the contingency matrix of a given contingency table is equal
to 1 if two attributes are statistical independent. That is, all
the rows of contingency table can be described by one row
with the coefficient given by a marginal distribution. If the
rank is maximum, then two attributes are dependent. Oth-
erwise, some probabilistic structure can be found within at-
tribute -value pairs in a given attribute, which we call con-
textual independence. Moreover, from the characteristics of

statistical independence, a contingency table may be com-
posed of statistical independent and dependent parts, which
we call pseudo statistical dependence. In such cases, if we
merge several rows or columns, then we will obtain a new
contingency table with statistical independence, whose rank
of its corresponding matrix is equal to 1.0. Especially, we
obtain Diophatine equations for a pseudo statistical depen-
dence. Thus, matrix algebra and elementary number theory
are the key methods of the analysis of a contingency ta-
ble and the degree of independence, where its rank and the
structure of linear dependence as Diophatine equations play
very important roles in determining the nature of a given ta-
ble.
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Abstract

This paper gives a relations between the degree of gran-
ularity and that of dependence of contingency tables. From
the results of determinantal divisors, it seems that the de-
visors provide information on the degree of dependencies
between the matrix of the whole elements and its submatri-
ces and the increase of the degree of granularity may lead to
that of dependence. However, this paper shows that a con-
straint on the sample size of a contingency table is very
strong, which leads to the evaluation formula where the in-
crease of degree of granularity gives the decrease of depen-
dency.

1. Introduction

Independence (dependence) is a very important concept
in data mining, especially for feature selection. In rough
sets[?], if two attribute-value pairs, say [c = 0] and [d = 0]
are independent, their supporting sets, denoted by C and
D do not have a overlapping region (C ∩ D = φ), which
means that one attribute independent to a given target con-
cept may not appear in the classification rule for the con-
cept.

This idea is also frequently used in other rule discov-
ery methods: let us consider deterministic rules, described
as if-then rules, which can be viewed as classic propositions
(C → D). From the set-theoretical point of view, a set of
examples supporting the conditional part of a deterministic
rule, denoted by C, is a subset of a set whose examples be-
long to the consequence part, denoted by D. That is, the re-
lation C ⊆ D holds and deterministic rules are supported
only by positive examples in a dataset[?].

When such a subset relation is not satisfied, indetermin-
istic rules can be defined as if-then rules with probabilistic
information[?]. From the set-theoretical point of view, C is
not a subset, but closely overlapped with D. That is, the re-
lations C ∩ D �= φ and |C ∩ D|/|C| ≥ δ will hold in

this case.1 Thus, probabilistic rules are supported by a large
number of positive examples and a small number of nega-
tive examples.

On the other hand, in a probabilistic context, indepen-
dence of two attributes means that one attribute (a1) will not
influence the occurrence of the other attribute (a2), which is
formulated as p(a2|a1) = p(a2).

Although independence is a very important concept, it
has not been fully and formally investigated as a relation
between two attributes. Tsumoto introduces linear algebra
into formal analysis of a contigency table [?]. The results
give the following interesting results. First, a contingency
table can be viewed as comparison between two attributes
with respect to information granularity. Second, algebra is
a key point of analysis of this table. A contingency ta-
ble can be viewed as a matrix and several operations and
ideas of matrix theory are introduced into the analysis of
the contingency table. Especially, The degree of indepen-
dence, rank plays a very important role in extracting a prob-
abilistic model from a given contingency table.

This paper gives a further investigation on the degree of
independence of contingency matrix.

Intuitively and empirically, when two attributes has
many values, the dependence between these two at-
tributes becomes low. However, from the results of de-
terminantal divisors, it seems that the devisors provide
information on the degree of dependencies between the ma-
trix of the whole elements and its submatrices and the
increase of the degree of granularity may lead to that of de-
pendence. The key of the resolution of these conflicts is to
consider the constraint on the sample size.

In this paper we show that a constraint on the sample
size of a contingency table is very strong, which leads to the
evaluation formula where the increase of degree of granu-
larity gives the decrease of dependency. The paper is orga-
nized as follows: Section 2 shows preliminaries. Section 3

1 The threshold δ is the degree of the closeness of overlapping sets,
which will be given by domain experts. For more information, please
refer to Section 3.



discusses the former results. Section 4 gives the relations
between rank and submatrices of a matrix. Finally, Section
6 concludes this paper.

2. Contingency Table from Rough Sets

2.1. Notations

In the subsequent sections, the following notations
is adopted, which is introduced in [?]. Let U denote
a nonempty, finite set called the universe and A de-
note a nonempty, finite set of attributes, i.e., a : U → Va

for a ∈ A, where Va is called the domain of a, respec-
tively. Then, a decision table is defined as an information
system, A = (U,A∪{D}), where {D} is a set of given de-
cision attributes. The atomic formulas over B ⊆ A ∪ {D}
and V are expressions of the form [a = v], called descrip-
tors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic for-
mulas over B and closed with respect to disjunction,
conjunction and negation. For each f ∈ F (B, V ), fA de-
note the meaning of f in A, i.e., the set of all objects in U
with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) =
v}

2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A =
U − fa

2.2. Multi-way Contingency Table

Two-way contingency table can be extended into a con-
tingency table for multinominal attributes.

Definition 1 Let R1 and R2 denote multinominal attributes
in an attribute space A which have m and n values. A
contingency tables is a table of a set of the meaning of
the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|,
|[R1 = Aj∧R2 = Bi]A|, |[R1 = A1∧R1 = A2∧· · ·∧R1 =
Am]A|, |[R2 = B1 ∧ R2 = A2 ∧ · · · ∧ R2 = An]A| and
|U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m). This ta-
ble is arranged into the form shown in Table 1, where:
|[R1 = Aj ]A| =

∑m
i=1 x1i = x·j , |[R2 = Bi]A| =∑n

j=1 xji = xi·, |[R1 = Aj ∧ R2 = Bi]A| = xij ,
|U | = N = x·· (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).

Example.
Let us consider an information table shown in Table 2.

The relationship between b and e can be examined by us-
ing the corresponding contingency table as follows. First,
the frequencies of four elementary relations are counted,
called marginal distributions: [b = 0], [b = 1], [e = 0],

A1 A2 · · · An Sum
B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

Table 1. Contingency Table (n × m)

a b c d e
1 0 0 0 1
0 0 1 1 1
0 1 2 2 0
1 1 1 2 1
0 0 2 1 0

Table 2. A Small Dataset

and [e = 1]. Then, the frequencies of four kinds of conjunc-
tion are counted: [b = 0] ∧ [e = 0] , [b = 0] ∧ [e = 1] ,
[b = 1] ∧ [e = 0] , and [b = 1] ∧ [e = 1]. Then, the fol-
lowing contingency table is obtained (Table 3). From this

b=0 b=1
e=0 1 1 2
e=1 2 1 3

3 2 5

Table 3. Corresponding Contingency Table

table, accuracy and coverage for [b = 0] → [e = 0] are ob-
tained as 1/(1 + 2) = 1/3 and 1/(1 + 1) = 1/2.

One of the important observations from granular com-
puting is that a contingency table shows the relations be-
tween two attributes with respect to intersection of their
supporting sets. For example, in Table 3, both b and e have
two different partitions of the universe and the table gives
the relation between b and e with respect to the intersec-
tion of supporting sets. It is easy to see that this idea can
be extended into n−way contingency tables, which can be
viewed as n×n-matrix. When two attributes have different
number of equivalence classes, the situation may be a lit-
tle complicated. But, in this case, due to knowledge about
linear algebra, we only have to consider the attribute which
has a smaller number of equivalence classes. and the sur-
plus number of equivalence classes of the attributes with
larger number of equivalnce classes can be projected into
other partitions. In other words, a n × m matrix or contin-
gency table includes a projection from one attributes to the
other one.



3. Rank of Contingency Table (two-way)

3.1. Preliminaries

Definition 2 A corresponding matrix CTa,b
is defined as a

matrix the element of which are equal to the value of the cor-
responding contingency table Ta,b of two attributes a and b,
except for marginal values.

Definition 3 The rank of a table is defined as the rank of
its corresponding matrix. The maximum value of the rank is
equal to the size of (square) matrix, denoted by r.

Example.
Let the table given in Table 3 be defined as Tb,e. Then,

CTb,e
is: (

1 1
2 1

)

Since the determinant of CTb,e
det(CTb,e

) is not equal to 0,
the rank of CTb,e

is equal to 2. It is the maximum value (r =
2), so b and e are statistically dependent.

3.2. Independence when the table is two-way

From the results in linear algebra, several results are ob-
tained. (The proofs is omitted.) First, it is assumed that a
contingency table is given as two-way m = 2, n = 2 in Ta-
ble 1. Then the corresponding matrix (CTR1,R2

) is given as:(
x11 x12

x21 x22

)
,

Proposition 1 The determinant of det(CTR1,R2
) is equal to

|x11x22 − x12x21|.
Proposition 2 The rank will be:

rank =

{
2, if det(CTR1,R2

) �= 0
1, if det(CTR1,R2

) = 0

If the rank of det(CTb,e
) is equal to 1, according to the

theorems of the linear algebra, it is obtained that one row or
column will be represented by the other column. That is,

Proposition 3 Let r1 and r2 denote the rows of the corre-
sponding matrix of a given two-way table, CTb,e

. That is,

r1 = (x11, x12), r2 = (x21, x22)

Then, r1 can be represented by r2: r1 = kr2, where k is
given as:

k =
x11

x21
=

x12

x22
=

x1·
x2·

From this proposition, the following theorem is obtained.

a=0 a=1
c=0 0 1 1
c=1 1 1 2
c=2 2 0 2

3 2 5

Table 4. Contingency Table for a and c

Theorem 1 If the rank of the corresponding matrix is 1,
then two attributes in a given contingency table are statisti-
cally independent. Thus,

rank =

{
2, dependent

1, statistical independent

4. Rank of Contingency Table (Multi-way)

In the case of a general square matrix, the results in the
two-way contingency table can be extended. Especially, it
is very important to observe that conventional statistical in-
dependence is only supported when the rank of the corre-
sponding is equal to 1. Let us consider the contingency ta-
ble of c and a in Table 2, which is obtained as follows. Thus,
the corresponding matrix of this table is:⎛

⎝1 0 0
0 1 1
0 1 1

⎞
⎠ ,

whose determinant is equal to 0. It is clear that its rank is
2. It is interesting to see that if the case of [d = 0] is re-
moved, then the rank of the corresponding matrix is equal
to 1 and two rows are equal. Thus, if the value space of d
into {1, 2} is restricted, then c and d are statistically inde-
pendent. This relation is called contextual independence [?],
which is related with conditional independence.

However, another type of weak independence is ob-
served: let us consider the contingency table of a and c. The
table is obtained as Table 4:
Its corresponding matrix is:

CTa,c
=

⎛
⎝0 1

1 1
2 0

⎞
⎠ ,

Since the corresponding matrix is not square, the determi-
nant is not defined. But it is easy to see that the rank of this
matrix is two. In this case, even any attribute-value pair re-
moved from the table will not generate statistical indepen-
dence. Finally, the relation between rank and independence
in a multi-way contingency table is obtained.

Theorem 2 Let the corresponding matrix of a given contin-
gency table be a square n×n matrix. If the rank of the cor-



responding matrix is 1, then two attributes in a given contin-
gency table are statistically independent. If the rank of the
corresponding matrix is n , then two attributes in a given
contingency table are dependent. Otherwise, two attributes
are contextual dependent, which means that several condi-
tional probabilities can be represented by a linear combi-
nation of conditional probabilities. Thus,

rank =

⎧⎪⎨
⎪⎩

n dependent

2, · · · , n − 1 contextual independent

1 statistical independent


�
This theorem can be generalized into m × n matrix. If

the corresponding matrix of a given contingency table is
not square and of the form m × n , then its rank is at most
min(m,n).

For example, since CTa,c
is 3 × 2, the rank is at most 2.

Actually, from the calculation of subdeterminants shown in
the next section, this matrix has a rank of 2.

Theorem 3 Let the corresponding matrix of a given con-
tingency table be a m×n matrix. The rank of this matrix is
less than min(m,n). If the rank of the corresponding ma-
trix is 1, then two attributes in a given contingency table
are statistically independent. If the rank of the correspond-
ing matrix is n , then two attributes in a given contingency
table are dependent. Otherwise, two attributes are contex-
tual dependent, which means that several conditional prob-
abilities can be represented by a linear combination of con-
ditional probabilities. Thus,

rank =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(m,n) dependent

2, · · · ,

min(m,n) − 1 contextual independent

1 statistical independent


�
In the cases of m �= n, we need a discussion on submatrix
and subderminant in the next section.

5. Rank and Degree of Dependence

5.1. Submatrix and Subdeterminant

The next interest is the structure of a corresponding ma-
trix with 1 ≤ rank ≤ n− 1. First, let us define a submatrix
(a subtable) and subdeterminant.

Definition 4 Let A denote a corresponding matrix of a
given contigency table (m × n). A corresponding subma-
trix Ai1i2···ir

j1j2···js
is defined as a matrix which is given by an in-

tersection of r rows and s columns of A (i1 < i2 < · · · <
ir, j1 < j2 < · · · < jr).

Definition 5 A subdeterminant of A is defined as a de-
terminant of a submatrix Ai1i2···ir

j1j2···js
, which is denoted by

det(Ai1i2···ir
j1j2···js

).

Let us consider the contingency table given as Table 1.
Then, a subtable for Ai1i2···ir

j1j2···js
is given as Table 5.

Aj1 Aj2 · · · Ajr
Sum

Bi1 xi1j1 xi1j2 · · · xi1jr
xi1·

Bi2 xi2j1 xi2j2 · · · xi2jr
xi2·

· · · · · · · · · · · · · · · · · ·
Bir

xirj1 xirj2 · · · xirjn
xir·

Sum x·1 x·2 · · · x·n x·· = |U | = N

Table 5. A subtable (r × s)

5.2. Rank and Subdeterminant

Let δij denote a co-factor of aij in a square correspond-
ing matrix of A. Then,

∆ij = (−1)i+jdet(A1,2,··· ,i−1,i+1,··· ,n
1,2,··· ,j−1,j+1,··· ,n).

It is notable that a co-factor is a special type of submatrix,
where only ith-row and j-column are removed from a orig-
inal matrix. By the use of co-factors, the determinant of A
is defined as:

det(A) =
n∑

j=1

aij∆ij ,

which is called Laplace expansion.
From this representation, if det(A) is not equal to 0, then

∆ij �= 0 for {ai1, ai2, · · · , ain} which are not equal to 0.
Thus, the following proposition is obtained.

Proposition 4 If det(A) is not equal to 0 if at least one co-
factor of aij(�= 0), ∆ij is not equal to 0.

It is notable that the above definition of a determinant
gives the relation between a original matrix A and subma-
trices (co-factors). Since cofactors gives a square matrix of
size n−1, the above proposition gives the relation between a
matrix of size n and submatrices of size n − 1. In the same
way, we can discuss the relation between a corresponding
matrix of size n and submatrices of size r(1 ≤ r < n − 1).

5.3. Rank and Submatrix

Let us assume that corresponding matrix and submatrix
are square (n × n and r × r, respectively).

Theorem 4 If the rank of a corresponding matrix of size
n × n is equal to r, at least the determinant of one subma-
trix of size r×r is not equal to 0. That is, there exists a sub-
matrix Ai1i2···ir

j1j2···jr
, which satisfies det(Ai1i2···ir

j1j2···jr
) �= 0



Corollary 1 If the rank of a corresponding matrix of size
n × n is equal to r, all the determinants of the submatrices
whose number of columns and rows are larger than r+1(≤
n) are equal to 0. 
�
Example. Let us consider the corresponding matrix men-
tioned in the above section, CTa,c

. The submatrices of this
matrix are: (

1 1
2 0

)
,

(
0 1
2 0

)
,

(
0 1
1 1

)
.

Since all the subderminants are not equal to 0, the rank of
this corresponding matrix is equal to 2.

Example 1 Let us consider the following corresponding
matrix:

A =

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠ .

The determinant of A is:

det(A) = 1 × (−1)1+1det

(
5 6
8 9

)

+2 × (−1)1+2det

(
4 6
7 9

)

+3 × (−1)1+3det

(
4 5
7 8

)
= 1 × (−3) + 2 × 6 + 3 × (−3) = 0

Thus, the rank of A is smaller than 2.
All the subdeterminants of A are:

det

(
5 6
8 9

)
= −3, det

(
4 6
7 9

)
= −6,

det

(
4 5
7 8

)
= −3, det

(
1 2
7 8

)
= −6,

det

(
1 3
7 9

)
= −12, det

(
2 3
8 9

)
= −6,

det

(
1 2
4 5

)
= −3, det

(
1 3
4 6

)
= −6,

det

(
2 3
5 6

)
= −3.

Since all the subdeterminants of A are not equal to 0, the
rank of A is equal to 2. Actually, since

(
4 5 6

)
=

1
2
{(1 2 3

)
+

(
7 8 9

)},
and (7 8 9) cannot be represented by k(1 2 3)(k :
integer), the rank of this matrix is equal to 2.

Thus, one attribute-value pair is statistically dependent
on other two pairs, statistically independent of the other at-
tribute. In other words, if two pairs are fixed, the remaining
one attribute-value pair will be statistically independently
determined.

5.4. Determinantal Divisors

From the subdeterminants of all the submatrices of size
2, all the subdeterminants of a corresponding matrix has the
greatest common divisor, equal to 3.

From the recursive definition of the determinants, it is
show that the subdeterminants of size r + 1 will have the
greatest common divisor of the subdeterminants of size r as
a divisor. Thus,

Theorem 5 Let dk(A) denote the greatest common divi-
sor of all the subdeterminants of size k, det(Ai1i2···ik

j1j2···jr
).

d1(A), d2(A), · · · , dn(A) are called determinantal divi-
sors. From the definition of Laplace expansion,

dk(A)|dk+1(A).


�
In the example of the above subsection, d1(A) = 1,
d2(A) = 3 and d3(A) = 0.

Example 2 Let us cosider CTa,c
as an example.

d1(CTa,c
) = 1 and d2(CTa,c

) = 1.

Example 3 Let us consider the following corresponding
matrix:

B =

⎛
⎝1 2 3

4 5 6
7 11 9

⎞
⎠ .

Calculation gives: d1(B) = 1, d2(B) = 3 and d3(B) =
18.

It is notable that a simple change of a corresponding ma-
trix gives a significant change to the determinant, which
suggests a change of structure in dependence/independence.

The relation between dk(A) gives a interesting con-
straint.

Proposition 5 Since dk(A)|dk+1(A), the sequence of the
devisiors is monotonically increasing one:

d1(A) ≤ d2(A) · · · ≤ dr(A),

where r denotes the rank of A.

The sequence of B illustrates this: 1 < 3 < 18.
Let us define a ratio of dk(A) to dk−1(A), called elemen-

tary divisors, where C denotes a corresponding matrix and
k ≤ rankA:

ek(C) =
dk(C)

dk−1(C)
(d0(C) = 0).

The elementary divisors may give the increase of depen-
dency between two attributes. For example, e1(B) = 1,
e2(B) = 3, and e3(B) = 6. Thus, a transition from 2 × 2



to 3 × 3 have a higher impact on the dependency of two at-
tributes.

It is trivial to see that det(B) = e1e2e3, which can be
viewed as a decomposition of the determinant of a corre-
sponindg matrix.

5.5. Divisors and Degree of Dependence

Since the determinant can be viewed as the degree of de-
pendence, this result is very important. If values of all the
subdeterminants (size r) are very small (nearly equal to 0)
and dr(A) 
 1, then the values of the subdeterminants (size
r + 1) are very small. This property may hold until the r
reaches the rank of the corresponding matrix. Thus, the se-
quence of the divisiors of a corresponding matrix gives a
hidden structure of a contingency table.

Also, this results show that d1(A) and d2(A) are very
important to estimate the rank of a corresponding matrix.
Since d1(A) is only given by the greatest common divisor
of all the elements of A, d2(A) are much more important
components. This also intuitively suggests that the subde-
terminants of A with size 2 are principal components of a
corresponding matrix from the viewpoint of statistical de-
pendence.

Recall that statistical independence of two attributes is
equivalent to a corresponding matrix with rank being 1. A
matrix with rank being 2 gives a context-dependent inde-
pendence, which means three values of two attributes are
independent, but two values of two attributes are dependent.

5.6. Subdeterminants and Degree of Dependence

Since the determinants give the degree of dependence,
the degree of dependence can be evaluted by the values of
subdeterminants.

For the above examples (A), since

det

(
1 3
7 9

)
= −12

gives the maximum value, the first and the third attribute-
value pairs for two attributes are dependent each other.

On the other hand, concerning B, since

det

(
2 3
11 9

)
= −15

gives the maximum value, the second and the third attribute-
value pairs for two attributes are dependent each other.

This discussion can be extended into the dependency be-
tween attribute-value pairs and a corresponding attribute.
Let us consider 3× 2 submatrices of A, which removes one
column of the matrix.

A1 =

⎛
⎝2 3

5 6
8 9

⎞
⎠ , A2 =

⎛
⎝1 3

4 6
7 9

⎞
⎠ , A3 =

⎛
⎝1 2

4 5
7 8

⎞
⎠ .

From the discussions in the above subsections, a set of
the subderminants of 2 × 2 submatrices of Aj , denoted by
DAj

are obtained as:

DA1 = {−3,−6,−3}
DA2 = {−12,−6,−6}
DA3 = {−3,−6,−3}

Thus, the first and three attribute value pairs are more de-
pendent than second value pairs, concerning the classifica-
tion of attributes for the rows.

5.7. Elementary Divisors and Elementary Trans-
formation

Let us define the following three elementary
(row/column)transformations of a coreesponding ma-
trix:

1. Exchange two rows (columns), i0 and j0 (P (i0, j0)).
2. Multiply −1 to a row (column) i0 (T (i0;−1)).
3. Multiply t to a row (column) j0 (i0) and add it to a row

i0 (j0). (W (i0, j0, t)).

Then, three transformations have several interest-
ing characterics.

Proposition 6 Matrices corresponding to three elementary
transformations are regular.

Proposition 7 Three elementary transformations do not
change the rank of a corresponding matrix.

Proposition 8 Let Ã denote a matrix transformed by finite
steps of three operations. Then,

rankÃ = rankA, dr(Ã) = dr(A),

where r denotes the rank of matrix A.
Then, from the results of linear algebra, the following in-

teresting result is obtained.

Theorem 6 With the finite steps of elementary transforma-
tions, a given corresponding matrix is transformed into

Ã =

⎛
⎜⎜⎜⎜⎜⎝

e1

e2

. . . O
er

O O

⎞
⎟⎟⎟⎟⎟⎠ ,

where ej = dj(A)
dj−1(A) (d0(A) = 1) and r denotes the rank

of a corresponding matrix. Then, the determinant is decom-
posed into the product of ej .

dr(Ã) = dr(A) = e1e2 · · · er.


�



6. Degree of Granularity and Dependence

From Theorem 6, it seems that the increase of the degree
of granularity gives that of the dependence between two at-
tributes.

However, our empirical observations are different from
the above intuitive analysis. Thus, there should be a strong
constraint which suppress the above effects on the degree of
granularity.

Let us assume that the determinant of a give contingency
matrix gives the degree of the dependence of the matrix.
Then, from the results of linear algebra, we obtain the fol-
lowing theorem.

Theorem 7 Let A denote a n×n contingency matrix, which
includes N samples. If the rank of A is equal to n, then there
exists a matrix B (n × n) which satisfies

BA =

⎛
⎜⎜⎜⎝

ρ1

ρ2 O
. . .

O ρn

⎞
⎟⎟⎟⎠ = P,

where ρ1 + ρ2 + · · · + ρn = N .
It is notable that the value of determinants of P is larger

than A:
detA ≤ detP


�
Example 4 Let us consider B as an example (Example 3).
Let C denote the orthogonal matrix for transformaiton of
B. Since the cardinality of B is equal to 48, the diagonal
matrix which gives the maximum determinant is equal to:⎛

⎝16 0 0
0 16 0
0 0 16

⎞
⎠ .

On the other hand, the determinant of B is equal to 18.
Thus, detB = 18 < 163 = 4096. Then, C is obtained from
the following equation.

C ×
⎛
⎝1 2 3

4 5 6
7 11 9

⎞
⎠ =

⎛
⎝16 0 0

0 16 0
0 0 16

⎞
⎠ .

Thus,

C =

⎛
⎝−56/3 40/3 −8/3

16/3 −32/3 16/3
8 8/3 −8/3

⎞
⎠

It is notable that the determinant of C is equal to 2048/9.
Also, since detB = 18, we do not have any diagonal matrix
whose determinant is equal to 18 and the sum of all the el-
ements is equal to 48. 
�

It is easy to see that the tranformed matrix P has a very
nice property to calculate the determinant.

Proposition 9 The determinant of the transformed matrix
P is equal to the multiplication of ρ1 to ρn. That is,

detP = ρ1ρ2 · · · ρn


�
Then, the following constraint will be have the special

meaning:
ρ1 + ρ2 + · · · + ρn = N, (1)

because the following inequality holds in general:

ρ1 + ρ2 + · · · + ρn

n
≥ n

√
ρ1ρ2 · · · ρn, (2)

where the equality holds when ρ1 = ρ2 = · · · = ρn. Since
the above inequality can be transformed into:

ρ1ρ2 · · · ρn ≤
(

ρ1 + ρ2 + · · · + ρn

n

)n

,

the following inequality is obtained:

detP = ρ1ρ2 · · · ρn ≤
(

ρ1 + ρ2 + · · · + ρn

n

)n

, (3)

where the equality holds when ρ1 = ρ2 = · · · = ρn. From
the theorem 7 and equation 1, the following theorem is ob-
tained.

Theorem 8 When a contingency matrix A holds AB = P ,
where P is a diagonal matrix, the following inequality
holds:

detA ≤
(

N

n

)n

,

Proof.

detA = det(PB−1)
≤ detP

= ρ1ρ2 · · · ρn

≤
(

ρ1 + ρ2 + · · · + ρn

n

)n

=
(

N

n

)n

, (4)

where the former equality holdes when detB−1 = detB =
1 and the latter equality holds when ρ1 = ρ2 = · · · = ρn =
N
n .

Example 5 Let us consider the following contingency ma-
trices D and E:

D =

⎛
⎜⎜⎝

1 2 3 0
4 5 6 0
7 11 9 0
0 0 0 1

⎞
⎟⎟⎠



E =

⎛
⎜⎜⎝

1 2 3 0
4 5 6 0
7 10 9 0
0 0 0 1

⎞
⎟⎟⎠

The numbers of examples of D and E are 49 and 48, respec-
tively, which can be comparable to that of B. Then, from
Theorem 8,

detD = 18 < (49/4)4 =
5764801

256
∼ 22518

detE = 12 < (48/4)4 = 20736

Thus, the maximum value of the determinant of A is at
most

(
N
n

)n
. Since N is constant for the given matrix A, the

degree of dependence will decrease very rapidly when n be-
comes very large. That is,

detA ∼ n−n.

Thus,

Corollary 2 The determinant of A will converge into 0
when n increases into infinity.

lim
n→∞ detA = 0.


�
This results suggest that when the degree of granularity be-
comes higher, the degree of dependence will become lower,
due to the constraints on the sample size.

However, it is notable that N/n is very important. If N is
very large, the rapid decrease will be observed N is close to
n. Even N is 48 as shown in Example 5, n = 3, 4 may give
a strong dependency between two attributes. For the behav-
ior of (N/n)n, we can apply the technique of real analysis,
which will our future work.

7. Conclusion

In this paper, a contingency table is interpreted from the
viewpoint of granular computing and statistical indepen-
dence. Matrix algebra is a key point of the analysis of a con-
tingency table and the degree of independence, rank plays
a very important role in extracting a probabilistic model.
From the correspondence between contingency table and
matrix, the following results are obtained: First, the value
of determinants gives the degree of of dependency between
attribute-value pairs for a set of submatrices with the same
size. Second, from the characteristics of the determinants,
the larger rank a correponding matrix has, the higher the two
attributes are dependent. This results is shown by a mono-
tonicity of a sequence of determinantal divisors. Third, ele-
mentary divisors give a decomposition of the determinant of

a corresponding matrix. Finally, the constraint on the sam-
ple size of a contingency table is very strong, which leads to
the evaluation formula where the increase of degree of gran-
ularity gives the decrease of dependency.
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Abstract 
 

A principled formulation for reconstructing pdf’s from 
discrete data comprising of random sequences, based on 
an invariance preserving extension of the Extreme 
Physical Information (EPI) theory, is presented.  The 
Fisher information is employed as a measure of 
uncertainty in the measurement-response model, that 
represents an information theoretic game.  A quantum 
mechanical connotation is ascribed to the reconstruction 
process, which is cast as a variational principle. 
Numerical results with Gaussian mixture models formed 
from random sequences demonstrate the efficacy of the 
Fisher game formulation.     
 

1. Introduction 
 

Extreme Physical Information (EPI) [1, 2] is a self 
contained theory to elicit physical laws from a 
system/process (Nature) based on a measurement-
response framework.   EPI may be construed as being a 
zero-sum-game (Fisher game) between an (“intelligent”) 
observer (inhabiting a measurement space) and a system 
under observation (characterized by a demon, reminiscent 
of the Maxwell demon, residing in a system space).    

EPI and its variants have been utilized to solve an 
impressive array of problems that include quantum 
electrodynamics, statistical physics, carcinogenesis, 
econophysics/financial mathematics, optics, cosmology 
(references in [2]), and, fuzzy clustering [3, 4].  The 
measure of uncertainty in EPI is the Fisher information 
(FI) measure (FIM).   

A superficially similar technique is the Minimum 
Fisher Information (MFI) theory [5]. MFI replaces the 
Shannon entropy in the Maximum Entropy (MaxEnt) 
formulation of Jaynes [6] with the FIM.  Both EPI and 
MFI yield MaxEnt-like results for equilibrium 
distributions.     

Measurement-response models have been gaining 
much prominence of late in the design of experiments in 
knowledge acquisition [7].  A thorough review of the 
theory of measurements and experimentation may be 
obtained in the works of Fadeev [8] and van Trees [9]. 

EPI originates from the I-theorem 

0Fisher Fisher
EquilibriumdI ( t ) dt I≤ � . The I-theorem states 

that the Fisher information reaches its minimum value (at 
equilibrium) with increasing time.  As a consequence, it is 
implied that the FIM is a monotonic measure of disorder.  
This is the information theoretic equivalent of Risken’s H-
theorem 0BdH ( t ) dt ≥ which is a statement of the 

second law of thermodynamics [1, 2].  Here, BH  is the 

Boltzmann entropy.   
Conceptual analogs exist between EPI and Brillouin’s 

theory of measurement based on the “Szilard engine”, 
exemplified by the relation between the change in the 
Shannon and Boltzmann entropies:  Shannon

BI Hδ δ≤  [10].  

The Fisher game is characterized by the following 
competing actions by the observer and demon, 
respectively:  the observer wishes to increase its 
knowledge of the system by maximizing the FIM in the 
measurement space.  Simultaneously, the demon seeks to 
minimize the FIM available to the observer.   

The payoff of the competitive game results in a 
variational principle that defines the physical law that 
generates the observations made by the observer, as a 
consequence of the response of the system to the 
measurements.    

The derivative term in the FIM facilitates optimization 
problems to be replaced by systems of differential 
equations.   The form of the FIM permits construction of a 
Lagrangian which yields a Schrödinger-like model as the 
Euler-Lagrange equation (E-Le).  This enables statistical 
processes to be ascribed quantum mechanical (QM) 
connotations.   

Recent studies of statistical processes employing QM 
theory have been conducted by Horn and Gottlieb [11] 
(“crisp”/hard data clustering), Venkatesan [3], Lemm et. 
al. [12] (reconstruction of oscillatory potentials from 
Gaussian Mixture Models (GMM’s)), and, Bogdanov [13] 
(statistical data analysis for mutually complementary 
experiments in conjugate spaces).   

Invariance under groups of infinitesimal 
transformations constitutes an important aspect in 
exploratory data analysis.  Groups of infinitesimal 



transformations are usually associated with continuous 
models [14].    

Models that evaluate symmetry properties of difference 
equations have been developed within a rigorous 
framework [15].  These models, however, assume the 
existence of a continuous model by evaluating symmetries 
at the grid point values that are isomorphic to those 
possessed by the continuum being approximated. 

Many scenarios encountered in data mining, pattern 
recognition, machine learning and allied disciplines 
involve discrete data.  Continuum models, if extant, often 
represent prohibitively restrictive scenarios.    

Motivated by the seminal work of T. D. Lee [16], a 
Discrete (lattice) Variational Complex (DVC), that 
evaluates symmetries and conservation laws for 
continuum-free models, has been formulated [17, 18].   
This has been accomplished by projecting the celebrated 
Poincaré lemma, onto discrete (lattice) spaces.   

This paper suggests a principled methodology to 
reconstruct probability densities from arbitrary time 
independent discrete data, employing an invariant EPI 
(IEPI) model, formulated with the aid of the DVC.  The 
theory of IEPI has been exemplified by Venkatesan [3].   

Data reconstruction (either time–independent or 
temporal) is a fundamental problem in exploratory data 
analysis, which finds applications in areas as diverse as 
quantum statistics [12, 13] to data mining [19, 20].   To 
exemplify the robustness and efficacy of the Fisher game, 
pdf’s are reconstructed from GMM’s formed from random 
sequences.  It is demonstrated that the reconstructed pdf’s 
possess a high degree of fidelity.     

A plethora of techniques have been employed in 
different disciplines to reconstruct pdf’s from empirical 
data.  Some of the prominent reconstruction methods are 
splines, support vector machines, pruning decision trees, 
neural networks, regularization techniques [21], projection 
pursuit mappings, and non-parametric Bayesian methods 
[12], FIM models based on the theory of Maximum 
Likelihood Estimation (MLE) [13], amongst others.   Note 
that representative works of the above techniques that are 
not referenced in this paper may be found in Ref. [12].   

It is thus imperative to justify the choice of the 
EPI/IEPI approach to solve the inverse problem in 
statistics, by highlighting its qualitative distinctions.  In 
doing so, we provide a brief overview of the physical and 
epistemological features of the Fisher game. 

EPI facilitates the design of an experiment for 
knowledge acquisition, based on a measurement-
response framework, by “embedding” the observer into 
the process of information transfer and acquisition.  
This results in a self-consistent variational principle that 
includes both the FIM made available to the observer, 
and, the response of the demon in system space to 
measurements made by the observer.   

EPI theory and terminologies may be summarized as 
follows:  consider an observer inhabiting a measurement 
space who carries out independent measurements on a 
phenomenon/process in a system space.  The objective of 
the measurements is to elicit an unknown physical law that 
is manifested by the process in system space.  The source 
effect constitutes the physical properties and constraints of 
the process in system space, that manifest the unknown 
probability law which is to be determined.    

Measurements are carried through a medium/carrier 
depending upon the physical process being studied.  
Examples of carriers are photons, acoustic signals, etc…  
EPI requires a thorough comprehension of the information 
flow route and carriers.  This comprises a two-stage 
process.  First the transmission of the measurements from 
measurement space to system space.   This results in the  
perturbation of  the source effect in system space.   

The next stage involves the role of the information 
carrier in relaying the effect of the perturbation of the 
source effect in system space (as a response to the 
measurements) to the measurement space.  Note that the 
information carriers serve a dual purpose of perturbing 
the system space, and, relaying its state to the observer.  

In EPI, the message that conveys to the observer the 
state of the decoupled system space is manifested by the 
bound information.  It is important to note that the term 
bound information has been borrowed from Brillouin’s 
theory of measurements [10].  The EPI and Szilard-
Brillouin versions of the bound information sharply differ 
qualitatively. Within the framework of the Szilard-
Brillouin theory, the bound information is referred to 
within the context of the thermodynamic (Boltzmann) 
entropy of the system under measurement.   

Within the context of EPI, the bound information, 
which is representative of the source effect, is the 
manifestation of the FIM in system space.  The 
constraints and properties of the process under 
observation are contained in the bound information.  
The EPI the bound information may possess 
connotations and properties that transcend a 
thermodynamic description, depending upon the nature 
of the problem being analyzed.  

The final stage in EPI is the measurements of the 
channel, which involves collection and estimation of the 
observed data by the observer in measurement space 
(treated in Section 2 of this paper).  The final stage of the 
EPI process is a consequence of the FIM in the 
measurement space as a consequence of the perturbation 
of the phenomenon in system space. 

The objective of the above sequence of events is to 
minimize the FIM in the measurement space.  
Qualitatively this criterion coincides with a minimum 
payoff for the observer in the Fisher game.      

The above discussion exemplifies the utility of EPI to 
observe, measure, and estimate data in a systematic and 



efficient manner.  This ensures the role of EPI/IEPI as a 
valuable tool in knowledge acquisition and exploratory 
data analysis.   

The present Section is concluded with an overview of 
the objectives and results presented in this paper.  Data 
reconstruction is an ill-posed problem [21], requiring a-
priori information/assumptions.   

Prior attempts to reconstruct data based on QM theory 
involved well defined potentials (described by analytical 
expressions), and initially assuming that the observational 
data are low order moments of the observables [6, 22].    

Within the terminology of QM, observables refers to 
quantities that may be observed/measured.  Examples of 
observables are position coordinates, momentum, wave 
functions, amongst others.  Note that observational data 
do not constitute observables.   

Reconstructed wave functions (state vectors) and the 
corresponding pdf’s inherently contain noise, which 
distorts the reconstructed quantities from the true 
(unknown) values.  Thus, even pdf’s reconstructed from a 
purely Gaussian data exhibit highly oscillatory behavior 
caused by high frequency noise.   The reconstruction 
noise inhabits a space orthogonal to the true state vector.     

This paper provides a principled strategy to achieve 
fidelity of the reconstructed pdf’s through the IEPI 
formulation, resulting in a discrete/lattice variational 
principle.  The reconstructed wave functions (and 
associated pdf’s) are expressed in terms of an ortho-
normal series expansion.    

EPI/IEPI employ a particular form of the FIM, 
known as the Fisher channel capacity (FCC, described 
in Section 2 of this paper).  The FCC is the trace of the FI 
matrix, and represents the information made available to 
the observer.   

A significant derivation/concept described in this paper 
is a form of the FIM/FCC solely expressed in terms of the 
basis function coefficients of the series expansion.  The 
state vectors are estimated by Chebyshev-Hermite 
(Hermite-Gauss) expansions.  These are series expansions 
weighted by a Gaussian term.  The objective of most 
contemporary studies in employing QM theory to the 
inverse problem in statistics is to maximizing the 
likelihood (or log-likelihood) [12, 13]. Minimizing the 
FCC is a unique feature of this paper.     

The ansatz describing the state estimators (wave 
functions/probability amplitudes-square root of the pdf, 
defined in Section 2) and the values of the basis function 
coefficients are obtained so as to self-consistently satisfy 
the Fisher game corollary [2] at each lattice observable.   
Specifically, the ansatz and basis function coefficients 
permit the demon to make the closing move in the 
Fisher game, by minimizing the FCC.  This corresponds 
to a state of maximum uncertainty, and, is in keeping 
with the demon’s strategy of minimizing the information 
made available to the observer.   

Finally, we briefly justify our choice of Chebyshev-
Hermite (C-H) expansions as state estimators over 
competing density estimators [23] (such as the Rosenblatt-
Parzen windows, histogram, etc) that are efficient in their 
own right.     

One of the fundamental concepts in QM is the QM 
harmonic oscillator (QMHO) [24].  The QMHO may 
possess a number of energy levels.  C-H expansions 
constitute the fundamental solutions of the QMHO.   The 
lowest energy level of the QMHO is the ground state, 
which corresponds to Gaussian pdf’s (zeroth-order C-H 
expansions).   

The noise in the reconstructed state vectors is 
regularized/mollified by adding higher order high 
frequency terms of the C-H expansion.   These correspond 
to higher order energy states (excited states) of the 
QMHO.  In effect, the reconstruction process in this paper 
emulates a QMHO at each discrete lattice observable 
(Cartesian coordinates in this case).   

 
2. The measurement model and the Fisher 
channel capacity 

 
Consider a measurement space inhabited by an 

(“intelligent”) observer who initiates independent 
measurements on a system space inhabited by the process 
under observation.  The system’s response perturbs the 
probability density in the measurement space setting off 
the EPI process. The measurement space is characterized 
by intrinsic N-vectors obeying the measurement 
estimation relation: 1n n ny x .,n ,...,Nθ= + = .   

The closed system is defined by ny  (the imperfect 

measurement/observed data), nθ  (the parameter to be 

estimated, for example the mean/expectation of a datum), 
and nx  (a fluctuation which may be treated as a random 

noise).  Employing the Mach principle [1, 2, 25], the total 
conditional probability for independent data is 

( ) ( ) ( ) ( )
1 1

n n n
n n

p y p( y
�

p x p y p xθ θ
= =

= = = − =∏ ∏
N N

n n- ) . 

The Mach principle for translational families implies 
isotropy of the measurement space.  Specifically, the 
dependency of the systems response to a measurement is 
independent of the position of the observer in 
measurement space. We now define the probability 

amplitude (wave function) as ( ) ( )2 x p xΨ = .   

One of the primary tenets of EPI is the gathering of iid 
data by the observer.  As a consequence of this, the FIM 
that is employed is the trace of the FI matrix [1, 2].  This 
is known as the FCC.   

EPI may be applied to two separate measurement-
response scenarios that facilitate the collection of 
independent data by the observer.  The first case (Type A) 



involves “N” independent measurements on a single 
datum, measuring its nθ  at each repetition of the 

experiment. Here, ( ) ( ) ( )2 2 21 1
n n

n n
x p x x

N N
Ψ Ψ Ψ= = =∑ ∑ .  

This corresponds to the case of maximum ignorance (in 
the quantum mechanical sense), where the nθ  are equi-

probable for each measurement.  The joint pdf is 

( ) ( ) ( ) ( )2 21 1
n n

n n
p x; p x p x

N N
θ θ Ψ Ψ= • = =∑ ∑ .  

Here, ( ) 1 1np N ,n ,...,Nθ = =  for “N” measurements.  

Within the continuum limit, the FCC for the Type A 

scenario is ( ) ( )( )4FCCI x N dx d x dx
2Ψ Ψ

+∞

−∞

� �
=� � ∫ .   

The other data gathering scenario consists of a single 
measurement on “N” separate datum to obtain “N” 
different nθ  .  This is referred to as a Type B scenario, 

which yields ( ) ( )( )
1

4
N

FCC

n
I x dx d x dx

2Ψ Ψ
+∞

= −∞

� �
=� 	 ∑ ∫  as the 

FCC. 
The Type A data collection scenario is analogous to a 

person (the observer) sampling a liquid in a container 
through “N” different intakes using a single straw.  On the 
other hand, the Type B may be described as being 
analogous to the observer sampling single intakes of a 
liquid in a container through “N” different straws, 
separated an arbitrary (but small) distance from each 
other.  Here, the straw is analogous to the FCC.    

Note that the FCC for both Type A and Type B 
scenarios described assume uniform efficiency of the 
measurements, and do not take into account efficiency of 
the measurement device/probe.    

Reconstruction of pdf’s from discrete observational 
data may be posed within both the Type A and Type B 
scenario.   Within the Type A framework, the discrete 
particles may be treated as a single ensemble (“macro 
particle”).   

The “macro particle” possesses a FCC that is “N” 
times that of a single particle.  The reconstruction 
problem, however, fits naturally within the Type B 
framework.   Herein, each datum is subjected to a single 
measurement. 

It should be noted that a relation between the Type A 
and Type B models might sometimes be necessitated by 
the requirements of the given problem (see Section 4).  It 
is noteworthy to mention that both data gathering models 
are statistically equivalent.  

 Given ny , an estimate ( )n
ˆ yθ  of θ  is obtained. The 

Cramer-Rao bound (C-Rb) is ( )2 1e I θ ≥ , where 

( )( )22 ˆe yθ θ= −  is the mean square error 

(MSE)/variance of the estimator. Note that •  denotes 

the expectation value.   
The C-Rb governs the accuracy with which a 

measurement can be made. Thus, it is a measure of the 
inability of the observer to acquire knowledge. Such an 
inability can be quantified as the numerical uncertainty in 
knowledge of a parameter, as in an "uncertainty 
principle”. The celebrated Heisenberg uncertainty 
principle [24] is one such example.   
 
3. EPI within the DVC 
 

The constraints and properties of the process in system 
space constitute the bound information ( )[ ]xJ Ψ  [1,2].  

EPI and MFI are defined as a set of axioms: 
 

Table 1:  EPI and MFI axioms 
 

 
Simultaneous solution of EPI Axioms 1 & 2 yields 

physical laws and the efficiency parameter κ. This is 
accomplished by the simultaneous determination of the 
bound information and the probability amplitude.  EPI 
Axiom 2, a consequence of the I-theorem, describes the 
efficiency of the information transfer [ ] [ ]J I• → • . 

Conjugate measurement and system spaces related 
through a unitary transform (UT) constitute a sufficient 
condition for both the existence of EPI solutions, and, 
maximally efficient information transfer. IEPI relates 
EPI solutions to variational symmetries through an 
invariance preserving amalgamation of EPI and MFI.  
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By definition [14], the symmetries contained by a given 
Lagrangian are referred to as variational symmetries. 
Variational symmetries form a subset of the symmetries of 
the E-Le, obtained by variational extremization of a given 
Lagrangian.    

The MFI data constraint terms are specified to manifest 
the EPI bound information in measurement space. The 
system space is treated as momentum space.  The present 
study considers the case where the number of 
observational data points is equal to the number of 
constraint terms in the IEPI variational principle.  Given 
observational data { }1 Nd d ,...,d= , which are expectation 

values of the discrete observables such that  

( )n nd A x= .  Here, ( )nA x  forms the pseudo-potential 

in the time independent Schrödinger-like model (TISM) 
formed by solution of the EPI process.  The grid size for 
the observables is taken to be non-
uniform: 1 2 1 1n n n n n nx x x x∆ ∆+ + + = += − ≠ − .   

The arbitrary nature of the grid spacing for the 
observables permits specifying, as a matter of 
convenience, the distance between the discrete 
observables n∆  to be equal to the distance between the 

discrete observational data 1n n nd dδ += − (not to be 
confused with the lattice variational derivative in (2), 
below).  Precaution need be taken in order that the values 
of the discrete observables nx  do NOT coincide with the 

values of the corresponding observational data nd .   
The discrete Cartesian coordinate is n nx n∆= , where n 

is the lattice index of the discrete observables.  Canonical 
quantization [26] yields the commutation relation 

{ }n m n nx , i x i S id iµ ∆
� �

= − ∂ ∂ = − − = !" " "
, #  is 

Planck’ s constant, and, mµ  and m are the lattice 

coordinate and index of the system space. Non-
differentiability of the lattice space requires discrete 
derivatives to be expressed as shift maps [17, 18] 

{ }n nx S id ∆∂ ∂ = − , id is the identity operator.  The 

necessity of shift maps stems from the fact that the DVC 
does not obey the Leibniz rule of differentiation in lattice 
space.  The IEPI Lagrangian functional is: 
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Here ( )FCC
nDI Ψ  is the discrete FIM, and mΦ  is the 

discrete conjugate amplitude.  Also, U is the unitary 
operator, ε  the group parameter of infinitesimal UT, 
and, ( )1UT n nG i x i S ∆= − ∂ ∂ = − −

* *
is the unitary 

group.  The FCC in mutually conjugate spaces is related 

as ( ) { } 2
2 2 2

2 2
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and, the adjoint UT is UTi GU e ε−∗ = . The IEPI lattice 
variational, and, zero-condition are respectively: 
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It may be noted that groups of infinitesimal unitary 
transformations provide an elegant alternative to the 
application of Fourier transforms (followed by the 
enforcement of the Parseval theorem) [1, 2], when 
studying mutually conjugate spaces.  The self-adjoint [14, 
17] E-Le’ s are the lattice 1-D TISM: 
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Note that in 1-D, the wave functions may be approximated 
as being real quantities (without an imaginary 
component). 

A growing trend in contemporary physics is to select 
models possessing the simplest symmetry structure and 
not the simplest model.  This is the symmetry version of 
Occam’ s principle [27].  All forms of the TISM constitute 
Ricatti equations, with the scaling invariance 

nn ΨΨ ∂∂ constituting the simplest and most prominent 

symmetry group.   
The form of the FIM in (2) does not yield the scaling 

invariance possessed by (3).  To rectify this discrepancy, 
an equivalent IEPI Lagrangian is reconstructed from (3) 
via homotopy [14, 17] (the inverse problem of the 
calculus of variations): 
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The effective FIM/FCC is of the form 
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2

1
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Note that the form of F
DIW is not unique.  Further, the 

choice of an optimal form for a discrete model is a topic 
of much contemporary interest [16, 17].  The discrete 
form of the effective FCC has been chosen to resemble the 
continuous FIM subjected to a single integration-by-parts, 
followed by discretization.  Expanding (3) yields the 
system: 
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The discrete system (3) and (5) are manifestations of 

the eigensystem 1n on nH ;n ,...,NΨ λ Ψ= = . The 

Hamiltonian operator is 
( )1

2

4 2n n n
n n n n

n
H A ( x ) .
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λ Ψ

∆
−− − +

= +  The Lagrange 

multipliers (LM’s) 
1

2on nkλ ω
X Y

= +Z [\ ]^
; 

0 1 1nk , ,...;n ,...,N= =   denote the energy eigenvalues of a 
QMHO.  Here ω is the natural frequency of the oscillator.   

Data reconstruction involves unknown forms of the 
potential and hence the Hamiltonian H.  The energy 
eigenvalues are obtained in the direct problem by solving 

the eigenvalue problem 0oH λ− = .  Here, 
1

N

o on
n

λ λ
=

=∑  

is the total energy, described by the normalization LM.   

Here, ( ) ( ) 2 1n n n n nV x A x ;n ,...,Nλ Ψ= =  denotes the 

pseudo-potential, which is inferred from the observational 

data { } 1
N

n nd = , by specifying   ( )n n n nA A x d= = .  

Without loss of generality, “zero-mean” operators of the 
form ( )n nA d−  are introduced into (3) [22]. The potential 

is transformed as 
1

0
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(3) yields:                                   
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Here, (6) represents a fiduciary conversion of the total 
energy into the kinetic energy.  More importantly, it 
explicitly introduces the FCC into the TISM.  In QM, the 
virial theorem states that the expectation (average) of the 
potential energy equals the expectation of the kinetic 
energy.  Within the context of this paper, the data FIM is 
the expectation of the kinetic energy and the data terms 
and the concomitant constraints constitute the potential 
energy.  From canonical quantization, the virial theorem 

is ( 122 =em
a

, em the particle mass): 
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The above relation serves as an invaluable tool within 

the framework of the present model.  Specifically, the 
virial theorem for a QMHO with eigenstate nk  is: 
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The number of terms of the C-H expansion equals the 

eigenstate of the QMHO that is emulated at each lattice 
observable.  This result will be further elucidated upon 
and utilized in the following Sections.  This Section is 
concluded by expressing the FI Legendre transform 

structure (LTS) [28] nn
F AI λ=∂∂ within the DVC 

framework as: 
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The LTS plays an important role in assigning a 

thermodynamic representation to the FIM.  Note that the 
independence of the lattice observables permits the FI 
LTS to be evaluated piecewise along the lattice (as was 
the case with the FCC, (6), and, (7)). 

 

4. The inverse problem in statistics 
 
The wave function/probability amplitude is ascribed a 

form given by the following ansatz: 
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Here, the eigenvectors i( )'sφ •  are taken as real, which 

may be evaluated using a variety of density estimators 
such as orthonormal series expansions (C-H polynomials), 
histograms, etc.  Note that 11 −= s,...,i,ci  are independent.  

The zeroth-order basis coefficient oc  in the series 

expansion corresponds to Gaussian pdf, and relates to the 
basis function coefficients for higher order harmonics 
through the normalization condition in (10).    

The eigenvectors of the orthonormal series 
corresponding to the QMHO. Here oc  corresponds to the 

ground state, and 1 1ic ,i ,...,s= −  denote deviations from 

ground state. Note that the ground state is characterized 
by the eigenvalue 2oGλ ω= r .  Substituting (2) into (1) 

and evoking the discrete ortho-normality condition 

i n i m nm n
n,m

( x ) ( x )φ φ δ ∆=∑ [29, 30], we obtain: 
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It is our objective to re-parameterize the wave 

functions ( )nxΨ  in terms of the basis function 

coefficients. It is important to note that owing to the 
independence of the lattice observables (Cartesian 
coordinates), the FCC, (6) and (7) may be evaluated 
piecewise along the lattice space.  The sum total of the 
FCC may be obtained from the additive property of the 

FIM/FCC: FCC
n n

n n
I I I= =∑ ∑ t .   

The EPI measurement estimation framework does not 
readily permit a re-parameterization of the FCC in terms 
of the basis function coefficients.  The definition of the 
Fisher information matrix (FIM) for iid data to the multi-
parameter case [31] is:  
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Note that we have used conventional derivatives with 

respect to the coefficients instead of shift maps, because 
basis function coefficients are not regarded as variables 

in the discrete/lattice theory [17, 18].     Thus, we have 
the FCC of the form: 
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Substituting (10) into (13), and evoking the discrete 
ortho-normality condition: i n i m nm n

n,m
( x ) ( x )φ φ δ ∆=∑ , 

we obtain the FCC for the lattice observable nx  to be a 

diagonal matrix of dimension )s()s( 11 −•−  with 

elements: 
 

( ) 2 24
1 1 1FCC
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In the asymptotic limit, the variance has elements 

( )2 21 1 1
4
n

n ie x c ;i ,...,s .
∆ � �

= − = −� �� �  The state estimators 

are solely expressed in terms of the basis coefficients. It 
is imperative to self consistently obtain a value for the 
coefficient oc , and, as a result  relate the two definitions 
of the FCC defined by (1) and (5).  Owing to the iid nature 
of the discrete observables, we evoke the additive 
property of the FIM n

n
I I=∑ , and obtain: 
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It is required to obtain the FCC for a single observable 

nx  on the lattice with the aid of (15).  The virial theorem 

(8) for the QMHO at nx  yields: 
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Here, the eigenstate 

0
n n,k k ε

ε≥
= ∑  is the sum of number of 

energy levels corresponding to the terms in (15).  Eq. (16) 
may be expressed in matrix form as: 
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Comparing (15) and (17) yields  8

n
ω

∆
=

� at each 

discrete observable.  The eigenstate (energy level number) 
0 1n,k , sε ε< ≤ −  corresponds to the matrix elements 

( )FCC
nCoeffI x  in (15) at each discrete observable.  Here, n,k ε  

is representative of the number of energy levels above the 
ground-state (which corresponds to the Gaussian pdf), and 
represent the deviation from Gaussianity by the addition 
of high frequency smoothening terms.   

We thus relate the number of energy levels to the 
number of terms in the basis function coefficients.    
Equating the energy levels of the QMHO to the FCC at 

nx , we obtain: 
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The above procedure elegantly and intuitively relates 

the basis function coefficients corresponding to the 

excited energy levels to the ground state coefficient 2
noc  

as:  2 2 2 2
1 22 3 2no non nc c ,c c ,.....= =  

The truncation of the harmonics is dictated by the 
normalization condition in (10).  Since the basis function 

coefficients are expressed in terms of noc , it is imperative 

to obtain an expression for the zeroth-order coefficient.  
Note that to obtain noc  we consider the purely Gaussian 

case.  Substituting the Gaussian component of (10) into 
(10), and evoking the discrete ortho-normality condition, 
we obtain: 
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At this stage we convert (12) into the Type A “ macro-

particle”  model for the single parameter oc .  We evoke 

the argument that for “ N” iid data samples, given a Type 
A scenario (see Section 2), the total FIM is “ N”  times the 
individual FIM [31].   Thus, (12) becomes: 
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Substituting (10) into (19), and evoking the discrete 

ortho-normality condition: o n o m nm n
n,m

( x ) ( x )φ φ δ ∆=∑ , 

we obtain: 
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Equating (19) and (21) yields: 
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Thus, at every lattice observable, we obtain the set of 

coefficients given by (22) and its multiples for 1 n N.≤ ≤   
The ansatz for the state estimator (10) guarantees that 
the Fisher “game corollary” is always satisfied.  Taking 
the example for a single data nx , the FCC for 10,i =  in 
(10) is: 
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It is trivial to establish 
( )

1
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.
dc

=

ª
  This is the 

Fisher “ game corollary” .  The result (23) holds good for 
all orders of expansion of (10).   

To obtain the entire set of probability amplitudes, a 
procedure similar to that presented in [30] for the case of 
the inverse Schrödinger equation is adopted.  It may be 
noted that the ortho-normality condition may also be 
expressed in terms of the energy levels as:  

i n on, i n on, n
,

( x , ) ( x , )ε γ ελ
ε γ

φ λ φ λ δ ∆=∑ .  We obtain a set 

of recurrence relations from (6) and (3) respectively: 
 

( )
2

21 1 1
2 2

2
0 0 0 0

8

on n

s s s
ni

n n ni n on, on, n
i i i n

c
d c ,x ,ε ε

ε
λ ψ

λ ∆ λ ψ λ
∆

− − −

= = ≥ =
= −∑ ∑ ∑ ∑«­¬®¬®¬¯¬±°­¬²¬®¬®¬´³

     (24) 

 

( ) ( ) ( )
2

1 11 2
4
n

on , n n on on, n n on,n A ,x ,ε ε ε
∆ψ λ λ λ ψ λ ψ λ+ −+

µ ¶· ·
= − + −

¸ ¹º »¼ ½· ·¾ ¿  (25) 

 



Two points need be noted.  First, ortho-normality of 
the first term in the RHS of (24) is to be evoked, upon 
determining the total number of high frequency terms.  

Next, in (25), 2

1

N

n n n n
n

A A dψ
=

= =∑ . 

 

5. Overview of the solution strategy 
 
Procedures for synthetic numerical experiment to test 

the efficacy of the Fisher game are presented in Figure 1: 
 

 
1. Algorithm: 1-D data reconstruction using a 

Fisher game 
2. Known parameters: iid observational data 

{ } 1
N

n nd = generated from MATLAB® random 

sequence generator ( )•randn  corresponding to a 

GMM with specified mixing weights, means and 
variances, the distance 1n ,i ,...,Nδ = between 

consecutive observational data points. 
3. Unknown parameters:  n n on n, , ,∆ λ λ Ψ  

4. Outline of solution procedure:   
•    Divide the axis of observables [a,b] into            

         “ N+1”  different segments, with length             
     n n∆ δ= .  Set 0( a ) (b ) .φ φ= =  

• Evaluate coefficients noc from (22). 

• Evaluate the higher order basis function 
coefficients from (18), which exactly/nearly 
satisfy the normalization condition in (10). 

• Evaluate the Lagrange multipliers at each 
discrete observable using (9).  For 
initialization purposes, (16) may be 
employed.  Solve the recurrence relations 
(24) and (25) with the aid of (6) and (16).   

• Utilize a steepest descent algorithm at the 
end of each complete iteration epoch to 
correct the values of the LM’ s 

{ } 1
1

N
N

n on n n n n n n nn
n

R A d .λ λ λ ψ ψ ψ ψ=
=

À Á
= − −Â Ã∑

Iterate till convergence. 
 

 
Figure 1: High level description of IEPI data 

reconstruction scheme in 1-D 
 

6. Numerical results and conclusions 
 
 A two-component GMM is created from components 

possessing unit variance, and mixing weights 701 .=π  

and 302 .=π , using the the MATLAB® random sequence 

generator ( )•randn .  The means are at the origin and at 

03.x = , respectively.  A sample of 200 data points 
representing a two-component GMM is selected.   

Figure 2 depicts the reconstructed pdf interposed 
against the real/actual pdf (obtained through a Monte 
Carlo simulation). The reconstructed pdf’s exhibit a high 
degree of fidelity.   

The synthetic case study presented in Figure 2 provides 
an interesting qualitative insight into the IEPI 
reconstruction strategy.  Specifically, the IEPI model 
reconstructed pdf’ s that converged to the actual values, 
utilizing a reduced number of basis function coefficients.   
This comparison is done vis-à-vis a reconstruction process 
using the MLE theory [13].    Further, the energy term in 
the E-Le (6) contributes a regularization-like effect.   

Extensive simulation conclusively demonstrates that all 
FIM models exhibit enhanced reconstruction error for 
reduced number of basis coefficients, within the ambit of 
bearing in mind the constraints on the number of basis 
function coefficients highlighted by the normalization 
condition in (10).  Additional higher-order high frequency 
terms do not adversely affect the solution, and instead, 
contribute a smoothening/mollifying effect.   Within the 
framework of the present model, it would require the 
exact (or near exact) satisfaction of the normalization 
condition in (10). 

Two extensions of the IEPI model are underway. The 
first is motivated by the fact that the synthetic numerical 
experiment described in this paper assumes the 
observational data to manifest the bound information.  
The random sequence generator produces iid data. This is 
tantamount to assuming that the response of the source 
effect to independent measurements is without 
correlations.  In actuality, this assumption is not generally 
true, and the observed data often possesses correlations.  
Correlations prohibit the FCC to be expressed in terms of 
statistically independent observables.  A principled Fisher 
game formulation guaranteeing statistical independence 
observables has been developed, utilizing analyses 
commonly employed in Independent Component Analysis 
(ICA) [32].  The observed data is subjected to a pre-
processing stage of whitening (through application of a 
linear filter/ PCA) followed by a Givens-Jordan 
permutation (a unitary transform).  The pre-processing 
stage minimizes the mutual information between the 
observed data in the measurement space ny , ensuring 

that the FCC comprises of uncorrelated independent 
components.  The Fisher game is played, and the 
reconstructed pdf’ s obtained.  A final post-processing 
stage is involves the application of an inverse linear 
filter/PCA to obtain the “ true”  reconstructed pdf’ s which 
include the effect of correlations.  The second extension is 



temporal sequence reconstruction, accomplished using the 
Ehrenfest theorem [24, 29]. 

 
7. References 
 
1. Frieden, B. R. Physics from Fisher Information, Cambridge 

University Press, Cambridge, 1999.    
2. Frieden, B. R., Science from Fisher Information, 

Cambridge University Press, Cambridge, 2004. 
3. R. C. Venkatesan, “ Invariant Extreme Physical Information 

and Fuzzy Clustering”, Proc. SPIE Symposium on Defense 
& Security,  Intelligent Computing: Theory and 
Applications II, Priddy, K. L. (ed), Volume 5421, pp. 48-
57, Orlando, FL, 2004.  (To Appear, Phys. Rev. E,  2005). 

4. M. Ménard and M. Eboueya, “ Extreme Physical 
Information and Objective Functions in Fuzzy Clustering” , 
Fuzzy Sets and Systems, 128, pp. 285-303, 2002.  

5. Huber, P. J. Robust Statistics, Wiley, New York, 1981. 
6. E. T. Jaynes, “ Information Theory and Statistical 

Mechanics” , Phys. Rev, 106, pp. 620, 1957; “ Information 
Theory and Statistical Mechanics-II” , Phys. Rev,  108, pp. 
171, 1957. 

7. L. Paninski, “ Information-theoretic design of experiments” , 
Advances in Neural Information Processing Systems-2003 
(NIPS), 16, Thrun, S. (ed), MIT Press, Cambridge, MA, pp. 
1319-1326, 2004. 

8. Fedorov, V. V. Theory of Optimal Experiments, Academic 
Press, New York, 1972 

9. van Trees, H. L., Detection, Estimation, and Modulation 
Theory, Part I, Wiley, New York, 1968. 

10. Brillouin, L., Science and Information Theory, Academic 
Press, New York, 1956. 

11. D.  Horn and A.  Gottlieb, “ Algorithm for Data Clustering 
in Pattern Recognition Problems based on Quantum 
Mechanics” , Phys. Rev. Lett., 88, 1, pp. 18702(1-4), 2002. 

12. J. C. Lemm, J. Uhlig, and, A. Weiguny, “ A Bayesian 
Approach to Inverse Quantum Statistics” , Phys. Rev. Lett., 
84, pp. 2008, 2000. 

13. Yu. I. Bogdanov, “ Fundamental Notions for Classical and 
Quantum Statistics:  A Root Approach” , Optics and 
Spectroscopy, 96, 5, pp. 668-678, 2004. 

14. Olver, P. J.,  Application of Lie Groups to Differential 
Equations, Springer-Verlag, New York, 1993. 

15. V. A. Dorodnitsyn, “ Symmetry of Finite-Difference 
Equations” , In: Ibragimov N. B. (ed.) CRC Handbook of 
Lie Group Analysis of Differential Equations, vol. 1, CRC 
Press, Boca Raton, pp. 365-403, 1994. 

16. T. D. Lee, “ Difference Equations and Conservation Laws” , 
J. Stat. Phys., 46, pp. 843-860, 1987. 

17. P. E. Hydon and E. L. Mansfield , “ A Variational Complex 
for Difference Equations” , Found. Comp. Math., 2, pp. 
187-217, 2004.   

18. P. E. Hydon , Proc. Roy. Soc. Lond. A, 454, pp. 2835-
2855, 2000. 

19. R. Agrawal and R. Srikant, “ Privacy-Preserving Data 
Mining” ,  Proc. ACM SIGMOD Conference on 
Management of Data 2000, pp. 439-450, 2000. 

20. C.  Faloutsos, H. V. Jagdish, and, N. D. Sidiropoulos, 
“ Recovering Information from Summary Data”, Institute of 

Systems Research, University of Maryland Technical 
Report: TR-97-7, College Park, MD, 1997. 

21. Tikhonov, A. N. and V. A. Arsenin, Solutions of Ill-Posed 
Problems, W. H. Winston (Wiley), Washington D. C., 
1977. 

22. M.Casas, A. Plastino, and, A. Puente, “ Fisher Information 
and the Inference of Wave Functions for Systems of 
Unknown Hamiltonian” , Phys Lett. A, 248, pp. 161-166, 
1998. 

23. Bishop, C. M., Neural Networks for Pattern Recognition, 
Oxford University Press, Oxford, 2000.  

24. Landau, L. D. and E. M. Lifshitz, Quantum Mechanics 
(Non-Relativistic Theory), Pergamon Press, Oxford, 1991.  

25. Cover, T and J. Thomas, Elements of Information Theory, 
Wiley, New York, 1991. 

26. Sakurai, J. J., Advanced Quantum Mechanics, Addison-
Wesley, Reading, MA, 1967. 

27. R. Trejo, V. Kreinovich, and L. Longpré, ” Choosing a 
Physical Model: Why Symmetries?” ,  Bulletin of the 
EATCS, 70, pp. 159-161, 2000 

28. B. R. Frieden, A. Plastino, A. R. Plastino, and, B. H. 
Soffer, “ Fisher-Based Thermodynamics:  Its Legendre 
Transform and Concavity properties” , Phys. Rev. E, 60, 
pp.48-53, 1999. 

29. Peebles, P. J. E., Quantum Mechanics, Princeton 
University Press, Princeton, NJ, 1992. 

30. Zahhariev, B. N. and A. A. Suzko, Direct and Inverse 
problems – Potentials in Quantum Scattering, Springer-
Verlag, Berlin, 1990. 

31. Cramer, H.  Mathematical Methods of Statistics, Princeton 
University Press, Princeton, NJ, 1946 

32. P. Comon, “ Independent Component Analysis – A New 
Concept ?” , Signal Processing, 36, pp. 287-314, 1994. 

 
Acknowledgements 
 
Gratitude is felt towards B. R. Frieden, K. Rose, and, Yu. 
Bogdanov.  This work was supported by MSR contract CSM-
DI&M-101107-2003.  
 

 Figure 2:   Comparison of actual (solid line) and 
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data)  pdf’s for a two-component GMM 
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Abstract

We present here an abstract model in which Data Mining
algorithms are defined as generalization operators. We use
our framework to show that only three generalizations op-
erators: classification, clustering, and association operator
are needed to express all Data Mining algorithms for clas-
sification, clustering, and association, respectively. More-
over, we formally prove that classification, clustering and
association analysis fall into three different generalization
categories.

1 Introduction

We build models in order to be able to address formally
intuitively expressed notions, or answer intuitively formu-
lated questions. We know, for example, that there are sev-
eral classification algorithms and hundreds of implemented
classifiers. We talk about them, improve them and we com-
pare them usually by the quality of their implementations.
A natural questions arise: why very different algorithms are
all called classification algorithms? What do they have in
common? How do they differ from other algorithms?

We hence need to build models to define what is a classi-
fication algorithm, what existing classification algorithms
have in common, what is a difference (if any) between
a classification algorithm and for example an association
analysis algorithm.

In the model we present here each classification algo-
rithm is represented by an operator that is a generalization
operator. Moreover, we show that all classification oper-
ators belong to one category, distinctive with for example
categories of association, or clustering operators.

We usually view Data Mining results and present them
to the user in their descriptive form as it is the most natu-
ral form of communication. But the Data Mining process
is deeply semantical in its nature. The algorithms process
records (semantics) finding similarities which are then often
presented in a descriptive i.e. syntactic form. Our model is
a semantical one. Nevertheless it supports the extraction of
syntactical information, at any level of generalization. We
will address the semantics-syntax duality in a separate pa-
per.

2 Generalization Model

Data Mining, as it is commonly said, is a process of gen-
eralization. In order to model this process we have to define
what does it mean that one stage of data mining process is
more general then the other. The main idea behind our def-
inition of Generalization Model is that generalization con-
sists in putting objects (records) in sets of objects.

From syntactical point of view generalization consists
also of building descriptions (in terms of attribute, values
of attributes pairs) of these sets of objects, with some extra
parameters, if needed. Our Generalization Model is seman-
tic in nature, but, as we mentioned before, it also incorpo-
rates the syntactic information to be extracted, when (and
if) needed.

The model presented here generalizes many ideas devel-
oped during years of investigations. First they appeared as a
part of development of Rough Sets Theory (to include only
few recent publications [13],[14], [16], [17], [18]), [5], [14],
[7], [6]); then in building Rough Sets inspired foundations
of information generalization ([2], [9], [10],[8]).

Definition 2.1 A Generalization Model is a system

GM = (U, K, G, ¹)

where

U 6= ∅ is theuniverse,

K 6= ∅ is the set ofgeneralization states,

≺ ⊆ K ×K is a generalization relation;

We assume that the relation¹ is transitive.

G 6= ∅ is the set ofgeneralizations operators such that
for everyG ∈ G, for everyK, K ′ ∈ K,

G(K) = K ′ if and only if K¹K ′.

We define all components of the model in the following
subsections 2.1, 2.2, 2.3, and 2.4.



2.1 Knowledge Generalization System

Theknowledge generalization systemis an extension of
the notion of an information system. The information sys-
tem was introduced in [12] as a database model. The in-
formation system represents the relational table with key
attribute acting as object attribute and is defined as follows.

Definition 2.2 Pawlak’sInformation System is a system
I = (U,A, VA, f), where U 6= ∅ is called a set ofob-
jects, A 6= ∅, VA 6= ∅ are called the set ofattributes and
values of of attributes, respectively,f is called aninfor-
mation function and f : U ×A −→ VA

In the data analysis, preprocessing and data mining we
start the process with the input data. We assume here that
they are represented in a format of information system table.
We hence define the lowest level of information generaliza-
tion as the relational table. The meaning of the intermediate
and final results are considered to be of a higher level of
generalization. We represent those levels of generalization
by a sets of objects of the given (data mining) universeU ,
as in [2], [9].

This approach follows the granular view of the data min-
ing and is formalized within a notion of knowledge gener-
alization system, defined as follows.

Definition 2.3 A knowledge generalization systembased
on the information systemI = (U,A, VA, f) is a system

KI = (P(U), A, E, VA, VE , g)

where

E is a finite set ofknowledge attributes (k-attributes)
such thatA ∩ E = ∅.

VE is a finite set ofvalues of k- attributes.

g is a partial function calledknowledge information
function(k-function)

g : P(U)× (A ∪ E) −→ (VA ∪ VE)

such that

(i) g | (⋃x∈U{x} ×A) = f

(ii) ∀S∈P(U)∀a∈A((S, a) ∈ dom(g) ⇒ g(S, a) ∈
VA)

(iii) ∀S∈P(U)∀e∈E((S, a) ∈ dom(g) ⇒ g(S, e) ∈
VE)

Any setS ∈ P(U) i.e. S ⊆ U is often calleda granule
or a group of objects.

Definition 2.4 The set

GrK = {S ∈ P(U) : ∃b ∈ (E ∪A)((S, b) ∈ dom(g))}
is calleda granule universeof KI .

Observe thatg is a total function onGrK .

2.2 Model Components: Universe and Knowl-
edge States

Any Data Mining process starts with a certain initial set
of data. The model of such a process depends on represen-
tation of this data and we represent it in a form information
system table.

We assume hence that the data mining process we model
starts with an initial information system

I0 = (U0, A0, VA0 , f0)

and we adopt theuniverseU0 as the universe of the model,
i.e.

GM = (U0, K, G, ¹).

Data Mining process consists of transformations the ini-
tial I0 into an initial knowledge generalizations systemsK0

that in turn is being transformed into some knowledge gen-
eralizations systemsKI , all of them based on some subsys-
temsI of the input systemI0, what we denote byI ⊆ I0.
The formal definition of the notion of subsystem is pre-
sented in [11]. These transformations of the initial input
data (systemI0) in practice are defined by different Data
Mining algorithms, and in our model by appropriate gener-
alization operators. We hence adopt the following definition
of the setK of knowledge states.

K = {KI : I ⊆ I0}.

2.3 Model Components: Generalization Rela-
tions

A generalization process starts with the input dataI0 i.e.
with the initial knowledge generalization systemKI0 with
its universeU = {{x} : x ∈ U0}, called anobject knowl-
edge generalizationssystem. It then produces systems
which we call more general, with universesS ⊆ P(U0)
with more then one element i.e. such that|S| > 1. We
adopt hence the following definition of generalization
relation.

Definition 2.5 Given setK of knowledge states based on
the input dataI0 andK, K ′ ∈ K i.e.

K = (P(U0), A,E, VA, VE , g),



K ′ = (P(U0), A′, E′, VA′ , VE′ , g
′).

LetGK , GK′ be granule universes (definition 2.4) ofK,K ′

respectively. We definea generalization relation

¹ ⊆ K ×K

as follows:
K ¹ K ′ if and only if the following conditions are
satisfied.

i |GK′ | ≤ |GK |,
ii A′ ⊆ A.

If K ¹ K ′ we say that the systemK ′ is more or
equally general asK.

Observe that the relation¹ is reflexive and transitive,
but is not antisymmetric, as systemsK andK ′ such that
K ¹ K ′ may have different sets of knowledge attributes
and knowledge functions.

Definition 2.6 Let¹ ⊆ K × K be relation defined in the
definition 2.5.
A relation

≺dm ⊆¹
such that it satisfies additional conditions:

iii |GK′ | < |GK |,
iv ∃S ∈ GK′(|S| > 1)

is calleda data mining generalization relation.

2.4 Model Components: Generalization Opera-
tors

Generalization operators by definition, operate on the
knowledge states, preserving their generality, as defined
by the generalization relation. I.e. a partial functionG :
K −→ K is called a generalization operator if for any
K, K ′ ∈ domainG

G(K) = K ′ if and only if K¹K ′.

Generalization operators are design to describe the action of
different data mining algorithms.

2.5 Data Mining Model

Data Mining process consists of two phases: preprocess-
ing and data mining proper. We concentrate here on the
Data Mining phase only and discuss its generalization oper-
ators in detail in section 3. The preprocessing operators and

preprocessing phase can be expressed within our General-
ization Model and are presented in a separate paper [11].

Data Mining Model defined below is a special case of
the Generalization Model, with generalization relation be-
ing data mining relation as defined in definition 2.6 and in
which the generalization operators are defined as follows.

Definition 2.7 An operatorG ∈ G is called adata min-
ing generalization operator if and only if for anyK, K ′ ∈
domainG

G(K) = K ′ if and only if K≺dmK ′

for some data mining generalization relation≺dm (defini-
tion 2.6)

Definition 2.8 A Data Mining Model is a system

DM = (U, K, Gdm, ≺dm),

where the setGdm is the set of data mining generalization
operators.

The above definition 2.7 defines a class of data mining
operators. They are discussed in detail in the next section.

3 Data Mining Generalization Operators

The main idea behind the concept of generalization op-
erator is to capture not only the fact that data mining tech-
niques generalize the data but also to categorize existing
methods. We want to do it in as exlusive/inclusive sense as
possible. We don’t include in our analysis purely statistical
methods like regression, etc... This gives us only three data
mining generalization operators to consider: classification,
clustering, and association.

In the following sections we define the appropriate sets
of operators byGclf ,Gclr andGassoc (definitions 3.5, 3.8,
3.9) and prove the following theorem.

Theorem 3.1 (Main Theorem) Let Gclf ,Gclr and Gassoc

be the sets of all classification, clustering, and association
operators, respectively. The following conditions hold.

(1) Gclf 6= Gclr 6= Gassoc

(2) Gassoc ∩ Gclf = ∅,
(3) Gassoc ∩ Gclr = ∅.

3.1 Classification Operator

In the classification process we are given a data set (set of
records) with a special attributeC, called a class attribute.
The valuesc1, c2, ...cn of the class attributeC are called
class labels. The classification process is both semantical



(grouping objects in sets that would fit the classes) and syn-
tactical (finding the descriptions of those sets in order to
use them for testing and future classification). In fact all
data mining techniques share the same characteristics of
semantical-syntactical duality.

The formal definitions of classification data and classifi-
cation operators are as follows.

Definition 3.1 Any information systemI = (U,A ∪
{C}, VA ∪ V{C}, f) with a distinguished class at-
tribute C and with the class attribute valuesV{C} =
{c1, c2, ...cm},m ≥ 2 is called a classification informa-
tion system, or shortly,a classification systemif and only
if the sets

Cn = {x ∈ U0 : f(x,C) = cn}
form a partition ofU0.

The classification information system is called in the
Rough Set community and literature ([17], [13], [14], [5],
[18]) a decision information system with thedecision at-
tribute C. We assume here, as it is the case in usual clas-
sification problems, that we have only one classification at-
tribute. It is possible, as the Rough Set community does,
to consider the decision information systems with any non
empty setC ⊂ A of decision attributes.

Definition 3.2 LetI0 = (U0, A, VA∪V{C}, f) be the initial
database with the class attributeC. The sets

Cn,0 = {x ∈ U0 : f(x,C) = cn}
are called theinitial classification classes.

Definition 3.3 The corresponding setKI of knowledge sys-
tems based on any subsystemI of the initial classification
information systemI0, as defined in the definition??, is
called the set ofclassification knowledge systemsif and
only if for anyK ∈ K the following additional condition
holds.

∀S ∈ P(U)(∃a ∈ A(S, a) ∈ dom(g) ⇒ (S, C) ∈ dom(g) ).

We denote,
Kclf

the set of all classification knowledge systems based on a
classification systemI0.

Definition 3.4 For anyK ∈ Kclf we the sets

Cn,K = {X ∈ P(U0) : g(X, C) = cn}
are calledgroup classesof K.

Let DM = (U0, Kclf , Gdm, ≺dm) be aData Mining
Model based on a classification systemI0.

Definition 3.5 An operatorG ∈ Gdm is called aclassifica-
tion operator if and only if G is a partial function

G : Kclf −→ Kclf ,

such that the following classification condition holds for
anyK ∈ Kclf such thatK = G(K ′), K ′ ∈ domG.

∀X(X ∈ Cn,K ⇒ X⊆K Cn,0),

where the setsCn,0, Cn,K are the sets from definitions 3.2,
3.4, respectively and⊆K is an approximate set inclusion
defined in terms of k-attributes ofK.

We denote the set of classification operators byGclf .
Observe that our definition of the classification operators

gives us freedom of choosing the level of generality (gran-
ularity) with which we want to describe our data mining
technique, in this case the classification process.

3.2 Clustering Operator

In intuitive sense the termclusteringrefers to the process
of grouping physical or abstract objets into classes of simi-
lar objects. It is also calledunsupervisedlearning or unsu-
pervised classification. We say thata clusteris a collection
of data objects that are similar to one another within the
collection and are dissimilar to the objects in other clusters
([3]). Clustering analysis constructs hence meaningful par-
titioning of large sets of objects into smaller components.
One of the basic property we consider while building clus-
ters is the measure of similarity and dissimilarity. These
measures must be present in our definition of the knowl-
edge generalization system applied to clustering analysis.
We define hence a notion of clustering knowledge system
as follows.

Definition 3.6 A knowledge generalization systemK ∈ K,

K = (P(U), A, E, VA, VE , g)

is called aclustering knowledge systemif and only ifE 6=
∅ and there are two knowledge attributess, ds ∈ E such
that for anyS ∈ GrK (definition 2.4)

g(S,sm) is a measure of similarity of objects inS,

g(S,ds) is a measure of dissimilarity of objects inS with
otherX ∈ GrK .

We put

Kclr = {K ∈ K : K is a clustering system}.

Definition 3.7 We denoteKobj ⊂ K the set of allobject
knowledge generalizationsystems.



Definition 3.8 An operatorG ∈ Gdm is called aclustering
operator if and only if G is a partial function

G : Kobj −→ Kclr

and for anyK ′ ∈ domG such thatG(K ′) = K the gran-
ule universeGrK (definition 2.4) ofK is a partition of U
satisfying the following condition:

∀X,Y ∈ GrK(g(X, sm) = g(Y, sm)∩g(X, ds) = g(Y, ds)).

Elements of the granule universeGrK of K are called
clustersdefined (generated) by the operatorG and we de-
note the set of all clustering operators byGclr.

It is possible to define within our framework clustering
methods that return not always disjoint clusters (with for
example some measures of overlapping).

We can also allow the cluster knowledge system be a
classification system. It allows the cluster operator to return
not only clusters it has generated, their descriptions (with
similarity measures) but their names, if needed.

Finally, our framework allows us to incorporate as well
the notion of classification by clustering (for example k-
nearest neighbor algorithm) by changing the domain of the
cluster operator to allow the use of training examples.

3.3 Association Operator

The association analysis is yet another important subject
and will be treated in a separate paper. We can define a spe-
cial knowledge generalization system systemAK, called
anassociation system. All frequentk − associations are
represented in it (with the support count), as well as all in-
formation needed to compute association rules that follow
from them.

We put

Kassoc = {K ∈ K : K is an association system}.

Definition 3.9 An operatorG ∈ Gdm is called anassoci-
ation operator if and only if G is a partial function that
maps the set of allobject association systemsKoasc into
Kassoc, i.e.

G : Kobjassoc −→ Kassoc

and some specific association conditions hold.

We denote the set of all clustering operators byGassoc.
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Ferńandez, Juan F. Martinez. Data Mining- A Se-
mantical Model Proceedings of 2002 World Congres
on Computational Intelligence, Honolulu, Hawai, USA,
May 11- 17, 2002, pp. 435 - 441.

[11] Ernestina Menasalvas, Anita Wasilewska.Data
Mining Operators Proceedings of ICDM’04, The
Fourth IEEE International Conference on Data Mining,
Brighton, UK, Nov 1-4, 2004 - to appear.



[12] Pawlak, Z. Information systems - theoretical founda-
tions Information systems, 6 (1981), pp. 205-218

[13] Pawlak, Z.Rough Sets- theoretical Aspects Reasoning
About DataKluwer Academic Publishers 1991

[14] Skowron, A. Data Filtration: A Rough Set Approach
Proceedings de Rough Sets, Fuzzy Sets and Knowledge
Discovery. (1993). Pag. 108-118

[15] A. Wasilewska, Ernestina Menasalvas Ruiz, Marı́a C.
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Abstract

The study of foundations of data mining may be viewed as
a scientific inquiry into the nature of data mining and the
scope of data mining methods. There is not enough atten-
tion paid to the study of the nature of data mining, or its
philosophical foundations. It is evident that the conceptual
studies of data mining as a scientific field, instead of as a
collection of isolated algorithms, are needed for the further
development of the field. A three-layered conceptual frame-
work is thus proposed, consisting of the philosophy layer,
the technique layer and the application layer. Each layer fo-
cuses on different types of fundamental questions regarding
to data mining, and jointly they form a complete character-
ization of the field. To complement the extensive studies of
the technique layer and the application layer, we discuss in
detail the main issues of the philosophy layer study.

1 Introduction

With the development and success of data mining, many re-
searchers became interested in a fundamental issue, namely,
the foundations of data mining [1, 7, 8, 23]. Although three
dedicated international workshops have been held [7, 8, 9],
there still do not exist well-accepted and non-controversial
answers to many basic questions, such as what is the foun-
dations of data mining? What is the scope of the founda-
tions of data mining? What are the differences, if any, be-
tween the existing research and the research on the foun-
dations of data mining? The study of foundations of data
mining may be started by answering these questions.

The study of foundations of data mining should be
viewed as a scientific inquiry into the natureof data min-
ing and the scope of data mining methods. This simple
view separates two important issues. The study of the na-
ture of data mining concerns the philosophical, theoretical
and mathematical foundations of data mining as a subject

of study; while the study of data mining methods concerns
its technological foundations by focusing on the algorithms
and tools. A review of the existing studies show that not
enough attention has been paid to the study of the nature of
data mining, more specifically, to the philosophical founda-
tions of data mining [23].

The following problem quoted from Salthe [17] about
studies of ecosystem is equally applicable to the studies of
data mining:

“The question typically is not what is an ecosys-
tem, but how do we measure certain relationships
between populations, how do some variables cor-
relate with other variables, and how can we use
this knowledge to extend our domain. The ques-
tion is not what is mitochondrion, but what pro-
cesses tend to be restricted to certain region of a
cell.”[page 3]

In the context of data mining, one is more interested in the
algorithms for finding “knowledge”, but not what is knowl-
edge and what is the knowledge structure. One is often
more interested in a more implementation-oriented view or
framework of data mining, rather than a conceptual frame-
work for the understanding of the nature of data mining.

There are many reasons accounting for such unbalanced
research efforts. The problems of data mining are first
raised by very practical needs for finding useful knowledge.
One inevitably focuses on the detailed algorithms and tools,
without carefully considering the problem itself. A work-
able program or software system is more easily acceptable
by, and at the same time is more concrete and more easily
achievable by, many computer scientists than an in-depth
understanding of the problem itself. Furthermore, the fun-
damental questions regarding the nature of the field, the in-
herent structure of the field and its related fields, are nor-
mally not asked at its formation stage. This is especially
true when the initial studies produce useful results [17].

The study of foundations of data mining therefore needs



to adjust the current unbalanced research efforts. We need
to focus more on the understanding of the nature of data
mining as a field instead of as a collection of algorithms. We
need to define precisely the basic notions, concepts, princi-
ples, and their interactions in an integrated whole. Results
from the studies of cognitive science and education are rel-
evant to such a purpose. Posner suggested that, according
to the cognitive science approach, to learn a new field is to
build appropriate cognitive structures and to learn to per-
form computations that will transform what is known into
what is not yet known [15]. Reif and Heller showed that
knowledge structure of a domain is very relevant to problem
solving[16]. In particular, knowledge about a domain, such
as mechanics, specifies descriptive concepts and relations
described at various levels of abstraction, is organized hi-
erarchically, and is accompanied by explicit guidelines that
specify when and how knowledge is to be applied [16]. The
knowledge hierarchy is used by Simpson for the study of
foundations of mathematics [19]. It follows that the study of
foundations of data mining should focus on the basic con-
cepts and knowledge of data mining, as well as their in-
herent connections, at multi-level of abstractions. Without
such an understanding of data mining, one may fail to make
further progress.

In order to study the foundations of data mining, we
need to move beyond the existing studies. More specifi-
cally, we need to introduce a conceptual framework, to be
complementary to the existing implementation and process-
oriented views. The main objective of this paper is therefore
to introduce such a framework.

The rest of the paper is organized as follows. In Sec-
tion 2, we re-examine the existing studies of data mining.
Based on the examination, we can observe several prob-
lems and see the needs for the study of foundations of data
mining. More specifically, there is a need for a framework,
within which to study the basic concepts and principles of
data mining, and the conceptual structures and characteriza-
tion of data mining. For this purpose, in Section 3, a three-
layered conceptual framework of data mining is discussed,
consisting of the philosophy layer, the technique layer, and
the application layer [23]. The relationships among the
three layers are discussed. The mains issues of the philoso-
phy layer are discussed in Section 4.

2 Overview of the Existing Studies
and the Problems

Data mining, as a relatively new branch of computer sci-
ence, has received much attention. It is motivated by our
desire of obtaining knowledge from huge databases. Many
data mining methods, based on the extensions, combina-
tions, and adaptation of machine learning algorithms, sta-

tistical methods, relational database concepts, and the other
data analysis techniques, have been proposed and studied
for knowledge extraction and abstraction.

2.1 Three views of data mining

The existing studies of data mining can be classified roughly
under three views.

The function-oriented view
The function-oriented view focuses on the goal or func-

tionality of a data mining system, namely, the discovery of
knowledge from data. In a well-accepted definition, data
mining is defined as “the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understand-
able patterns from data” [2]. Such goal-driven approaches
establish a close link between data mining research and real
world applications.

The function-oriented approaches put forth efforts on
searching, mining and utilizing different patterns embedded
in various databases. A pattern is an expression in a lan-
guage that describes data, and has a representation simpler
than the data. For example, frequent itemsets, association
rules and correlations, as well as clusters of the data points,
are common classes of patterns.

Depending on the data and their properties, one may con-
sider different data mining systems with different function-
alities and for different purposes, such as text ming, Web
mining, sequential mining, and temporal data mining. Un-
der the function-oriented view, the objectives of data mining
can be divided into prediction and description. Prediction
involves the use of some variables to predict the values of
some other variables, and description focuses on patterns
that describe the data [2].

The theory-oriented view
The theory-oriented approaches concentrate on the the-

oretical studies of data mining, and its relationship to the
other disciplines. Many models and processes of data min-
ing have been proposed, critically investigated and exam-
ined from the theory-oriented point of view [2, 12, 22, 27].

Conceptually, one can draw a correspondence between
scientific research by scientists and data mining by com-
puters [26, 27]. More specifically, they share the same
goals and processes. It follows that any theory discov-
ered and used by scientists can be used by data mining sys-
tems. Thus, many fields contribute to the theoretical study
of data mining. They include statistics, machine learn-
ing, databases, pattern recognition, visualization, and many
other. There is also a need for the combination of exist-
ing theories. For example, some efforts have been made to
bring the rough sets and fuzzy logic, utility and measure-
ment theory, concept lattice and knowledge structure, and



other mathematical and logical models into the data mining
models.

The procedure/process-oriented view
From the procedure/process-oriented view, data mining

deals with “non-trivial” processes consisting of many steps,
such as data selection, data preprocessing, data transforma-
tion, pattern discovery, pattern evaluation, and result expla-
nations [2, 11, 27, 28]. Furthermore, it should be a dynam-
ically organized process.

Under the process-oriented view, data mining studies
have been focused on algorithms and methodologies for
mining different types of knowledge, speeding up existing
algorithms, and evaluation of discovered knowledge.

The three views jointly provide a complete description of
data mining research. The function-oriented view states the
goals of data mining, the theory-oriented view establishes
the formal foundations, and the process-oriented view deals
with how to achieve the goals based on the theoretical foun-
dations.

2.2 Problems and potential solutions

Existing studies of data mining typically focus on a partic-
ular aspect, a particular algorithm, or a more specific appli-
cation problem. To some extent, the three views discussed
earlier enable us to see a more complete picture. However,
a general conceptual framework treating data mining as a
field of study is still not proposed and examined. This re-
quires the study of foundations of data mining so that the
fundamental questions of the field itself are asked, exam-
ined, explained and formalized. The goal here is to provide
a better understanding of the field as a whole, rather than a
new or faster algorithm.

The foundations of data mining should not be solely
mathematics or logic, or any other individual fundamental
disciplines. Considering the different types of databases,
the diversity of patterns, the ever changing techniques and
algorithms, and the different views, we require a multi-level
(or multi-layer) understanding of data mining. By viewing
data mining in many layers, one can identify the inherent
structure of the fields, and put fundamental questions into
their proper perspectives in the conceptual map of data min-
ing.

In forming the foundations of data mining, one need to
focuses on its main issues and scope in a wide context. In
this aspect, it is necessary to comment on scientific research
in general.

Scientific research and data mining have much in com-
mon in terms of their goals, tasks, processes and method-
ologies. Scientific research is affected by the perceptions
and the purposes of science. Martella et al. summarized

the main purposes of science, namely, to describe and pre-
dict, to improve or manipulate the world around us, and
to explain our world [13]. The results of the scientific re-
search process provide a description of an event or a phe-
nomenon. The knowledge obtained from research this helps
us to make predictions about what will happen in the fu-
ture. Research findings are a useful tool for making an im-
provement in the subject matter. Research findings also can
be used to determine the best or the most effective ways
of bringing about desirable changes. Finally, scientists de-
velop models and theories to explain why a phenomenon
occurs.

Goals similar to those of scientific research have been
discussed by many researchers in data mining. Yao et
al. compared the research process and data mining pro-
cess [26, 27]. The comparison led to the introduction of
the notion of the explanation-oriented data mining, which
focuses on constructing models for the explanation of data
mining results [27]. Guergachi also stated that the goal of
data mining is what science is and has been all about: dis-
covering and identifying relationships among the observa-
tions we gather, making sense out of these observations, de-
veloping scientific principles, building universal laws from
observations and empirical data [5]. Fayyad et al. identified
two high-level goals of data mining as prediction and de-
scription [2]. Ling et al. studied the issue of manipulation
and action based on the discovered knowledge [8]. Those
studies lay the ground work for the present study.

3 A Three-layered Conceptual
Framework

A three-layered conceptual framework is recently proposed
by Yao [23], which consists of the philosophy layer, the
technique layer, and the application layer. The layered
framework represents the understanding, discovery, and uti-
lization of knowledge, and is illustrated in Figure 1.

3.1 The philosophy layer

The philosophy layer investigates the basic issues of knowl-
edge. One attempts to answer the fundamental question,
namely, what is knowledge? There are many related issues
to this question, such as the representation of knowledge,
the expression and communication of knowledge in lan-
guages, the relationship between knowledge in the mind, in
the external real world, and the classification and organiza-
tion of knowledge [20]. Philosophical study of data mining
serves as a precursor to technology and application, it gen-
erates knowledge and the understanding of our world, with
or without establish the operational boundaries of knowl-
edge.



3.2 The technique layer

The technique layer is the study of knowledge discovery
in machine. One attempts to answer the question, how to
discover knowledge? In the context of computer science,
there are many issues related to this question, such as the
implementation of human knowledge discovery methods
by programming languages, which involves coding, storage
and retrieval issues in a computer, and the innovation and
evolution of techniques and algorithms in intelligent sys-
tems. The main streams of research in machine learning,
data mining, and knowledge discovery have concentrated
on the technique layer. Logical analysis and mathematical
modelling are considered to be the foundations of technique
layer study of data mining.

3.3 The application layer

The ultimate goal of knowledge discovery is to effectively
use discovered knowledge. The question need to be an-
swered is how to utilize the discovered knowledge. The
application layer therefore should focus on the notions of
“usefulness” and “meaningfulness” of discovered knowl-
edge for the specific domain. These notions can not be dis-
cussed in total isolation with applications, as knowledge in
general is domain specific.

Philosophy layer 

Technique layer 
Application layer 

Figure 1: The three-layered conceptual framework of data
mining.

3.4 The relationships among the three layers

Two points need to be emphasized about the three-layered
conceptual framework.

The three layers are different, relatively independent, and
self-contained.

(1.) The philosophical study does not depend on the avail-
ability of specific techniques and applications. In other

words, no matter knowledge is discovered or not, uti-
lized or not, even if the knowledge structure and ex-
pression are recognized or not, it exists. Furthermore,
all human knowledge is conceptual and forms an in-
tegrated whole [14]. The output of the philosophical
study can be expressed as theories, principles, con-
cepts or other knowledge structures. Knowledge struc-
ture is built by connecting new bits of information to
the old. The study of knowledge at the philosophy
layer has important implications for the human society,
even if it is not discovered or utilized yet, or it simply
provides a general understanding of the real world.

(2.) The technical study can carry out part of the philo-
sophic study results but not all, and it is not constrained
by applications. The philosophy layer describes a very
general conceptual scheme. The current techniques,
including hardware and software, may still be insuffi-
cient to bring all of it into reality. On the other hand,
the existence of a technique/algorithm does not nec-
essarily imply that discovered knowledge is meaning-
ful and useful. The output of the technical study can
be expressed by algorithms, mathematical models, and
intelligent systems. The technology can be commer-
cialized. The benefits of technological implementa-
tion and innovation tend to move the study of technical
layer to be more and more profit-driven.

(3.) The applications of data mining is materialized knowl-
edge in specific domains. They are related to the eval-
uation of discovered knowledge, the explanation and
interpretation of discovered knowledge in a particu-
lar domain. The discovered knowledge can be used
in many ways. For example, knowledge from trans-
action databases can be used for designing new prod-
ucts, distributing, and marketing. Comparing to the
philosophical and technological studies, the applica-
tions have more explicit targets and schedules.

The three layers mutually supports each other and jointly
form an integrated whole.

(1.) It is expected that the results from philosophy layer
will provide guidelines and set the stage for the tech-
nique and application layers. The technology develop-
ment and innovation can not go far without the con-
ceptual guidance.

(2.) The philosophical study can not developed without
the consideration of reality. Technology development
may raise new philosophical questions and promote
the philosophical study. Technique layer is the bridge
between philosophical view of knowledge and the ap-
plication of knowledge.



(3.) The applications of philosophical and technical out-
comes give an impetus for the re-examination of philo-
sophical and technical studies too. The feedbacks from
applications provide evidence for the confirmation, re-
examination, and modification of philosophical and
technical results.

Three layers of the conceptual framework are tightly in-
tegrated, namely, they are mutually connected, supported,
promoted, facilitated, conditioned and restricted. The di-
vision between the three layers is not a clear cut, and may
overlap and interweave with each other. Any of them is
indispensable in the study of intelligence and intelligent
systems. They must be considered together in a common
framework through multi-disciplinary studies, rather than
in isolation.

The technique layer and application layer have been ex-
tensively studied in data mining. In the rest of this paper,
we only emphasize on the philosophy layer study of data
mining.

4 Main Issues of Philosophy Layer
Study

The philosophy layer is the study of knowledge. It deals
with many issues, such as concept formation, knowledge
representation, evaluation, classification and explanation.
We use concepts, a special form of knowledge, as an ex-
ample to illustrate the basic ideas [24].

4.1 Concept formation and learning

Concepts present a profound development and conscious-
ness of percepts, and enable human to know and understand
facts that far outstrip our limited observations [14].

In the process of concept formation and learning, there
are two basic issues known as aggregation and characteri-
zation [3], as shown in Figure 2. Aggregation aims at the
identification of a group of objects so that they form the ex-
tension of a concept. Characterization attempts to describe
the derived set of objects in order to obtain the intension of
the concept [3].

For aggregation, one considers two main processes
called differentiation and integration [14]. Differentiation
enables us to grasp the differences between elements, so
that we can separate one or more elements from the other
elements. Integration is the process of generalizing the fea-
tures of similar elements, then putting together elements
into an inseparable whole.

As the final step in concept formation, characterization
provides a definition of a concept, condenses the insepara-
ble whole into a brief, retainable statement, tells what dis-
tinguishes the units and from what they are being distin-
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�
��

���

�
��

���

Figure 2: Concept formation and learning.

guished. This, in Ayn Rand’s words, is “to distinguish a
concept from all other concepts and thus to keep its units
differentiated from all other existents” [14]. A more de-
tailed discussion of concept formation and learning can be
found in [24].

4.2 Knowledge representation

One needs to define and formulate the knowledge represen-
tation clearly and concisely.

A space that can hold knowledge as concepts is called
a concept space, namely, it refers to a set or a class of con-
cepts. If we consider the data mining process as a search for
concepts in a particular concept space, we need to study dif-
ferent kind of concept spaces first. Inside the concept space,
the concept can be represented and discovered. Generally,
a concept space S can hold all the concepts, including the
ones that can be defined as a formula, and the ones that can
not. A definable concept space DS is a sub-space of the
concept space S. There are many definable concept spaces
in different forms. In most situations, one is only interested
in the concepts in a certain form. Consider the class of con-
junctive concepts, that formula constructed from atomic for-
mula by only logic connective ∧. A concept space CDS is
then referred to as the conjunctively definable space, which
is a sub-space of the definable space DS. Similarly, a con-
cept space is referred to as a disjunctively definable space if
the atomic formulas are connected by logic disjunctive ∨.

The relationship among the above mentioned concept
spaces is illustrated in Figure 3. A particular computational
model is normally based on one or some philosophical as-
sumptions and may not be able to cover all.
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Figure 3: Some concept spaces.



4.3 Knowledge evaluation

Concept formation and knowledge representation do not
have to be related directly to quantitative evaluations, al-
though the evaluation of the concepts is an important issue.
Many measures have been proposed and studied to quantify
the usefulness or interestingness of concepts and concept
relations [10, 18, 25]. The results lead to an in-depth under-
standing of different aspects of knowledge.

Generally, measures can be classified into two cate-
gories consisting of objective measures and subjective mea-
sures [18]. Objective measures depend on the structure of
rules and the data used in the discovery process. Subjective
measures depend on the user who examines the rules. While
most of the measures are objectively defined by mathemat-
ical properties, Yao et al. proposed a subjective framework
for rule interestingness evaluation based on the user prefer-
ence [25].

4.4 Knowledge classification and organiza-
tion

Partitions and coverings are two simple and commonly used
knowledge classifications of the universe. A partition of a
finite universe is a collection of non-empty, and pairwisely
disjoint subsets whose union is the universe. A covering of
a finite universe is a collection of non-empty and possibly
overlapped subsets whose union is the universe. A partition
is a special case of a covering.

Knowledge is organized in a tower (hierarchy) or a par-
tial ordering. Hierarchy means that the base or minimal
elements of the ordering are the most fundamental con-
cepts and higher-level concepts depend on lower-level con-
cepts [19]. Partial ordering means that the concepts in
the hierarchy are reflexive, anti-symmetric and transitive.
Based on the above discussion, we have partition-based hi-
erarchy and covering-based hierarchy. The first-level con-
cept is formed directly from the perceptual data [14]. The
higher-level concepts, representing a relatively advanced
state of knowledge, are formed by a process of abstracting
from abstractions [14].

4.5 Knowledge explanation

Explanation plays a key role in the understanding of knowl-
edge and the knowledge structures. It is the explanation that
changes data and information into knowledge.

Explanation-oriented data mining uses the background
knowledge to infer features that can possibly explain and
interpret knowledge discovered from data. The constructed
explanations give some evidence about under what condi-
tions (within background knowledge) the discovered pattern
is most likely to happen, or how the background knowledge
is related to the pattern.

5 Conclusion

A three-layered conceptual framework of data mining is dis-
cussed in this paper, consisting of the philosophy layer, the
technique layer and the application layer. The philosophy
layer deals with the formation, representation, evaluation,
classification and organization, and explanation of knowl-
edge; the technique layer deals with the technique develop-
ment and innovation; the application layer emphasizes on
the application, utility and explanation of mined knowledge.

The layered framework focuses on the data mining ques-
tions and issues in different abstract levels, and thus, offers
us opportunities and challenges to reconsider many funda-
mental issues. The framework is aimed at the understanding
of the data mining as a field of study, rather than a collection
of theories, algorithms, and tools.
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Abstract

A classification technique based on the induction of the
individual class labels from pre-classified training examples
whose class labels may possess ambiguities is proposed.
We assume the existence of a large number of training in-
stances that have each been assigned an integer class label.
At the training stage, an association rule mining technique
detects interesting rules; at the classification stage, a clas-
sifier applies a belief theoretic method on these rules. The
ability of belief theory to accommodate ambiguity makes
our algorithm capable of achieving high performance when
the training set contains class label ambiguities. It also
accounts for highly skewed or ‘imbalanced’ training sets.
These characteristics make it ideally suited for various ap-
plications that have recently gained tremendous importance
and urgency. For example, in security monitoring and threat
classification, different experts are likely to have conflicting
opinions about the threat level to be assigned to specific
training set instances; moreover, the vast majority of in-
stances are likely not to correspond to a heightened threat
level thus giving rise to a highly skewed training set. Ex-
periments on several databases in the UCI data repository
demonstrate that, for databases without ambiguities, the
proposed classifier achieves performance comparable with
available classifiers; for databases with class label ambi-
guities, it provides higher average classification accuracy
and better efficiency.
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1 Introduction

In classification problems, complete statistical knowl-
edge regarding the conditional density function of each
class is rarely available. When no evidence supports one
form of the density function or another, often a good solu-
tion is to build up a training set of correctly classified feature
vectors or samples and to classify each new incoming fea-
ture vector using the evidence provided by ‘nearby’ samples
from the training set. For example, in the voting � nearest
neighbor classifier [9], which we refer to as the KNN clas-
sifier, an unclassified feature vector is assigned to the class
represented by a majority of its � nearest neighbors in the
training set. The error rate of the KNN classifier approaches
the optimal Bayes error rate as the number of samples �
and the number of neighbors � both tend to infinity in such
a manner that �����
	�� [4]. It provides good performance
in numerous practical applications and accordingly enjoys
significant popularity in the pattern recognition community.
Its main drawback is that it implicitly assumes that the �
nearest neighbors of an incoming feature vector are con-
tained in a region of relatively small ‘volume;’ this ensures
sufficiently good resolution in the estimates of the different
conditional densities.

Numerous modifications of this KNN classifier have
been suggested to improve its performance [5, 6]. For ex-
ample, the belief theoretic KNN method in [5], which we
refer to as the KNN-BF classifier, not only improves the
classification performance over its ‘crisp’ version, but also
handles ambiguities in class labeling in the training set via
the inherent ambiguity modeling capability of belief theory
[14, 18, 19, 21, 25]. Such a capability is of critical impor-
tance in several application scenarios of topical interest.

A case in point is detection and assessment of security
threats. For example, in airport terminal security monitor-
ing, data gathered from various heterogeneous sensors (x-



ray scanners, metal detectors, thermal imaging sensors, ra-
diation detectors, chemical sensors, etc.) are used to ex-
tract features for classifying targets and potential threat car-
riers into different threat level classes. For this purpose, a
training set, where several domain experts would have as-
signed an appropriate threat level to each training set in-
stance, needs to be utilized. When a suitable classification
algorithm classifies a target as belonging to a heightened
threat level, one may assign higher resolution, and perhaps
even mobile, sensors for further tracking and evaluation;
certain situations might even call for immediate action. The
training set employed in such a system, and in similar ap-
plications, possesses certain specific characteristics:

(C1) The likelihood of conflicting assignments of threat
levels is very high. In other words, ambiguities are unavoid-
able in training set class labeling.

(C2) The computational burden and storage require-
ments of the classifier must be tolerable.

(C3) The training set is highly skewed: For example,
suppose the threat classes in an airport terminal security
monitoring environment are

Class 1: NotDangerous � Class 2: OfConcern �
Class 3: Dangerous � Class 4: VeryDangerous �
While most targets entering the terminal gateways fall into
the NotDangerous classification, only a very small frac-
tion of the targets will belong to the VeryDangerous
class. Thus, the training set will be skewed in favor of the
threat level NotDangerous.

Our main purpose was to design a classifier that effec-
tively accommodates these issues.� To address (C1), we adopt a classifier that is based on
belief theoretic notions. Hence, in addition to the improve-
ment in classification performance when class label ambi-
guities are present, the proposed algorithm can also provide
quantitative confidence information regarding the classifi-
cation decision it makes. We must mention here that, vari-
ous other mechanisms can also be used to represent ambi-
guities; indeed, the relationship between belief theory and
these other mechanisms can be found in [8, 23, 13, 15]. Our
choice of belief theory for the current purpose is motivated
mainly by the ease and convenience it offers (see [8] for an
interesting discussion on this matter).� To address (C2), the proposed algorithm is made to
operate on rules extracted from an association rule mining
(ARM) algorithm. In this respect, our proposed method
differs from the KNN-BF classifier in [5]. ARM has been
demonstrated to be an extremely powerful tool for extract-
ing interesting and not-so-obvious patterns and associations
from large databases [1, 12, 17, 22]. In fact, in [16], a clas-
sifier, which we refer to as the ARM classifier, was built
by first applying a modified ARM method to the training

set and then selecting rules with high confidence or support
values. However, it does not effectively address (C1).� We address (C3) by adapting a simple and effective
ARM strategy that attempts to ‘capture’ both majority and
minority classes.

This paper is organized as follows: Section 2 provides
a primer on belief theory; Section 3 presents a new ARM
method that effectively accommodates a highly skewed
training set; Section 4 contains the proposed classifier; Sec-
tion 5 is reserved for experimental results; and Section 6
gives the concluding remarks where we identify several re-
search directions that warrant further investigation.

2 Belief Theory: A Primer

Let �������
	��
���
���������
����� be a finite set of mutually ex-
clusive and exhaustive hypotheses about some problem do-
main. It signifies the corresponding ‘scope of expertise’ and
is referred to as its frame of discernment (FoD) [21]. A hy-
pothesis ��� , also referred to as a singleton, represents the
lowest level of discernible information. Elements of ��� ,
the power set of � , form all hypotheses of interest. A hy-
pothesis that is not a singleton (e.g., ��� 	 ��� ��� ) is referred to
as a composite hypothesis.

2.1 Basic Notions

A basic probability assignment (BPA) or mass is a func-
tion � �
� �"!	$# �%��&�' that satisfies�(�*) � � � and +,.- � �"��/ � �0&1� (1)

The quantity �"��/ � can be interpreted as a measure of the
‘support’ that one is willing to commit exactly to / , and
not to any of its subsets. A mass assigned to a compos-
ite hypothesis is free to move into its constituent singletons
if further evidence warrants it. This is how ambiguity is
modeled in belief theory. The set of hypotheses (including
composite hypotheses) 2 � that possesses nonzero masses
is called the focal elements of � . The triple ���3��2 � �
�"�54 � �
is referred to as the corresponding body of evidence (BoE).

Belief theory enables one to conveniently characterize
complete ignorance via the vacuous BPA

�(�6/ � �87 &
� if /9�:�3�
�;� otherwise.

(2)

Intuitively, a portion of belief committed to a hypothesis
must also be committed to any hypothesis it implies. In
belief theory, one uses the notion of belief to quantify this.
The belief of /0<=� is a function Bl �>�%� !	$# �%��&�' where

Bl ��/ � �?+@ -�, �"��A � � (3)



Then, Bl ��/ � can be interpreted as a measure of the total
belief committed to / . It can easily be verified that the
belief in / and the belief in its negation / do not necessarily
sum to & . Hence, in belief theory, the additivity axiom of
probability is relaxed.

Consequently, Bl ��/ � does not reveal to what extent one
believes in / , i.e., to what extent one doubts / . This latter
notion is described by Bl � / � . Indeed, in belief theory, one
uses the notion of plausibility to quantify this. The plausi-
bility of / < � is a function Pl �>� �(!	$# �%��&�' where

Pl �6/ � �0& � Bl � / � � +@�� ,����� �(�6A � � (4)

Hence, Pl �6/ � quantifies the extent to which one fails to
doubt / , i.e., to what extent one finds / plausible.

A probability distribution Pr �54 � such that Bl ��/ �
	
Pr ��/ ��	 Pl ��/ � �
��/ < � , is said to be compatible with
the underlying BPA �"�54 � . An example of such a probabil-
ity distribution is the pignistic probability distribution Bp �
4 �
defined for each singleton � ��� � as [24]

Bp � � � � � +����� , �(�6/ ����� / � � (5)

where � / � denotes the cardinality of / .

2.2 Evidence Combination

A strategy whereby the evidence provided by two ‘inde-
pendent’ BoEs ���3�
2 	 �
� 	 �54 � � and ���3�
2 � �
� � �54 � � could
be ‘pooled’ to form a single BoE ���3��2 ���(�
4 � � is provided
by the Dempster’s rule of combination (DRC) which is ap-
plicable when the BoEs span identical FoDs [21]. The
‘fused’ BoE ���3�
2 �
�"�54 � � that the DRC generates is

�"��� � � +, � @ ��� � 	 �6/ � � � �6A �& � +, � @ ��� � 	���/ � � �>��A � ��������:) � (6)

with �"�6) � � � . Here, it is assumed that the two BoEs are
consistent, i.e., � , � @ ��� � 	 ��/ � � � ��A � �� &1� This fusion
operation is typically denoted as � � � 	 � � � and referred
to as the orthogonal sum of � 	 �
4 � and � � �54 � . The DRC
is perhaps the most widely used belief theoretic evidence
combination function.

3 Partitioned-ARM

ARM extracts rules in a database that satisfy certain min-
imum support and confidence constraints [1]. In its usual
form however, it is not suitable for accommodating the char-
acteristics (C1-C3) of the training sets (see Section 1). For

example, when dealing with class label ambiguities, it may
be possible to construct a classifier based on only those rules
that do not possess any class ambiguity. However, such a
strategy may potentially ignore a large fraction of training
samples; moreover, such an algorithm may inadvertently ig-
nore samples that would have otherwise provided extremely
critical evidence that captures more qualitative aspects. The
fact that the training set itself is highly skewed brings its
own difficulties: unless specifically compensated for, a clas-
sifier built on such a training set typically tends to favor the
‘majority’ classes at the expense of the ‘minority’ classes.
In a threat classification scenario, for instance, such a situa-
tion must be avoided at all cost because ignoring the minor-
ity class can have devastating consequences.

Although the KNN-BF classifier in [5] is extremely ef-
fective against class label ambiguities (i.e., (C1)), it is not
catered towards addressing (C2-C3). Hence, while we also
exploit the advantages of belief theoretic notions in our clas-
sifier design, to address computational and storage issues
(i.e., (C2)), we make the classifier operate on a significantly
smaller data set. It is the rule set that an appropriate ARM
algorithm would generate that we propose to utilize for this
purpose. The effectiveness of such an ARM rule set in clas-
sification has been amply demonstrated in [16] and we make
use of these notions in this present work. However, if the
associated advantages offered by such a strategy regarding
reduced computational and storage burdens are to be fully
utilized, it is crucial that we effectively address those con-
cerns characteristic of an environment where highly skewed
training sets are the norm (i.e., (C3)).

In this section, we discuss our solution to alleviate these
difficulties; we refer to it as the partitioned-ARM.

3.1 Training Set

We denote the training set by !#"%$ � �&! � �>��' � &
� �)( ,
where ! � indicates a data instance and �*( indicates the
cardinality of !*"+$ , i.e., its ‘size.’ Each data instance ! � is
taken to be of the following form: for '.� &1� �,( ,

! � �)-/. � �0� �21 where . � �)-43 	
� �03 ��� ���������5376�8 �21 �
(7)

Here, . � denotes the ' -th feature vector extracted from the
measurements collected from the data sources. Each feature
vector is taken to consist of �*9 features; 3;: � �=< � &
� �)9 ,
denotes the < -th such feature embedded within the ' -th data
instance in !>"%$ . The class label that has been allocated to
this ' -th data instance is denoted by � � .
3.2 Relevant FoDs

Since we intend to utilize belief theoretic notions in our
classifier design, it is instructive at this juncture to identify
the relevant FoDs.



3.2.1 Feature FoD

The FoD of each feature 3 : � � < � &1� � 9 �>'3� &1� � ( , is
taken to be identical, finite and equal to � � , viz.,

FoD # 3 : ��'��9� � � ��� � 	��� ��� � ���� ����������� � ������ �
� (8)

where 	 � denotes the number of possible values a feature
may assume. Clearly, the FoD � 9 of each feature vector
. ��� ' � &1� � ( , is the � 9 -fold cross-product of � � � [7],
viz.,

FoD # ..� ' �9� 9 �:� � ��
 � � ��
 4�4�4 
 � � �
 ��� �
6 8���� ����� � (9)

3.2.2 Class Label FoD

The FoD of each label class � � � ' � &
� � ( , is taken to be
finite and equal to � � , viz.,

FoD # � ��'�� � � � ��� � 	��� ��� � ���� ����������� � ������ �>� (10)

where 	 � denotes the number of different class labels that
are to be discerned. For example, in the discussion in Sec-
tion 1, � � = � NotDangerous, OfConcern, Danger-
ous, VeryDangerous � .
3.3 Partitioning the Training Set

To circumvent difficulties associated with ‘majority’
classes overwhelming ‘minority’ classes, we propose to ap-
ply ARM to a partition of the training set ! "+$ . This parti-
tion is constructed according to the class labels the training
data instances have been classified, i.e., each class label (ir-
respective of whether it is modeled as a singleton � � ���� or
composite hypothesis generated from � � ) corresponds to
one partition of the training set !�"%$ . Suppose we enumer-
ate these ‘newly’ formed class labels as � ��� � � � � &1� � � ,
where � � may take values from � � � � (this corresponds
to only singleton class label classifications) to � � � � � (this
corresponds to class labels spanning all possible subsets
of � � ). Then, the partitions of !#"%$ can be denoted by� � � �
�2' � &
� � � where

! "%$ � 6!�"
� � 	 � ��� � � with � ����# ��$ � ���&% � � ) � � 	 �� �1�1� (11)

Here, for � � &1� � � , � �'� � contains all the data instances
that possess � ��� � as the corresponding class label.

For example, in the example previously discussed in Sec-
tion 1, the threat level of each training set data instance
was classified into its singletons, viz., NotDangerous,
OfConcern, Dangerous or VeryDangerous. Sup-
pose, due to differences in opinion of experts whose ad-
vise was sought in constructing the training set, some data

instances are classified as (OfConcern,Dangerous).
Then, we would divide !#"%$ into � � � ( partitions� � ��� � �
� � � &1�&( , where each would contain data in-
stances that have been identically classified. So, while� � � 	)� �*� � ��� �*� ��+ � ��� �-, � � contains data instances having
threat level �;� � 	)� , � � ��� , � �.+ � , � �-, � �0/ � NotDangerous,
OfConcern, Dangerous, VeryDangerous � respec-
tively, � �.1 � contains data instances having threat level
� �.1 � / � OfConcern,Dangerous � .
3.4 Partitioned-ARM

A rule generated by an ARM algorithm is an implication
of the form 2 	43 , where the antecedent 2 < � 9 and
the consequence 3 < � � . Such a rule 2 	53 holds in the
database !>"%$ with support 6 if 687 of the data instances
in !
"+$ contain 2 and are labeled with class 3 ; the rule2 	93 holds in the database ! "%$ with confidence : if:;7 of those data instances in ! "%$ containing 2 are also
labeled with class 3 .

We propose to apply an appropriate ARM algorithm
(e.g., the Apriori algorithm [2]) on each partition � ��� � to
generate the rule set < ��� � that passes the minimum support
constraint MinSupp

��� �
specified for that particular partition,

viz.,

< ��� � � Apriori = � �'� � � MinSupp
��� �)> � � � &1� � � � (12)

where the rule set < ��� � is taken to contain �
�'� �� rules, viz.,

< ��� � � � ? �'� �@ � where ? ��� �@ � . ��� �@ 	 � ��� � �BA � &1� � ��� �� �
We refer to this as the partitioned-ARM.

In generating the rule set < ��� � , the support is calculated
within � �'� � thus ensuring that a balanced number of rules
are generated for each class. However, the confidence al-
located to each rule ? ��� �@ is calculated within the complete
training set ! "+$ . Note that, the rules acquired in this man-
ner are associated with a particular class � �'� � of the corre-
sponding partition � ��� � .

The antecedent .
��� �@ of rule ? ��� �@ takes the following

form:
.
�'� �@ �)-/3

��� �	 @ �03 ��� �� @ ���������03 ��� �6 8DC @ 1 � (14)

where we assume that each feature value 3
��� �: @ may only as-

sume the values

3 : @ �FE � � 	��� ��� � ���� ����������� � ������ � � �HG � (15)

i.e., the only ambiguity we allow in the feature value is
complete ignorance (enabling one to accommodate, for in-
stance, a missing feature value). This is in contrast to the
consequence � ��� � of rule ? ��� �@ where both partial and com-
plete ambiguity in class label classification is accounted for.



The final rule set <���� $�� generated is

<���� $��9� 6B�"
� � 	 < ��� � � (16)

3.5 Rule Pruning

To finally arrive at an appropriate set of rules to be used
by the classifier, a pruning algorithm is applied to remove
‘redundant’ rules that are contained in <���� $�� . First, we
need to introduce several useful notions.

Consider any feature, say 3
��� �: @ , of the antecedent .

��� �@ of

rule ? �'� �@ . Then, 3
��� �: @ � � � indicates complete ambiguity

regarding the feature value 3
��� �: @ . It provides no information

and hence is of no significance to the rule itself. This, and
other relevant notions, are formalized via

Definition 1 (Level of Abstration (LoA)) For rule ? �'� �@ �
.
��� �@ 	 � ��� � �BA � &1� � ��� �� � � � &
� � � , let

Abst
	
.
��� �@�
 � "

:
E 3 ��� �: @ � 3 ��� �: @ � � �HG �

Then
(i) cardinality of Abst # . ��� �@ ' , i.e., �Abst # . ��� �@ ' � , is re-

ferred to as the level of abstraction (LoA) of rule ? ��� �@ (and

the corresponding feature .
��� �@ );

(ii) rule ? ��� �@ # (and the corresponding feature .
��� �@ # ) is said

to be more abstract (or less specific) than rule ? ��� �@ % (and the

corresponding feature .
��� �@ % ) if the LoA of ? ��� �@ # is higher than

the LoA of ? ��� �@ % ; and

(iii) rule ? ��� �@ is said to cover the training data instance
! � �)-/. � �0� �21 �2' � &
� � ( , if

3&: � � 3
�'� �: @ ��� < � &1� � 9 � s.t. 3

��� �: @ �� Abst # . ��� �@ ' �
Hence, if rule ? ��� �@ # is more abstract than rule ? ��� �@ % , it

means that ? ��� �@ # contains more ‘insignificant’ features than? �'� �@ % ; and if it covers the data instance ! � , it means that the
rule ‘captures’ ! � .

The rule set <���� $�� generated by partitioned-ARM in-
cludes rules at different LoAs. Therefore, each training data
instance may be covered by multiple rules at different LoAs,
and hence, some rules are redundant and can be safely re-
moved. In essence, we require an effective method that en-
ables one to select the least number of rules that can still
cover the complete training set with the least ambiguity.

One selection criterion to achieve this is the following:
From among the rules that cover the same training instance,
allocate a higher priority to those possessing a higher con-
fidence value and a lower LoA. With this in mind, the

first step in the pruning strategy we propose is to sort (im-
plemented via an available sorting algorithm) the rule set< ��� $�� generated from the partitioned-ARM first in de-
scending order of their confidence values; those with the
same confidence value are then sorted in ascending order
of their LoAs. The sorting scheme we employ differs from
that used in [16] where the second level of sorting is deter-
mined by the support value. The reason lies in our desire to
accommodate class label ambiguities.

Then, starting from the first rule in the sorted rule set,
all the data instances that can be covered by each rule
are removed from the training set. If the remaining set of
training instances is not empty, the rule will be selected
to be included in the final rule set; otherwise, it is pruned.
This process is terminated when either no rules are left
in < ��� $�� or no training instances are left in the training
set. At termination, if the training set is not empty, all its
remaining data instances are also selected to be included in
the final rule set < �
�����;��� ; these are allocated a confidence
value of &1� � . This process, which we refer to as the
RulePruning algorithm, can be described as follows:

RulePruning ( <���� $�� , !
"%$ ) �
while (!empty( <���� $�� ) & !empty( !*"%$ )) �? =Top( <���� $�� );

if (!empty( !�� = covered ( ? , ! "%$ ))) �<��
��������� = <��
����������� ? ;<���� $�� = <���� $���� ? ;
!
"%$ = !
"%$�� !����
�

if (!empty( ! "%$ )) �< �
��������� = < �
����������� ! "+$ �
�
Here, ! "%$ is the training set, < ��� $�� is the original
rule set generated by partitioned-ARM and < �
�����;��� is
the rule set selected after pruning; the function cov-
ered ( ? , !>"%$ ) generates the set !�� of all training data
instances that are covered by rule ? .

4 ARM-KNN-BF Classifier

We use the rule set <��
��������� generated in Section 3 to de-
sign a belief theoretic association rule mining based classi-
fier that enables one to accommodate the presence of class
label ambiguities. We refer to this as the ARM-KNN-BF
classifier.

4.1 Rule BPAs

To explain how we incorporate belief theoretic notions,
let .! �)- 3  	 �03  � ���������03  6 8 1 be an incoming feature vec-
tor that needs to be classified using the information con-
tained in the rule set. Classifying ." means assigning to it
one class from � ��� � � � � &1� � � . Our strategy in addressing



this problem is to view each rule ? ��� �@ as a piece of evidence
that alters our belief that ." also belongs to � ��� � . But, with
what ‘certainty’ can we make this claim? It is reasonable to
assume that only some portion of our belief is committed to
� ��� � whereas the remaining belief should be committed to
no other class, i.e., it should be committed to the vacuous
BoE � � . The corresponding BPA �  C ��� �@ then is

�  C ��� �@ �6/ � � 7�� ��� �@ � if /:��� ��� � �& � �
��� �@ � if /:� � � � (17)

and zero otherwise. Here, �
��� �@ � # �;��&�' . Note that, � ��� �

is allowed to be a composite hypothesis or class label. The
following two factors play critical roles in the determination
of �

��� �@ .

1. Confidence value : ��� �@ of rule ? ��� �@ : Since : ��� �@ is a mea-
sure of the confidence one places on the rule, it is reasonable
to take �

��� �@ to be proportional to : ��� �@ .
2. Distance between the new feature vector .  and the

antecedent .
�'� �@ of the rule: If .  is ‘far’ from .

��� �@ , the
class label of the latter can be considered to impact very
little on the class of .  ; on the other hand, if .� is ‘close’
to .

��� �@ , one will be much more inclined to believe that they
belong within the same class label. Hence, it is reasonable
to postulate that �

��� �@ should be a decreasing function of

Dist # .! � . �'� �@ ' , a suitable ‘distance’ function between .  
and .

�'� �@ . With these observations in place, we choose �
��� �@

as

�
��� �@ � � � :

��� �@���� Dist � 9	��C 9�

������ � (18)

where � � � # �;��&�' and � 1 � are parameters to be appropri-
ately chosen.

4.2 Distance Function

When computing the distance between an incoming fea-
ture vector .� and the antecedents .

��� �@ of the rules, it is
reasonable to ‘trust’ more detailed rules over the others.
The following distance function captures this and ‘penal-
izes’ those rules that are less detailed:

Dist # .  �0. ��� �@ '�� �����
� 	 � � 4�4�4 � 6�8���� � �)9
����� �

(19)
where, # 4 ' � denotes matrix transpose and, for <3� &1� �#9 ,

� : � �� �! � 3  : � 3
�'� �: @ � � for 3  : �� Abst # .  '

and 3
��� �: @ �� Abst # . ��� �@ ' �

�;� otherwise � (20)

Here, " 4#" � is any Hölder $ -norm.

4.3 Fused BPA

At this juncture, for a given incoming feature vector .  ,
a BPA �  C ��� �@ � � � � !	 # �%��&�' corresponding to each rule

? ��� �@ has been constructed. Note that A � &1� � ��� �� denotes
the number of rules corresponding to class label � ��� � and
� � &
� � � denotes the number of class labels. We can now
use DRC to combine these BPAs and arrive at the fused
BPA �  �54 � . This final BPA, and the corresponding belief
and plausibility notions, can now be used to make a ‘soft’
decision regarding the class label of the incoming feature
vector. Alternately, we may use the pignistic probability
distribution in (5), or any other decision criterion that is
readily available in the literature, to arrive at a ‘hard’ de-
cision regarding the class label [10].

4.4 Rule Set from � Nearest Neighbors

When the rule set generated is large, we propose to apply
the � nearest neighbor principle to choose � rules whose an-
tecedents are nearest (in the sense of the distance function
in (19)) to the incoming feature vector .  . This yields only
� BPAs, potentially a further significant reduction in com-
putational and storage requirements.

4.5 Rule Refinement

Finally, a rule refinement step is carried out by classify-
ing the training set ! "%$ via the ARM-KNN-BF classifier
operating on the rule set < �
��������� . Those training instances
that were not correctly classified can be considered to pro-
vide evidence that is absent in < �
�����;��� . We then supple-
ment <��
�����;��� with these training instances (with a confi-
dence of &
� � ) to generate the refined rule set < $��&% ����� . This
is the rule set that we use with the ARM-KNN-BF classifier.

5 Experimental Results

All average classification accuracy results presented
herein correspond to 10-fold random subsampling where
each database was split into a training set (70%) and test-
ing set (30%). Classification rules are generated from the
training set while the testing set is used to test the perfor-
mance.

5.1 Databases Without Class Label Ambiguities

For this case, several UCI databases [3] were used to
compare the classification accuracy of the proposed ARM-
KNN-BF classifier with the KNN [9], C4.5rules [20], KNN-
BF [5], and ARM [16] classifiers. The various parameters



and accuracy values for the ARM classifier are borrowed
from [16].

The minimum support and confidence values play a vi-
tal role in classification accuracy. For the experiments, the
support value was kept between 0.01 and 0.10 while the
confidence value varied from 0.3 to 0.9. To contain the pro-
cessing complexity to a tolerable level, it was decided not
to use a larger number of neighbors � . For � � &
��& � , the
impact of � on classification accuracy was found to be min-
imal. Hence, all the experiments were run with the identical
value of � ��� .

Table 1 shows the parameter values used by the ARM-
KNN-BF classifier for different databases. Note that,
BCancer and TTToe refer to the Breast Cancer and Tic-Tac-
Toe databases of [3], respectively.

Table 1. Non-ambiguous databases: Parame-
ters used by ARM-KNN-BF classifier

Database Support Confidence

BCancer 0.05 0.3
Car 0.03 0.5
Diabetes 0.03 0.3
Iris 0.08 0.8
Monks 0.06 0.6
TTToe 0.04 0.5
Wine 0.07 0.3

Table 2 compares the average number of rules gener-
ated per class by different classifiers. It can be observed

Table 2. Non-ambiguous databases: Average
number of rules generated/class

Database KNN & ARM ARM-KNN-BF
KNN-BF [5, 9] [16]

BCancer 242 49 76
Car 302 N/A 71
Diabetes 258 57 169
Iris 32 5 18
Monks 200 N/A 48
TTToe 334 8 70
Wine 41 7 30

that the number of rules generated by the ARM classifier
is significantly less. However, it cannot accommodate class
ambiguities and this is a key requirement that we desire in
our classifier. KNN and KNN-BF classifiers are the only
other classifiers that satisfy this criterion and compared to
these, ARM-KNN-BF classifier generates a significantly
lower number of rules. It is worth mentioning that, the
way we used the KNN classifier to handle ambiguities is to
treat each class label—including those with ambiguity—as
a separate class.

Table 3 and Table 4 show, respectively, the classification

accuracy and the corresponding standard deviations of each
algorithm. For ARM classifier, the best average accuracy

Table 3. Non-ambiguous databases: Classifi-
cation accuracy

Database KNN C4.5 KNN- ARM ARM-
rules BF KNN-BF

[9] [20] [5] [16]

BCancer 0.97 0.95 0.93 0.96 0.97
Car 0.92 0.93 0.93 N/A 0.93
Diabetes 0.70 0.72 0.71 0.72 0.76
Iris 0.94 0.94 0.96 0.93 0.95
Monks 0.92 0.98 0.97 N/A 0.95
TTToe 0.92 0.98 0.93 1.00 0.99
Wine 0.94 0.91 0.96 0.92 0.96

Table 4. Non-ambiguous databases: Percent
standard deviation of classification accuracy

Database KNN C4.5rules KNN-BF ARM-
[9] [20] [5] KNN-BF

BCancer 1.08 0.81 3.03 1.16
Car 1.12 1.51 0.97 1.57
Diabetes 2.13 4.23 2.22 3.99
Iris 2.10 2.74 2.00 2.25
Monks 1.23 0.81 1.74 1.32
TTToe 2.22 2.15 3.03 1.81
Wine 2.50 3.71 2.10 2.83

(i.e., CBA-CAR plus infrequent rules reported in [16]) was
used.

Some remarks regarding how these accuracy ‘scores’ in
Table 3 were computed are in order. Although the true class
label is ‘crisp,’ a belief theoretic classifier in general assigns
a ‘soft’ decision to an incoming data instance. Since we are
interested in a ‘hard’ decision, one may employ one of sev-
eral strategies that are available in the literature to remove
the ambiguity associated with a ‘soft’ decision [10]. We uti-
lized the pignistic probability distribution in (5) [24] for this
purpose.

The classification results in Table 3 show that the pro-
posed ARM-KNN-BF classifier compares well with the
others. Moreover, it operates on a much smaller rule set
than the KNN and KNN-BF classifiers. However, the
strength of a belief theoretic classifier is its ability to per-
form well even in the presence of ambiguities, and the de-
sign of such a classifier was exactly what we set out to do.

5.2 Databases With Class Label Ambiguities

Class label ambiguities are actually absent in the avail-
able UCI resources. To remedy this situation, it was decided
to artificially introduce class label ambiguities to some of



the available UCI databases. Several strategies to achieve
this have been discussed in [25]. We believe that the in-
troduction of ambiguities to class labels in a random man-
ner may not reflect reality because ambiguities are typically
generated due to inability of an expert to decide between
class labels that are ‘close’ to each other.

Instead, the KNN classifier itself was used to introduce
ambiguity into the class label—select � number of neigh-
bors to a particular training instance; if the majority of the
class labels of these � neighbors exceed the true label by
a pre-specified percentage $ , then introduce an ambiguity
into the true label. For example, suppose the true label of
an instance is ��� . With � ��& � , suppose 3 of them belong
to class � � , 6 belong to class ��� and 1 belongs to class ��� .
If $ � ��(�7 (corresponding to �%� ( votes), then we introduce
an ambiguity into the class label as ��� �%�0��� � . This partic-
ular strategy enables us to control the ‘level’ of ambiguity
of the resultant database via changing the value of $ . In our
experiments, we used $ �:��(�7 .

Except for the introduction of ambiguities, the other pa-
rameters were basically unchanged from what were used
previously. We compared the proposed ARM-KNN-BF
classifier with only the KNN and KNN-BF classifiers be-
cause of their ability to handle class ambiguities. Table 5
shows the support and confidence values used by the pro-
posed ARM-KNN-BF classifier. As can be observed, the

Table 5. Ambiguous databases: Parameters
used by ARM-KNN-BF classifier

Database Support Confidence

BCancer 0.10 0.8
Car 0.02 0.5
Diabetes 0.10 0.6
Iris 0.06 0.8
Monks 0.06 0.6
TTToe 0.04 0.5
Wine 0.07 0.3

support value is kept quite low (0.10 or less); the corre-
sponding confidence value is fairly high; as before, we used
� � � for all the experiments. Table 6 compares the average
number of rules generated per class by different classifiers.

Table 7 shows the classification accuracy of each algo-
rithm. Some remarks regarding how these accuracy ‘scores’
were computed are in order. Suppose the true class label is��� &1�5� � � . Then, how does one score the assignments � & ,��� � �5��� � or ��� &
�0� � � ? Clearly, the latter should be con-
sidered a ‘perfect’ classification while the others should be
scored less. We believe that a suitable measure for suitably
capturing such ‘soft’ decisions is

Score � �True label
$

Assigned label �
�True label � Assigned label � � (21)

Table 6. Ambiguous databases: Average
number of rules generated/class

Database KNN [9] & ARM-KNN-BF
KNN-BF [5] (% reduction)

BCancer 242 68 (72%)
Car 302 103 (66%)
Diabetes 258 120 (53%)
Iris 32 19 (41%)
Monks 341 62 (82%)
TTToe 333 65 (80%)
Wine 53 40 (25%)

Table 7. Ambiguous databases: Classifica-
tion accuracy

Database KNN KNN-BF ARM-
[9] [5] KNN-BF

BCancer 0.92 0.82 0.94
Car 0.89 0.83 0.88
Diabetes 0.78 0.76 0.79
Iris 0.91 0.94 0.92
Monks 0.86 0.87 0.89
TTToe 0.80 0.82 0.85
Wine 0.87 0.87 0.91

We are not aware of a suitable alternate measure that ap-
pears in the literature for this purpose. With (21), the as-
signment � & would score & �1� ; ��� � �5��� � would score & ��� ;
the only decision that gets a ‘perfect’ score of &
� � is the true
label, viz., ��� &
�0� � � .

These experiments indicate that the proposed ARM-
KNN-BF classifier compares quite favorably with the others
in handling class label ambiguities. In addition, it utilizes a
significantly lower number of rules (see Table 6).

5.3 Discussion

As opposed to mechanisms such as voting (which is
exactly what is utilized in KNN), belief theoretic meth-
ods (such as KNN-BF and ARM-KNN-BF) enable a much
richer information content to be captured and taken into ac-
count when making a classification decision. The major
factor that sets the proposed ARM-KNN-BF classifier apart
from both KNN and KNN-BF is how it interprets the term
‘neighbor.’ In both KNN and KNN-BF, neighbors are data
instance related while in ARM-KNN-BF they are rule re-
lated. Recalling that these rules are generated via ARM,
this means that a neighbor in ARM-KNN-BF already pos-
sesses information regarding the associations among data
instances. In other words, such neighbors capture more
structural information of data than what can be captured by
simple instance neighbors. We believe that these are the
reasons for the proposed ARM-KNN-BF classifier’s better



performance with a significantly lower number of rules.

6 Concluding Remarks

A novel belief theoretic rule mining based classification
algorithm has been introduced in this paper. It addresses
the following concerns: (C1) ambiguities in class label as-
signments in the training set samples; (C2) computational
and storage burdens; and (C3) training sets that are highly
skewed.

Based on the ‘interesting’ rules acquired from ARM on
the raw training set that is partitioned according to the class
label assignments, the belief theory formalism was used to
construct the classifier. Each rule is treated as a BoE, and
the final classification decision is based upon the fused BoE
obtained via the DRC. Only those rules that are ‘closer’ to
the incoming feature are taken into account when construct-
ing this fused BoE.

The ARM-KNN-BF algorithm we have proposed, not
only accommodates class label ambiguities, but also oper-
ates on a rule set (obtained via ARM) that is significantly
smaller than the original training set. The resulting savings
in computational and storage requirements can be a signif-
icant advantage especially when working with huge train-
ing sets. This constitutes the main difference between the
ARM-KNN-BF and KNN-BF classifiers.

Accommodating database ambiguities in classification is
an important research topic. The scoring system we utilize
in (21) is quite novel and we believe it can form the basis
on which various classification algorithms may be evaluated
against each other.

6.1 Future Research Work

Several other interesting issues have not been addressed
in this preliminary work. These include the following:� As mentioned previously, we believe that this work
has important applications in security monitoring and threat
classification scenarios. Such applications call for one to
err on the side of caution. For example, it is better to
over-estimate the true threat level than otherwise; under-
estimating a Dangerous threat level as OfConcern is
an error that may have serious consequences. An important
research problem is to study what strategies are suitable to
reduce the possibility of under-estimating threat level as-
signments.� The proposed method, as it stands, can actually ac-
commodate missing features by simply representing such a
feature by its corresponding FoD. One should be able to uti-
lize the belief theoretic methodology to handle other types
of ambiguities as well. One such approach appears in [11].
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